File: ImportName.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (2559 lines) | stat: -rw-r--r-- 95,941 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
//===--- ImportName.cpp - Imported Swift names for Clang decls ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides class definitions for naming-related concerns in the
// ClangImporter.
//
//===----------------------------------------------------------------------===//

#include "CFTypeInfo.h"
#include "ClangClassTemplateNamePrinter.h"
#include "ClangDiagnosticConsumer.h"
#include "ImporterImpl.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ClangSwiftTypeCorrespondence.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsClangImporter.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/TypeRepr.h"
#include "swift/AST/Types.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/StringExtras.h"
#include "swift/ClangImporter/ClangImporterRequests.h"
#include "swift/Parse/Parser.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/Parser.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <memory>
#include <optional>

#include "llvm/ADT/Statistic.h"
#define DEBUG_TYPE "Import Name"
STATISTIC(ImportNameNumCacheHits, "# of times the import name cache was hit");
STATISTIC(ImportNameNumCacheMisses, "# of times the import name cache was missed");

using namespace swift;
using namespace importer;

// Commonly-used Clang classes.
using clang::CompilerInstance;
using clang::CompilerInvocation;

static const char *getOperatorName(clang::OverloadedOperatorKind Operator) {
  switch (Operator) {
  case clang::OO_None:
  case clang::NUM_OVERLOADED_OPERATORS:
    return nullptr;

#define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly)  \
  case clang::OO_##Name:                                                       \
    return #Name;
#include "clang/Basic/OperatorKinds.def"
  }

  llvm_unreachable("Invalid OverloadedOperatorKind!");
}

/// Determine whether the given Clang selector matches the given
/// selector pieces.
static bool isNonNullarySelector(clang::Selector selector,
                                 ArrayRef<StringRef> pieces) {
  unsigned n = selector.getNumArgs();
  if (n == 0) return false;
  if (n != pieces.size()) return false;

  for (unsigned i = 0; i != n; ++i) {
    if (selector.getNameForSlot(i) != pieces[i]) return false;
  }

  return true;
}

/// Whether we should make a variadic method with the given selector
/// non-variadic.
static bool shouldMakeSelectorNonVariadic(clang::Selector selector) {
  // This is UIActionSheet's designated initializer.
  if (isNonNullarySelector(selector,
                           { "initWithTitle",
                             "delegate",
                             "cancelButtonTitle",
                             "destructiveButtonTitle",
                             "otherButtonTitles" }))
    return true;

  // This is UIAlertView's designated initializer.
  if (isNonNullarySelector(selector,
                           { "initWithTitle",
                             "message",
                             "delegate",
                             "cancelButtonTitle",
                             "otherButtonTitles" }))
    return true;

  // Nothing else for now.
  return false;
}

static bool isBlockParameter(const clang::ParmVarDecl *param) {
  return param->getType()->isBlockPointerType();
}

static bool isErrorOutParameter(const clang::ParmVarDecl *param,
                         ForeignErrorConvention::IsOwned_t &isErrorOwned) {
  clang::QualType type = param->getType();

  // Must be a pointer.
  auto ptrType = type->getAs<clang::PointerType>();
  if (!ptrType) return false;
  type = ptrType->getPointeeType();

  // For NSError**, take ownership from the qualifier.
  if (auto objcPtrType = type->getAs<clang::ObjCObjectPointerType>()) {
    auto iface = objcPtrType->getInterfaceDecl();
    if (iface && iface->getName() == "NSError") {
      switch (type.getObjCLifetime()) {
      case clang::Qualifiers::OCL_None:
        llvm_unreachable("not in ARC?");

      case clang::Qualifiers::OCL_ExplicitNone:
      case clang::Qualifiers::OCL_Autoreleasing:
        isErrorOwned = ForeignErrorConvention::IsNotOwned;
        return true;

      case clang::Qualifiers::OCL_Weak:
        // We just don't know how to handle this.
        return false;

      case clang::Qualifiers::OCL_Strong:
        isErrorOwned = ForeignErrorConvention::IsOwned;
        return false;
      }
      llvm_unreachable("bad error ownership");
    }
  }
  return false;
}

static bool isBoolType(clang::ASTContext &ctx, clang::QualType type) {
  do {
    // Check whether we have a typedef for "BOOL" or "Boolean".
    if (auto typedefType = dyn_cast<clang::TypedefType>(type.getTypePtr())) {
      auto typedefDecl = typedefType->getDecl();
      if (typedefDecl->getName() == "BOOL" ||
          typedefDecl->getName() == "Boolean")
        return true;

      type = typedefDecl->getUnderlyingType();
      continue;
    }

    // Try to desugar one level...
    clang::QualType desugared = type.getSingleStepDesugaredType(ctx);
    if (desugared.getTypePtr() == type.getTypePtr())
      break;

    type = desugared;
  } while (!type.isNull());

  return false;
}

static bool isIntegerType(clang::QualType clangType) {
  if (auto builtinTy = clangType->getAs<clang::BuiltinType>()) {
    return (builtinTy->getKind() >= clang::BuiltinType::Bool &&
            builtinTy->getKind() <= clang::BuiltinType::UInt128) ||
           (builtinTy->getKind() >= clang::BuiltinType::SChar &&
            builtinTy->getKind() <= clang::BuiltinType::Int128);
  }

  return false;
}

static std::optional<ForeignErrorConvention::Kind>
classifyMethodErrorHandling(const clang::ObjCMethodDecl *clangDecl,
                            OptionalTypeKind resultOptionality) {
  // TODO: opt out any non-standard methods here?
  clang::ASTContext &clangCtx = clangDecl->getASTContext();

  // Check for an explicit attribute.
  if (auto attr = clangDecl->getAttr<clang::SwiftErrorAttr>()) {
    switch (attr->getConvention()) {
    case clang::SwiftErrorAttr::None:
      return std::nullopt;

    case clang::SwiftErrorAttr::NonNullError:
      return ForeignErrorConvention::NonNilError;

    // Only honor null_result if we actually imported as a
    // non-optional type.
    case clang::SwiftErrorAttr::NullResult:
      if (resultOptionality != OTK_None &&
          swift::canImportAsOptional(
            clangDecl->getReturnType().getTypePtrOrNull()))
        return ForeignErrorConvention::NilResult;
      return std::nullopt;

    // Preserve the original result type on a zero_result unless we
    // imported it as Bool.
    case clang::SwiftErrorAttr::ZeroResult:
      if (isBoolType(clangCtx, clangDecl->getReturnType())) {
        return ForeignErrorConvention::ZeroResult;
      } else if (isIntegerType(clangDecl->getReturnType())) {
        return ForeignErrorConvention::ZeroPreservedResult;
      }
      return std::nullopt;

    // There's no reason to do the same for nonzero_result because the
    // only meaningful value remaining would be zero.
    case clang::SwiftErrorAttr::NonZeroResult:
      if (isIntegerType(clangDecl->getReturnType()))
        return ForeignErrorConvention::NonZeroResult;
      return std::nullopt;
    }
    llvm_unreachable("bad swift_error kind");
  }

  // Otherwise, apply the default rules.

  // For bool results, a zero value is an error.
  if (isBoolType(clangCtx, clangDecl->getReturnType())) {
    return ForeignErrorConvention::ZeroResult;
  }

  // For optional reference results, a nil value is normally an error.
  if (resultOptionality != OTK_None &&
      swift::canImportAsOptional(
        clangDecl->getReturnType().getTypePtrOrNull())) {
    return ForeignErrorConvention::NilResult;
  }

  return std::nullopt;
}

static const char ErrorSuffix[] = "AndReturnError";
static const char AltErrorSuffix[] = "WithError";

/// Determine the optionality of the given Objective-C method.
///
/// \param method The Clang method.
static OptionalTypeKind getResultOptionality(
                          const clang::ObjCMethodDecl *method) {
  // If nullability is available on the type, use it.
  if (auto nullability = method->getReturnType()->getNullability()) {
    return translateNullability(*nullability);
  }

  // If there is a returns_nonnull attribute, non-null.
  if (method->hasAttr<clang::ReturnsNonNullAttr>())
    return OTK_None;

  // Default to implicitly unwrapped optionals.
  return OTK_ImplicitlyUnwrappedOptional;
}

/// Determine whether the given name is reserved for Swift.
static bool isSwiftReservedName(StringRef name) {
  tok kind = Lexer::kindOfIdentifier(name, /*InSILMode=*/false);
  return (kind != tok::identifier);
}

/// Determine whether we should lowercase the first word of the given value
/// name.
static bool shouldLowercaseValueName(StringRef name) {
  // If we see any lowercase characters, we can lowercase.
  for (auto c : name) {
    if (clang::isLowercase(c)) return true;
  }

  // Otherwise, lowercasing will either be a no-op or we have ALL_CAPS.
  return false;
}

/// Will recursively print out the fully qualified context for the given name.
/// Ends with a trailing "."
static void printFullContextPrefix(ImportedName name, ImportNameVersion version,
                                   llvm::raw_ostream &os,
                                   ClangImporter::Implementation &Impl) {
  const clang::NamedDecl *newDeclContextNamed = nullptr;
  switch (name.getEffectiveContext().getKind()) {
  case EffectiveClangContext::UnresolvedContext:
    os << name.getEffectiveContext().getUnresolvedName() << ".";
    // And we're done!
    return;

  case EffectiveClangContext::DeclContext: {
    auto namedDecl = dyn_cast<clang::NamedDecl>(
        name.getEffectiveContext().getAsDeclContext());
    if (!namedDecl) {
      // We're done
      return;
    }
    newDeclContextNamed = cast<clang::NamedDecl>(namedDecl);
    break;
  }

  case EffectiveClangContext::TypedefContext:
    newDeclContextNamed = name.getEffectiveContext().getTypedefName();
    break;
  }

  // Now, let's print out the parent
  assert(newDeclContextNamed && "should of been set");
  auto parentName = Impl.importFullName(newDeclContextNamed, version);
  printFullContextPrefix(parentName, version, os, Impl);
  os << parentName.getDeclName() << ".";
}

void ClangImporter::Implementation::printSwiftName(ImportedName name,
                                                   ImportNameVersion version,
                                                   bool fullyQualified,
                                                   llvm::raw_ostream &os) {
  // Property accessors.
  bool isGetter = false;
  bool isSetter = false;
  switch (name.getAccessorKind()) {
  case ImportedAccessorKind::None:
  case ImportedAccessorKind::DereferenceGetter:
  case ImportedAccessorKind::DereferenceSetter:
    break;

  case ImportedAccessorKind::PropertyGetter:
  case ImportedAccessorKind::SubscriptGetter:
    os << "getter:";
    isGetter = true;
    break;

  case ImportedAccessorKind::PropertySetter:
  case ImportedAccessorKind::SubscriptSetter:
    os << "setter:";
    isSetter = true;
    break;
  }

  if (fullyQualified)
    printFullContextPrefix(name, version, os, *this);

  // Base name.
  os << name.getDeclName().getBaseName();

  // Determine the number of argument labels we'll be producing.
  auto argumentNames = name.getDeclName().getArgumentNames();
  unsigned numArguments = argumentNames.size();
  if (name.getSelfIndex()) ++numArguments;
  if (isSetter) ++numArguments;

  // If the result is a simple name that is not a getter, we're done.
  if (numArguments == 0 && name.getDeclName().isSimpleName() && !isGetter)
    return;

  // We need to produce a function name.
  os << "(";
  unsigned currentArgName = 0;
  for (unsigned i = 0; i != numArguments; ++i) {
    // The "self" parameter.
    if (name.getSelfIndex() && *name.getSelfIndex() == i) {
      os << "self:";
      continue;
    }

    if (currentArgName < argumentNames.size()) {
      if (argumentNames[currentArgName].empty())
        os << "_";
      else
        os << argumentNames[currentArgName].str();
      os << ":";
      ++currentArgName;
      continue;
    }

    // We don't have a name for this argument.
    os << "_:";
  }
  os << ")";
}

/// Retrieve the name of the given Clang declaration context for
/// printing.
static StringRef getClangDeclContextName(const clang::DeclContext *dc) {
  auto type = getClangDeclContextType(dc);
  if (type.isNull()) return StringRef();

  return getClangTypeNameForOmission(dc->getParentASTContext(), type).Name;
}

namespace {
  /// Merge the a set of imported names produced for the overridden
  /// declarations of a given method or property.
  template<typename DeclType>
  void mergeOverriddenNames(ASTContext &ctx,
                            const DeclType *decl,
                            SmallVectorImpl<std::pair<const DeclType *,
                                                      ImportedName>>
                              &overriddenNames) {
    typedef std::pair<const DeclType *, ImportedName> OverriddenName;
    llvm::SmallPtrSet<DeclName, 4> known;
    (void)known.insert(DeclName());
    overriddenNames.erase(
        std::remove_if(overriddenNames.begin(), overriddenNames.end(),
                       [&](OverriddenName overridden) {
                         return !known.insert(overridden.second.getDeclName())
                                     .second;
                       }),
        overriddenNames.end());

    if (overriddenNames.size() < 2)
      return;

    // Complain about inconsistencies.
    std::string nameStr;
    auto method = dyn_cast<clang::ObjCMethodDecl>(decl);
    if (method)
      nameStr = method->getSelector().getAsString();
    else
      nameStr = cast<clang::ObjCPropertyDecl>(decl)->getName().str();
    for (unsigned i = 1, n = overriddenNames.size(); i != n; ++i) {
      if (ctx.Diags.isPrettyPrintingDecl())
        continue;

      ctx.Diags.diagnose(SourceLoc(), diag::inconsistent_swift_name,
                         method == nullptr,
                         nameStr,
                         getClangDeclContextName(decl->getDeclContext()),
                         overriddenNames[0].second,
                         getClangDeclContextName(
                           overriddenNames[0].first->getDeclContext()),
                         overriddenNames[i].second,
                         getClangDeclContextName(
                           overriddenNames[i].first->getDeclContext()));
    }
  }
} // end anonymous namespace

/// Skip a leading 'k' in a 'kConstant' pattern
static StringRef stripLeadingK(StringRef name) {
  if (name.size() >= 2 && name[0] == 'k' &&
      clang::isUppercase(name[1]))
    return name.drop_front(1);
  return name;
}

/// Strips a trailing "Notification", if present. Returns {} if name doesn't end
/// in "Notification", or it there would be nothing left.
StringRef importer::stripNotification(StringRef name) {
  name = stripLeadingK(name);
  StringRef notification = "Notification";
  if (name.size() <= notification.size() || !name.endswith(notification))
    return {};
  return name.drop_back(notification.size());
}

/// Match the name of the given Objective-C method to its enclosing class name
/// to determine the name prefix that would be stripped if the class method
/// were treated as an initializer.
static std::optional<unsigned>
matchFactoryAsInitName(const clang::ObjCMethodDecl *method) {
  // Only class methods can be mapped to initializers in this way.
  if (!method->isClassMethod())
    return std::nullopt;

  // Said class methods must be in an actual class.
  auto objcClass = method->getClassInterface();
  if (!objcClass)
    return std::nullopt;

  // See if we can match the class name to the beginning of the first
  // selector piece.
  auto firstPiece = method->getSelector().getNameForSlot(0);
  if (firstPiece.empty())
    return std::nullopt;
  StringRef firstArgLabel = matchLeadingTypeName(firstPiece,
                                                 objcClass->getName());
  if (firstArgLabel.size() == firstPiece.size())
    return std::nullopt;

  // FIXME: Factory methods cannot have dummy parameters added for
  // historical reasons.
  if (!firstArgLabel.empty() && method->getSelector().getNumArgs() == 0)
    return std::nullopt;

  // Return the prefix length.
  return firstPiece.size() - firstArgLabel.size();
}

/// Determine the kind of initializer the given factory method could be mapped
/// to, or produce \c None.
static std::optional<CtorInitializerKind>
determineFactoryInitializerKind(const clang::ObjCMethodDecl *method) {
  // Determine whether we have a suitable return type.
  if (method->hasRelatedResultType()) {
    // When the factory method has an "instancetype" result type, we
    // can import it as a convenience factory method.
    return CtorInitializerKind::ConvenienceFactory;
  }

  if (auto objcPtr = method->getReturnType()
                       ->getAs<clang::ObjCObjectPointerType>()) {
    auto objcClass = method->getClassInterface();
    if (!objcClass)
      return std::nullopt;

    if (objcPtr->getInterfaceDecl() != objcClass) {
      // FIXME: Could allow a subclass here, but the rest of the compiler
      // isn't prepared for that yet.
      return std::nullopt;
    }

    // Factory initializer.
    return CtorInitializerKind::Factory;
  }

  // Not imported as an initializer.
  return std::nullopt;
}

namespace {
///  Describes the details of any swift_name or swift_async_name
///  attribute found via
struct AnySwiftNameAttr {
  /// The name itself.
  StringRef name;

  /// Whether this was a swift_async_name attribute.
  bool isAsync;

  friend bool operator==(AnySwiftNameAttr lhs, AnySwiftNameAttr rhs) {
    return lhs.name == rhs.name && lhs.isAsync == rhs.isAsync;
  }
};

/// Aggregate struct for the common members of clang::SwiftVersionedAttr and
/// clang::SwiftVersionedRemovalAttr.
///
/// For a SwiftVersionedRemovalAttr, the Attr member will be null.
struct VersionedSwiftNameInfo {
  std::optional<AnySwiftNameAttr> Attr;
  llvm::VersionTuple Version;
  bool IsReplacedByActive;
};

/// The action to take upon seeing a particular versioned swift_name annotation.
enum class VersionedSwiftNameAction {
  /// This annotation is not interesting.
  Ignore,
  /// This annotation is better than whatever we have so far.
  Use,
  /// This annotation is better than nothing, but that's all; don't bother
  /// recording its version.
  UseAsFallback,
  /// This annotation itself isn't interesting, but its version shows that the
  /// correct answer is whatever's currently active.
  ResetToActive
};
} // end anonymous namespace

static VersionedSwiftNameAction
checkVersionedSwiftName(VersionedSwiftNameInfo info,
                        llvm::VersionTuple bestSoFar,
                        ImportNameVersion requestedVersion) {
  if (!bestSoFar.empty() && bestSoFar <= info.Version)
    return VersionedSwiftNameAction::Ignore;

  auto requestedClangVersion = requestedVersion.asClangVersionTuple();

  if (info.IsReplacedByActive) {
    // We know that there are no versioned names between the active version and
    // a replacement version, because otherwise /that/ name would be active.
    // So if replacement < requested, we want to use the old value that was
    // replaced (but with very low priority), and otherwise we want to use the
    // new value that is now active. (Special case: replacement = 0 means that
    // a header annotation was replaced by an unversioned API notes annotation.)
    if (info.Version.empty() ||
        info.Version >= requestedClangVersion) {
      return VersionedSwiftNameAction::ResetToActive;
    }
    if (bestSoFar.empty())
      return VersionedSwiftNameAction::UseAsFallback;
    return VersionedSwiftNameAction::Ignore;
  }

  if (info.Version < requestedClangVersion)
    return VersionedSwiftNameAction::Ignore;
  return VersionedSwiftNameAction::Use;
}

static std::optional<AnySwiftNameAttr>
findSwiftNameAttr(const clang::Decl *decl, ImportNameVersion version) {
#ifndef NDEBUG
  if (std::optional<const clang::Decl *> def =
          getDefinitionForClangTypeDecl(decl)) {
    assert((*def == nullptr || *def == decl) &&
           "swift_name should only appear on the definition");
  }
#endif

  if (version == ImportNameVersion::raw())
    return std::nullopt;

  /// Decode the given Clang attribute to try to determine whether it is
  /// a Swift name attribute.
  auto decodeAttr =
      [&](const clang::Attr *attr) -> std::optional<AnySwiftNameAttr> {
    if (version.supportsConcurrency()) {
      if (auto asyncAttr = dyn_cast<clang::SwiftAsyncNameAttr>(attr)) {
        return AnySwiftNameAttr { asyncAttr->getName(), /*isAsync=*/true };
      }
    }

    if (auto nameAttr = dyn_cast<clang::SwiftNameAttr>(attr)) {
      return AnySwiftNameAttr { nameAttr->getName(), /*isAsync=*/false };
    }

    return std::nullopt;
  };

  // Handle versioned API notes for Swift 3 and later. This is the common case.
  if (version > ImportNameVersion::swift2()) {
    // FIXME: Until Apple gets a chance to update UIKit's API notes, always use
    // the new name for certain properties.
    if (auto *namedDecl = dyn_cast<clang::NamedDecl>(decl))
      if (importer::isSpecialUIKitStructZeroProperty(namedDecl))
        version = ImportNameVersion::swift4_2();

    // Dig out the attribute that specifies the Swift name.
    std::optional<AnySwiftNameAttr> activeAttr;
    if (auto asyncAttr = decl->getAttr<clang::SwiftAsyncNameAttr>())
      activeAttr = decodeAttr(asyncAttr);
    if (!activeAttr) {
      if (auto nameAttr = decl->getAttr<clang::SwiftNameAttr>())
        activeAttr = decodeAttr(nameAttr);
    }

    if (auto enumDecl = dyn_cast<clang::EnumDecl>(decl)) {
      // Intentionally don't get the canonical type here.
      if (auto typedefType = dyn_cast<clang::TypedefType>(getUnderlyingType(enumDecl))) {
        // If the typedef is available in Swift, the user will get ambiguity.
        // It also means they may not have intended this API to be imported like this.
        if (importer::isUnavailableInSwift(typedefType->getDecl(), nullptr, true)) {
          if (auto asyncAttr = typedefType->getDecl()->getAttr<clang::SwiftAsyncNameAttr>())
            activeAttr = decodeAttr(asyncAttr);
          if (!activeAttr) {
            if (auto nameAttr = typedefType->getDecl()->getAttr<clang::SwiftNameAttr>())
              activeAttr = decodeAttr(nameAttr);
          }
        }
      }
    }

    std::optional<AnySwiftNameAttr> result = activeAttr;
    llvm::VersionTuple bestSoFar;
    for (auto *attr : decl->attrs()) {
      VersionedSwiftNameInfo info;

      if (auto *versionedAttr = dyn_cast<clang::SwiftVersionedAttr>(attr)) {
        auto added = decodeAttr(versionedAttr->getAttrToAdd());
        if (!added)
          continue;

        info = {added, versionedAttr->getVersion(),
                versionedAttr->getIsReplacedByActive()};

      } else if (auto *removeAttr =
                   dyn_cast<clang::SwiftVersionedRemovalAttr>(attr)) {
        if (removeAttr->getAttrKindToRemove() != clang::attr::SwiftName)
          continue;
        info = {std::nullopt, removeAttr->getVersion(),
                removeAttr->getIsReplacedByActive()};

      } else {
        continue;
      }

      switch (checkVersionedSwiftName(info, bestSoFar, version)) {
      case VersionedSwiftNameAction::Ignore:
        continue;
      case VersionedSwiftNameAction::Use:
        result = info.Attr;
        bestSoFar = info.Version;
        break;
      case VersionedSwiftNameAction::UseAsFallback:
        // HACK: If there's a swift_name attribute in the headers /and/ in the
        // unversioned API notes /and/ in the active versioned API notes, there
        // will be two "replacement" attributes, one for each of the first two
        // cases. Prefer the first one we see, because that turns out to be the
        // one from the API notes, which matches the semantics when there are no
        // versioned API notes. (This isn't very principled but there's at least
        // a test to tell us if it changes.)
        if (result == activeAttr)
          result = info.Attr;
        assert(bestSoFar.empty());
        break;
      case VersionedSwiftNameAction::ResetToActive:
        result = activeAttr;
        bestSoFar = info.Version;
        break;
      }
    }

    return result;
  }

  // The remainder of this function emulates the limited form of swift_name
  // supported in Swift 2.
  auto attr = decl->getAttr<clang::SwiftNameAttr>();
  if (!attr)
    return std::nullopt;

  // API notes produce attributes with no source location; ignore them because
  // they weren't used for naming in Swift 2.
  if (attr->getLocation().isInvalid())
    return std::nullopt;

  // Hardcode certain kinds of explicitly-written Swift names that were
  // permitted and used in Swift 2. All others are ignored, so that we are
  // assuming a more direct translation from the Objective-C APIs into Swift.

  if (auto enumerator = dyn_cast<clang::EnumConstantDecl>(decl)) {
    // Foundation's NSXMLDTDKind had an explicit swift_name attribute in
    // Swift 2. Honor it.
    if (enumerator->getName() == "NSXMLDTDKind") return decodeAttr(attr);
    return std::nullopt;
  }

  if (auto method = dyn_cast<clang::ObjCMethodDecl>(decl)) {
    // Special case: mapping to an initializer.
    if (attr->getName().starts_with("init(")) {
      // If we have a class method, honor the annotation to turn a class
      // method into an initializer.
      if (method->isClassMethod()) return decodeAttr(attr);

      return std::nullopt;
    }

    // Special case: preventing a mapping to an initializer.
    if (matchFactoryAsInitName(method) && determineFactoryInitializerKind(method))
      return decodeAttr(attr);

    return std::nullopt;
  }

  return std::nullopt;
}

/// Determine whether the given class method should be imported as
/// an initializer.
static FactoryAsInitKind
getFactoryAsInit(const clang::ObjCInterfaceDecl *classDecl,
                 const clang::ObjCMethodDecl *method,
                 ImportNameVersion version) {
  if (auto customNameAttr = findSwiftNameAttr(method, version)) {
    if (customNameAttr->name.starts_with("init("))
      return FactoryAsInitKind::AsInitializer;
    else
      return FactoryAsInitKind::AsClassMethod;
  }

  return FactoryAsInitKind::Infer;
}

std::optional<CtorInitializerKind>
determineCtorInitializerKind(const clang::ObjCMethodDecl *method) {
  const clang::ObjCInterfaceDecl *interface = method->getClassInterface();

  if (isInitMethod(method)) {
    // If the owning Objective-C class has designated initializers and this
    // is not one of them, treat it as a convenience initializer.
    if (interface && interface->hasDesignatedInitializers() &&
        !method->hasAttr<clang::ObjCDesignatedInitializerAttr>()) {
      return CtorInitializerKind::Convenience;
    }

    return CtorInitializerKind::Designated;
  }

  if (method->isClassMethod())
    return determineFactoryInitializerKind(method);

  return std::nullopt;
}

/// Determine whether this Objective-C method should be imported as
/// an initializer.
///
/// \param prefixLength Will be set to the length of the prefix that
/// should be stripped from the first selector piece, e.g., "init"
/// or the restated name of the class in a factory method.
static bool shouldImportAsInitializer(const clang::ObjCMethodDecl *method,
                                      ImportNameVersion version,
                                      unsigned &prefixLength) {
  /// Is this an initializer?
  if (isInitMethod(method)) {
    prefixLength = 4;
    return true;
  }

  // It must be a class method.
  if (!method->isClassMethod()) return false;

  // Said class methods must be in an actual class.
  auto objcClass = method->getClassInterface();
  if (!objcClass) return false;

  // Check whether we should try to import this factory method as an
  // initializer.
  switch (getFactoryAsInit(objcClass, method, version)) {
  case FactoryAsInitKind::AsInitializer:
    // Okay; check for the correct result type below.
    prefixLength = 0;
    break;

  case FactoryAsInitKind::Infer:
    // See if we can match the class name to the beginning of the first
    // selector piece.
    if (auto matchedLength = matchFactoryAsInitName(method)) {
      prefixLength = *matchedLength;
      break;
    }

    return false;

  case FactoryAsInitKind::AsClassMethod:
    return false;
  }

  if (determineFactoryInitializerKind(method))
    return true;

  // Not imported as an initializer.
  return false;
}

/// Attempt to omit needless words from the given function name.
static bool omitNeedlessWordsInFunctionName(
    StringRef &baseName, SmallVectorImpl<StringRef> &argumentNames,
    ArrayRef<const clang::ParmVarDecl *> params, clang::QualType resultType,
    const clang::DeclContext *dc, const SmallBitVector &nonNullArgs,
    std::optional<unsigned> errorParamIndex, bool returnsSelf,
    bool isInstanceMethod, std::optional<unsigned> completionHandlerIndex,
    std::optional<StringRef> completionHandlerName,
    NameImporter &nameImporter) {
  clang::ASTContext &clangCtx = nameImporter.getClangContext();

  // Collect the parameter type names.
  StringRef firstParamName;
  SmallVector<OmissionTypeName, 4> paramTypes;
  for (unsigned i = 0, n = params.size(); i != n; ++i) {
    auto param = params[i];

    // Capture the first parameter name.
    if (i == 0)
      firstParamName = param->getName();

    bool isLastParameter
      = (i == params.size() - 1) ||
        (i == params.size() - 2 &&
         errorParamIndex && *errorParamIndex == params.size() - 1);

    // Figure out whether there will be a default argument for this
    // parameter.
    StringRef argumentName;
    if (i < argumentNames.size())
      argumentName = argumentNames[i];
    auto argumentAttrs =
        ClangImporter::Implementation::inferDefaultArgument(
            param->getType(),
            getParamOptionality(param, !nonNullArgs.empty() && nonNullArgs[i]),
            nameImporter.getIdentifier(baseName), argumentName, i == 0,
            isLastParameter, nameImporter);

    paramTypes.push_back(
        (argumentAttrs.hasAlternateCXXOptionsEnumName()
             ? OmissionTypeName(argumentAttrs.getAlternateCXXOptionsEnumName())
             : getClangTypeNameForOmission(clangCtx, param->getOriginalType()))
            .withDefaultArgument(argumentAttrs.hasDefaultArg()));
  }

  // Find the property names.
  const InheritedNameSet *allPropertyNames = nullptr;
  auto contextType = getClangDeclContextType(dc);
  if (!contextType.isNull()) {
    if (auto objcPtrType = contextType->getAsObjCInterfacePointerType())
      if (auto objcClassDecl = objcPtrType->getInterfaceDecl())
        allPropertyNames = nameImporter.getAllPropertyNames(
            objcClassDecl, isInstanceMethod);
  }

  // Omit needless words.
  return omitNeedlessWords(baseName, argumentNames, firstParamName,
                           getClangTypeNameForOmission(clangCtx, resultType),
                           getClangTypeNameForOmission(clangCtx, contextType),
                           paramTypes, returnsSelf, /*isProperty=*/false,
                           allPropertyNames, completionHandlerIndex,
                           completionHandlerName, nameImporter.getScratch());
}

/// Prepare global name for importing onto a swift_newtype.
static StringRef determineSwiftNewtypeBaseName(StringRef baseName,
                                               StringRef newtypeName,
                                               bool &strippedPrefix) {
  StringRef newBaseName = stripLeadingK(baseName);
  if (newBaseName != baseName) {
    baseName = newBaseName;
    strippedPrefix = true;
  }

  // Special case: Strip Notification for NSNotificationName
  auto stripped = stripNotification(baseName);
  if (!stripped.empty())
    return stripped;

  bool nonIdentifier = false;
  auto pre = getCommonWordPrefix(newtypeName, baseName, nonIdentifier);
  if (pre.size()) {
    baseName = baseName.drop_front(pre.size());
    strippedPrefix = true;
  }

  return baseName;
}

EffectiveClangContext
NameImporter::determineEffectiveContext(const clang::NamedDecl *decl,
                                        const clang::DeclContext *dc,
                                        ImportNameVersion version) {
  EffectiveClangContext res;

  // Enumerators can end up within their enclosing enum or in the global
  // scope, depending how their enclosing enumeration is imported.
  if (isa<clang::EnumConstantDecl>(decl)) {
    auto enumDecl = cast<clang::EnumDecl>(dc);
    switch (getEnumKind(enumDecl)) {
    case EnumKind::NonFrozenEnum:
    case EnumKind::FrozenEnum:
    case EnumKind::Options:
      // Enums are mapped to Swift enums, Options to Swift option sets.
      if (version != ImportNameVersion::raw()) {
        res = cast<clang::DeclContext>(enumDecl);
        break;
      }
      LLVM_FALLTHROUGH;
    case EnumKind::Constants:
    case EnumKind::Unknown:
      // The enum constant goes into the redeclaration context of the
      // enum.
      res = enumDecl->getRedeclContext();
      break;
    }
    // Import onto a swift_newtype if present
  } else if (auto newtypeDecl = findSwiftNewtype(decl, clangSema, version)) {
    res = newtypeDecl;
    // Everything else goes into its redeclaration context.
  } else {
    res = dc->getRedeclContext();
  }

  // Anything in an Objective-C category or extension is adjusted to the
  // class context.
  if (auto category =
          dyn_cast_or_null<clang::ObjCCategoryDecl>(res.getAsDeclContext())) {
    // If the enclosing category is invalid, we cannot import the declaration.
    if (category->isInvalidDecl())
      return {};

    return category->getClassInterface();
  }

  return res;
}

bool NameImporter::hasNamingConflict(const clang::NamedDecl *decl,
                                     const clang::IdentifierInfo *proposedName,
                                     const clang::TypedefNameDecl *cfTypedef) {
  // Test to see if there is a value with the same name as 'proposedName'
  // in the same module as the decl
  // FIXME: This will miss macros.
  auto clangModule = getClangSubmoduleForDecl(decl);
  if (clangModule.has_value() && clangModule.value())
    clangModule = clangModule.value()->getTopLevelModule();

  auto conflicts = [&](const clang::Decl *OtherD) -> bool {
    // If these are simply redeclarations, they do not conflict.
    if (decl->getCanonicalDecl() == OtherD->getCanonicalDecl())
      return false;

    // If we have a CF typedef, check whether the "other"
    // declaration we found is just the opaque type behind it. If
    // so, it does not conflict.
    if (cfTypedef) {
      if (auto cfPointerTy =
              cfTypedef->getUnderlyingType()->getAs<clang::PointerType>()) {
        if (auto tagDecl = cfPointerTy->getPointeeType()->getAsTagDecl()) {
          if (tagDecl->getCanonicalDecl() == OtherD)
            return false;
        }
      }
    }

    auto declModule = getClangSubmoduleForDecl(OtherD);
    if (!declModule.has_value())
      return false;

    // Handle the bridging header case. This is pretty nasty since things
    // can get added to it *later*, but there's not much we can do.
    if (!declModule.value())
      return *clangModule == nullptr;
    return *clangModule == declModule.value()->getTopLevelModule();
  };

  // Allow this lookup to find hidden names.  We don't want the
  // decision about whether to rename the decl to depend on
  // what exactly the user has imported.  Indeed, if we're being
  // asked to resolve a serialization cross-reference, the user
  // may not have imported this module at all, which means a
  // normal lookup wouldn't even find the decl!
  //
  // Meanwhile, we don't need to worry about finding unwanted
  // hidden declarations from different modules because we do a
  // module check before deciding that there's a conflict.
  clang::LookupResult lookupResult(clangSema, proposedName,
                                   clang::SourceLocation(),
                                   clang::Sema::LookupOrdinaryName);
  lookupResult.setAllowHidden(true);
  lookupResult.suppressDiagnostics();

  // Only force the Objective-C codepath in LookupName if clangSema.TUScope is
  // nullptr
  if (clangSema.LookupName(lookupResult, /*scope=*/clangSema.TUScope,
                           /*AllowBuiltinCreation=*/false,
                           /*ForceNoCPlusPlus=*/!clangSema.TUScope)) {
    if (std::any_of(lookupResult.begin(), lookupResult.end(), conflicts))
      return true;
  }

  // No need to lookup tags if we are using C++ mode.
  if (!clang::LangStandard::getLangStandardForKind(
          clangSema.getLangOpts().LangStd)
          .isCPlusPlus()) {
    lookupResult.clear(clang::Sema::LookupTagName);
    if (clangSema.LookupName(lookupResult, /*scope=*/nullptr)) {
      if (std::any_of(lookupResult.begin(), lookupResult.end(), conflicts))
        return true;
    }
  }

  return false;
}

static bool shouldBeSwiftPrivate(NameImporter &nameImporter,
                                 const clang::NamedDecl *decl,
                                 ImportNameVersion version,
                                 bool isAsyncImport) {
  // For an async import, check whether there is a swift_async attribute
  // that specifies whether this should be considered swift_private or not.
  if (isAsyncImport) {
    if (auto *asyncAttr = decl->getAttr<clang::SwiftAsyncAttr>()) {
      switch (asyncAttr->getKind()) {
      case clang::SwiftAsyncAttr::None:
        // Fall through to let us decide based on swift_private.
        break;

      case clang::SwiftAsyncAttr::SwiftPrivate:
        return true;

      case clang::SwiftAsyncAttr::NotSwiftPrivate:
        return false;
      }
    }
  }

  // Decl with the attribute are obviously private
  if (decl->hasAttr<clang::SwiftPrivateAttr>())
    return true;

  // Enum constants that are not imported as members should be considered
  // private if the parent enum is marked private.
  if (auto *ECD = dyn_cast<clang::EnumConstantDecl>(decl)) {
    auto *ED = cast<clang::EnumDecl>(ECD->getDeclContext());
    switch (nameImporter.getEnumKind(ED)) {
    case EnumKind::NonFrozenEnum:
    case EnumKind::FrozenEnum:
    case EnumKind::Options:
      if (version != ImportNameVersion::raw())
        break;
      LLVM_FALLTHROUGH;
    case EnumKind::Constants:
    case EnumKind::Unknown:
      if (ED->hasAttr<clang::SwiftPrivateAttr>())
        return true;
      if (auto *enumTypedef = ED->getTypedefNameForAnonDecl())
        if (enumTypedef->hasAttr<clang::SwiftPrivateAttr>())
          return true;
      break;
    }
  }

  return false;
}

std::optional<ForeignErrorConvention::Info>
NameImporter::considerErrorImport(const clang::ObjCMethodDecl *clangDecl,
                                  StringRef &baseName,
                                  SmallVectorImpl<StringRef> &paramNames,
                                  ArrayRef<const clang::ParmVarDecl *> params,
                                  bool isInitializer, bool hasCustomName) {
  // If the declaration name isn't parallel to the actual parameter
  // list (e.g. if the method has C-style parameter declarations),
  // don't try to apply error conventions.
  bool expectsToRemoveError =
      hasCustomName && paramNames.size() + 1 == params.size();
  if (!expectsToRemoveError && paramNames.size() != params.size())
    return std::nullopt;

  for (unsigned index = params.size(); index-- != 0; ) {
    // Allow an arbitrary number of trailing blocks.
    if (isBlockParameter(params[index]))
      continue;

    // Otherwise, require the last parameter to be an out-parameter.
    auto isErrorOwned = ForeignErrorConvention::IsNotOwned;
    if (!isErrorOutParameter(params[index], isErrorOwned))
      break;

    auto errorKind =
      classifyMethodErrorHandling(clangDecl,
                                  getResultOptionality(clangDecl));
    if (!errorKind)
      return std::nullopt;

    // Consider adjusting the imported declaration name to remove the
    // parameter.
    bool adjustName = !hasCustomName;

    // Never do this if it's the first parameter of a constructor.
    if (isInitializer && index == 0) {
      adjustName = false;
    }

    // If the error parameter is the first parameter, try removing the
    // standard error suffix from the base name.
    StringRef suffixToStrip;
    StringRef origBaseName = baseName;
    if (adjustName && index == 0 && paramNames[0].empty()) {
      if (baseName.endswith(ErrorSuffix))
        suffixToStrip = ErrorSuffix;
      else if (baseName.endswith(AltErrorSuffix))
        suffixToStrip = AltErrorSuffix;

      if (!suffixToStrip.empty()) {
        StringRef newBaseName = baseName.drop_back(suffixToStrip.size());
        if (newBaseName.empty() || isSwiftReservedName(newBaseName)) {
          adjustName = false;
          suffixToStrip = {};
        } else {
          baseName = newBaseName;
        }
      }
    }

    // Also suppress name changes if there's a collision.
    // TODO: this logic doesn't really work with init methods
    // TODO: this privileges the old API over the new one
    if (adjustName &&
        hasErrorMethodNameCollision(clangDecl, index, suffixToStrip)) {
      // If there was a conflict on the first argument, and this was
      // the first argument and we're not stripping error suffixes, just
      // give up completely on error import.
      if (index == 0 && suffixToStrip.empty()) {
        return std::nullopt;

        // If there was a conflict stripping an error suffix, adjust the
        // name but don't change the base name.  This avoids creating a
        // spurious _: () argument.
      } else if (index == 0 && !suffixToStrip.empty()) {
        suffixToStrip = {};
        baseName = origBaseName;

      // Otherwise, give up on adjusting the name.
      } else {
        adjustName = false;
        baseName = origBaseName;
      }
    }

    // If we're adjusting the name, erase the error parameter.
    if (adjustName) {
      paramNames.erase(paramNames.begin() + index);
    }

    bool replaceParamWithVoid = !adjustName && !expectsToRemoveError;
    ForeignErrorConvention::Info errorInfo(
        *errorKind, index, isErrorOwned,
        (ForeignErrorConvention::IsReplaced_t)replaceParamWithVoid);
    return errorInfo;
  }

  // Didn't find an error parameter.
  return std::nullopt;
}

bool swift::isCompletionHandlerParamName(StringRef paramName) {
  return paramName == "completionHandler" ||
      paramName == "withCompletionHandler" ||
      paramName == "completion" || paramName == "withCompletion" ||
      paramName == "completionBlock" || paramName == "withCompletionBlock" ||
      paramName == "reply" || paramName == "withReply" ||
      paramName == "replyTo" || paramName == "withReplyTo";
}

// Determine whether the given type is a nullable NSError type.
static bool isNullableNSErrorType(clang::QualType type) {
  auto objcPtrType = type->getAs<clang::ObjCObjectPointerType>();
  if (!objcPtrType)
    return false;

  auto iface = objcPtrType->getInterfaceDecl();
  if (!iface || iface->getName() != "NSError")
    return false;

  // If nullability is specified, check it.
  if (auto nullability = type->getNullability()) {
    switch (translateNullability(*nullability)) {
    case OTK_None:
      return false;

    case OTK_ImplicitlyUnwrappedOptional:
    case OTK_Optional:
      return true;
    }
  }

  // Otherwise, assume it's nullable.
  return true;
}

std::optional<ForeignAsyncConvention::Info> NameImporter::considerAsyncImport(
    const clang::ObjCMethodDecl *clangDecl, StringRef baseName,
    SmallVectorImpl<StringRef> &paramNames,
    ArrayRef<const clang::ParmVarDecl *> params, bool isInitializer,
    std::optional<unsigned> explicitCompletionHandlerParamIndex,
    CustomAsyncName customName,
    std::optional<unsigned> completionHandlerFlagParamIndex,
    bool completionHandlerFlagIsZeroOnError,
    std::optional<ForeignErrorConvention::Info> errorInfo) {
  // If there are no unclaimed parameters, there's no .
  unsigned errorParamAdjust = errorInfo ? 1 : 0;
  if (params.size() - errorParamAdjust == 0)
    return std::nullopt;

  // When there is a custom async name, it will have removed the completion
  // handler parameter already.
  unsigned customAsyncNameAdjust =
      customName == CustomAsyncName::SwiftAsyncName ? 1 : 0;

  // If the # of parameter names doesn't line up with the # of parameters,
  // bail out. There are extra C parameters on the method or a custom name
  // was incorrect.
  if (params.size() !=
          paramNames.size() + errorParamAdjust + customAsyncNameAdjust)
    return std::nullopt;

  // If we don't already know the completion handler parameter index, go
  // try to figure it out.
  unsigned completionHandlerParamIndex;
  unsigned completionHandlerParamNameIndex;
  if (!explicitCompletionHandlerParamIndex) {
    // Determine whether the naming indicates that this is a completion
    // handler.
    completionHandlerParamIndex = params.size() - 1;
    completionHandlerParamNameIndex = paramNames.size() - 1;
    switch (customName) {
    case CustomAsyncName::None:
      // Check whether the first parameter is the completion handler and the
      // base name has a suitable completion-handler suffix.
      if (completionHandlerParamIndex == 0 &&
          stripWithCompletionHandlerSuffix(baseName))
        break;

      LLVM_FALLTHROUGH;

    case CustomAsyncName::SwiftName:
      // Check whether the argument label itself has an appropriate name.
      if (isCompletionHandlerParamName(
              paramNames[completionHandlerParamNameIndex]) ||
          (completionHandlerParamNameIndex > 0 &&
           stripWithCompletionHandlerSuffix(
               paramNames[completionHandlerParamNameIndex]))) {
        break;
      }

      // Check whether the parameter itself has a name that indicates that
      // it is a completion handler.
      if (isCompletionHandlerParamName(
              params[completionHandlerParamIndex]->getName()))
        break;

      return std::nullopt;

    case CustomAsyncName::SwiftAsyncName:
      // Having a custom async name implies that this is a completion handler.
      break;
    }
  } else {
    completionHandlerParamIndex = *explicitCompletionHandlerParamIndex;
    completionHandlerParamNameIndex = *explicitCompletionHandlerParamIndex;
  }

  // Used for returns once we've determined that the method cannot be
  // imported as async, even though it has what looks like a completion handler
  // parameter.
  auto notAsync =
      [&](const char *reason) -> std::optional<ForeignAsyncConvention::Info> {
#ifdef ASYNC_IMPORT_DEBUG
    llvm::errs() << "*** failed async import: " << reason << "\n";
    clangDecl->dump(llvm::errs());
#endif

    return std::nullopt;
  };

  // Initializers cannot be 'async'.
  // FIXME: We might eventually allow this.
  // TODO: should the restriction be lifted in ClangImporter?
  if (isInitializer)
    return notAsync("initializers cannot be async");

  // Accessors are never imported as async.
  if (clangDecl->isPropertyAccessor())
    return notAsync("method is a property accessor");

  // Check whether we method has a suitable return type.
  if (clangDecl->getReturnType()->isVoidType()) {
    // 'void' is the common case; the method produces no synchronous result.
  } else if (errorInfo &&
             ForeignErrorConvention::resultTypeErasedToVoid(
                 errorInfo->getKind())) {
    // The method has been imported as throwing in a manner that erased the
    // result type to Void.
  } else {
    return notAsync("method does not return void");
  }

  // The completion handler parameter must have block type.
  auto completionHandlerParam = params[completionHandlerParamIndex];
  if (!isBlockParameter(completionHandlerParam))
    return notAsync("parameter is not a block");

  // Dig out the function type of the completion handler's block type.
  // If there is no prototype, (e.g., the completion handler is of type
  // void (^)()), we cannot importer it.
  auto completionHandlerFunctionType =
      completionHandlerParam->getType()->castAs<clang::BlockPointerType>()
      ->getPointeeType()->getAs<clang::FunctionType>();
  if (!completionHandlerFunctionType)
    return notAsync("block parameter does not have a prototype");

  // The completion handler parameter must itself return 'void'.
  if (!completionHandlerFunctionType->getReturnType()->isVoidType())
    return notAsync("completion handler parameter does not return 'void'");

  // Scan the parameters of the block type to look for a parameter of a
  // nullable NSError type, which would indicate that the async method could
  // throw.
  std::optional<unsigned> completionHandlerErrorParamIndex;

  ArrayRef<clang::QualType> completionHandlerParamTypes;
  if (auto prototype = completionHandlerFunctionType
          ->getAs<clang::FunctionProtoType>()) {
    completionHandlerParamTypes = prototype->getParamTypes();
  }

  for (unsigned paramIdx : indices(completionHandlerParamTypes)) {
    auto paramType = completionHandlerParamTypes[paramIdx];

    // We are only interested in nullable NSError parameters.
    if (!isNullableNSErrorType(paramType))
      continue;

    // If this is the first nullable error parameter, note that.
    if (!completionHandlerErrorParamIndex) {
      completionHandlerErrorParamIndex = paramIdx;
      continue;
    }

    // More than one nullable NSError parameter. Don't import as throwing.
    completionHandlerErrorParamIndex = std::nullopt;
    break;
  }

  // Drop the completion handler parameter name when needed.
  switch (customName) {
  case CustomAsyncName::None:
  case CustomAsyncName::SwiftName:
    paramNames.erase(paramNames.begin() + completionHandlerParamNameIndex);
    break;

  case CustomAsyncName::SwiftAsyncName:
    break;
  }

  return ForeignAsyncConvention::Info(
      completionHandlerParamIndex, completionHandlerErrorParamIndex,
      completionHandlerFlagParamIndex, completionHandlerFlagIsZeroOnError);
}

bool NameImporter::hasErrorMethodNameCollision(
    const clang::ObjCMethodDecl *method, unsigned paramIndex,
    StringRef suffixToStrip) {
  // Copy the existing selector pieces into an array.
  auto selector = method->getSelector();
  unsigned numArgs = selector.getNumArgs();
  assert(numArgs > 0);

  SmallVector<clang::IdentifierInfo *, 4> chunks;
  for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
    chunks.push_back(selector.getIdentifierInfoForSlot(i));
  }

  auto &ctx = method->getASTContext();
  if (paramIndex == 0 && !suffixToStrip.empty()) {
    StringRef name = chunks[0]->getName();
    assert(name.endswith(suffixToStrip));
    name = name.drop_back(suffixToStrip.size());
    chunks[0] = &ctx.Idents.get(name);
  } else if (paramIndex != 0) {
    chunks.erase(chunks.begin() + paramIndex);
  }

  auto newSelector = ctx.Selectors.getSelector(numArgs - 1, chunks.data());
  const clang::ObjCMethodDecl *conflict;
  if (auto iface = method->getClassInterface()) {
    conflict = iface->lookupMethod(newSelector, method->isInstanceMethod());
  } else {
    auto protocol = cast<clang::ObjCProtocolDecl>(method->getDeclContext());
    conflict = protocol->getMethod(newSelector, method->isInstanceMethod());
  }

  if (conflict == nullptr)
    return false;

  // Look to see if the conflicting decl is unavailable, either because it's
  // been marked NS_SWIFT_UNAVAILABLE, because it's actually marked unavailable,
  // or because it was deprecated before our API sunset. We can handle
  // "conflicts" where one form is unavailable.
  return !isUnavailableInSwift(conflict, &availability,
                               enableObjCInterop());
}

/// Whether we should suppress this factory method being imported as an
/// initializer. We want to do this when explicitly directed to, or when
/// importing a property accessor.
static bool suppressFactoryMethodAsInit(const clang::ObjCMethodDecl *method,
                                        ImportNameVersion version,
                                        CtorInitializerKind initKind) {
  return (version == ImportNameVersion::raw() || method->isPropertyAccessor()) &&
         (initKind == CtorInitializerKind::Factory ||
          initKind == CtorInitializerKind::ConvenienceFactory);
}

static void
addEmptyArgNamesForClangFunction(const clang::FunctionDecl *funcDecl,
                                 SmallVectorImpl<StringRef> &argumentNames) {
  for (size_t i = 0; i < funcDecl->param_size(); ++i)
    argumentNames.push_back(StringRef());
  if (funcDecl->isVariadic())
    argumentNames.push_back(StringRef());
}

static StringRef renameUnsafeMethod(ASTContext &ctx,
                                    const clang::NamedDecl *decl,
                                    StringRef name) {
  if (isa<clang::CXXMethodDecl>(decl) &&
      !evaluateOrDefault(ctx.evaluator, IsSafeUseOfCxxDecl({decl, ctx}), {})) {
    return ctx.getIdentifier(("__" + name + "Unsafe").str()).str();
  }

  return name;
}

ImportedName NameImporter::importNameImpl(const clang::NamedDecl *D,
                                          ImportNameVersion version,
                                          clang::DeclarationName givenName) {
  ImportedName result;

  /// Whether we want a Swift 3 or later name
  bool swift3OrLaterName = version > ImportNameVersion::swift2();

  // Objective-C categories and extensions don't have names, despite
  // being "named" declarations.
  if (isa<clang::ObjCCategoryDecl>(D))
    return ImportedName();

  // Dig out the definition, if there is one.
  if (auto def = getDefinitionForClangTypeDecl(D)) {
    if (*def)
      D = static_cast<const clang::NamedDecl *>(*def);
  }

  // Compute the effective context.
  auto dc = const_cast<clang::DeclContext *>(D->getDeclContext());
  auto effectiveCtx = determineEffectiveContext(D, dc, version);
  if (!effectiveCtx)
    return ImportedName();
  result.effectiveContext = effectiveCtx;

  // If this is a using declaration, import the name of the shadowed decl and
  // adjust the context.
  if (auto usingShadowDecl = dyn_cast<clang::UsingShadowDecl>(D)) {
    auto targetDecl = usingShadowDecl->getTargetDecl();
    if (isa<clang::CXXMethodDecl>(targetDecl)) {
      ImportedName baseName = importName(targetDecl, version, givenName);
      baseName.effectiveContext = effectiveCtx;
      return baseName;
    }
  }

  // Gather information from the swift_async attribute, if there is one.
  std::optional<unsigned> completionHandlerParamIndex;
  bool completionHandlerFlagIsZeroOnError = false;
  std::optional<unsigned> completionHandlerFlagParamIndex;
  if (version.supportsConcurrency()) {
    if (const auto *swiftAsyncAttr = D->getAttr<clang::SwiftAsyncAttr>()) {
      // If this is swift_async(none), don't import as async at all.
      if (swiftAsyncAttr->getKind() == clang::SwiftAsyncAttr::None)
        return ImportedName();

      // Get the completion handler parameter index, if there is one.
      completionHandlerParamIndex =
          swiftAsyncAttr->getCompletionHandlerIndex().getASTIndex();
    }

    if (const auto *asyncErrorAttr = D->getAttr<clang::SwiftAsyncErrorAttr>()) {
      switch (auto convention = asyncErrorAttr->getConvention()) {
      // No flag parameter in these cases.
      case clang::SwiftAsyncErrorAttr::NonNullError:
      case clang::SwiftAsyncErrorAttr::None:
        break;

      // Get the flag argument index and polarity from the attribute.
      case clang::SwiftAsyncErrorAttr::NonZeroArgument:
      case clang::SwiftAsyncErrorAttr::ZeroArgument:
        // NB: Attribute is 1-based rather than 0-based.
        completionHandlerFlagParamIndex = asyncErrorAttr->getHandlerParamIdx() - 1;
        completionHandlerFlagIsZeroOnError =
          convention == clang::SwiftAsyncErrorAttr::ZeroArgument;
        break;
      }
    }
  }

  // FIXME: ugly to check here, instead perform unified check up front in
  // containing struct...
  if (findSwiftNewtype(D, clangSema, version))
    result.info.importAsMember = true;

  // Find the original method/property declaration and retrieve the
  // name from there.
  if (auto method = dyn_cast<clang::ObjCMethodDecl>(D)) {
    // Inherit the name from the "originating" declarations, if
    // there are any.
    SmallVector<std::pair<const clang::ObjCMethodDecl *, ImportedName>, 4>
        overriddenNames;
    SmallVector<const clang::ObjCMethodDecl *, 4> overriddenMethods;
    method->getOverriddenMethods(overriddenMethods);
    for (auto overridden : overriddenMethods) {
      const auto overriddenName = importName(overridden, version, givenName);
      if (overriddenName.getDeclName())
        overriddenNames.push_back({overridden, overriddenName});
    }

    // If we found any names of overridden methods, return those names.
    if (!overriddenNames.empty()) {
      if (overriddenNames.size() > 1)
        mergeOverriddenNames(swiftCtx, method, overriddenNames);
      overriddenNames[0].second.effectiveContext = result.effectiveContext;

      // Compute the initializer kind from the derived method, though.
      if (auto kind = determineCtorInitializerKind(method))
        overriddenNames[0].second.info.initKind = *kind;

      return overriddenNames[0].second;
    }
  } else if (auto property = dyn_cast<clang::ObjCPropertyDecl>(D)) {
    // Inherit the name from the "originating" declarations, if
    // there are any.
    if (auto getter = property->getGetterMethodDecl()) {
      SmallVector<std::pair<const clang::ObjCPropertyDecl *, ImportedName>, 4>
          overriddenNames;
      SmallVector<const clang::ObjCMethodDecl *, 4> overriddenMethods;
      SmallPtrSet<const clang::ObjCPropertyDecl *, 4> knownProperties;
      (void)knownProperties.insert(property);

      getter->getOverriddenMethods(overriddenMethods);
      for (auto overridden : overriddenMethods) {
        if (!overridden->isPropertyAccessor())
          continue;
        auto overriddenProperty = overridden->findPropertyDecl(true);
        if (!overriddenProperty)
          continue;
        if (!knownProperties.insert(overriddenProperty).second)
          continue;

        const auto overriddenName = importName(overriddenProperty, version,
                                               givenName);
        if (overriddenName.getDeclName())
          overriddenNames.push_back({overriddenProperty, overriddenName});
      }

      // If we found any names of overridden methods, return those names.
      if (!overriddenNames.empty()) {
        if (overriddenNames.size() > 1)
          mergeOverriddenNames(swiftCtx, property, overriddenNames);
        overriddenNames[0].second.effectiveContext = result.effectiveContext;
        return overriddenNames[0].second;
      }
    }
  }

  // If we have a swift_name attribute, use that.
  if (auto nameAttr = findSwiftNameAttr(D, version)) {
    bool skipCustomName = false;

    // Parse the name.
    ParsedDeclName parsedName = parseDeclName(nameAttr->name);
    if (!parsedName || parsedName.isOperator())
      return result;

    // If we have an Objective-C method that is being mapped to an
    // initializer (e.g., a factory method whose name doesn't fit the
    // convention for factory methods), make sure that it can be
    // imported as an initializer.
    bool isInitializer = false;
    auto method = dyn_cast<clang::ObjCMethodDecl>(D);
    if (method) {
      unsigned initPrefixLength;
      if (parsedName.BaseName == "init" && parsedName.IsFunctionName) {
        if (!shouldImportAsInitializer(method, version, initPrefixLength)) {
          // We cannot import this as an initializer anyway.
          return ImportedName();
        }

        if (auto kind = determineCtorInitializerKind(method))
          result.info.initKind = *kind;

        // If this swift_name attribute maps a factory method to an
        // initializer and we were asked not to do so, ignore the
        // custom name.
        if (suppressFactoryMethodAsInit(method, version,
                                        result.getInitKind())) {
          skipCustomName = true;
        } else {
          // Note that this is an initializer.
          isInitializer = true;
        }
      }
    }

    if (!skipCustomName) {
      result.info.hasCustomName = true;
      result.declName = parsedName.formDeclName(
          swiftCtx, /*isSubscript=*/false,
          isa<clang::ClassTemplateSpecializationDecl>(D));

      // Handle globals treated as members.
      if (parsedName.isMember()) {
        // FIXME: Make sure this thing is global.
        result.effectiveContext = parsedName.ContextName;
        if (parsedName.SelfIndex) {
          result.info.hasSelfIndex = true;
          result.info.selfIndex = *parsedName.SelfIndex;
        }
        result.info.importAsMember = true;

        if (parsedName.BaseName == "init")
          result.info.initKind = CtorInitializerKind::Factory;
      }

      // Map property getters/setters.
      if (parsedName.IsGetter)
        result.info.accessorKind = ImportedAccessorKind::PropertyGetter;
      else if (parsedName.IsSetter)
        result.info.accessorKind = ImportedAccessorKind::PropertySetter;

      // only allow effectful property imports if through `swift_async_name`
      const bool effectfulProperty = parsedName.IsGetter && nameAttr->isAsync;

      // Consider throws and async imports.
      if (method && (parsedName.IsFunctionName || effectfulProperty)) {
        // Get the parameters.
        ArrayRef<const clang::ParmVarDecl *> params{method->param_begin(),
                                                    method->param_end()};

        if (auto errorInfo = considerErrorImport(method, parsedName.BaseName,
                                                 parsedName.ArgumentLabels,
                                                 params, isInitializer,
                                                 /*hasCustomName=*/true)) {
          result.info.hasErrorInfo = true;
          result.info.errorInfo = *errorInfo;
        }

        if (version.supportsConcurrency()) {
          if (auto asyncInfo = considerAsyncImport(
                  method, parsedName.BaseName, parsedName.ArgumentLabels,
                  params, isInitializer,
                  completionHandlerParamIndex,
                  nameAttr->isAsync ? CustomAsyncName::SwiftAsyncName
                                    : CustomAsyncName::SwiftName,
                  completionHandlerFlagParamIndex,
                  completionHandlerFlagIsZeroOnError,
                  result.getErrorInfo())) {
            result.info.hasAsyncInfo = true;
            result.info.asyncInfo = *asyncInfo;

            // Update the name to reflect the new parameter labels.
            result.declName = formDeclName(
                swiftCtx, parsedName.BaseName, parsedName.ArgumentLabels,
                /*isFunction=*/true, isInitializer, /*isSubscript=*/false,
                isa<clang::ClassTemplateSpecializationDecl>(D));
          } else if (nameAttr->isAsync) {
            // The custom name was for an async import, but we didn't in fact
            // import as async for some reason. Ignore this import.
            return ImportedName();
          }
        }
      }

      return result;
    }
  }

  // Special case: unnamed/anonymous fields.
  if (auto field = dyn_cast<clang::FieldDecl>(D)) {
    static_assert((clang::Decl::lastField - clang::Decl::firstField) == 2,
                  "update logic for new FieldDecl subclasses");
    if (isa<clang::ObjCIvarDecl>(D) || isa<clang::ObjCAtDefsFieldDecl>(D))
      // These are not ordinary fields and are not imported into Swift.
      return result;

    if (field->isAnonymousStructOrUnion() || field->getDeclName().isEmpty()) {
      // Generate a field name for anonymous fields, this will be used in
      // order to be able to expose the indirect fields injected from there
      // as computed properties forwarding the access to the subfield.
      std::string name;
      llvm::raw_string_ostream nameStream(name);

      nameStream << "__Anonymous_field" << field->getFieldIndex();
      result.setDeclName(swiftCtx.getIdentifier(nameStream.str()));
      result.setEffectiveContext(field->getDeclContext());
      return result;
    }
  }

  if (D->getDeclName().isEmpty()) {
    // If the type has no name and no structure name, but is not anonymous,
    // generate a name for it. Specifically this is for cases like:
    //   struct a {
    //     struct {} z;
    //   }
    // Where the member z is an unnamed struct, but does have a member-name
    // and is accessible as a member of struct a.
    if (auto recordDecl = dyn_cast<clang::RecordDecl>(
                            D->getLexicalDeclContext())) {
      for (auto field : recordDecl->fields()) {
        auto fieldTagDecl = field->getType()->getAsTagDecl();
        if (fieldTagDecl == D) {
          // Create a name for the declaration from the field name.
          std::string name;
          llvm::raw_string_ostream nameStream(name);

          const char *kind;
          if (fieldTagDecl->isStruct())
            kind = "struct";
          else if (fieldTagDecl->isClass())
            kind = "class";
          else if (fieldTagDecl->isUnion())
            kind = "union";
          else if  (fieldTagDecl->isEnum())
            kind = "enum";
          else
            llvm_unreachable("unknown decl kind");

          nameStream << "__Unnamed_" << kind << "_";
          if (field->isAnonymousStructOrUnion()) {
            nameStream << "__Anonymous_field" << field->getFieldIndex();
          } else {
            assert(!field->getDeclName().isEmpty() &&
                   "Microsoft anonymous struct extension?");
            nameStream << field->getName();
          }
          result.setDeclName(swiftCtx.getIdentifier(nameStream.str()));
          result.setEffectiveContext(D->getDeclContext());
          return result;
        }
      }
    }

    // If this enum inherits from a typedef we can compute the name from the
    // typedef (even if it's an anonymous enum).
    if (auto enumDecl = dyn_cast<clang::EnumDecl>(D)) {
      // Intentionally don't get the canonical type here.
      if (auto typedefType = dyn_cast<clang::TypedefType>(getUnderlyingType(enumDecl))) {
        // If the typedef is available in Swift, the user will get ambiguity.
        // It also means they may not have intended this API to be imported like this.
        if (importer::isUnavailableInSwift(typedefType->getDecl(), nullptr, true)) {
          StringRef baseName = typedefType->getDecl()->getName();
          SmallString<16> swiftPrivateScratch;
          // If this declaration has the swift_private attribute, prepend "__"
          if (shouldBeSwiftPrivate(*this, D, version,
                                   result.info.hasAsyncInfo)) {
            swiftPrivateScratch = "__";
            swiftPrivateScratch += baseName;
            baseName = swiftPrivateScratch;
          }

          result.setDeclName(swiftCtx.getIdentifier(baseName));
          result.setEffectiveContext(D->getDeclContext());
          return result;
        }
      }
    }

    // Otherwise, for empty names, there is nothing to do.
    return result;
  }

  /// Whether the result is a function name.
  bool isFunction = false;
  bool isInitializer = false;
  unsigned initializerPrefixLen;
  StringRef baseName;
  SmallVector<StringRef, 4> argumentNames;
  SmallString<16> selectorSplitScratch;
  ArrayRef<const clang::ParmVarDecl *> params;
  switch (D->getDeclName().getNameKind()) {
  case clang::DeclarationName::CXXConstructorName: {
    isInitializer = true;
    isFunction = true;
    result.info.initKind = CtorInitializerKind::Designated;
    baseName = "init";
    auto ctor = dyn_cast<clang::CXXConstructorDecl>(D);
    if (auto templateCtor = dyn_cast<clang::FunctionTemplateDecl>(D))
      ctor = cast<clang::CXXConstructorDecl>(templateCtor->getAsFunction());
    // If we couldn't find a constructor decl, bail.
    if (!ctor)
      return ImportedName();
    addEmptyArgNamesForClangFunction(ctor, argumentNames);
    break;
  }

  case clang::DeclarationName::CXXConversionFunctionName: {
    auto conversionDecl = dyn_cast<clang::CXXConversionDecl>(D);
    if (!conversionDecl)
      return ImportedName();
    auto toType = conversionDecl->getConversionType();
    // Only import `operator bool()` for now.
    if (toType->isBooleanType()) {
      isFunction = true;
      baseName = "__convertToBool";
      addEmptyArgNamesForClangFunction(conversionDecl, argumentNames);
      break;
    }
    return ImportedName();
  }
  case clang::DeclarationName::CXXDestructorName:
  case clang::DeclarationName::CXXLiteralOperatorName:
  case clang::DeclarationName::CXXUsingDirective:
  case clang::DeclarationName::CXXDeductionGuideName:
    // TODO: Handling these is part of C++ interoperability.
    return ImportedName();

  case clang::DeclarationName::CXXOperatorName: {
    auto op = D->getDeclName().getCXXOverloadedOperator();
    auto functionDecl = dyn_cast<clang::FunctionDecl>(D);

    if (auto functionTemplate = dyn_cast<clang::FunctionTemplateDecl>(D))
      functionDecl = functionTemplate->getAsFunction();

    if (!functionDecl)
      return ImportedName();

    switch (op) {
    case clang::OverloadedOperatorKind::OO_Plus:
    case clang::OverloadedOperatorKind::OO_Minus:
    case clang::OverloadedOperatorKind::OO_Star:
    case clang::OverloadedOperatorKind::OO_Slash:
    case clang::OverloadedOperatorKind::OO_PlusEqual:
    case clang::OverloadedOperatorKind::OO_MinusEqual:
    case clang::OverloadedOperatorKind::OO_StarEqual:
    case clang::OverloadedOperatorKind::OO_SlashEqual:
    case clang::OverloadedOperatorKind::OO_Percent:
    case clang::OverloadedOperatorKind::OO_Caret:
    case clang::OverloadedOperatorKind::OO_Amp:
    case clang::OverloadedOperatorKind::OO_Pipe:
    case clang::OverloadedOperatorKind::OO_Exclaim:
    case clang::OverloadedOperatorKind::OO_Less:
    case clang::OverloadedOperatorKind::OO_Greater:
    case clang::OverloadedOperatorKind::OO_LessLess:
    case clang::OverloadedOperatorKind::OO_GreaterGreater:
    case clang::OverloadedOperatorKind::OO_EqualEqual:
    case clang::OverloadedOperatorKind::OO_PlusPlus:
    case clang::OverloadedOperatorKind::OO_ExclaimEqual:
    case clang::OverloadedOperatorKind::OO_LessEqual:
    case clang::OverloadedOperatorKind::OO_GreaterEqual:
    case clang::OverloadedOperatorKind::OO_AmpAmp:
    case clang::OverloadedOperatorKind::OO_PipePipe: {
      auto operatorName = isa<clang::CXXMethodDecl>(functionDecl)
                              ? "__operator" + std::string{getOperatorName(op)}
                              : clang::getOperatorSpelling(op);
      baseName = swiftCtx.getIdentifier(operatorName).str();
      isFunction = true;
      addEmptyArgNamesForClangFunction(functionDecl, argumentNames);
      if (auto cxxMethod = dyn_cast<clang::CXXMethodDecl>(functionDecl)) {
        if (op == clang::OverloadedOperatorKind::OO_Star &&
            cxxMethod->param_empty()) {
          auto returnType = functionDecl->getReturnType();
          if ((!returnType->isReferenceType() &&
               !returnType->isAnyPointerType()) ||
              returnType->isAnyPointerType() ||
              returnType->getPointeeType().isConstQualified())
            result.info.accessorKind = ImportedAccessorKind::DereferenceGetter;
          else
            result.info.accessorKind = ImportedAccessorKind::DereferenceSetter;
        }
      }
      break;
    }
    case clang::OverloadedOperatorKind::OO_Call:
      baseName = "callAsFunction";
      isFunction = true;
      addEmptyArgNamesForClangFunction(functionDecl, argumentNames);
      break;
    case clang::OverloadedOperatorKind::OO_Subscript: {
      auto returnType = functionDecl->getReturnType();
      if ((!returnType->isReferenceType() && !returnType->isAnyPointerType()) ||
          returnType->getPointeeType().isConstQualified()) {
        // If we are handling a non-reference return type, treat it as a getter
        // so that we do not SILGen the value type operator[] as an rvalue.
        baseName = "__operatorSubscriptConst";
        result.info.accessorKind = ImportedAccessorKind::SubscriptGetter;
      } else if (returnType->isAnyPointerType()) {
        baseName = "__operatorSubscript";
        result.info.accessorKind = ImportedAccessorKind::SubscriptGetter;
      } else {
        baseName = "__operatorSubscript";
        result.info.accessorKind = ImportedAccessorKind::SubscriptSetter;
      }
      isFunction = true;
      addEmptyArgNamesForClangFunction(functionDecl, argumentNames);
      break;
    }
    default:
      // We don't import these yet.
      return ImportedName();
    }
    break;
  }

  case clang::DeclarationName::Identifier:
    // Map the identifier.
    baseName = D->getDeclName().getAsIdentifierInfo()->getName();

    if (givenName) {
      if (!givenName.isIdentifier())
        return ImportedName();
      baseName = givenName.getAsIdentifierInfo()->getName();
    }

    // For Objective-C BOOL properties, use the name of the getter
    // which, conventionally, has an "is" prefix.
    if (swift3OrLaterName) {
      if (auto property = dyn_cast<clang::ObjCPropertyDecl>(D)) {
        if (isBoolType(clangSema.Context, property->getType()))
          baseName = property->getGetterName().getNameForSlot(0);
      }
    }

    if (auto function = dyn_cast<clang::FunctionDecl>(D)) {
      isFunction = true;
      addEmptyArgNamesForClangFunction(function, argumentNames);
    }
    break;

  case clang::DeclarationName::ObjCMultiArgSelector:
  case clang::DeclarationName::ObjCOneArgSelector:
  case clang::DeclarationName::ObjCZeroArgSelector: {
    auto objcMethod = cast<clang::ObjCMethodDecl>(D);

    // Map the Objective-C selector directly.
    auto selector = D->getDeclName().getObjCSelector();

    // Respect the given name.
    if (givenName) {
      switch (givenName.getNameKind()) {
      case clang::DeclarationName::ObjCOneArgSelector:
      case clang::DeclarationName::ObjCMultiArgSelector:
      case clang::DeclarationName::ObjCZeroArgSelector:

        // Make sure the given name has the right count of arguments.
        if (selector.getNumArgs() != givenName.getObjCSelector().getNumArgs())
          return ImportedName();
        selector = givenName.getObjCSelector();
        break;
      default:
        return ImportedName();
      }
    }

    baseName = selector.getNameForSlot(0);

    // We don't support methods with empty first selector pieces.
    if (baseName.empty())
      return ImportedName();

    isInitializer = shouldImportAsInitializer(objcMethod, version,
                                              initializerPrefixLen);

    if (isInitializer) {
      if (auto kind = determineCtorInitializerKind(objcMethod))
        result.info.initKind = *kind;

      // If we would import a factory method as an initializer but were
      // asked not to, don't consider this as an initializer.
      if (suppressFactoryMethodAsInit(objcMethod, version,
                                      result.getInitKind())) {
        isInitializer = false;
      }
    }

    if (isInitializer)
      baseName = "init";

    // Get the parameters.
    params = {objcMethod->param_begin(), objcMethod->param_end()};

    // If we have a variadic method for which we need to drop the last
    // selector piece, do so now.
    unsigned numArgs = selector.getNumArgs();
    if (objcMethod->isVariadic() && shouldMakeSelectorNonVariadic(selector)) {
      --numArgs;
      result.info.droppedVariadic = true;
      params = params.drop_back(1);
    }

    for (unsigned index = 0; index != numArgs; ++index) {
      if (index == 0) {
        argumentNames.push_back(StringRef());
      } else {
        StringRef argName = selector.getNameForSlot(index);
        argumentNames.push_back(argName);
      }
    }

    // For initializers, compute the first argument name.
    if (isInitializer) {
      // Skip over the prefix.
      auto argName = selector.getNameForSlot(0).substr(initializerPrefixLen);

      // Drop "With" if present after the "init".
      bool droppedWith = false;
      if (argName.starts_with("With")) {
        argName = argName.substr(4);
        droppedWith = true;
      }

      // Lowercase the remaining argument name.
      argName = camel_case::toLowercaseWord(argName, selectorSplitScratch);

      // If we dropped "with" and ended up with a reserved name,
      // put "with" back.
      if (droppedWith && isSwiftReservedName(argName)) {
        selectorSplitScratch = "with";
        selectorSplitScratch +=
            selector.getNameForSlot(0).substr(initializerPrefixLen + 4);
        argName = selectorSplitScratch;
      }

      // Set the first argument name to be the name we computed. If
      // there is no first argument, create one for this purpose.
      if (argumentNames.empty()) {
        if (!argName.empty()) {
          // FIXME: Record what happened here for the caller?
          argumentNames.push_back(argName);
        }
      } else {
        argumentNames[0] = argName;
      }
    }

    if (auto errorInfo = considerErrorImport(
        objcMethod, baseName, argumentNames, params, isInitializer,
        /*hasCustomName=*/false)) {
        result.info.hasErrorInfo = true;
        result.info.errorInfo = *errorInfo;
    }

    isFunction = true;

    // Is this one of the accessors for subscripts?
    if (objcMethod->getMethodFamily() == clang::OMF_None &&
        objcMethod->isInstanceMethod()) {
      if (isNonNullarySelector(objcMethod->getSelector(),
                               {"objectAtIndexedSubscript"}) ||
          isNonNullarySelector(objcMethod->getSelector(),
                               {"objectForKeyedSubscript"}))
        result.info.accessorKind = ImportedAccessorKind::SubscriptGetter;
      else if (isNonNullarySelector(objcMethod->getSelector(),
                                    {"setObject", "atIndexedSubscript"}) ||
               isNonNullarySelector(objcMethod->getSelector(),
                                    {"setObject", "forKeyedSubscript"}))
        result.info.accessorKind = ImportedAccessorKind::SubscriptSetter;
    }

    if (version.supportsConcurrency() &&
        result.info.accessorKind == ImportedAccessorKind::None) {
      if (auto asyncInfo = considerAsyncImport(
              objcMethod, baseName, argumentNames, params, isInitializer,
              completionHandlerParamIndex, CustomAsyncName::None,
              completionHandlerFlagParamIndex,
              completionHandlerFlagIsZeroOnError,
              result.getErrorInfo())) {
        result.info.hasAsyncInfo = true;
        result.info.asyncInfo = *asyncInfo;
      }
    }

    break;
  }
  }

  // Perform automatic name transformations.

  // Enumeration constants may have common prefixes stripped.
  bool strippedPrefix = false;
  if (version != ImportNameVersion::raw() && isa<clang::EnumConstantDecl>(D)) {
    auto enumDecl = cast<clang::EnumDecl>(D->getDeclContext());
    auto enumInfo = getEnumInfo(enumDecl);

    StringRef removePrefix = enumInfo.getConstantNamePrefix();
    if (!removePrefix.empty()) {
      if (baseName.starts_with(removePrefix)) {
        baseName = baseName.substr(removePrefix.size());
        strippedPrefix = true;
      } else if (givenName) {
        // Calculate the new prefix.
        // What if the preferred name causes longer prefix?
        StringRef subPrefix = [](StringRef LHS, StringRef RHS) {
          if (LHS.size() > RHS.size())
            std::swap(LHS, RHS) ;
          return StringRef(LHS.data(), std::mismatch(LHS.begin(), LHS.end(),
            RHS.begin()).first - LHS.begin());
        }(removePrefix, baseName);
        if (!subPrefix.empty()) {
          baseName = baseName.substr(subPrefix.size());
          strippedPrefix = true;
        }
      }
    }
  }

  // If the error is an error enum, it will be mapped to the 'Code'
  // enum nested within an NSError-containing struct. Strip the word
  // "Code" off the end of the name, if it's there, because it's
  // redundant.
  if (auto enumDecl = dyn_cast<clang::EnumDecl>(D)) {
    if (enumDecl->isThisDeclarationADefinition()) {
      auto enumInfo = getEnumInfo(enumDecl);
      if (enumInfo.isErrorEnum() && baseName.size() > 4 &&
          camel_case::getLastWord(baseName) == "Code")
        baseName = baseName.substr(0, baseName.size() - 4);
    }
  }

  // Objective-C protocols may have the suffix "Protocol" appended if
  // the non-suffixed name would conflict with another entity in the
  // same top-level module.
  SmallString<16> baseNameWithProtocolSuffix;
  if (auto objcProto = dyn_cast<clang::ObjCProtocolDecl>(D)) {
    if (objcProto->hasDefinition()) {
      if (hasNamingConflict(D, objcProto->getIdentifier(), nullptr)) {
        baseNameWithProtocolSuffix = baseName;
        baseNameWithProtocolSuffix += SWIFT_PROTOCOL_SUFFIX;
        baseName = baseNameWithProtocolSuffix;
      }
    }
  }

  // Typedef declarations might be CF types that will drop the "Ref"
  // suffix.
  clang::ASTContext &clangCtx = clangSema.Context;
  if (swift3OrLaterName) {
    if (auto typedefNameDecl = dyn_cast<clang::TypedefNameDecl>(D)) {
      auto swiftName = getCFTypeName(typedefNameDecl);
      if (!swiftName.empty() &&
          !hasNamingConflict(D, &clangCtx.Idents.get(swiftName),
                             typedefNameDecl)) {
        // Adopt the requested name.
        baseName = swiftName;
      }
    }
  }

  if (auto classTemplateSpecDecl =
          dyn_cast<clang::ClassTemplateSpecializationDecl>(D)) {
    /// Symbolic specializations get imported as the symbolic class template
    /// type.
    if (importSymbolicCXXDecls)
      return importNameImpl(classTemplateSpecDecl->getSpecializedTemplate(),
                            version, givenName);
    if (!isa<clang::ClassTemplatePartialSpecializationDecl>(D)) {
      auto name = printClassTemplateSpecializationName(classTemplateSpecDecl,
                                                       swiftCtx, this, version);
      baseName = swiftCtx.getIdentifier(name).get();
    }
  }

  SmallString<16> newName;
  // Check if we need to rename the C++ method to disambiguate it.
  if (auto method = dyn_cast<clang::CXXMethodDecl>(D)) {
    if (!method->isConst() && !method->isOverloadedOperator() && !method->isStatic()) {
      // See if any other methods within the same struct have the same name, but
      // differ in constness.
      auto otherDecls = dc->lookup(method->getDeclName());
      bool shouldRename = false;
      for (auto otherDecl : otherDecls) {
        if (otherDecl == D)
          continue;
        if (auto otherMethod = dyn_cast<clang::CXXMethodDecl>(otherDecl)) {
          // TODO: what if the other method is also non-const?
          if (otherMethod->isConst()) {
            shouldRename = true;
            break;
          }
        }
      }

      if (shouldRename) {
        newName = baseName;
        newName += "Mutating";
        baseName = newName;
      }
    }
    if (method->isImplicit() &&
        baseName.starts_with("__synthesizedVirtualCall_")) {
      // If this is a thunk for a virtual method of a C++ reference type, we
      // strip away the underscored prefix. This method should be visible and
      // callable from Swift.
      newName = baseName.substr(StringRef("__synthesizedVirtualCall_").size());
      baseName = newName;
    }
  }

  // swift_newtype-ed declarations may have common words with the type name
  // stripped.
  if (auto newtypeDecl = findSwiftNewtype(D, clangSema, version)) {
    result.info.importAsMember = true;
    baseName = determineSwiftNewtypeBaseName(baseName, newtypeDecl->getName(),
                                             strippedPrefix);
  }

  if (!result.isSubscriptAccessor() && swift3OrLaterName) {
    // Objective-C properties.
    if (auto objcProperty = dyn_cast<clang::ObjCPropertyDecl>(D)) {
      auto contextType = getClangDeclContextType(
          D->getDeclContext());
      if (!contextType.isNull()) {
        auto contextTypeName =
            getClangTypeNameForOmission(clangCtx, contextType);
        auto propertyTypeName =
            getClangTypeNameForOmission(clangCtx, objcProperty->getType());
        // Find the property names.
        const InheritedNameSet *allPropertyNames = nullptr;
        if (!contextType.isNull()) {
          if (auto objcPtrType = contextType->getAsObjCInterfacePointerType())
            if (auto objcClassDecl = objcPtrType->getInterfaceDecl())
              allPropertyNames =
                  getAllPropertyNames(objcClassDecl, /*forInstance=*/true);
        }

        (void)omitNeedlessWords(baseName, {}, "", propertyTypeName,
                                contextTypeName, {}, /*returnsSelf=*/false,
                                /*isProperty=*/true, allPropertyNames,
                                std::nullopt, std::nullopt, scratch);
      }
    }

    // Objective-C methods.
    if (auto method = dyn_cast<clang::ObjCMethodDecl>(D)) {
      (void)omitNeedlessWordsInFunctionName(
          baseName, argumentNames, params, method->getReturnType(),
          method->getDeclContext(), getNonNullArgs(method, params),
          result.getErrorInfo()
              ? std::optional<unsigned>(static_cast<unsigned int>(
                    result.getErrorInfo()->ErrorParameterIndex))
              : std::nullopt,
          method->hasRelatedResultType(), method->isInstanceMethod(),
          swift::transform(result.getAsyncInfo(),
                           [](const ForeignAsyncConvention::Info &info) {
                             return info.completionHandlerParamIndex();
                           }),
          swift::transform(
              result.getAsyncInfo(),
              [&](const ForeignAsyncConvention::Info &info) {
                return method->getDeclName().getObjCSelector().getNameForSlot(
                    info.completionHandlerParamIndex());
              }),
          *this);
    }

    // If the result is a value, lowercase it.
    if (strippedPrefix && isa<clang::ValueDecl>(D) &&
        shouldLowercaseValueName(baseName)) {
      baseName = camel_case::toLowercaseInitialisms(baseName, scratch);
    }
  }

  // If this declaration has the swift_private attribute, prepend "__" to the
  // appropriate place.
  SmallString<16> swiftPrivateScratch;
  if (shouldBeSwiftPrivate(*this, D, version, result.info.hasAsyncInfo)) {
    // Special case: empty arg factory, "for historical reasons", is not private
    if (isInitializer && argumentNames.empty() &&
        (result.getInitKind() == CtorInitializerKind::Factory ||
         result.getInitKind() == CtorInitializerKind::ConvenienceFactory))
      return result;

    // Make the given name private.
    swiftPrivateScratch = "__";

    if (isInitializer) {
      // For initializers, prepend "__" to the first argument name.
      if (argumentNames.empty()) {
        // FIXME: Record that we did this.
        argumentNames.push_back("__");
      } else {
        swiftPrivateScratch += argumentNames[0];
        argumentNames[0] = swiftPrivateScratch;
      }
    } else {
      // For all other entities, prepend "__" to the base name.
      swiftPrivateScratch += baseName;
      baseName = swiftPrivateScratch;
    }
  }

  baseName = renameUnsafeMethod(swiftCtx, D, baseName);

  result.declName = formDeclName(swiftCtx, baseName, argumentNames, isFunction,
                                 isInitializer, /*isSubscript=*/false,
                                 isa<clang::ClassTemplateSpecializationDecl>(D));
  return result;
}

/// Returns true if it is expected that the macro is ignored.
static bool shouldIgnoreMacro(StringRef name, const clang::MacroInfo *macro,
                              clang::Preprocessor &PP) {
  // Ignore include guards. Try not to ignore definitions of useful constants,
  // which may end up looking like include guards.
  if (macro->isUsedForHeaderGuard() && macro->getNumTokens() == 1) {
    auto tok = macro->tokens()[0];
    if (tok.is(clang::tok::numeric_constant) && tok.getLength() == 1 &&
        PP.getSpellingOfSingleCharacterNumericConstant(tok) == '1')
      return true;
  }

  // If there are no tokens, there is nothing to convert.
  if (macro->tokens_empty())
    return true;

  // Consult the list of macros to suppress.
  auto suppressMacro = llvm::StringSwitch<bool>(name)
#define SUPPRESS_MACRO(NAME) .Case(#NAME, true)
#include "MacroTable.def"
                           .Default(false);

  if (suppressMacro)
    return true;

  return false;
}

bool ClangImporter::shouldIgnoreMacro(StringRef Name,
                                      const clang::MacroInfo *Macro) {
  return ::shouldIgnoreMacro(Name, Macro, Impl.getClangPreprocessor());
}

Identifier ImportedName::getBaseIdentifier(ASTContext &ctx) const {
  auto baseName = declName.getBaseName();
  if (!baseName.isSpecial())
    return baseName.getIdentifier();

  return ctx.getIdentifier(baseName.userFacingName());
}

Identifier
NameImporter::importMacroName(const clang::IdentifierInfo *clangIdentifier,
                              const clang::MacroInfo *macro) {
  // If we're supposed to ignore this macro, return an empty identifier.
  if (::shouldIgnoreMacro(clangIdentifier->getName(), macro,
                          getClangPreprocessor()))
    return Identifier();

  // No transformation is applied to the name.
  StringRef name = clangIdentifier->getName();
  return swiftCtx.getIdentifier(name);
}

ImportedName NameImporter::importName(const clang::NamedDecl *decl,
                                      ImportNameVersion version,
                                      clang::DeclarationName givenName) {
  CacheKeyType key(decl, version);
  if (!givenName) {
    if (auto cachedRes = importNameCache[key]) {
      ++ImportNameNumCacheHits;
      return cachedRes;
    }
  }
  ++ImportNameNumCacheMisses;
  auto res = importNameImpl(decl, version, givenName);

  // Add information about the async version of the name to the non-async
  // version of the name.
  if (!version.supportsConcurrency()) {
    if (auto importedAsyncName = importName(decl, version.withConcurrency(true),
                                            givenName)) {
      res.info.hasAsyncAlternateInfo = importedAsyncName.info.hasAsyncInfo;
      res.info.asyncInfo = importedAsyncName.info.asyncInfo;
    }
  }

  if (!givenName)
    importNameCache[key] = res;
  return res;
}

bool NameImporter::forEachDistinctImportName(
    const clang::NamedDecl *decl, ImportNameVersion activeVersion,
    llvm::function_ref<bool(ImportedName, ImportNameVersion)> action) {
  using ImportNameKey = std::tuple<DeclName, EffectiveClangContext, bool>;
  SmallVector<ImportNameKey, 8> seenNames;

  ImportedName newName = importName(decl, activeVersion);
  if (!newName)
    return true;

  ImportNameKey key(newName.getDeclName(), newName.getEffectiveContext(),
                    newName.getAsyncInfo().has_value());
  if (action(newName, activeVersion))
    seenNames.push_back(key);

  activeVersion.forEachOtherImportNameVersion(
      [&](ImportNameVersion nameVersion) {
        // Check to see if the name is different.
        ImportedName newName = importName(decl, nameVersion);
        if (!newName)
          return;
        ImportNameKey key(newName.getDeclName(), newName.getEffectiveContext(),
                          newName.getAsyncInfo().has_value());

        bool seen = llvm::any_of(
            seenNames, [&key](const ImportNameKey &existing) -> bool {
              return std::get<0>(key) == std::get<0>(existing) &&
                std::get<2>(key) == std::get<2>(existing) &&
                std::get<1>(key).equalsWithoutResolving(std::get<1>(existing));
            });
        if (seen)
          return;

        if (action(newName, nameVersion))
          seenNames.push_back(key);
      });
  return false;
}

const InheritedNameSet *NameImporter::getAllPropertyNames(
                          clang::ObjCInterfaceDecl *classDecl,
                          bool forInstance) {
  classDecl = classDecl->getCanonicalDecl();

  // If we already have this information, return it.
  auto known = allProperties.find({classDecl, forInstance});
  if (known != allProperties.end()) return known->second.get();

  // Otherwise, get information from our superclass first.
  const InheritedNameSet *parentSet = nullptr;
  if (auto superclassDecl = classDecl->getSuperClass()) {
    parentSet = getAllPropertyNames(superclassDecl, forInstance);
  }

  // Create the set of properties.
  llvm::BumpPtrAllocator &alloc = scratch.getAllocator();
  known = allProperties.insert({
      std::pair<const clang::ObjCInterfaceDecl *, char>(classDecl, forInstance),
      std::make_unique<InheritedNameSet>(parentSet, alloc) }).first;

  // Local function to add properties from the given set.
  auto addProperties = [&](clang::DeclContext::decl_range members) {
    for (auto member : members) {
      // Add Objective-C property names.
      if (auto property = dyn_cast<clang::ObjCPropertyDecl>(member)) {
        if (forInstance)
          known->second->add(property->getName());
        continue;
      }

      // Add no-parameter, non-void method names.
      if (auto method = dyn_cast<clang::ObjCMethodDecl>(member)) {
        if (method->getSelector().isUnarySelector() &&
            !method->getReturnType()->isVoidType() &&
            !method->hasRelatedResultType() &&
            method->isInstanceMethod() == forInstance) {
          known->second->add(method->getSelector().getNameForSlot(0));
          continue;
        }
      }
    }
  };

  // Dig out the class definition.
  auto classDef = classDecl->getDefinition();
  if (!classDef) return known->second.get();

  // Collect property names from the class definition.
  addProperties(classDef->decls());

  // Dig out the module that owns the class definition.
  auto module = classDef->getImportedOwningModule();
  if (module) module = module->getTopLevelModule();

  // Collect property names from all categories and extensions in the same
  // module as the class.
  for (auto category : classDef->known_categories()) {
    auto categoryModule = category->getImportedOwningModule();
    if (categoryModule) categoryModule = categoryModule->getTopLevelModule();
    if (module != categoryModule) continue;

    addProperties(category->decls());
  }

  return known->second.get();
}