1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
|
//===--- ModuleTrace.cpp -- Emit a trace of all loaded Swift modules ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "Dependencies.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/PluginRegistry.h"
#include "swift/Basic/FileTypes.h"
#include "swift/Basic/JSONSerialization.h"
#include "swift/Frontend/FrontendOptions.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/LockFileManager.h"
#if !defined(_MSC_VER) && !defined(__MINGW32__)
#include <unistd.h>
#else
#include <io.h>
#endif
using namespace swift;
namespace {
struct SwiftModuleTraceInfo {
Identifier Name;
std::string Path;
bool IsImportedDirectly;
bool SupportsLibraryEvolution;
};
struct SwiftMacroTraceInfo {
Identifier Name;
std::string Path;
};
struct LoadedModuleTraceFormat {
static const unsigned CurrentVersion = 2;
unsigned Version;
Identifier Name;
std::string Arch;
std::vector<SwiftModuleTraceInfo> SwiftModules;
std::vector<SwiftMacroTraceInfo> SwiftMacros;
};
} // namespace
namespace swift {
namespace json {
template <> struct ObjectTraits<SwiftModuleTraceInfo> {
static void mapping(Output &out, SwiftModuleTraceInfo &contents) {
StringRef name = contents.Name.str();
out.mapRequired("name", name);
out.mapRequired("path", contents.Path);
out.mapRequired("isImportedDirectly", contents.IsImportedDirectly);
out.mapRequired("supportsLibraryEvolution",
contents.SupportsLibraryEvolution);
}
};
template <>
struct ObjectTraits<SwiftMacroTraceInfo> {
static void mapping(Output &out, SwiftMacroTraceInfo &contents) {
StringRef name = contents.Name.str();
out.mapRequired("name", name);
out.mapRequired("path", contents.Path);
}
};
// Version notes:
// 1. Keys: name, arch, swiftmodules
// 2. New keys: version, swiftmodulesDetailedInfo
template <> struct ObjectTraits<LoadedModuleTraceFormat> {
static void mapping(Output &out, LoadedModuleTraceFormat &contents) {
out.mapRequired("version", contents.Version);
StringRef name = contents.Name.str();
out.mapRequired("name", name);
out.mapRequired("arch", contents.Arch);
// The 'swiftmodules' key is kept for backwards compatibility.
std::vector<std::string> moduleNames;
for (auto &m : contents.SwiftModules)
moduleNames.push_back(m.Path);
out.mapRequired("swiftmodules", moduleNames);
out.mapRequired("swiftmodulesDetailedInfo", contents.SwiftModules);
out.mapRequired("swiftmacros", contents.SwiftMacros);
}
};
} // namespace json
} // namespace swift
static bool isClangOverlayOf(ModuleDecl *potentialOverlay,
ModuleDecl *potentialUnderlying) {
return !potentialOverlay->isNonSwiftModule() &&
potentialUnderlying->isNonSwiftModule() &&
potentialOverlay->getName() == potentialUnderlying->getName();
}
// TODO: Delete this once changes from https://reviews.llvm.org/D83449 land on
// apple/llvm-project's swift/main branch.
template <typename SetLike, typename Item>
static bool contains(const SetLike &setLike, Item item) {
return setLike.find(item) != setLike.end();
}
/// Get a set of modules imported by \p module.
///
/// By default, all imports are included.
static void getImmediateImports(
ModuleDecl *module, SmallPtrSetImpl<ModuleDecl *> &imports,
ModuleDecl::ImportFilter importFilter = ModuleDecl::getImportFilterAll()) {
SmallVector<ImportedModule, 8> importList;
module->getImportedModules(importList, importFilter);
for (ImportedModule &import : importList)
imports.insert(import.importedModule);
}
namespace {
/// Helper type for computing (approximate) information about ABI-dependencies.
///
/// This misses out on details such as typealiases and more.
/// See the "isImportedDirectly" field above for more details.
class ABIDependencyEvaluator {
/// Map of ABIs exported by a particular module, excluding itself.
///
/// For example, consider (primed letters represent Clang modules):
/// \code
/// - A is @_exported-imported by B
/// - B is #imported by C' (via a compiler-generated umbrella header)
/// - C' is @_exported-imported by C (Swift overlay)
/// - D' is #imported by E'
/// - D' is @_exported-imported by D (Swift overlay)
/// - E' is @_exported-imported by E (Swift overlay)
/// \endcode
///
/// Then the \c abiExportMap will be
/// \code
/// { A: {}, B: {A}, C: {B}, C': {B}, D: {}, D': {}, E: {D}, E': {D'} }
/// \endcode
///
/// \b WARNING: Use \c reexposeImportedABI instead of inserting directly.
llvm::DenseMap<ModuleDecl *, llvm::DenseSet<ModuleDecl *>> abiExportMap;
/// Stack for depth-first traversal.
SmallVector<ModuleDecl *, 32> searchStack;
llvm::DenseSet<ModuleDecl *> visited;
/// Helper function to handle invariant violations as crashes in debug mode.
void
crashOnInvariantViolation(llvm::function_ref<void(raw_ostream &)> f) const;
/// Computes the ABI exports for \p importedModule and adds them to
/// \p module's ABI exports.
///
/// If \p includeImportedModule is true, also adds \p importedModule to
/// \p module's ABI exports.
///
/// Correct way to add entries to \c abiExportMap.
void reexposeImportedABI(ModuleDecl *module, ModuleDecl *importedModule,
bool includeImportedModule = true);
/// Check if a Swift module is an overlay for some Clang module.
///
/// FIXME: Delete this hack once https://github.com/apple/swift/issues/55804 is fixed and ModuleDecl has the right API which we can use directly.
bool isOverlayOfClangModule(ModuleDecl *swiftModule);
/// Check for cases where we have a fake cycle through an overlay.
///
/// Sometimes, we have fake cycles in the import graph due to the Clang
/// importer injecting overlays between Clang modules. These don't represent
/// an actual cycle in the build, so we should ignore them.
///
/// We check this lazily after detecting a cycle because it is difficult to
/// determine at the point where we see the overlay whether it was incorrectly
/// injected by the Clang importer or whether any of its imports will
/// eventually lead to a cycle.
///
/// For more details, see [NOTE: ABIDependencyEvaluator-fake-cycle-detection]
///
/// \param startOfCycle A pointer to the element of \c searchStack where
/// the module \em first appeared.
///
/// \pre The module on top of \c searchStack is the same module as
/// *startOfCycle.
///
/// \pre searchStack.begin() <= startOfCycle < searchStack.end()
bool isFakeCycleThroughOverlay(ModuleDecl **startOfCycle);
/// Recursive step in computing ABI dependencies.
///
/// Use this method instead of using the \c forClangModule/\c forSwiftModule
/// methods.
void computeABIDependenciesForModule(ModuleDecl *module);
void computeABIDependenciesForSwiftModule(ModuleDecl *module);
void computeABIDependenciesForClangModule(ModuleDecl *module);
static void printModule(const ModuleDecl *module, llvm::raw_ostream &os);
template <typename SetLike>
static void printModuleSet(const SetLike &set, llvm::raw_ostream &os);
public:
ABIDependencyEvaluator() = default;
ABIDependencyEvaluator(const ABIDependencyEvaluator &) = delete;
ABIDependencyEvaluator(ABIDependencyEvaluator &&) = default;
void getABIDependenciesForSwiftModule(
ModuleDecl *module, SmallPtrSetImpl<ModuleDecl *> &abiDependencies);
void printABIExportMap(llvm::raw_ostream &os) const;
};
} // end anonymous namespace
// See [NOTE: Bailing-vs-crashing-in-trace-emission].
// TODO: Use PrettyStackTrace instead?
void ABIDependencyEvaluator::crashOnInvariantViolation(
llvm::function_ref<void(raw_ostream &)> f) const {
#ifndef NDEBUG
SmallVector<char, 0> msg;
llvm::raw_svector_ostream os(msg);
os << "error: invariant violation: ";
f(os);
llvm::report_fatal_error(msg);
#endif
}
// [NOTE: Trace-Clang-submodule-complexity]
//
// A Clang module may have zero or more submodules. In practice, when traversing
// the imports of a module, we observe that different submodules of the same
// top-level module (almost) freely import each other. Despite this, we still
// need to conceptually traverse the tree formed by the submodule relationship
// (with the top-level module being the root).
//
// This needs to be taken care of in two ways:
// 1. We need to make sure we only go towards the leaves. It's okay if we "jump"
// branches, so long as we don't try to visit an ancestor when one of its
// descendants is still on the traversal stack, so that we don't end up with
// arbitrarily complex intra-module cycles.
// See also: [NOTE: Intra-module-leafwards-traversal].
// 2. When adding entries to the ABI export map, we need to avoid marking
// dependencies within the same top-level module. This step is needed in
// addition to step 1 to avoid creating cycles like
// Overlay -> Underlying -> Submodule -> Overlay.
void ABIDependencyEvaluator::reexposeImportedABI(ModuleDecl *module,
ModuleDecl *importedModule,
bool includeImportedModule) {
if (module == importedModule) {
crashOnInvariantViolation([&](raw_ostream &os) {
os << "module ";
printModule(module, os);
os << " imports itself!\n";
});
return;
}
auto addToABIExportMap = [this](ModuleDecl *module, ModuleDecl *reexport) {
if (module == reexport) {
crashOnInvariantViolation([&](raw_ostream &os) {
os << "expected module ";
printModule(reexport, os);
os << " to not re-export itself\n";
});
return;
}
if (reexport->isNonSwiftModule() && module->isNonSwiftModule() &&
module->getTopLevelModule() == reexport->getTopLevelModule()) {
// Dependencies within the same top-level Clang module are not useful.
// See also: [NOTE: Trace-Clang-submodule-complexity].
return;
}
// We only care about dependencies across top-level modules and we want to
// avoid exploding abiExportMap with submodules. So we only insert entries
// after calling getTopLevelModule().
if (::isClangOverlayOf(module, reexport)) {
// For overlays, we need to have a dependency on the underlying module.
// Otherwise, we might accidentally create a Swift -> Swift cycle.
abiExportMap[module].insert(
reexport->getTopLevelModule(/*preferOverlay*/ false));
return;
}
abiExportMap[module].insert(
reexport->getTopLevelModule(/*preferOverlay*/ true));
};
computeABIDependenciesForModule(importedModule);
if (includeImportedModule) {
addToABIExportMap(module, importedModule);
}
// Force creation of default value if missing. This prevents abiExportMap from
// growing (and moving) when calling addToABIExportMap. If abiExportMap gets
// moved, then abiExportMap[importedModule] will be moved, forcing us to
// create a defensive copy to avoid iterator invalidation on move.
(void)abiExportMap[module];
for (auto reexportedModule : abiExportMap[importedModule])
addToABIExportMap(module, reexportedModule);
}
bool ABIDependencyEvaluator::isOverlayOfClangModule(ModuleDecl *swiftModule) {
assert(!swiftModule->isNonSwiftModule());
llvm::SmallPtrSet<ModuleDecl *, 8> importList;
::getImmediateImports(swiftModule, importList,
{ModuleDecl::ImportFilterKind::Exported});
bool isOverlay =
llvm::any_of(importList, [&](ModuleDecl *importedModule) -> bool {
return isClangOverlayOf(swiftModule, importedModule);
});
return isOverlay;
}
// [NOTE: ABIDependencyEvaluator-fake-cycle-detection]
//
// First, let's consider a concrete example.
// - In Clang-land, ToyKit #imports CoreDoll.
// - The Swift overlay for CoreDoll imports both CoreDoll and ToyKit.
// Importing ToyKit from CoreDoll's overlay informally violates the layering
// of frameworks, but it doesn't actually create any cycles in the build
// dependencies.
// ┌───────────────────────────┐
// ┌───│ CoreDoll.swiftmodule │
// │ └───────────────────────────┘
// │ │
// import ToyKit @_exported import CoreDoll
// │ │
// │ │
// ▼ │
// ┌──────────────────────────┐ │
// │ ToyKit (ToyKit/ToyKit.h) │ │
// └──────────────────────────┘ │
// │ │
// #import <CoreDoll/CoreDoll.h> │
// │ │
// ▼ │
// ┌──────────────────────────────┐ │
// │CoreDoll (CoreDoll/CoreDoll.h)│◀──┘
// └──────────────────────────────┘
//
// Say we are trying to build a Swift module that imports ToyKit. Due to how
// module loading works, the Clang importer inserts the CoreDoll overlay
// between the ToyKit and CoreDoll Clang modules, creating a cycle in the
// import graph.
//
// ┌──────────────────────────┐
// │ ToyKit (ToyKit/ToyKit.h) │◀──────────┐
// └──────────────────────────┘ │
// │ │
// #import <CoreDoll/CoreDoll.h> import ToyKit
// │ │
// ▼ │
// ┌────────────────────────────┐ │
// │ CoreDoll.swiftmodule │─────────┘
// └────────────────────────────┘
// │
// @_exported import CoreDoll
// │
// ▼
// ┌──────────────────────────────┐
// │CoreDoll (CoreDoll/CoreDoll.h)│
// └──────────────────────────────┘
//
// This means that, at some point, searchStack will look like:
//
// [others] → ToyKit → CoreDoll (overlay) → ToyKit
//
// In the general case, there may be arbitrarily many modules in the cycle,
// including submodules.
//
// [others] → ToyKit → [others] → CoreDoll (overlay) → [others] → ToyKit
//
// where "[others]" indicates 0 or more modules of any kind.
//
// To detect this, we check that the start of the cycle is a Clang module and
// that there is at least one overlay between it and its recurrence at the end
// of the searchStack. If so, we assume we have detected a benign cycle which
// can be safely ignored.
bool ABIDependencyEvaluator::isFakeCycleThroughOverlay(
ModuleDecl **startOfCycle) {
assert(startOfCycle >= searchStack.begin() &&
startOfCycle < searchStack.end() &&
"startOfCycleIter points to an element in searchStack");
// The startOfCycle module must be a Clang module.
if (!(*startOfCycle)->isNonSwiftModule())
return false;
// Next, we must have zero or more modules followed by a Swift overlay for a
// Clang module.
return std::any_of(
startOfCycle + 1, searchStack.end(), [this](ModuleDecl *module) {
return !module->isNonSwiftModule() && isOverlayOfClangModule(module);
});
}
void ABIDependencyEvaluator::computeABIDependenciesForModule(
ModuleDecl *module) {
auto moduleIter = llvm::find(searchStack, module);
if (moduleIter != searchStack.end()) {
if (isFakeCycleThroughOverlay(moduleIter))
return;
crashOnInvariantViolation([&](raw_ostream &os) {
os << "unexpected cycle in import graph!\n";
for (auto m : searchStack) {
printModule(m, os);
if (!m->isNonSwiftModule()) {
os << " (isOverlay = " << isOverlayOfClangModule(m) << ")";
}
os << "\ndepends on ";
}
printModule(module, os);
os << '\n';
});
return;
}
if (::contains(visited, module))
return;
searchStack.push_back(module);
if (module->isNonSwiftModule())
computeABIDependenciesForClangModule(module);
else
computeABIDependenciesForSwiftModule(module);
searchStack.pop_back();
visited.insert(module);
}
void ABIDependencyEvaluator::computeABIDependenciesForSwiftModule(
ModuleDecl *module) {
SmallPtrSet<ModuleDecl *, 32> allImports;
::getImmediateImports(module, allImports);
for (auto import : allImports) {
computeABIDependenciesForModule(import);
if (::isClangOverlayOf(module, import)) {
reexposeImportedABI(module, import,
/*includeImportedModule=*/false);
}
}
SmallPtrSet<ModuleDecl *, 32> reexportedImports;
::getImmediateImports(module, reexportedImports,
{ModuleDecl::ImportFilterKind::Exported});
for (auto reexportedImport : reexportedImports) {
reexposeImportedABI(module, reexportedImport);
}
}
void ABIDependencyEvaluator::computeABIDependenciesForClangModule(
ModuleDecl *module) {
SmallPtrSet<ModuleDecl *, 32> imports;
::getImmediateImports(module, imports);
for (auto import : imports) {
// There are three cases here which can potentially create cycles:
//
// 1. Clang modules importing the stdlib.
// See [NOTE: Pure-Clang-modules-privately-import-stdlib].
// 2. Overlay S @_exported-imports underlying module S' and another Clang
// module C'. C' (transitively) #imports S' but it gets treated as if
// C' imports S. This creates a cycle: S -> C' -> ... -> S.
// In practice, this case is hit for
// Darwin (Swift) -> SwiftOverlayShims (Clang) -> Darwin (Swift).
// We may also hit this in a slightly different direction, in case
// the module directly imports SwiftOverlayShims:
// SwiftOverlayShims -> Darwin (Swift) -> SwiftOverlayShims
// The latter is handled later by isFakeCycleThroughOverlay.
// 3. [NOTE: Intra-module-leafwards-traversal]
// Cycles within the same top-level module.
// These don't matter for us, since we only care about the dependency
// graph at the granularity of top-level modules. So we ignore these
// by only considering parent -> submodule dependencies.
// See also [NOTE: Trace-Clang-submodule-complexity].
if (import->isStdlibModule()) {
continue;
}
if (!import->isNonSwiftModule() && isOverlayOfClangModule(import) &&
llvm::find(searchStack, import) != searchStack.end()) {
continue;
}
if (import->isNonSwiftModule() &&
module->getTopLevelModule() == import->getTopLevelModule() &&
(module == import ||
!import->findUnderlyingClangModule()->isSubModuleOf(
module->findUnderlyingClangModule()))) {
continue;
}
computeABIDependenciesForModule(import);
reexposeImportedABI(module, import);
}
}
void ABIDependencyEvaluator::getABIDependenciesForSwiftModule(
ModuleDecl *module, SmallPtrSetImpl<ModuleDecl *> &abiDependencies) {
computeABIDependenciesForModule(module);
SmallPtrSet<ModuleDecl *, 32> allImports;
::getImmediateImports(module, allImports);
for (auto directDependency : allImports) {
abiDependencies.insert(directDependency);
for (auto exposedDependency : abiExportMap[directDependency]) {
abiDependencies.insert(exposedDependency);
}
}
}
void ABIDependencyEvaluator::printModule(const ModuleDecl *module,
llvm::raw_ostream &os) {
module->getReverseFullModuleName().printForward(os);
os << (module->isNonSwiftModule() ? " (Clang)" : " (Swift)");
os << " @ " << llvm::format("0x%llx", reinterpret_cast<uintptr_t>(module));
}
template <typename SetLike>
void ABIDependencyEvaluator::printModuleSet(const SetLike &set,
llvm::raw_ostream &os) {
os << "{ ";
for (auto module : set) {
printModule(module, os);
os << ", ";
}
os << "}";
}
void ABIDependencyEvaluator::printABIExportMap(llvm::raw_ostream &os) const {
os << "ABI Export Map {{\n";
for (auto &entry : abiExportMap) {
printModule(entry.first, os);
os << " : ";
printModuleSet(entry.second, os);
os << "\n";
}
os << "}}\n";
}
/// Compute the per-module information to be recorded in the trace file.
//
// The most interesting/tricky thing here is _which_ paths get recorded in
// the trace file as dependencies. It depends on how the module was synthesized.
// The key points are:
//
// 1. Paths to swiftmodules in the module cache or in the prebuilt cache are not
// recorded - Precondition: the corresponding path to the swiftinterface must
// already be present as a key in pathToModuleDecl.
// 2. swiftmodules next to a swiftinterface are saved if they are up-to-date.
//
// FIXME: Use the VFS instead of handling paths directly. We are particularly
// sloppy about handling relative paths in the dependency tracker.
static void computeSwiftModuleTraceInfo(
ASTContext &ctx, const SmallPtrSetImpl<ModuleDecl *> &abiDependencies,
const llvm::DenseMap<StringRef, ModuleDecl *> &pathToModuleDecl,
const DependencyTracker &depTracker, StringRef prebuiltCachePath,
std::vector<SwiftModuleTraceInfo> &traceInfo) {
using namespace llvm::sys;
auto computeAdjacentInterfacePath = [](SmallVectorImpl<char> &modPath) {
auto swiftInterfaceExt =
file_types::getExtension(file_types::TY_SwiftModuleInterfaceFile);
path::replace_extension(modPath, swiftInterfaceExt);
};
SmallString<256> buffer;
auto deps = depTracker.getDependencies();
SmallVector<std::string, 16> dependencies{deps.begin(), deps.end()};
auto incrDeps = depTracker.getIncrementalDependencyPaths();
dependencies.append(incrDeps.begin(), incrDeps.end());
// NOTE: macro dependencies are handled differently.
// See 'computeSwiftMacroTraceInfo()'.
for (const auto &depPath : dependencies) {
// Decide if this is a swiftmodule based on the extension of the raw
// dependency path, as the true file may have a different one.
// For example, this might happen when the canonicalized path points to
// a Content Addressed Storage (CAS) location.
auto moduleFileType =
file_types::lookupTypeForExtension(path::extension(depPath));
auto isSwiftmodule = moduleFileType == file_types::TY_SwiftModuleFile;
auto isSwiftinterface =
moduleFileType == file_types::TY_SwiftModuleInterfaceFile;
if (!(isSwiftmodule || isSwiftinterface))
continue;
auto dep = pathToModuleDecl.find(depPath);
if (dep != pathToModuleDecl.end()) {
// Great, we recognize the path! Check if the file is still around.
ModuleDecl *depMod = dep->second;
if (depMod->isResilient() && !isSwiftinterface) {
// FIXME: Ideally, we would check that the swiftmodule has a
// swiftinterface next to it. Tracked by rdar://problem/56351399.
}
// FIXME: Better error handling
StringRef realDepPath =
fs::real_path(depPath, buffer, /*expand_tile*/ true)
? StringRef(depPath) // Couldn't find the canonical path, assume
// this is good enough.
: buffer.str();
bool isImportedDirectly = ::contains(abiDependencies, depMod);
traceInfo.push_back(
{/*Name=*/
depMod->getName(),
/*Path=*/
realDepPath.str(),
// TODO: There is an edge case which is not handled here.
// When we build a framework using -import-underlying-module, or an
// app/test using -import-objc-header, we should look at the direct
// imports of the bridging modules, and mark those as our direct
// imports.
// TODO: Add negative test cases for the comment above.
// TODO: Describe precise semantics of "isImportedDirectly".
/*IsImportedDirectly=*/
isImportedDirectly,
/*SupportsLibraryEvolution=*/
depMod->isResilient()});
buffer.clear();
continue;
}
// If the depTracker had an interface, that means that we must've
// built a swiftmodule from that interface, so we should have that
// filename available.
if (isSwiftinterface) {
// FIXME: Use PrettyStackTrace instead.
llvm::errs() << "WARNING: unexpected path for swiftinterface file:\n"
<< depPath << "\n"
<< "The module <-> path mapping we have is:\n";
for (auto &m : pathToModuleDecl)
llvm::errs() << m.second->getName() << " <-> " << m.first << '\n';
continue;
}
// Skip cached modules in the prebuilt cache. We will add the corresponding
// swiftinterface from the SDK directly, but this isn't checked. :-/
//
// FIXME: This is incorrect if both paths are not relative w.r.t. to the
// same root.
if (StringRef(depPath).starts_with(prebuiltCachePath))
continue;
// If we have a swiftmodule next to an interface, that interface path will
// be saved (not checked), so don't save the path to this swiftmodule.
SmallString<256> moduleAdjacentInterfacePath(depPath);
computeAdjacentInterfacePath(moduleAdjacentInterfacePath);
if (::contains(pathToModuleDecl, moduleAdjacentInterfacePath))
continue;
// FIXME: The behavior of fs::exists for relative paths is undocumented.
// Use something else instead?
if (fs::exists(moduleAdjacentInterfacePath)) {
// This should be an error but it is not because of funkiness around
// compatible modules such as us having both armv7s.swiftinterface
// and armv7.swiftinterface in the dependency tracker.
continue;
}
buffer.clear();
// We might land here when we have a arm.swiftmodule in the cache path
// which added a dependency on a arm.swiftinterface (which was not loaded).
}
// Almost a re-implementation of reversePathSortedFilenames :(.
std::sort(traceInfo.begin(), traceInfo.end(),
[](const SwiftModuleTraceInfo &m1,
const SwiftModuleTraceInfo &m2) -> bool {
return std::lexicographical_compare(
m1.Path.rbegin(), m1.Path.rend(), m2.Path.rbegin(),
m2.Path.rend());
});
}
static void
computeSwiftMacroTraceInfo(ASTContext &ctx, const DependencyTracker &depTracker,
std::vector<SwiftMacroTraceInfo> &traceInfo) {
for (const auto ¯oDep : depTracker.getMacroPluginDependencies()) {
traceInfo.push_back({macroDep.moduleName, macroDep.path});
}
// Again, almost a re-implementation of reversePathSortedFilenames :(.
std::sort(
traceInfo.begin(), traceInfo.end(),
[](const SwiftMacroTraceInfo &m1, const SwiftMacroTraceInfo &m2) -> bool {
return std::lexicographical_compare(m1.Path.rbegin(), m1.Path.rend(),
m2.Path.rbegin(), m2.Path.rend());
});
}
// [NOTE: Bailing-vs-crashing-in-trace-emission] There are certain edge cases
// in trace emission where an invariant that you think should hold does not hold
// in practice. For example, sometimes we have seen modules without any
// corresponding filename.
//
// Since the trace is a supplementary output for build system consumption, it
// it better to emit it on a best-effort basis instead of crashing and failing
// the build.
//
// Moreover, going forward, it would be nice if trace emission were more robust
// so we could emit the trace on a best-effort basis even if the dependency
// graph is ill-formed, so that the trace can be used as a debugging aid.
bool swift::emitLoadedModuleTraceIfNeeded(ModuleDecl *mainModule,
DependencyTracker *depTracker,
const FrontendOptions &opts,
const InputFile &input) {
ASTContext &ctxt = mainModule->getASTContext();
assert(!ctxt.hadError() &&
"We should've already exited earlier if there was an error.");
auto loadedModuleTracePath = input.getLoadedModuleTracePath();
if (loadedModuleTracePath.empty())
return false;
SmallPtrSet<ModuleDecl *, 32> abiDependencies;
{
ABIDependencyEvaluator evaluator{};
evaluator.getABIDependenciesForSwiftModule(mainModule, abiDependencies);
}
llvm::DenseMap<StringRef, ModuleDecl *> pathToModuleDecl;
for (const auto &module : ctxt.getLoadedModules()) {
ModuleDecl *loadedDecl = module.second;
if (!loadedDecl) {
llvm::errs() << "WARNING: Unable to load module '" << module.first
<< ".\n";
continue;
}
if (loadedDecl == mainModule)
continue;
if (loadedDecl->getModuleFilename().empty()) {
// FIXME: rdar://problem/59853077
// Ideally, this shouldn't happen. As a temporary workaround, avoid
// crashing with a message while we investigate the problem.
llvm::errs() << "WARNING: Module '" << loadedDecl->getName().str()
<< "' has an empty filename. This is probably an "
<< "invariant violation.\n"
<< "Please report it as a compiler bug.\n";
continue;
}
pathToModuleDecl.insert(
std::make_pair(loadedDecl->getModuleFilename(), loadedDecl));
}
std::vector<SwiftModuleTraceInfo> swiftModules;
computeSwiftModuleTraceInfo(ctxt, abiDependencies, pathToModuleDecl,
*depTracker, opts.PrebuiltModuleCachePath,
swiftModules);
std::vector<SwiftMacroTraceInfo> swiftMacros;
computeSwiftMacroTraceInfo(ctxt, *depTracker, swiftMacros);
LoadedModuleTraceFormat trace = {
/*version=*/LoadedModuleTraceFormat::CurrentVersion,
/*name=*/mainModule->getName(),
/*arch=*/ctxt.LangOpts.Target.getArchName().str(), swiftModules,
swiftMacros};
// raw_fd_ostream is unbuffered, and we may have multiple processes writing,
// so first write to memory and then dump the buffer to the trace file.
std::string stringBuffer;
{
llvm::raw_string_ostream memoryBuffer(stringBuffer);
json::Output jsonOutput(memoryBuffer, /*UserInfo=*/{},
/*PrettyPrint=*/false);
json::jsonize(jsonOutput, trace, /*Required=*/true);
}
stringBuffer += "\n";
// Write output via atomic append.
llvm::vfs::OutputConfig config;
config.setAppend().setAtomicWrite();
auto outputFile =
ctxt.getOutputBackend().createFile(loadedModuleTracePath, config);
if (!outputFile) {
ctxt.Diags.diagnose(SourceLoc(), diag::error_opening_output,
loadedModuleTracePath,
toString(outputFile.takeError()));
return true;
}
*outputFile << stringBuffer;
if (auto err = outputFile->keep()) {
ctxt.Diags.diagnose(SourceLoc(), diag::error_opening_output,
loadedModuleTracePath, toString(std::move(err)));
return true;
}
return false;
}
|