1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
//===--- TypeJoinMeet.cpp - Swift Type "join" and "meet" -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the "join" operation for types (and, eventually,
// "meet").
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/CanTypeVisitor.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Type.h"
#include "swift/AST/Types.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <optional>
using namespace swift;
namespace {
// FIXME: This is currently woefully incomplete, and is only currently
// used for optimizing away extra exploratory work in the constraint
// solver. It should eventually encompass all of the subtyping rules
// of the language.
struct TypeJoin : CanTypeVisitor<TypeJoin, CanType> {
// The type we're joining with another type (the latter of which is
// passed as an argument in the visitor.
CanType First;
// Always null. Used as a marker for places where we can improve the
// implementation.
CanType Unimplemented;
// Always null. Used as a marker for places where there is no join
// of two types in our type system.
CanType Nonexistent;
// For convenience, TheAnyType from ASTContext;
CanType TheAnyType;
CanType getAnyExistentialType() {
return ExistentialType::get(TheAnyType)->getCanonicalType();
}
TypeJoin(CanType First) : First(First), Unimplemented(CanType()) {
assert(First && "Unexpected null type!");
TheAnyType = First->getASTContext().TheAnyType;
}
static CanType getSuperclassJoin(CanType first, CanType second);
CanType computeProtocolCompositionJoin(ArrayRef<Type> firstMembers,
ArrayRef<Type> secondMembers);
CanType visitErrorType(CanType second);
CanType visitTupleType(CanType second);
CanType visitEnumType(CanType second);
CanType visitStructType(CanType second);
CanType visitClassType(CanType second);
CanType visitProtocolType(CanType second);
CanType visitBoundGenericClassType(CanType second);
CanType visitBoundGenericEnumType(CanType second);
CanType visitBoundGenericStructType(CanType second);
CanType visitMetatypeType(CanType second);
CanType visitExistentialMetatypeType(CanType second);
CanType visitExistentialType(CanType second);
CanType visitModuleType(CanType second);
CanType visitDynamicSelfType(CanType second);
CanType visitArchetypeType(CanType second);
CanType visitGenericTypeParamType(CanType second);
CanType visitDependentMemberType(CanType second);
CanType visitFunctionType(CanType second);
CanType visitGenericFunctionType(CanType second);
CanType visitProtocolCompositionType(CanType second);
CanType visitLValueType(CanType second);
CanType visitInOutType(CanType second);
CanType visitBuiltinType(CanType second);
CanType visitType(CanType second) {
return Unimplemented;
}
public:
static CanType join(CanType first, CanType second) {
assert(!first->hasTypeVariable() && !second->hasTypeVariable() &&
"Cannot compute join of types involving type variables");
assert(!first->hasPlaceholder() && !second->hasPlaceholder() &&
"Cannot compute join of types involving type placeholders");
assert(first->getWithoutSpecifierType()->isEqual(first) &&
"Expected simple type!");
assert(second->getWithoutSpecifierType()->isEqual(second) &&
"Expected simple type!");
// If the types are equivalent, the join is obvious.
if (first == second)
return first;
// Optionals broadly interact with all the other types since
// T <: T? for any T (including Any)
// So we'll always attempt to dispatch Optional here rather than
// make every visitor check for it explicitly.
if (first->getOptionalObjectType())
return TypeJoin(second).visit(first);
if (second->getOptionalObjectType())
return TypeJoin(first).visit(second);
// Likewise, rather than making every visitor deal with Any,
// always dispatch to the protocol composition side of the join.
if (first->is<ProtocolCompositionType>() || first->is<ExistentialType>())
return TypeJoin(second).visit(first);
if (second->is<ProtocolCompositionType>() || second->is<ExistentialType>())
return TypeJoin(first).visit(second);
// Otherwise the first type might be an optional (or not), so
// dispatch there.
return TypeJoin(second).visit(first);
}
};
CanType TypeJoin::getSuperclassJoin(CanType first, CanType second) {
assert(first != second);
// FIXME: Handle joins of classes and a single protocol?
if (!first->mayHaveSuperclass() || !second->mayHaveSuperclass())
return CanType();
/// Walk the superclasses of `first` looking for `second`. Record them
/// for our second step.
llvm::SmallPtrSet<CanType, 8> superclassesOfFirst;
for (Type super = first; super; super = super->getSuperclass()) {
auto canSuper = super->getCanonicalType();
// If we have found the second type, we're done.
if (canSuper == second)
return canSuper;
superclassesOfFirst.insert(canSuper);
}
// Look through the superclasses of second to determine if any were also
// superclasses of first.
for (Type super = second; super; super = super->getSuperclass()) {
auto canSuper = super->getCanonicalType();
// If we found the first type, we're done.
if (superclassesOfFirst.count(canSuper))
return canSuper;
}
// FIXME: Unimplemented.
return CanType();
}
CanType TypeJoin::visitErrorType(CanType second) {
llvm_unreachable("join with ErrorType not supported");
return second;
}
CanType TypeJoin::visitTupleType(CanType second) {
assert(First != second);
return getAnyExistentialType();
}
CanType TypeJoin::visitEnumType(CanType second) {
assert(First != second);
return Unimplemented;
}
CanType TypeJoin::visitStructType(CanType second) {
assert(First != second);
// Deal with inout cases in visitInOutType.
if (First->is<InOutType>())
return TypeJoin(second).visit(First);
// FIXME: When possible we should return a protocol or protocol
// composition.
return getAnyExistentialType();
}
CanType TypeJoin::visitClassType(CanType second) {
return getSuperclassJoin(First, second);
}
CanType TypeJoin::visitBoundGenericClassType(CanType second) {
return getSuperclassJoin(First, second);
}
/// The subtype relationship of Optionals is as follows:
/// S <: S?
/// S? <: T? if S <: T (covariant)
static std::optional<CanType> joinOptional(CanType first, CanType second) {
auto firstObject = first.getOptionalObjectType();
auto secondObject = second.getOptionalObjectType();
// If neither is any kind of Optional, we're done.
if (!firstObject && !secondObject)
return std::nullopt;
first = (firstObject ? firstObject : first);
second = (secondObject ? secondObject : second);
auto join = TypeJoin::join(first, second);
if (!join)
return std::nullopt;
return OptionalType::get(join)->getCanonicalType();
}
CanType TypeJoin::visitBoundGenericEnumType(CanType second) {
// Deal with either First or second (or both) being optionals.
if (auto joined = joinOptional(First, second))
return joined.value();
assert(First != second);
return Unimplemented;
}
CanType TypeJoin::visitBoundGenericStructType(CanType second) {
assert(First != second);
// Deal with inout cases in visitInOutType.
if (First->is<InOutType>())
return TypeJoin(second).visit(First);
return Unimplemented;
}
CanType TypeJoin::visitMetatypeType(CanType second) {
assert(First != second);
if (First->getKind() != second->getKind())
return getAnyExistentialType();
auto firstInstance =
First->castTo<AnyMetatypeType>()->getInstanceType()->getCanonicalType();
auto secondInstance =
second->castTo<AnyMetatypeType>()->getInstanceType()->getCanonicalType();
auto joinInstance = join(firstInstance, secondInstance);
if (!joinInstance)
return CanType();
return MetatypeType::get(joinInstance)->getCanonicalType();
}
CanType TypeJoin::visitExistentialMetatypeType(CanType second) {
assert(First != second);
if (First->getKind() != second->getKind())
return getAnyExistentialType();
auto firstInstance =
First->castTo<AnyMetatypeType>()->getInstanceType()->getCanonicalType();
auto secondInstance =
second->castTo<AnyMetatypeType>()->getInstanceType()->getCanonicalType();
auto joinInstance = join(firstInstance, secondInstance);
if (!joinInstance)
return CanType();
return ExistentialMetatypeType::get(joinInstance)->getCanonicalType();
}
CanType TypeJoin::visitExistentialType(CanType second) {
assert(First != second);
if (First->getKind() != second->getKind())
return getAnyExistentialType();
auto firstConstraint = First->castTo<ExistentialType>()
->getConstraintType()->getCanonicalType();
auto secondConstraint = second->castTo<ExistentialType>()
->getConstraintType()->getCanonicalType();
auto joinInstance = join(firstConstraint, secondConstraint);
if (!joinInstance)
return CanType();
return ExistentialType::get(joinInstance)->getCanonicalType();
}
CanType TypeJoin::visitModuleType(CanType second) {
assert(First != second);
return getAnyExistentialType();
}
CanType TypeJoin::visitDynamicSelfType(CanType second) {
return getSuperclassJoin(First, second);
}
CanType TypeJoin::visitArchetypeType(CanType second) {
return getSuperclassJoin(First, second);
}
CanType TypeJoin::visitGenericTypeParamType(CanType second) {
llvm_unreachable("Saw GenericTypeParamType in TypeJoin::join");
}
CanType TypeJoin::visitDependentMemberType(CanType second) {
assert(First != second);
if (First->getKind() != second->getKind())
return getAnyExistentialType();
return Unimplemented;
}
CanType TypeJoin::visitFunctionType(CanType second) {
assert(First != second);
auto secondFnTy = second->castTo<FunctionType>();
if (First->getKind() != second->getKind()) {
if (secondFnTy->getExtInfo().isNoEscape()) {
return Nonexistent;
} else {
return getAnyExistentialType();
}
}
auto firstFnTy = First->castTo<FunctionType>();
auto firstExtInfo = firstFnTy->getExtInfo();
auto secondExtInfo = secondFnTy->getExtInfo();
// FIXME: Properly handle these attributes.
if (!firstExtInfo.isEqualTo(secondExtInfo, useClangTypes(First)))
return Unimplemented;
if (!AnyFunctionType::equalParams(firstFnTy->getParams(),
secondFnTy->getParams()))
return Unimplemented;
auto firstResult = firstFnTy->getResult()->getCanonicalType();
auto secondResult = secondFnTy->getResult()->getCanonicalType();
auto result = join(firstResult, secondResult);
if (!result)
return Unimplemented;
auto extInfo = firstExtInfo;
if (secondFnTy->getExtInfo().isNoEscape())
extInfo = extInfo.withNoEscape(true);
return FunctionType::get(firstFnTy->getParams(), result, extInfo)
->getCanonicalType();
}
CanType TypeJoin::visitGenericFunctionType(CanType second) {
assert(First != second);
if (First->getKind() != second->getKind())
return getAnyExistentialType();
return Unimplemented;
}
// Use the distributive law to compute the join of the protocol
// compositions.
//
// (A ^ B) v (C ^ D)
// = (A v C) ^ (A v D) ^ (B v C) ^ (B v D)
//
// In general this law only applies to distributive lattices.
//
// In our case, this should be safe because our meet operation only
// produces an existing nominal type when it is one of the operands of
// the operation. So we can never arbitrarily climb down the lattice
// in ways that would break distributivity.
//
CanType TypeJoin::computeProtocolCompositionJoin(ArrayRef<Type> firstMembers,
ArrayRef<Type> secondMembers) {
SmallVector<Type, 8> result;
for (auto first : firstMembers) {
for (auto second : secondMembers) {
auto joined = Type::join(first, second);
if (!joined)
return Unimplemented;
if ((*joined)->isAny())
continue;
result.push_back(*joined);
}
}
if (result.empty())
return TheAnyType;
auto &ctx = result[0]->getASTContext();
return ProtocolCompositionType::get(ctx, result, /*inverses=*/{},
false)->getCanonicalType();
}
CanType TypeJoin::visitProtocolCompositionType(CanType second) {
// The join of Any and a no-escape function doesn't exist; it isn't
// Any. If it were Any, it would mean we would allow these functions
// to escape through Any.
if (second->isAny()) {
auto *fnTy = First->getAs<AnyFunctionType>();
if (fnTy && fnTy->getExtInfo().isNoEscape())
return Nonexistent;
return TheAnyType;
}
assert(First != second);
// FIXME: Handle other types here.
if (!First->isExistentialType())
return Unimplemented;
SmallVector<Type, 1> protocolType;
ArrayRef<Type> firstMembers;
if (First->is<ProtocolType>()) {
protocolType.push_back(First);
firstMembers = protocolType;
} else {
assert(cast<ProtocolCompositionType>(First)->getInverses().empty() &&
"FIXME: move-only generics");
firstMembers = cast<ProtocolCompositionType>(First)->getMembers();
}
assert(cast<ProtocolCompositionType>(second)->getInverses().empty() &&
"FIXME: move-only generics");
auto secondMembers = cast<ProtocolCompositionType>(second)->getMembers();
return computeProtocolCompositionJoin(firstMembers, secondMembers);
}
CanType TypeJoin::visitProtocolType(CanType second) {
assert(First != second);
assert(!First->is<ProtocolCompositionType>() &&
!second->is<ProtocolCompositionType>());
// FIXME: Handle other types here.
if (First->getKind() != second->getKind())
return TheAnyType;
auto *firstDecl =
cast<ProtocolDecl>(First->getNominalOrBoundGenericNominal());
auto *secondDecl =
cast<ProtocolDecl>(second->getNominalOrBoundGenericNominal());
if (firstDecl->getInheritedProtocols().empty() &&
secondDecl->getInheritedProtocols().empty())
return TheAnyType;
if (firstDecl->inheritsFrom(secondDecl))
return second;
if (secondDecl->inheritsFrom(firstDecl))
return First;
// One isn't the supertype of the other, so instead, treat each as
// if it's a protocol composition of its inherited members, and join
// those.
SmallVector<Type, 4> firstMembers;
for (auto *decl : firstDecl->getInheritedProtocols())
firstMembers.push_back(decl->getDeclaredInterfaceType());
SmallVector<Type, 4> secondMembers;
for (auto *decl : secondDecl->getInheritedProtocols())
secondMembers.push_back(decl->getDeclaredInterfaceType());
return computeProtocolCompositionJoin(firstMembers, secondMembers);
}
CanType TypeJoin::visitLValueType(CanType second) { return Unimplemented; }
CanType TypeJoin::visitInOutType(CanType second) { return Unimplemented; }
CanType TypeJoin::visitBuiltinType(CanType second) {
assert(First != second);
// BuiltinType with any non-equal type results in Any.
return getAnyExistentialType();
}
} // namespace
std::optional<Type> Type::join(Type first, Type second) {
assert(first && second && "Unexpected null type!");
if (!first || !second)
return std::nullopt;
auto join =
TypeJoin::join(first->getCanonicalType(), second->getCanonicalType());
if (!join)
return std::nullopt;
return join;
}
|