1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
|
//===--- TaskQueue.inc - Unix-specific TaskQueue ----------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/TaskQueue.h"
#include "swift/Basic/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/ErrorHandling.h"
#include <string>
#include <cerrno>
#if HAVE_POSIX_SPAWN
#include <spawn.h>
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#if defined(HAVE_GETRUSAGE) && !defined(__HAIKU__)
#include <sys/resource.h>
#endif
#include <poll.h>
#include <sys/types.h>
#include <sys/wait.h>
#if !defined(__APPLE__)
extern char **environ;
#else
extern "C" {
// _NSGetEnviron is from crt_externs.h which is missing in the iOS SDK.
extern char ***_NSGetEnviron(void);
}
#endif
namespace swift {
namespace sys {
#if defined(HAVE_GETRUSAGE) && !defined(__HAIKU__)
TaskProcessInformation::TaskProcessInformation(ProcessId Pid, struct rusage Usage)
: TaskProcessInformation(Pid,
uint64_t(Usage.ru_utime.tv_sec) * 1000000 +
uint64_t(Usage.ru_utime.tv_usec),
uint64_t(Usage.ru_stime.tv_sec) * 1000000 +
uint64_t(Usage.ru_stime.tv_usec),
Usage.ru_maxrss) {
#ifndef __APPLE__
// Apple systems report bytes; everything else appears to report KB.
this->ProcessUsage.value().Maxrss <<= 10;
#endif // __APPLE__
}
#endif // defined(HAVE_GETRUSAGE) && !defined(__HAIKU__)
class Task {
/// The path to the executable which this Task will execute.
const char *ExecPath;
/// Any arguments which should be passed during execution.
ArrayRef<const char *> Args;
/// The environment which will be used during execution. If empty, uses
/// this process's environment.
ArrayRef<const char *> Env;
/// Context which should be associated with this task.
void *Context;
/// True if the errors of the Task should be stored in Errors instead of Output.
bool SeparateErrors;
/// The pid of this Task when executing.
pid_t Pid;
/// A pipe for reading output from the child process.
int Pipe;
/// A pipe for reading errors from the child process, if SeparateErrors is true.
int ErrorPipe;
/// The current state of the Task.
enum class TaskState { Preparing, Executing, Finished } State;
/// Once the Task has finished, this contains the buffered output of the Task.
std::string Output;
/// Once the Task has finished, if SeparateErrors is true, this contains the
/// errors from the Task.
std::string Errors;
/// Optional place to count I/O and subprocess events.
UnifiedStatsReporter *Stats;
public:
Task(const char *ExecPath, ArrayRef<const char *> Args,
ArrayRef<const char *> Env, void *Context, bool SeparateErrors,
UnifiedStatsReporter *USR)
: ExecPath(ExecPath), Args(Args), Env(Env), Context(Context),
SeparateErrors(SeparateErrors), Pid(-1), Pipe(-1), ErrorPipe(-1),
State(TaskState::Preparing), Stats(USR) {
assert((Env.empty() || Env.back() == nullptr) &&
"Env must either be empty or null-terminated!");
}
const char *getExecPath() const { return ExecPath; }
ArrayRef<const char *> getArgs() const { return Args; }
StringRef getOutput() const { return Output; }
StringRef getErrors() const { return Errors; }
void *getContext() const { return Context; }
pid_t getPid() const { return Pid; }
int getPipe() const { return Pipe; }
int getErrorPipe() const { return ErrorPipe; }
/// Begins execution of this Task.
/// \returns true on error.
bool execute();
/// Reads data from the pipes, if any is available.
///
/// If \p UntilEnd is true, reads until the end of the stream; otherwise reads
/// once (possibly with a retry on EINTR), and returns.
/// \returns true on error.
bool readFromPipes(bool UntilEnd);
/// Performs any post-execution work for this Task, such as reading
/// piped output and closing the pipe.
void finishExecution();
};
} // end namespace sys
} // end namespace swift
bool Task::execute() {
assert(State < TaskState::Executing && "This Task cannot be executed twice!");
State = TaskState::Executing;
// Construct argv.
SmallVector<const char *, 128> Argv;
Argv.push_back(ExecPath);
Argv.append(Args.begin(), Args.end());
Argv.push_back(0); // argv is expected to be null-terminated.
// Set up the pipe.
int FullPipe[2];
pipe(FullPipe);
Pipe = FullPipe[0];
int FullErrorPipe[2];
if (SeparateErrors) {
pipe(FullErrorPipe);
ErrorPipe = FullErrorPipe[0];
}
// Get the environment to pass down to the subtask.
const char *const *envp = Env.empty() ? nullptr : Env.data();
if (!envp) {
#if __APPLE__
envp = *_NSGetEnviron();
#else
envp = environ;
#endif
}
const char **argvp = Argv.data();
#if HAVE_POSIX_SPAWN
posix_spawn_file_actions_t FileActions;
posix_spawn_file_actions_init(&FileActions);
posix_spawn_file_actions_adddup2(&FileActions, FullPipe[1], STDOUT_FILENO);
if (SeparateErrors) {
posix_spawn_file_actions_adddup2(&FileActions, FullErrorPipe[1],
STDERR_FILENO);
} else {
posix_spawn_file_actions_adddup2(&FileActions, STDOUT_FILENO,
STDERR_FILENO);
}
posix_spawn_file_actions_addclose(&FileActions, FullPipe[0]);
if (SeparateErrors) {
posix_spawn_file_actions_addclose(&FileActions, FullErrorPipe[0]);
}
// Spawn the subtask.
int spawnErr =
posix_spawn(&Pid, ExecPath, &FileActions, nullptr,
const_cast<char **>(argvp), const_cast<char **>(envp));
posix_spawn_file_actions_destroy(&FileActions);
close(FullPipe[1]);
if (SeparateErrors) {
close(FullErrorPipe[1]);
}
if (spawnErr != 0 || Pid == 0) {
close(FullPipe[0]);
if (SeparateErrors) {
close(FullErrorPipe[0]);
}
State = TaskState::Finished;
return true;
}
#else
Pid = fork();
switch (Pid) {
case -1: {
close(FullPipe[0]);
if (SeparateErrors) {
close(FullErrorPipe[0]);
}
State = TaskState::Finished;
Pid = 0;
break;
}
case 0: {
// Child process: Execute the program.
dup2(FullPipe[1], STDOUT_FILENO);
if (SeparateErrors) {
dup2(FullErrorPipe[1], STDERR_FILENO);
} else {
dup2(STDOUT_FILENO, STDERR_FILENO);
}
close(FullPipe[0]);
if (SeparateErrors) {
close(FullErrorPipe[0]);
}
execve(ExecPath, const_cast<char **>(argvp), const_cast<char **>(envp));
// If the execve() failed, we should exit. Follow Unix protocol and
// return 127 if the executable was not found, and 126 otherwise.
// Use _exit rather than exit so that atexit functions and static
// object destructors cloned from the parent process aren't
// redundantly run, and so that any data buffered in stdio buffers
// cloned from the parent aren't redundantly written out.
_exit(errno == ENOENT ? 127 : 126);
}
default:
// Parent process: Break out of the switch to do our processing.
break;
}
close(FullPipe[1]);
if (SeparateErrors) {
close(FullErrorPipe[1]);
}
if (Pid == 0)
return true;
#endif
return false;
}
/// Read the data in \p Pipe, and append it to \p Output.
/// \p Pipe must be in blocking mode, and must contain unread data.
/// If \p UntilEnd is true, keep reading, and possibly blocking, till the pipe
/// is closed. If \p UntilEnd is false, just read once. Return true if error
static bool readFromAPipe(std::string &Output, int Pipe,
UnifiedStatsReporter *Stats, bool UntilEnd) {
char outputBuffer[1024];
ssize_t readBytes = 0;
while ((readBytes = read(Pipe, outputBuffer, sizeof(outputBuffer))) != 0) {
if (readBytes < 0) {
if (errno == EINTR)
// read() was interrupted, so try again.
// Q: Why isn't there a counter to break out of this loop if there are
// more than some number of EINTRs?
// A: EINTR on a blocking read means only one thing: the syscall was
// interrupted and the program should retry. So there is no need to
// stop retrying after any particular number of interruptions (any
// more than the program would stop reading after a particular number
// of bytes or whatever).
continue;
return true;
}
Output.append(outputBuffer, readBytes);
if (Stats)
Stats->getDriverCounters().NumDriverPipeReads++;
if (!UntilEnd)
break;
}
return false;
}
bool Task::readFromPipes(bool UntilEnd) {
bool Ret = readFromAPipe(Output, Pipe, Stats, UntilEnd);
if (SeparateErrors) {
Ret |= readFromAPipe(Errors, ErrorPipe, Stats, UntilEnd);
}
return Ret;
}
void Task::finishExecution() {
assert(State == TaskState::Executing &&
"This Task must be executing to finish execution!");
State = TaskState::Finished;
// Read the output of the command, so we can use it later.
readFromPipes(/*UntilEnd*/ false);
close(Pipe);
if (SeparateErrors) {
close(ErrorPipe);
}
}
bool TaskQueue::supportsBufferingOutput() {
// The Unix implementation supports buffering output.
return true;
}
bool TaskQueue::supportsParallelExecution() {
// The Unix implementation supports parallel execution.
return true;
}
unsigned TaskQueue::getNumberOfParallelTasks() const {
// TODO: add support for choosing a better default value for
// MaxNumberOfParallelTasks if NumberOfParallelTasks is 0. (Optimally, this
// should choose a value > 1 tailored to the current system.)
return NumberOfParallelTasks > 0 ? NumberOfParallelTasks : 1;
}
void TaskQueue::addTask(const char *ExecPath, ArrayRef<const char *> Args,
ArrayRef<const char *> Env, void *Context,
bool SeparateErrors) {
std::unique_ptr<Task> T(
new Task(ExecPath, Args, Env, Context, SeparateErrors, Stats));
QueuedTasks.push(std::move(T));
}
/// Owns Tasks, handles correspondence between Tasks, file descriptors, and
/// process IDs.
/// FIXME: only handles stdout pipes, ignores stderr pipes.
class TaskMap {
using PidToTaskMap = llvm::DenseMap<pid_t, std::unique_ptr<Task>>;
PidToTaskMap TasksByPid;
public:
TaskMap() = default;
bool empty() const { return TasksByPid.empty(); }
unsigned size() const { return TasksByPid.size(); }
void add(std::unique_ptr<Task> T) { TasksByPid[T->getPid()] = std::move(T); }
Task &findTaskForFd(const int fd) {
auto predicate = [&fd](PidToTaskMap::value_type &value) -> bool {
return value.second->getPipe() == fd;
};
auto iter = std::find_if(TasksByPid.begin(), TasksByPid.end(), predicate);
assert(iter != TasksByPid.end() &&
"All outstanding fds must be associated with a Task");
return *iter->second;
}
void destroyTask(Task &T) { TasksByPid.erase(T.getPid()); }
};
/// Concurrently execute the tasks in the TaskQueue, collecting the outputs from
/// each task.
/// Maintain invariants connecting tasks to execute, tasks currently executing,
/// and fds being polled. These invariants include:
/// A task is not in both TasksToBeExecuted and TasksBeingExecuted,
/// A task is executing iff it is in TasksBeingExecuted,
/// A task is executing iff any of its fds being polled are in FdsBeingPolled
/// (These should be all of its output fds, but today is only stdout.)
/// When a task has finished executing, wait for it to die, takes
/// action appropriate to the cause of death, then reclaim its
/// storage.
class TaskMonitor {
std::queue<std::unique_ptr<Task>> &TasksToBeExecuted;
TaskMap TasksBeingExecuted;
std::vector<struct pollfd> FdsBeingPolled;
const unsigned MaxNumberOfParallelTasks;
public:
struct Callbacks {
const TaskQueue::TaskBeganCallback TaskBegan;
const TaskQueue::TaskFinishedCallback TaskFinished;
const TaskQueue::TaskSignalledCallback TaskSignalled;
const std::function<void()> PolledAnFd;
};
private:
Callbacks callbacks;
public:
TaskMonitor(std::queue<std::unique_ptr<Task>> &TasksToBeExecuted,
const unsigned NumberOfParallelTasks, const Callbacks &callbacks)
: TasksToBeExecuted(TasksToBeExecuted),
MaxNumberOfParallelTasks(
NumberOfParallelTasks == 0 ? 1 : NumberOfParallelTasks),
callbacks(callbacks) {}
/// Run the tasks to be executed.
/// \return true on error.
bool executeTasks();
private:
bool isFinishedExecutingTasks() const {
return TasksBeingExecuted.empty() && TasksToBeExecuted.empty();
}
/// Start up tasks if we aren't already at the parallel limit, and no earlier
/// subtasks have failed.
/// \return true on error.
bool startUpSomeTasks();
/// \return true on error.
bool beginExecutingATask(Task &T);
/// Enter the task and its outputs in this TaskMonitor's data structures so
/// it can be polled.
void startPollingFdsOfTask(const Task &T);
void stopPolling(ArrayRef<int> FinishedFds);
enum class PollResult { HardError, SoftError, NoError };
PollResult pollTheFds();
/// \return None on error.
std::optional<std::vector<int>> readFromReadyFdsReturningFinishedOnes();
/// Ensure that events bits returned from polling are what's expected.
void verifyEvents(short events) const;
void readDataIfAvailable(short events, int fd, Task &T) const;
bool didTaskHangup(short events) const;
};
bool TaskMonitor::executeTasks() {
while (!isFinishedExecutingTasks()) {
if (startUpSomeTasks())
return true;
switch (pollTheFds()) {
case PollResult::HardError:
return true;
case PollResult::SoftError:
continue;
case PollResult::NoError:
break;
}
std::optional<std::vector<int>> FinishedFds =
readFromReadyFdsReturningFinishedOnes();
if (!FinishedFds)
return true;
stopPolling(*FinishedFds);
}
return false;
}
bool TaskMonitor::startUpSomeTasks() {
while (!TasksToBeExecuted.empty() &&
TasksBeingExecuted.size() < MaxNumberOfParallelTasks) {
std::unique_ptr<Task> T(TasksToBeExecuted.front().release());
TasksToBeExecuted.pop();
if (beginExecutingATask(*T))
return true;
startPollingFdsOfTask(*T);
TasksBeingExecuted.add(std::move(T));
}
return false;
}
void TaskMonitor::startPollingFdsOfTask(const Task &T) {
FdsBeingPolled.push_back({T.getPipe(), POLLIN | POLLPRI | POLLHUP, 0});
// We should also poll T->getErrorPipe(), but this introduces timing
// issues with shutting down the task after reading getPipe().
}
TaskMonitor::PollResult TaskMonitor::pollTheFds() {
assert(!FdsBeingPolled.empty() &&
"We should only call poll() if we have fds to watch!");
int ReadyFdCount = poll(FdsBeingPolled.data(), FdsBeingPolled.size(), -1);
if (callbacks.PolledAnFd)
callbacks.PolledAnFd();
if (ReadyFdCount != -1)
return PollResult::NoError;
return errno == EAGAIN || errno == EINTR ? PollResult::SoftError
: PollResult::HardError;
}
bool TaskMonitor::beginExecutingATask(Task &T) {
if (T.execute())
return true;
if (callbacks.TaskBegan)
callbacks.TaskBegan(T.getPid(), T.getContext());
return false;
}
static bool
cleanUpAHungUpTask(Task &T,
const TaskQueue::TaskFinishedCallback FinishedCallback,
TaskQueue::TaskSignalledCallback SignalledCallback);
/**
Wait for the process with a given pid to finish.
@param pidToWaitFor the pid of the process to wait for
@return Status information of the wait call and information about process
*/
static std::pair<std::optional<int>, TaskProcessInformation>
waitForPid(const pid_t pidToWaitFor);
static bool
cleanUpAfterSignal(int Status, const Task &T, TaskProcessInformation ProcInfo,
const TaskQueue::TaskSignalledCallback SignalledCallback);
static bool
cleanUpAfterExit(int Status, const Task &T, TaskProcessInformation ProcInfo,
const TaskQueue::TaskFinishedCallback FinishedCallback);
std::optional<std::vector<int>>
TaskMonitor::readFromReadyFdsReturningFinishedOnes() {
std::vector<int> finishedFds;
for (struct pollfd &fd : FdsBeingPolled) {
const int fileDes = fd.fd;
const short receivedEvents = fd.revents;
fd.revents = 0;
verifyEvents(receivedEvents);
Task &T = TasksBeingExecuted.findTaskForFd(fileDes);
readDataIfAvailable(receivedEvents, fileDes, T);
if (!didTaskHangup(receivedEvents))
continue;
finishedFds.push_back(fileDes);
const bool hadError =
cleanUpAHungUpTask(T, callbacks.TaskFinished, callbacks.TaskSignalled);
TasksBeingExecuted.destroyTask(T);
if (hadError)
return std::nullopt;
}
return finishedFds;
}
void TaskMonitor::verifyEvents(const short events) const {
// We passed an invalid fd; this should never happen,
// since we always mark fds as finished after calling
// Task::finishExecution() (which closes the Task's fd).
assert((events & POLLNVAL) == 0 && "Asked poll() to watch a closed fd");
const short expectedEvents = POLLIN | POLLPRI | POLLHUP | POLLERR;
assert((events & ~expectedEvents) == 0 && "Received unexpected event");
(void)expectedEvents;
}
void TaskMonitor::readDataIfAvailable(const short events, const int fd,
Task &T) const {
if (events & (POLLIN | POLLPRI)) {
// There's data available to read. Read _some_ of it here, but not
// necessarily _all_, since the pipe is in blocking mode and we might
// have other input pending (or soon -- before this subprocess is done
// writing) from other subprocesses.
//
// FIXME: longer term, this should probably either be restructured to
// use O_NONBLOCK, or at very least poll the stderr file descriptor as
// well; the whole loop here is a bit of a mess.
T.readFromPipes(/*UntilEnd*/ false);
}
}
bool TaskMonitor::didTaskHangup(const short events) const {
return (events & (POLLHUP | POLLERR)) != 0;
}
static bool
cleanUpAHungUpTask(Task &T,
const TaskQueue::TaskFinishedCallback FinishedCallback,
const TaskQueue::TaskSignalledCallback SignalledCallback) {
const auto StatusAndProcessInformation = waitForPid(T.getPid());
if (!StatusAndProcessInformation.first)
return true;
T.finishExecution();
int Status = *(StatusAndProcessInformation.first);
TaskProcessInformation ProcInfo = StatusAndProcessInformation.second;
return WIFEXITED(Status)
? cleanUpAfterExit(Status, T, ProcInfo, FinishedCallback)
: WIFSIGNALED(Status)
? cleanUpAfterSignal(Status, T, ProcInfo, SignalledCallback)
: false /* Can this case ever happen? */;
}
static std::pair<std::optional<int>, TaskProcessInformation>
waitForPid(const pid_t pidToWaitFor) {
for (;;) {
int Status = 0;
#if defined(HAVE_GETRUSAGE) && !defined(__HAIKU__) && defined(HAVE_WAIT4)
struct rusage Usage;
const pid_t pidFromWait = wait4(pidToWaitFor, &Status, 0, &Usage);
TaskProcessInformation ProcInfo(pidToWaitFor, Usage);
#else
const pid_t pidFromWait = waitpid(pidToWaitFor, &Status, 0);
TaskProcessInformation ProcInfo(pidToWaitFor);
#endif
if (pidFromWait == pidToWaitFor)
return std::make_pair(Status, ProcInfo);
assert(pidFromWait == -1 &&
"Did not pass WNOHANG, should only get pidToWaitFor or -1");
if (errno == ECHILD || errno == EINVAL)
return std::make_pair(std::nullopt, TaskProcessInformation(pidToWaitFor));
}
}
static bool
cleanUpAfterExit(int Status, const Task &T, TaskProcessInformation ProcInfo,
const TaskQueue::TaskFinishedCallback FinishedCallback) {
const int Result = WEXITSTATUS(Status);
if (!FinishedCallback) {
// Since we don't have a TaskFinishedCallback, treat a subtask
// which returned a nonzero exit code as having failed.
return Result != 0;
}
// If we have a TaskFinishedCallback, only have an error if the callback
// returns StopExecution.
return TaskFinishedResponse::StopExecution ==
FinishedCallback(T.getPid(), Result, T.getOutput(), T.getErrors(), ProcInfo,
T.getContext());
}
static bool
cleanUpAfterSignal(int Status, const Task &T, TaskProcessInformation ProcInfo,
const TaskQueue::TaskSignalledCallback SignalledCallback) {
// The process exited due to a signal.
const int Signal = WTERMSIG(Status);
StringRef ErrorMsg = strsignal(Signal);
if (!SignalledCallback) {
// Since we don't have a TaskCrashedCallback, treat a crashing
// subtask as having failed.
return true;
}
// If we have a TaskCrashedCallback, only return an error if the callback
// returns StopExecution.
return TaskFinishedResponse::StopExecution ==
SignalledCallback(T.getPid(), ErrorMsg, T.getOutput(), T.getErrors(),
T.getContext(), Signal, ProcInfo);
}
void TaskMonitor::stopPolling(ArrayRef<int> FinishedFds) {
// Remove any fds which we've closed from FdsBeingPolled.
for (int fd : FinishedFds) {
auto predicate = [&fd](struct pollfd &i) { return i.fd == fd; };
auto iter =
std::find_if(FdsBeingPolled.begin(), FdsBeingPolled.end(), predicate);
assert(iter != FdsBeingPolled.end() &&
"The finished fd must be in FdsBeingPolled!");
FdsBeingPolled.erase(iter);
}
}
bool TaskQueue::execute(TaskBeganCallback BeganCallback,
TaskFinishedCallback FinishedCallback,
TaskSignalledCallback SignalledCallback) {
TaskMonitor::Callbacks callbacks{
BeganCallback, FinishedCallback, SignalledCallback, [&] {
if (Stats)
++Stats->getDriverCounters().NumDriverPipePolls;
}};
TaskMonitor TE(QueuedTasks, getNumberOfParallelTasks(), callbacks);
return TE.executeTasks();
}
|