1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
//===--- ToolChain.cpp - Collections of tools for one platform ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
/// \file This file defines the base implementation of the ToolChain class.
/// The platform-specific subclasses are implemented in ToolChains.cpp.
/// For organizational purposes, the platform-independent logic for
/// constructing job invocations is also located in ToolChains.cpp.
//
//===----------------------------------------------------------------------===//
#include "swift/Driver/ToolChain.h"
#include "swift/Driver/Compilation.h"
#include "swift/Driver/Driver.h"
#include "swift/Driver/Job.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Remarks/RemarkFormat.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Program.h"
using namespace swift;
using namespace swift::driver;
using namespace llvm::opt;
ToolChain::JobContext::JobContext(Compilation &C, ArrayRef<const Job *> Inputs,
ArrayRef<const Action *> InputActions,
const CommandOutput &Output,
const OutputInfo &OI)
: C(C), Inputs(Inputs), InputActions(InputActions), Output(Output), OI(OI),
Args(C.getArgs()) {}
ArrayRef<InputPair> ToolChain::JobContext::getTopLevelInputFiles() const {
return C.getInputFiles();
}
const char *ToolChain::JobContext::getAllSourcesPath() const {
return C.getAllSourcesPath();
}
const char *
ToolChain::JobContext::getTemporaryFilePath(const llvm::Twine &name,
StringRef suffix) const {
SmallString<128> buffer;
std::error_code EC = llvm::sys::fs::createTemporaryFile(name, suffix, buffer);
if (EC) {
// Use the constructor that prints both the error code and the description.
// FIXME: This should not take down the entire process.
auto error = llvm::make_error<llvm::StringError>(
EC,
"- unable to create temporary file for " + name + "." + suffix);
llvm::report_fatal_error(std::move(error));
}
C.addTemporaryFile(buffer.str(), PreserveOnSignal::Yes);
// We can't just reference the data in the TemporaryFiles vector because
// that could theoretically get copied to a new address.
return C.getArgs().MakeArgString(buffer.str());
}
std::optional<Job::ResponseFileInfo>
ToolChain::getResponseFileInfo(const Compilation &C, const char *executablePath,
const ToolChain::InvocationInfo &invocationInfo,
const ToolChain::JobContext &context) const {
const bool forceResponseFiles =
C.getArgs().hasArg(options::OPT_driver_force_response_files);
assert((invocationInfo.allowsResponseFiles || !forceResponseFiles) &&
"Cannot force response file if platform does not allow it");
if (forceResponseFiles || (invocationInfo.allowsResponseFiles &&
!llvm::sys::commandLineFitsWithinSystemLimits(
executablePath, invocationInfo.Arguments))) {
const char *responseFilePath =
context.getTemporaryFilePath("arguments", "resp");
const char *responseFileArg =
C.getArgs().MakeArgString(Twine("@") + responseFilePath);
return {{responseFilePath, responseFileArg}};
}
return std::nullopt;
}
std::unique_ptr<Job> ToolChain::constructJob(
const JobAction &JA, Compilation &C, SmallVectorImpl<const Job *> &&inputs,
ArrayRef<const Action *> inputActions,
std::unique_ptr<CommandOutput> output, const OutputInfo &OI) const {
JobContext context{C, inputs, inputActions, *output, OI};
auto invocationInfo = [&]() -> InvocationInfo {
switch (JA.getKind()) {
#define CASE(K) \
case Action::Kind::K: \
return constructInvocation(cast<K##Action>(JA), context);
CASE(CompileJob)
CASE(InterpretJob)
CASE(BackendJob)
CASE(MergeModuleJob)
CASE(ModuleWrapJob)
CASE(DynamicLinkJob)
CASE(StaticLinkJob)
CASE(GenerateDSYMJob)
CASE(VerifyDebugInfoJob)
CASE(GeneratePCHJob)
CASE(AutolinkExtractJob)
CASE(REPLJob)
CASE(VerifyModuleInterfaceJob)
#undef CASE
case Action::Kind::Input:
llvm_unreachable("not a JobAction");
}
// Work around MSVC warning: not all control paths return a value
llvm_unreachable("All switch cases are covered");
}();
// Special-case the Swift frontend.
const char *executablePath = nullptr;
if (StringRef(SWIFT_EXECUTABLE_NAME) == invocationInfo.ExecutableName) {
executablePath = getDriver().getSwiftProgramPath().c_str();
} else {
std::string relativePath =
findProgramRelativeToSwift(invocationInfo.ExecutableName);
if (!relativePath.empty()) {
executablePath = C.getArgs().MakeArgString(relativePath);
} else {
auto systemPath =
llvm::sys::findProgramByName(invocationInfo.ExecutableName);
if (systemPath) {
executablePath = C.getArgs().MakeArgString(systemPath.get());
} else {
// For debugging purposes.
executablePath = invocationInfo.ExecutableName;
}
}
}
// Determine if the argument list is so long that it needs to be written into
// a response file.
auto responseFileInfo =
getResponseFileInfo(C, executablePath, invocationInfo, context);
return std::make_unique<Job>(
JA, std::move(inputs), std::move(output), executablePath,
std::move(invocationInfo.Arguments),
std::move(invocationInfo.ExtraEnvironment),
std::move(invocationInfo.FilelistInfos), responseFileInfo);
}
std::string
ToolChain::findProgramRelativeToSwift(StringRef executableName) const {
auto insertionResult =
ProgramLookupCache.insert(std::make_pair(executableName, ""));
if (insertionResult.second) {
std::string path = findProgramRelativeToSwiftImpl(executableName);
insertionResult.first->setValue(std::move(path));
}
return insertionResult.first->getValue();
}
std::string
ToolChain::findProgramRelativeToSwiftImpl(StringRef executableName) const {
StringRef swiftPath = getDriver().getSwiftProgramPath();
StringRef swiftBinDir = llvm::sys::path::parent_path(swiftPath);
auto result = llvm::sys::findProgramByName(executableName, {swiftBinDir});
if (result)
return result.get();
return {};
}
file_types::ID ToolChain::lookupTypeForExtension(StringRef Ext) const {
return file_types::lookupTypeForExtension(Ext);
}
static bool jobsHaveSameExecutableNames(const Job *A, const Job *B) {
// Jobs that get here (that are derived from CompileJobActions) should always
// have the same executable name -- it should always be SWIFT_EXECUTABLE_NAME
// -- but we check here just to be sure / fail gracefully in non-assert
// builds.
assert(strcmp(A->getExecutable(), B->getExecutable()) == 0);
if (strcmp(A->getExecutable(), B->getExecutable()) != 0) {
return false;
}
return true;
}
static bool jobsHaveSameOutputTypes(const Job *A, const Job *B) {
if (A->getOutput().getPrimaryOutputType() !=
B->getOutput().getPrimaryOutputType())
return false;
return A->getOutput().hasSameAdditionalOutputTypes(B->getOutput());
}
static bool jobsHaveSameEnvironment(const Job *A, const Job *B) {
auto AEnv = A->getExtraEnvironment();
auto BEnv = B->getExtraEnvironment();
if (AEnv.size() != BEnv.size())
return false;
for (size_t i = 0; i < AEnv.size(); ++i) {
if (strcmp(AEnv[i].first, BEnv[i].first) != 0)
return false;
if (strcmp(AEnv[i].second, BEnv[i].second) != 0)
return false;
}
return true;
}
bool ToolChain::jobIsBatchable(const Compilation &C, const Job *A) const {
// FIXME: There might be a tighter criterion to use here?
if (C.getOutputInfo().CompilerMode != OutputInfo::Mode::StandardCompile)
return false;
auto const *CJActA = dyn_cast<const CompileJobAction>(&A->getSource());
if (!CJActA)
return false;
// When having only one job output a dependency file, that job is not
// batchable since it has an oddball set of additional output types.
if (C.OnlyOneDependencyFile &&
A->getOutput().hasAdditionalOutputForType(file_types::TY_Dependencies))
return false;
return CJActA->findSingleSwiftInput() != nullptr;
}
bool ToolChain::jobsAreBatchCombinable(const Compilation &C, const Job *A,
const Job *B) const {
assert(jobIsBatchable(C, A));
assert(jobIsBatchable(C, B));
return (jobsHaveSameExecutableNames(A, B) && jobsHaveSameOutputTypes(A, B) &&
jobsHaveSameEnvironment(A, B));
}
/// Form a synthetic \c CommandOutput for a \c BatchJob by merging together the
/// \c CommandOutputs of all the jobs passed.
static std::unique_ptr<CommandOutput>
makeBatchCommandOutput(ArrayRef<const Job *> jobs, Compilation &C,
file_types::ID outputType) {
auto output =
std::make_unique<CommandOutput>(outputType, C.getDerivedOutputFileMap());
for (auto const *J : jobs) {
output->addOutputs(J->getOutput());
}
return output;
}
/// Set-union the \c Inputs and \c InputActions from each \c Job in \p jobs into
/// the provided \p inputJobs and \p inputActions vectors, further adding all \c
/// Actions in the \p jobs -- InputActions or otherwise -- to \p batchCJA. Do
/// set-union rather than concatenation here to avoid mentioning the same input
/// multiple times.
static bool
mergeBatchInputs(ArrayRef<const Job *> jobs,
llvm::SmallSetVector<const Job *, 16> &inputJobs,
llvm::SmallSetVector<const Action *, 16> &inputActions,
CompileJobAction *batchCJA) {
llvm::SmallSetVector<const Action *, 16> allActions;
for (auto const *J : jobs) {
for (auto const *I : J->getInputs()) {
inputJobs.insert(I);
}
auto const *CJA = dyn_cast<CompileJobAction>(&J->getSource());
if (!CJA)
return true;
for (auto const *I : CJA->getInputs()) {
// Capture _all_ input actions -- whether or not they are InputActions --
// in allActions, to set as the inputs for batchCJA below.
allActions.insert(I);
// Only collect input actions that _are InputActions_ in the inputActions
// array, to load into the JobContext in our caller.
if (auto const *IA = dyn_cast<InputAction>(I)) {
inputActions.insert(IA);
}
}
}
for (auto const *I : allActions) {
batchCJA->addInput(I);
}
return false;
}
void ToolChain::addLinkedLibArgs(const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &FrontendArgs) {
Args.getLastArg(options::OPT_l);
for (auto Arg : Args.getAllArgValues(options::OPT_l)) {
const std::string lArg("-l" + Arg);
FrontendArgs.push_back(Args.MakeArgString(Twine(lArg)));
}
}
/// Construct a \c BatchJob by merging the constituent \p jobs' CommandOutput,
/// input \c Job and \c Action members. Call through to \c constructInvocation
/// on \p BatchJob, to build the \c InvocationInfo.
std::unique_ptr<Job>
ToolChain::constructBatchJob(ArrayRef<const Job *> unsortedJobs,
Job::PID &NextQuasiPID,
Compilation &C) const {
if (unsortedJobs.empty())
return nullptr;
llvm::SmallVector<const Job *, 16> sortedJobs;
C.sortJobsToMatchCompilationInputs(unsortedJobs, sortedJobs);
// Synthetic OutputInfo is a slightly-modified version of the initial
// compilation's OI.
auto OI = C.getOutputInfo();
OI.CompilerMode = OutputInfo::Mode::BatchModeCompile;
auto const *executablePath = sortedJobs[0]->getExecutable();
auto outputType = sortedJobs[0]->getOutput().getPrimaryOutputType();
auto output = makeBatchCommandOutput(sortedJobs, C, outputType);
llvm::SmallSetVector<const Job *, 16> inputJobs;
llvm::SmallSetVector<const Action *, 16> inputActions;
auto *batchCJA = C.createAction<CompileJobAction>(outputType);
if (mergeBatchInputs(sortedJobs, inputJobs, inputActions, batchCJA))
return nullptr;
JobContext context{C, inputJobs.getArrayRef(), inputActions.getArrayRef(),
*output, OI};
auto invocationInfo = constructInvocation(*batchCJA, context);
// Batch mode can produce quite long command lines; in almost every case these
// will trigger use of supplementary output file maps. However, if the driver
// command line is long for reasons unrelated to the number of input files,
// such as passing a large number of flags, then the individual batch jobs are
// also likely to overflow. We have to check for that explicitly here, because
// the BatchJob created here does not go through the same code path in
// constructJob above.
//
// The `allowsResponseFiles` flag on the `invocationInfo` we have here exists
// only to model external tools that don't know about response files, such as
// platform linkers; when talking to the frontend (which we control!) it
// should always be true. But double check with an assert here in case someone
// failed to set it in `constructInvocation`.
assert(invocationInfo.allowsResponseFiles);
auto responseFileInfo =
getResponseFileInfo(C, executablePath, invocationInfo, context);
return std::make_unique<BatchJob>(
*batchCJA, inputJobs.takeVector(), std::move(output), executablePath,
std::move(invocationInfo.Arguments),
std::move(invocationInfo.ExtraEnvironment),
std::move(invocationInfo.FilelistInfos), sortedJobs, NextQuasiPID,
responseFileInfo);
}
llvm::Expected<file_types::ID>
ToolChain::remarkFileTypeFromArgs(const llvm::opt::ArgList &Args) const {
const Arg *A = Args.getLastArg(options::OPT_save_optimization_record_EQ);
if (!A)
return file_types::TY_YAMLOptRecord;
llvm::Expected<llvm::remarks::Format> FormatOrErr =
llvm::remarks::parseFormat(A->getValue());
if (llvm::Error E = FormatOrErr.takeError())
return std::move(E);
switch (*FormatOrErr) {
case llvm::remarks::Format::YAML:
return file_types::TY_YAMLOptRecord;
case llvm::remarks::Format::Bitstream:
return file_types::TY_BitstreamOptRecord;
default:
return llvm::createStringError(std::errc::invalid_argument,
"Unknown remark format.");
}
}
|