1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
//===--- ArgumentCompletion.cpp ---------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/IDE/ArgumentCompletion.h"
#include "swift/IDE/CodeCompletion.h"
#include "swift/IDE/CompletionLookup.h"
#include "swift/IDE/SelectedOverloadInfo.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/IDETypeChecking.h"
using namespace swift;
using namespace swift::ide;
using namespace swift::constraints;
bool ArgumentTypeCheckCompletionCallback::addPossibleParams(
const ArgumentTypeCheckCompletionCallback::Result &Res,
SmallVectorImpl<PossibleParamInfo> &Params, SmallVectorImpl<Type> &Types) {
if (!Res.ParamIdx || !Res.FuncTy) {
// We don't really know much here. Suggest global results without a specific
// expected type.
return true;
}
if (Res.HasLabel) {
// We already have a parameter label, suggest types
Types.push_back(Res.ExpectedType);
return true;
}
ArrayRef<AnyFunctionType::Param> ParamsToPass = Res.FuncTy->getParams();
bool ShowGlobalCompletions = false;
for (auto Idx : range(*Res.ParamIdx, ParamsToPass.size())) {
bool IsCompletion = (Idx == Res.ParamIdx);
// Stop at the first param claimed by other arguments.
if (!IsCompletion && Res.ClaimedParamIndices.count(Idx) > 0) {
break;
}
const AnyFunctionType::Param *TypeParam = &ParamsToPass[Idx];
bool Required = !Res.DeclParamIsOptional[Idx];
if (Res.FirstTrailingClosureIndex &&
Res.ArgIdx > *Res.FirstTrailingClosureIndex &&
!TypeParam->getPlainType()
->lookThroughAllOptionalTypes()
->is<AnyFunctionType>()) {
// We are completing an argument after the first trailing closure, i.e.
// a multitple trailing closure label but the parameter is not a function
// type. Since we only allow labeled trailing closures after the first
// trailing closure, we cannot pass an argument for this parameter.
// If the parameter is required, stop here since we cannot pass an argument
// for the parameter. If it's optional, keep looking for more trailing
// closures that can be passed.
if (Required) {
break;
} else {
continue;
}
}
if (TypeParam->hasLabel() && !(IsCompletion && Res.IsNoninitialVariadic)) {
// Suggest parameter label if parameter has label, we are completing in it
// and it is not a variadic parameter that already has arguments
PossibleParamInfo PP(TypeParam, Required);
if (!llvm::is_contained(Params, PP)) {
Params.push_back(std::move(PP));
}
} else {
// We have a parameter that doesn't require a label. Suggest global
// results for that type.
ShowGlobalCompletions = true;
Types.push_back(TypeParam->getPlainType());
}
if (Required) {
// The user should only be suggested the first required param. Stop.
break;
}
}
return ShowGlobalCompletions;
}
/// Returns whether `E` has a parent expression with arguments.
static bool hasParentCallLikeExpr(Expr *E, ConstraintSystem &CS) {
E = CS.getParentExpr(E);
while (E) {
if (E->getArgs() || isa<ParenExpr>(E) || isa<TupleExpr>(E) || isa<CollectionExpr>(E)) {
return true;
}
E = CS.getParentExpr(E);
}
return false;
}
void ArgumentTypeCheckCompletionCallback::sawSolutionImpl(const Solution &S) {
Type ExpectedTy = getTypeForCompletion(S, CompletionExpr);
auto &CS = S.getConstraintSystem();
Expr *ParentCall = CompletionExpr;
while (ParentCall && ParentCall->getArgs() == nullptr) {
ParentCall = CS.getParentExpr(ParentCall);
}
if (auto TV = S.getType(CompletionExpr)->getAs<TypeVariableType>()) {
auto Locator = TV->getImpl().getLocator();
if (Locator->isLastElement<LocatorPathElt::PatternMatch>()) {
// The code completion token is inside a pattern, which got rewritten from
// a call by ResolvePattern. Thus, we aren't actually inside a call.
// Rest 'ParentCall' to nullptr to reflect that.
ParentCall = nullptr;
}
}
if (!ParentCall || ParentCall == CompletionExpr) {
// We might not have a call that contains the code completion expression if
// we type-checked the fallback code completion expression that only
// contains the code completion token, but not the surrounding call.
return;
}
auto ArgInfo = getCompletionArgInfo(ParentCall, CS);
if (!ArgInfo) {
assert(false && "bad parent call match?");
return;
}
auto ArgIdx = ArgInfo->completionIdx;
Type ExpectedCallType;
if (auto ArgLoc = S.getConstraintSystem().getArgumentLocator(ParentCall)) {
if (auto FuncArgApplyInfo = S.getFunctionArgApplyInfo(ArgLoc)) {
Type ParamType = FuncArgApplyInfo->getParamInterfaceType();
ExpectedCallType = S.simplifyTypeForCodeCompletion(ParamType);
}
}
if (!ExpectedCallType) {
if (auto ContextualType = S.getContextualType(ParentCall)) {
ExpectedCallType = ContextualType;
}
}
if (ExpectedCallType && ExpectedCallType->hasUnresolvedType()) {
ExpectedCallType = Type();
}
auto *CallLocator = CS.getConstraintLocator(ParentCall);
auto *CalleeLocator = S.getCalleeLocator(CallLocator);
auto Info = getSelectedOverloadInfo(S, CalleeLocator);
if (Info.getValue() && Info.getValue()->shouldHideFromEditor()) {
return;
}
// Disallow invalid initializer references
for (auto Fix : S.Fixes) {
if (Fix->getLocator() == CalleeLocator &&
Fix->getKind() == FixKind::AllowInvalidInitRef) {
return;
}
}
// Find the parameter the completion was bound to (if any), as well as which
// parameters are already bound (so we don't suggest them even when the args
// are out of order).
std::optional<unsigned> ParamIdx;
std::set<unsigned> ClaimedParams;
bool IsNoninitialVariadic = false;
ConstraintLocator *ArgumentLocator;
ArgumentLocator =
CS.getConstraintLocator(CallLocator, ConstraintLocator::ApplyArgument);
auto ArgMatchChoices = S.argumentMatchingChoices.find(ArgumentLocator);
if (ArgMatchChoices != S.argumentMatchingChoices.end()) {
// We might not have argument matching choices when applying a subscript
// found via @dynamicMemberLookup.
auto Bindings = ArgMatchChoices->second.parameterBindings;
for (auto i : indices(Bindings)) {
bool Claimed = false;
for (auto j : Bindings[i]) {
if (j == ArgIdx) {
assert(!ParamIdx);
ParamIdx = i;
IsNoninitialVariadic = llvm::any_of(
Bindings[i], [j](unsigned other) { return other < j; });
}
// Synthesized args don't count.
if (j < ArgInfo->argCount) {
Claimed = true;
}
}
if (Claimed) {
ClaimedParams.insert(i);
}
}
}
bool HasLabel = false;
std::optional<unsigned> FirstTrailingClosureIndex = std::nullopt;
if (auto PE = CS.getParentExpr(CompletionExpr)) {
if (auto Args = PE->getArgs()) {
HasLabel = !Args->getLabel(ArgIdx).empty();
FirstTrailingClosureIndex = Args->getFirstTrailingClosureIndex();
}
}
bool IsAsync = isContextAsync(S, DC);
// If this is a duplicate of any other result, ignore this solution.
if (llvm::any_of(Results, [&](const Result &R) {
return R.FuncD == Info.getValue() &&
nullableTypesEqual(R.FuncTy, Info.ValueTy) &&
nullableTypesEqual(R.BaseType, Info.BaseTy) &&
R.ParamIdx == ParamIdx &&
R.IsNoninitialVariadic == IsNoninitialVariadic;
})) {
return;
}
llvm::SmallDenseMap<const VarDecl *, Type> SolutionSpecificVarTypes;
getSolutionSpecificVarTypes(S, SolutionSpecificVarTypes);
AnyFunctionType *FuncTy = nullptr;
if (Info.ValueTy) {
FuncTy = Info.ValueTy->lookThroughAllOptionalTypes()->getAs<AnyFunctionType>();
}
// Determine which parameters are optional. We need to do this in
// `sawSolutionImpl` because it accesses the substitution map in
// `Info.ValueRef`. This substitution map might contain type variables that
// are allocated in the constraint system's arena and are freed once we reach
// `deliverResults`.
llvm::BitVector DeclParamIsOptional;
if (FuncTy) {
ArrayRef<AnyFunctionType::Param> ParamsToPass = FuncTy->getParams();
for (auto Idx : range(0, ParamsToPass.size())) {
bool Optional = false;
if (Info.ValueRef) {
if (Info.ValueRef.getDecl()->isInstanceMember() &&
!doesMemberRefApplyCurriedSelf(Info.BaseTy,
Info.ValueRef.getDecl())) {
// We are completing in an unapplied instance function, eg.
// struct TestStatic {
// func method() -> Void {}
// }
// TestStatic.method(#^STATIC^#)
// The 'self' parameter is never optional, so don't enter the check
// below (which always assumes that self has been applied).
} else if (const ParamDecl *DeclParam =
getParameterAt(Info.ValueRef, Idx)) {
Optional |= DeclParam->isDefaultArgument();
Optional |= DeclParam->getInterfaceType()->is<PackExpansionType>();
}
}
const AnyFunctionType::Param *TypeParam = &ParamsToPass[Idx];
Optional |= TypeParam->isVariadic();
DeclParamIsOptional.push_back(Optional);
}
}
bool IncludeSignature = false;
if (ParentCall->getArgs()->getUnlabeledUnaryExpr() == CompletionExpr) {
// If the code completion expression is the only expression in the call
// and the code completion token doesn’t have a label, we have a case like
// `Point(|)`. Suggest the entire function signature.
IncludeSignature = true;
} else if (!ParentCall->getArgs()->empty() &&
ParentCall->getArgs()->getExpr(0) == CompletionExpr &&
!ParentCall->getArgs()->get(0).hasLabel()) {
if (hasParentCallLikeExpr(ParentCall, CS)) {
// We are completing in cases like `bar(arg: foo(|, option: 1)`
// In these cases, we don’t know if `option` belongs to the call to `foo`
// or `bar`. Be defensive and also suggest the signature.
IncludeSignature = true;
}
}
Results.push_back(
{ExpectedTy, ExpectedCallType, isa<SubscriptExpr>(ParentCall),
Info.getValue(), FuncTy, ArgIdx, ParamIdx, std::move(ClaimedParams),
IsNoninitialVariadic, IncludeSignature, Info.BaseTy, HasLabel, FirstTrailingClosureIndex,
IsAsync, DeclParamIsOptional, SolutionSpecificVarTypes});
}
void ArgumentTypeCheckCompletionCallback::computeShadowedDecls(
SmallPtrSetImpl<ValueDecl *> &ShadowedDecls) {
for (size_t i = 0; i < Results.size(); ++i) {
auto &ResultA = Results[i];
for (size_t j = i + 1; j < Results.size(); ++j) {
auto &ResultB = Results[j];
if (!ResultA.FuncD || !ResultB.FuncD || !ResultA.FuncTy ||
!ResultB.FuncTy) {
continue;
}
if (ResultA.FuncD->getName() != ResultB.FuncD->getName()) {
continue;
}
if (!ResultA.FuncTy->isEqual(ResultB.FuncTy)) {
continue;
}
ProtocolDecl *inProtocolExtensionA =
ResultA.FuncD->getDeclContext()->getExtendedProtocolDecl();
ProtocolDecl *inProtocolExtensionB =
ResultB.FuncD->getDeclContext()->getExtendedProtocolDecl();
if (inProtocolExtensionA && !inProtocolExtensionB) {
ShadowedDecls.insert(ResultA.FuncD);
} else if (!inProtocolExtensionA && inProtocolExtensionB) {
ShadowedDecls.insert(ResultB.FuncD);
}
}
}
}
void ArgumentTypeCheckCompletionCallback::collectResults(
bool IsLabeledTrailingClosure, SourceLoc Loc,
DeclContext *DC, ide::CodeCompletionContext &CompletionCtx) {
ASTContext &Ctx = DC->getASTContext();
CompletionLookup Lookup(CompletionCtx.getResultSink(), Ctx, DC,
&CompletionCtx);
SmallPtrSet<ValueDecl *, 4> ShadowedDecls;
computeShadowedDecls(ShadowedDecls);
// Perform global completion as a fallback if we don't have any results.
bool shouldPerformGlobalCompletion = Results.empty();
SmallVector<Type, 4> ExpectedCallTypes;
for (auto &Result : Results) {
ExpectedCallTypes.push_back(Result.ExpectedCallType);
}
SmallVector<Type, 8> ExpectedTypes;
SmallVector<PossibleParamInfo, 8> Params;
for (auto &Result : Results) {
if (Result.IncludeSignature) {
Lookup.setHaveLParen(true);
Lookup.setExpectedTypes(ExpectedCallTypes, /*isImpliedResult=*/false);
auto SemanticContext = SemanticContextKind::None;
NominalTypeDecl *BaseNominal = nullptr;
if (Result.BaseType) {
Type BaseTy = Result.BaseType;
if (auto InstanceTy = BaseTy->getMetatypeInstanceType()) {
BaseTy = InstanceTy;
}
if ((BaseNominal = BaseTy->getAnyNominal())) {
SemanticContext = SemanticContextKind::CurrentNominal;
if (Result.FuncD &&
Result.FuncD->getDeclContext()->getSelfNominalTypeDecl() !=
BaseNominal) {
SemanticContext = SemanticContextKind::Super;
}
} else if (BaseTy->is<TupleType>() || BaseTy->is<SubstitutableType>()) {
SemanticContext = SemanticContextKind::CurrentNominal;
}
}
if (SemanticContext == SemanticContextKind::None && Result.FuncD) {
if (Result.FuncD->getDeclContext()->isTypeContext()) {
SemanticContext = SemanticContextKind::CurrentNominal;
} else if (Result.FuncD->getDeclContext()->isLocalContext()) {
SemanticContext = SemanticContextKind::Local;
} else if (Result.FuncD->getModuleContext() == DC->getParentModule()) {
SemanticContext = SemanticContextKind::CurrentModule;
}
}
if (Result.FuncTy) {
if (auto FuncTy = Result.FuncTy) {
if (ShadowedDecls.count(Result.FuncD) == 0) {
// Don't show call pattern completions if the function is
// overridden.
if (Result.IsSubscript) {
assert(SemanticContext != SemanticContextKind::None);
auto *SD = dyn_cast_or_null<SubscriptDecl>(Result.FuncD);
Lookup.addSubscriptCallPattern(FuncTy, SD, SemanticContext);
} else {
auto *FD = dyn_cast_or_null<AbstractFunctionDecl>(Result.FuncD);
Lookup.addFunctionCallPattern(FuncTy, FD, SemanticContext);
}
}
}
}
Lookup.setHaveLParen(false);
// We didn't find any function signatures. Perform global completion as a fallback.
shouldPerformGlobalCompletion |=
!Lookup.FoundFunctionCalls || Lookup.FoundFunctionsWithoutFirstKeyword;
} else {
shouldPerformGlobalCompletion |=
addPossibleParams(Result, Params, ExpectedTypes);
}
}
Lookup.addCallArgumentCompletionResults(Params, IsLabeledTrailingClosure);
if (shouldPerformGlobalCompletion) {
llvm::SmallDenseMap<const VarDecl *, Type> SolutionSpecificVarTypes;
if (!Results.empty()) {
SolutionSpecificVarTypes = Results[0].SolutionSpecificVarTypes;
}
WithSolutionSpecificVarTypesRAII VarTypes(SolutionSpecificVarTypes);
for (auto &Result : Results) {
ExpectedTypes.push_back(Result.ExpectedType);
Lookup.setSolutionSpecificVarTypes(Result.SolutionSpecificVarTypes);
}
Lookup.setExpectedTypes(ExpectedTypes, false);
bool IsInAsyncContext = llvm::any_of(
Results, [](const Result &Res) { return Res.IsInAsyncContext; });
Lookup.setCanCurrDeclContextHandleAsync(IsInAsyncContext);
Lookup.getValueCompletionsInDeclContext(Loc);
Lookup.getSelfTypeCompletionInDeclContext(Loc, /*isForDeclResult=*/false);
// Add any keywords that can be used in an argument expr position.
addSuperKeyword(CompletionCtx.getResultSink(), DC);
addExprKeywords(CompletionCtx.getResultSink(), DC);
}
collectCompletionResults(CompletionCtx, Lookup, DC,
*Lookup.getExpectedTypeContext(),
Lookup.canCurrDeclContextHandleAsync());
}
|