1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
|
//===--- IDETypeChecking.cpp ----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Sema/IDETypeChecking.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTDemangler.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Identifier.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Types.h"
#include "swift/IDE/IDERequests.h"
#include "swift/IDE/SourceEntityWalker.h"
#include "swift/Parse/Lexer.h"
#include "swift/Sema/IDETypeCheckingRequests.h"
#include "llvm/ADT/SmallVector.h"
using namespace swift;
void swift::getTopLevelDeclsForDisplay(ModuleDecl *M,
SmallVectorImpl<Decl *> &Results,
bool Recursive) {
auto getDisplayDeclsForModule =
[Recursive](ModuleDecl *M, SmallVectorImpl<Decl *> &Results) {
M->getDisplayDecls(Results, Recursive);
};
getTopLevelDeclsForDisplay(M, Results, std::move(getDisplayDeclsForModule));
}
void swift::getTopLevelDeclsForDisplay(
ModuleDecl *M, SmallVectorImpl<Decl *> &Results,
llvm::function_ref<void(ModuleDecl *, SmallVectorImpl<Decl *> &)>
getDisplayDeclsForModule) {
auto startingSize = Results.size();
getDisplayDeclsForModule(M, Results);
// Force Sendable on all public types, which might synthesize some extensions.
// FIXME: We can remove this if @_nonSendable stops creating extensions.
for (auto result : Results) {
if (auto NTD = dyn_cast<NominalTypeDecl>(result)) {
// Restrict this logic to public and package types. Non-public types
// may refer to implementation details and fail at deserialization.
auto accessScope = NTD->getFormalAccessScope();
if (!M->isMainModule() && !accessScope.isPublic() &&
!accessScope.isPackage())
continue;
auto proto = M->getASTContext().getProtocol(KnownProtocolKind::Sendable);
if (proto)
(void)M->lookupConformance(NTD->getDeclaredInterfaceType(), proto);
}
}
// Remove what we fetched and fetch again, possibly now with additional
// extensions.
Results.resize(startingSize);
getDisplayDeclsForModule(M, Results);
}
static bool shouldPrintAsFavorable(const Decl *D, const PrintOptions &Options) {
if (!Options.TransformContext ||
!isa<ExtensionDecl>(D->getDeclContext()) ||
!Options.TransformContext->isPrintingSynthesizedExtension())
return true;
auto DC = Options.TransformContext->getDeclContext();
auto BaseTy = Options.TransformContext->getBaseType();
const auto *FD = dyn_cast<FuncDecl>(D);
if (!FD)
return true;
// Don't check overload choices for accessor decls.
if (isa<AccessorDecl>(FD))
return true;
ResolvedMemberResult Result =
resolveValueMember(*DC, BaseTy, FD->getEffectiveFullName());
return !(Result.hasBestOverload() && Result.getBestOverload() != D);
}
class ModulePrinterPrintableChecker: public ShouldPrintChecker {
bool shouldPrint(const Decl *D, const PrintOptions &Options) override {
if (!shouldPrintAsFavorable(D, Options))
return false;
return ShouldPrintChecker::shouldPrint(D, Options);
}
};
PrintOptions PrintOptions::printModuleInterface(bool printFullConvention) {
PrintOptions result = printInterface(printFullConvention);
result.CurrentPrintabilityChecker.reset(new ModulePrinterPrintableChecker());
return result;
}
PrintOptions PrintOptions::printTypeInterface(Type T,
bool printFullConvention) {
PrintOptions result = printModuleInterface(printFullConvention);
result.PrintExtensionFromConformingProtocols = true;
result.TransformContext = TypeTransformContext(T);
result.printExtensionContentAsMembers = [T](const ExtensionDecl *ED) {
return isExtensionApplied(
T->getNominalOrBoundGenericNominal()->getDeclContext(), T, ED);
};
result.CurrentPrintabilityChecker.reset(new ModulePrinterPrintableChecker());
return result;
}
PrintOptions PrintOptions::printDocInterface() {
PrintOptions result =
PrintOptions::printModuleInterface(/*printFullConvention*/ false);
result.PrintAccess = false;
result.SkipUnavailable = false;
result.ExcludeAttrList.push_back(DeclAttrKind::Available);
result.ArgAndParamPrinting =
PrintOptions::ArgAndParamPrintingMode::BothAlways;
result.PrintDocumentationComments = false;
result.PrintFunctionRepresentationAttrs =
PrintOptions::FunctionRepresentationMode::None;
return result;
}
struct SynthesizedExtensionAnalyzer::Implementation {
static bool isMemberFavored(const NominalTypeDecl* Target, const Decl* D) {
DeclContext* DC = Target->getInnermostDeclContext();
Type BaseTy = Target->getDeclaredTypeInContext();
const auto *FD = dyn_cast<FuncDecl>(D);
if (!FD)
return true;
ResolvedMemberResult Result = resolveValueMember(*DC, BaseTy,
FD->getEffectiveFullName());
return !(Result.hasBestOverload() && Result.getBestOverload() != D);
}
static bool isExtensionFavored(const NominalTypeDecl* Target,
const ExtensionDecl *ED) {
return std::find_if(ED->getMembers().begin(), ED->getMembers().end(),
[&](DeclIterator It) {
return isMemberFavored(Target, *It);}) != ED->getMembers().end();
}
struct SynthesizedExtensionInfo {
ExtensionDecl *Ext = nullptr;
bool IsSynthesized;
ExtensionDecl *EnablingExt = nullptr;
operator bool() const { return Ext; }
SynthesizedExtensionInfo(bool IsSynthesized = false,
ExtensionDecl *EnablingExt = nullptr)
: IsSynthesized(IsSynthesized), EnablingExt(EnablingExt) {}
bool operator< (const SynthesizedExtensionInfo& Rhs) const {
// Synthesized are always after actual ones.
if (IsSynthesized != Rhs.IsSynthesized)
return !IsSynthesized;
// If not from the same file, sort by file name.
if (auto LFile = Ext->getSourceFileName()) {
if (auto RFile = Rhs.Ext->getSourceFileName()) {
int Result = LFile.value().compare(RFile.value());
if (Result != 0)
return Result < 0;
}
}
// Otherwise, sort by source order.
if (auto LeftOrder = Ext->getSourceOrder()) {
if (auto RightOrder = Rhs.Ext->getSourceOrder()) {
return LeftOrder.value() < RightOrder.value();
}
}
return false;
}
};
struct ExtensionMergeInfo {
struct Requirement {
Type First;
Type Second;
RequirementKind Kind;
CanType CanFirst;
CanType CanSecond;
bool operator< (const Requirement& Rhs) const {
if (Kind != Rhs.Kind)
return Kind < Rhs.Kind;
else if (CanFirst != Rhs.CanFirst)
return CanFirst < Rhs.CanFirst;
else
return CanSecond < Rhs.CanSecond;
}
bool operator== (const Requirement& Rhs) const {
return (!(*this < Rhs)) && (!(Rhs < *this));
}
};
bool Unmergable;
unsigned InheritsCount;
std::set<Requirement> Requirements;
void addRequirement(swift::Requirement Req) {
auto First = Req.getFirstType();
auto CanFirst = First->getCanonicalType();
auto Second = Req.getSecondType();
auto CanSecond = Second->getCanonicalType();
Requirements.insert({First, Second, Req.getKind(), CanFirst, CanSecond});
}
bool operator== (const ExtensionMergeInfo& Another) const {
// Trivially unmergeable.
if (Unmergable || Another.Unmergable)
return false;
if (InheritsCount != 0 || Another.InheritsCount != 0)
return false;
return Requirements == Another.Requirements;
}
bool isMergeableWithTypeDef() {
return !Unmergable && InheritsCount == 0 && Requirements.empty();
}
};
using ExtensionInfoMap =
llvm::MapVector<ExtensionDecl *, SynthesizedExtensionInfo>;
using ExtensionMergeInfoMap =
llvm::MapVector<ExtensionDecl *, ExtensionMergeInfo>;
struct ExtensionMergeGroup {
unsigned RequirementsCount;
unsigned InheritanceCount;
MergeGroupKind Kind;
std::vector<SynthesizedExtensionInfo*> Members;
ExtensionMergeGroup(SynthesizedExtensionInfo *Info,
unsigned RequirementsCount,
unsigned InheritanceCount,
bool MergeableWithType) :
RequirementsCount(RequirementsCount),
InheritanceCount(InheritanceCount),
Kind(MergeableWithType ? MergeGroupKind::MergeableWithTypeDef :
MergeGroupKind::UnmergeableWithTypeDef) {
Members.push_back(Info);
}
void removeUnfavored(const NominalTypeDecl *Target) {
Members.erase(std::remove_if(Members.begin(), Members.end(),
[&](SynthesizedExtensionInfo *Info){
return !isExtensionFavored(Target, Info->Ext);}), Members.end());
}
void sortMembers() {
std::sort(Members.begin(), Members.end(),
[](SynthesizedExtensionInfo *LHS, SynthesizedExtensionInfo *RHS) {
return (*LHS) < (*RHS);
});
}
bool operator< (const ExtensionMergeGroup& Rhs) const {
if (RequirementsCount == Rhs.RequirementsCount)
return InheritanceCount < Rhs.InheritanceCount;
return RequirementsCount < Rhs.RequirementsCount;
}
};
using MergeGroupVector = std::vector<ExtensionMergeGroup>;
NominalTypeDecl *Target;
Type BaseType;
DeclContext *DC;
bool IncludeUnconditional;
PrintOptions Options;
MergeGroupVector AllGroups;
ExtensionInfoMap InfoMap;
Implementation(NominalTypeDecl *Target,
bool IncludeUnconditional,
PrintOptions Options):
Target(Target),
BaseType(Target->getDeclaredInterfaceType()),
DC(Target),
IncludeUnconditional(IncludeUnconditional),
Options(Options), AllGroups(MergeGroupVector()),
InfoMap(collectSynthesizedExtensionInfo(AllGroups)) {}
unsigned countInherits(ExtensionDecl *ED) {
SmallVector<InheritedEntry, 4> Results;
getInheritedForPrinting(ED, Options, Results);
return Results.size();
}
std::pair<SynthesizedExtensionInfo, ExtensionMergeInfo>
isApplicable(ExtensionDecl *Ext, bool IsSynthesized,
ExtensionDecl *EnablingExt, NormalProtocolConformance *Conf) {
SynthesizedExtensionInfo Result(IsSynthesized, EnablingExt);
ExtensionMergeInfo MergeInfo;
MergeInfo.Unmergable =
!Ext->getRawComment().isEmpty() || // With comments
Ext->getAttrs().hasAttribute<AvailableAttr>(); // With @available
MergeInfo.InheritsCount = countInherits(Ext);
// There's (up to) two extensions here: the extension with the items that we
// might be merging, plus the "enabling extension", which is the route
// through which \c Ext itself applies, e.g. extension SomeProtocol {}
// extension SomeType: SomeProtocol where T: SomeProtocol {}. The former is
// Ext and the latter is EnablingExt/Conf. Either of these can be
// conditional in ways that need to be considered when merging.
auto conformanceIsConditional =
Conf && !Conf->getConditionalRequirements().empty();
if (!Ext->isConstrainedExtension() && !conformanceIsConditional) {
if (IncludeUnconditional)
Result.Ext = Ext;
return {Result, MergeInfo};
}
auto handleRequirements = [&](SubstitutionMap subMap,
ExtensionDecl *OwningExt,
ArrayRef<Requirement> Reqs) {
ProtocolDecl *BaseProto = OwningExt->getInnermostDeclContext()
->getSelfProtocolDecl();
for (auto Req : Reqs) {
// FIXME: Don't skip layout requirements.
if (Req.getKind() == RequirementKind::Layout)
continue;
// Skip protocol's Self : <Protocol> requirement.
if (BaseProto &&
Req.getKind() == RequirementKind::Conformance &&
Req.getFirstType()->isEqual(BaseProto->getSelfInterfaceType()) &&
Req.getProtocolDecl() == BaseProto)
continue;
if (!BaseType->isExistentialType()) {
// Apply any substitutions we need to map the requirements from a
// a protocol extension to an extension on the conforming type.
Req = Req.subst(subMap);
if (Req.hasError()) {
// Substitution with interface type bases can only fail
// if a concrete type fails to conform to a protocol.
// In this case, just give up on the extension altogether.
return true;
}
}
assert(!Req.getFirstType()->hasArchetype());
assert(!Req.getSecondType()->hasArchetype());
auto *M = DC->getParentModule();
auto SubstReq = Req.subst(
[&](Type type) -> Type {
if (type->isTypeParameter())
return Target->mapTypeIntoContext(type);
return type;
},
LookUpConformanceInModule(M));
SmallVector<Requirement, 2> subReqs;
switch (SubstReq.checkRequirement(subReqs)) {
case CheckRequirementResult::Success:
break;
case CheckRequirementResult::ConditionalConformance:
// FIXME: Need to handle conditional requirements here!
break;
case CheckRequirementResult::PackRequirement:
// FIXME
assert(false && "Refactor this");
return true;
case CheckRequirementResult::SubstitutionFailure:
return true;
case CheckRequirementResult::RequirementFailure:
if (!SubstReq.canBeSatisfied())
return true;
MergeInfo.addRequirement(Req);
break;
}
}
return false;
};
auto *M = DC->getParentModule();
if (Ext->isConstrainedExtension()) {
// Get the substitutions from the generic signature of
// the extension to the interface types of the base type's
// declaration.
SubstitutionMap subMap;
if (!BaseType->isExistentialType()) {
if (auto *NTD = Ext->getExtendedNominal())
subMap = BaseType->getContextSubstitutionMap(M, NTD);
}
assert(Ext->getGenericSignature() && "No generic signature.");
auto GenericSig = Ext->getGenericSignature();
if (handleRequirements(subMap, Ext, GenericSig.getRequirements()))
return {Result, MergeInfo};
}
if (Conf) {
SubstitutionMap subMap;
if (!BaseType->isExistentialType()) {
if (auto *NTD = EnablingExt->getExtendedNominal())
subMap = BaseType->getContextSubstitutionMap(M, NTD);
}
if (handleRequirements(subMap,
EnablingExt,
Conf->getConditionalRequirements()))
return {Result, MergeInfo};
}
Result.Ext = Ext;
return {Result, MergeInfo};
}
void populateMergeGroup(ExtensionInfoMap &InfoMap,
ExtensionMergeInfoMap &MergeInfoMap,
MergeGroupVector &Results,
bool AllowMergeWithDefBody) {
for (auto &Pair : InfoMap) {
ExtensionDecl *ED = Pair.first;
ExtensionMergeInfo &MergeInfo = MergeInfoMap[ED];
SynthesizedExtensionInfo &ExtInfo = InfoMap[ED];
auto Found = std::find_if(Results.begin(), Results.end(),
[&](ExtensionMergeGroup &Group) {
return MergeInfo == MergeInfoMap[Group.Members.front()->Ext];
});
if (Found == Results.end()) {
Results.push_back({&ExtInfo,
(unsigned)MergeInfo.Requirements.size(),
MergeInfo.InheritsCount,
AllowMergeWithDefBody && MergeInfo.isMergeableWithTypeDef()});
} else {
Found->Members.push_back(&ExtInfo);
}
}
}
ExtensionInfoMap
collectSynthesizedExtensionInfoForProtocol(MergeGroupVector &AllGroups) {
ExtensionInfoMap InfoMap;
ExtensionMergeInfoMap MergeInfoMap;
for (auto *E : Target->getExtensions()) {
if (!Options.shouldPrint(E))
continue;
auto Pair = isApplicable(E, /*Synthesized*/ false,
/*EnablingExt*/ nullptr,
/*Conf*/ nullptr);
if (Pair.first) {
InfoMap.insert({E, Pair.first});
MergeInfoMap.insert({E, Pair.second});
}
}
populateMergeGroup(InfoMap, MergeInfoMap, AllGroups,
/*AllowMergeWithDefBody=*/false);
std::sort(AllGroups.begin(), AllGroups.end());
for (auto &Group : AllGroups) {
Group.sortMembers();
}
return InfoMap;
}
static bool isEnumRawType(const Decl* D, TypeLoc TL) {
assert (TL.getType());
if (auto ED = dyn_cast<EnumDecl>(D)) {
return ED->hasRawType() && ED->getRawType()->isEqual(TL.getType());
}
return false;
}
ExtensionInfoMap
collectSynthesizedExtensionInfo(MergeGroupVector &AllGroups) {
if (isa<ProtocolDecl>(Target)) {
return collectSynthesizedExtensionInfoForProtocol(AllGroups);
}
ExtensionInfoMap InfoMap;
ExtensionMergeInfoMap MergeInfoMap;
std::vector<NominalTypeDecl*> Unhandled;
auto handleExtension = [&](ExtensionDecl *E, bool Synthesized,
ExtensionDecl *EnablingE,
NormalProtocolConformance *Conf) {
PrintOptions AdjustedOpts = Options;
if (Synthesized) {
// Members from underscored system protocols should still appear as
// members of the target type, even if the protocols themselves are not
// printed.
AdjustedOpts.SkipUnderscoredStdlibProtocols = false;
}
if (AdjustedOpts.shouldPrint(E)) {
auto Pair = isApplicable(E, Synthesized, EnablingE, Conf);
if (Pair.first) {
InfoMap.insert({E, Pair.first});
MergeInfoMap.insert({E, Pair.second});
}
}
};
// We want to visit the protocols of any normal conformances we see, but
// we have to avoid doing this to self-conformances or we can end up with
// a cycle. Otherwise this is cycle-proof on valid code.
// We also want to ignore inherited conformances. Members from these will
// be included in the class they were inherited from.
auto addConformance = [&](ProtocolConformance *Conf) {
if (isa<InheritedProtocolConformance>(Conf))
return;
auto RootConf = Conf->getRootConformance();
if (isa<NormalProtocolConformance>(RootConf))
Unhandled.push_back(RootConf->getProtocol());
};
for (auto *Conf : Target->getLocalConformances()) {
addConformance(Conf);
}
while (!Unhandled.empty()) {
NominalTypeDecl* Back = Unhandled.back();
Unhandled.pop_back();
for (ExtensionDecl *E : Back->getExtensions()) {
handleExtension(E, true, nullptr, nullptr);
}
for (auto *Conf : Back->getLocalConformances()) {
addConformance(Conf);
}
}
// Merge with actual extensions.
for (auto *EnablingE : Target->getExtensions()) {
handleExtension(EnablingE, false, nullptr, nullptr);
for (auto *Conf : EnablingE->getLocalConformances()) {
auto NormalConf =
dyn_cast<NormalProtocolConformance>(Conf->getRootConformance());
if (!NormalConf) continue;
for (auto E : NormalConf->getProtocol()->getExtensions())
handleExtension(E, true, EnablingE, NormalConf);
}
}
populateMergeGroup(InfoMap, MergeInfoMap, AllGroups,
/*AllowMergeWithDefBody=*/true);
std::sort(AllGroups.begin(), AllGroups.end());
for (auto &Group : AllGroups) {
Group.removeUnfavored(Target);
Group.sortMembers();
}
AllGroups.erase(std::remove_if(AllGroups.begin(), AllGroups.end(),
[](ExtensionMergeGroup &Group) { return Group.Members.empty(); }),
AllGroups.end());
return InfoMap;
}
};
SynthesizedExtensionAnalyzer::SynthesizedExtensionAnalyzer(
NominalTypeDecl *Target, PrintOptions Options, bool IncludeUnconditional)
: Impl(*(new Implementation(Target, IncludeUnconditional, Options))) {}
SynthesizedExtensionAnalyzer::~SynthesizedExtensionAnalyzer() {delete &Impl;}
bool SynthesizedExtensionAnalyzer::isInSynthesizedExtension(
const ValueDecl *VD) {
if (auto Ext = dyn_cast_or_null<ExtensionDecl>(VD->getDeclContext()->
getInnermostTypeContext())) {
auto It = Impl.InfoMap.find(Ext);
if (It != Impl.InfoMap.end() && It->second.IsSynthesized) {
// A synthesized extension will only be created if the underlying type
// is in the same module
return VD->getModuleContext() == Impl.Target->getModuleContext();
}
}
return false;
}
void SynthesizedExtensionAnalyzer::
forEachExtensionMergeGroup(MergeGroupKind Kind, ExtensionGroupOperation Fn) {
for (auto &Group : Impl.AllGroups) {
if (Kind != MergeGroupKind::All) {
if (Kind != Group.Kind)
continue;
}
std::vector<ExtensionInfo> GroupContent;
for (auto &Member : Group.Members) {
GroupContent.push_back(
{Member->Ext, Member->EnablingExt, Member->IsSynthesized});
}
Fn(llvm::ArrayRef(GroupContent));
}
}
bool SynthesizedExtensionAnalyzer::hasMergeGroup(MergeGroupKind Kind) {
for (auto &Group : Impl.AllGroups) {
if (Kind == MergeGroupKind::All)
return true;
if (Kind == Group.Kind)
return true;
}
return false;
}
void swift::
collectDefaultImplementationForProtocolMembers(ProtocolDecl *PD,
llvm::SmallDenseMap<ValueDecl*, ValueDecl*> &DefaultMap) {
auto HandleMembers = [&](DeclRange Members) {
for (Decl *D : Members) {
auto *VD = dyn_cast<ValueDecl>(D);
// Skip non-value decl.
if (!VD)
continue;
// Skip decls with empty names, e.g. setter/getters for properties.
if (VD->getBaseName().empty())
continue;
for (auto *Default: PD->lookupDirect(VD->getName())) {
if (Default->getDeclContext()->getExtendedProtocolDecl() == PD) {
DefaultMap.insert({Default, VD});
}
}
}
};
// Collect the default implementations for the members in this given protocol.
HandleMembers(PD->getMembers());
// Collect the default implementations for the members in the inherited
// protocols.
for (auto *IP : PD->getInheritedProtocols())
HandleMembers(IP->getMembers());
}
/// This walker will traverse the AST and report types for every expression.
class ExpressionTypeCollector: public SourceEntityWalker {
ModuleDecl &Module;
SourceManager &SM;
unsigned int BufferId;
std::vector<ExpressionTypeInfo> &Results;
// This is to where we print all types.
llvm::raw_ostream &OS;
// Map from a printed type to the offset in OS where the type starts.
llvm::StringMap<uint32_t> TypeOffsets;
// This keeps track of whether we have a type reported for a given
// [offset, length].
llvm::DenseMap<unsigned, llvm::DenseSet<unsigned>> AllPrintedTypes;
// When non empty, we only print expression types that conform to any of
// these protocols.
llvm::MapVector<ProtocolDecl*, StringRef> &InterestedProtocols;
// Specified by the client whether we should print fully qualified types
const bool FullyQualified;
// Specified by the client whether we should canonicalize types before printing
const bool CanonicalType;
bool shouldReport(unsigned Offset, unsigned Length, Expr *E,
std::vector<StringRef> &Conformances) {
assert(Conformances.empty());
// We shouldn't report null types.
if (E->getType().isNull())
return false;
// We should not report a type for implicit expressions, except for
// - `OptionalEvaluationExpr` to show the correct type when there is optional chaining
// - `DotSyntaxCallExpr` to report the method type without the metatype
if (E->isImplicit() &&
!isa<OptionalEvaluationExpr>(E) &&
!isa<DotSyntaxCallExpr>(E)) {
return false;
}
// If we have already reported types for this source range, we shouldn't
// report again. This makes sure we always report the outtermost type of
// several overlapping expressions.
auto &Bucket = AllPrintedTypes[Offset];
if (Bucket.find(Length) != Bucket.end())
return false;
// We print every expression if the interested protocols are empty.
if (InterestedProtocols.empty())
return true;
// Collecting protocols conformed by this expressions that are in the list.
for (auto Proto: InterestedProtocols) {
if (Module.checkConformance(E->getType(), Proto.first)) {
Conformances.push_back(Proto.second);
}
}
// We only print the type of the expression if it conforms to any of the
// interested protocols.
return !Conformances.empty();
}
// Find an existing offset in the type buffer otherwise print the type to
// the buffer.
std::pair<uint32_t, uint32_t> getTypeOffsets(StringRef PrintedType) {
auto It = TypeOffsets.find(PrintedType);
if (It == TypeOffsets.end()) {
TypeOffsets[PrintedType] = OS.tell();
OS << PrintedType << '\0';
}
return {TypeOffsets[PrintedType], PrintedType.size()};
}
public:
ExpressionTypeCollector(
SourceFile &SF,
llvm::MapVector<ProtocolDecl *, StringRef> &InterestedProtocols,
std::vector<ExpressionTypeInfo> &Results, bool FullyQualified,
bool CanonicalType, llvm::raw_ostream &OS)
: Module(*SF.getParentModule()), SM(SF.getASTContext().SourceMgr),
BufferId(*SF.getBufferID()), Results(Results), OS(OS),
InterestedProtocols(InterestedProtocols),
FullyQualified(FullyQualified), CanonicalType(CanonicalType) {}
bool walkToExprPre(Expr *E) override {
if (E->getSourceRange().isInvalid())
return true;
CharSourceRange Range =
Lexer::getCharSourceRangeFromSourceRange(SM, E->getSourceRange());
unsigned Offset = SM.getLocOffsetInBuffer(Range.getStart(), BufferId);
unsigned Length = Range.getByteLength();
std::vector<StringRef> Conformances;
if (!shouldReport(Offset, Length, E, Conformances))
return true;
// Print the type to a temporary buffer.
SmallString<64> Buffer;
{
llvm::raw_svector_ostream OS(Buffer);
auto Ty = E->getType()->getRValueType();
PrintOptions printOptions = PrintOptions();
printOptions.FullyQualifiedTypes = FullyQualified;
if (CanonicalType) {
Ty->getCanonicalType()->print(OS, printOptions);
} else {
Ty->reconstituteSugar(true)->print(OS, printOptions);
}
}
auto Ty = getTypeOffsets(Buffer.str());
// Add the type information to the result list.
Results.push_back({Offset, Length, Ty.first, Ty.second, {}});
// Adding all protocol names to the result.
for(auto Con: Conformances) {
auto Ty = getTypeOffsets(Con);
Results.back().protocols.push_back({Ty.first, Ty.second});
}
// Keep track of that we have a type reported for this range.
AllPrintedTypes[Offset].insert(Length);
return true;
}
};
ProtocolDecl* swift::resolveProtocolName(DeclContext *dc, StringRef name) {
return evaluateOrDefault(dc->getASTContext().evaluator,
ResolveProtocolNameRequest(ProtocolNameOwner(dc, name)),
nullptr);
}
ArrayRef<ExpressionTypeInfo> swift::collectExpressionType(
SourceFile &SF, ArrayRef<const char *> ExpectedProtocols,
std::vector<ExpressionTypeInfo> &Scratch, bool FullyQualified,
bool CanonicalType, llvm::raw_ostream &OS) {
llvm::MapVector<ProtocolDecl*, StringRef> InterestedProtocols;
for (auto Name: ExpectedProtocols) {
if (auto *pd = resolveProtocolName(&SF, Name)) {
InterestedProtocols.insert({pd, Name});
} else {
return {};
}
}
ExpressionTypeCollector Walker(SF, InterestedProtocols, Scratch,
FullyQualified, CanonicalType, OS);
Walker.walk(SF);
return Scratch;
}
/// This walker will traverse the AST and report types for every variable
/// declaration.
class VariableTypeCollector : public SourceEntityWalker {
private:
const SourceManager &SM;
unsigned int BufferId;
/// The range in which variable types are to be collected.
SourceRange TotalRange;
// Specified by the client whether we should print fully qualified types
const bool FullyQualified;
/// The output vector for VariableTypeInfos emitted during traversal.
std::vector<VariableTypeInfo> &Results;
/// We print all types into a single output stream (e.g. into a string buffer)
/// and provide offsets into this string buffer to describe individual types,
/// i.e. \c OS builds a string that contains all null-terminated printed type
/// strings. When referring to one of these types, we can use the offsets at
/// which it starts in the \c OS.
llvm::raw_ostream &OS;
/// Map from a printed type to the offset in \c OS where the type starts.
llvm::StringMap<uint32_t> TypeOffsets;
/// Returns the start offset of this string in \c OS. If \c PrintedType
/// hasn't been printed to \c OS yet, this function will do so.
uint32_t getTypeOffset(StringRef PrintedType) {
auto It = TypeOffsets.find(PrintedType);
if (It == TypeOffsets.end()) {
TypeOffsets[PrintedType] = OS.tell();
OS << PrintedType << '\0';
}
return TypeOffsets[PrintedType];
}
/// Checks whether the given range overlaps the total range in which we
/// collect variable types.
bool overlapsTotalRange(SourceRange Range) {
return TotalRange.isInvalid() || Range.overlaps(TotalRange);
}
public:
VariableTypeCollector(const SourceFile &SF, SourceRange Range,
bool FullyQualified,
std::vector<VariableTypeInfo> &Results,
llvm::raw_ostream &OS)
: SM(SF.getASTContext().SourceMgr), BufferId(*SF.getBufferID()),
TotalRange(Range), FullyQualified(FullyQualified), Results(Results),
OS(OS) {}
bool walkToDeclPre(Decl *D, CharSourceRange DeclNameRange) override {
if (DeclNameRange.isInvalid()) {
return true;
}
// Skip this declaration and its subtree if outside the range
if (!overlapsTotalRange(D->getSourceRange())) {
return false;
}
if (auto VD = dyn_cast<VarDecl>(D)) {
unsigned VarOffset =
SM.getLocOffsetInBuffer(DeclNameRange.getStart(), BufferId);
unsigned VarLength = DeclNameRange.getByteLength();
// Print the type to a temporary buffer
SmallString<64> Buffer;
{
llvm::raw_svector_ostream OS(Buffer);
PrintOptions Options;
Options.SynthesizeSugarOnTypes = true;
Options.FullyQualifiedTypes = FullyQualified;
auto Ty = VD->getInterfaceType();
// Skip this declaration and its children if the type is an error type.
if (Ty->is<ErrorType>()) {
return false;
}
Ty->print(OS, Options);
}
// Transfer the type to `OS` if needed and get the offset of this string
// in `OS`.
auto TyOffset = getTypeOffset(Buffer.str());
bool HasExplicitType =
VD->getTypeReprOrParentPatternTypeRepr() != nullptr;
// Add the type information to the result list.
Results.emplace_back(VarOffset, VarLength, HasExplicitType, TyOffset);
}
return true;
}
bool walkToStmtPre(Stmt *S) override {
// Skip this statement and its subtree if outside the range
return overlapsTotalRange(S->getSourceRange());
}
bool walkToExprPre(Expr *E) override {
// Skip this expression and its subtree if outside the range
return overlapsTotalRange(E->getSourceRange());
}
bool walkToPatternPre(Pattern *P) override {
// Skip this pattern and its subtree if outside the range
return overlapsTotalRange(P->getSourceRange());
}
};
VariableTypeInfo::VariableTypeInfo(uint32_t Offset, uint32_t Length,
bool HasExplicitType, uint32_t TypeOffset)
: Offset(Offset), Length(Length), HasExplicitType(HasExplicitType),
TypeOffset(TypeOffset) {}
void swift::collectVariableType(
SourceFile &SF, SourceRange Range, bool FullyQualified,
std::vector<VariableTypeInfo> &VariableTypeInfos, llvm::raw_ostream &OS) {
VariableTypeCollector Walker(SF, Range, FullyQualified, VariableTypeInfos,
OS);
Walker.walk(SF);
}
ArrayRef<ValueDecl*> swift::
canDeclProvideDefaultImplementationFor(ValueDecl* VD) {
return evaluateOrDefault(VD->getASTContext().evaluator,
ProvideDefaultImplForRequest(VD),
ArrayRef<ValueDecl*>());
}
ArrayRef<ValueDecl*> swift::
collectAllOverriddenDecls(ValueDecl *VD, bool IncludeProtocolRequirements,
bool Transitive) {
return evaluateOrDefault(VD->getASTContext().evaluator,
CollectOverriddenDeclsRequest(OverridenDeclsOwner(VD,
IncludeProtocolRequirements, Transitive)), ArrayRef<ValueDecl*>());
}
bool swift::isExtensionApplied(const DeclContext *DC, Type BaseTy,
const ExtensionDecl *ED) {
return evaluateOrDefault(DC->getASTContext().evaluator,
IsDeclApplicableRequest(DeclApplicabilityOwner(DC, BaseTy, ED)), false);
}
bool swift::isMemberDeclApplied(const DeclContext *DC, Type BaseTy,
const ValueDecl *VD) {
return evaluateOrDefault(DC->getASTContext().evaluator,
IsDeclApplicableRequest(DeclApplicabilityOwner(DC, BaseTy, VD)), false);
}
Type swift::tryMergeBaseTypeForCompletionLookup(Type ty1, Type ty2,
DeclContext *dc) {
// Easy case, equivalent so just pick one.
if (ty1->isEqual(ty2))
return ty1;
// Check to see if one is an optional of another. In that case, prefer the
// optional since we can unwrap a single level when doing a lookup.
{
SmallVector<Type, 4> ty1Optionals;
SmallVector<Type, 4> ty2Optionals;
auto ty1Unwrapped = ty1->lookThroughAllOptionalTypes(ty1Optionals);
auto ty2Unwrapped = ty2->lookThroughAllOptionalTypes(ty2Optionals);
if (ty1Unwrapped->isEqual(ty2Unwrapped)) {
// We currently only unwrap a single level of optional, so if the
// difference is greater, don't merge.
if (ty1Optionals.size() == 1 && ty2Optionals.empty())
return ty1;
if (ty2Optionals.size() == 1 && ty1Optionals.empty())
return ty2;
}
// We don't want to consider subtyping for optional mismatches since
// optional promotion is modelled as a subtype, which isn't useful for us
// (i.e if we have T? and U, preferring U would miss members on T?).
if (ty1Optionals.size() != ty2Optionals.size())
return Type();
}
// In general we want to prefer a subtype over a supertype.
if (isSubtypeOf(ty1, ty2, dc))
return ty1;
if (isSubtypeOf(ty2, ty1, dc))
return ty2;
// Incomparable, return null.
return Type();
}
bool swift::isConvertibleTo(Type T1, Type T2, bool openArchetypes,
DeclContext &DC) {
return evaluateOrDefault(DC.getASTContext().evaluator,
TypeRelationCheckRequest(TypeRelationCheckInput(&DC, T1, T2,
TypeRelation::ConvertTo, openArchetypes)), false);
}
bool swift::isSubtypeOf(Type T1, Type T2, DeclContext *DC) {
return evaluateOrDefault(DC->getASTContext().evaluator,
TypeRelationCheckRequest(TypeRelationCheckInput(DC, T1, T2,
TypeRelation::SubtypeOf, /*openArchetypes*/ false)), false);
}
Type swift::getRootTypeOfKeypathDynamicMember(SubscriptDecl *SD) {
return evaluateOrDefault(SD->getASTContext().evaluator,
RootTypeOfKeypathDynamicMemberRequest{SD}, Type());
}
Type swift::getResultTypeOfKeypathDynamicMember(SubscriptDecl *SD) {
return evaluateOrDefault(SD->getASTContext().evaluator,
RootAndResultTypeOfKeypathDynamicMemberRequest{SD}, TypePair()).
SecondTy;
}
SmallVector<std::pair<ValueDecl *, ValueDecl *>, 1>
swift::getShorthandShadows(CaptureListExpr *CaptureList, DeclContext *DC) {
SmallVector<std::pair<ValueDecl *, ValueDecl *>, 1> Result;
for (auto Capture : CaptureList->getCaptureList()) {
if (Capture.PBD->getPatternList().size() != 1)
continue;
Expr *Init = Capture.PBD->getInit(0);
if (!Init)
continue;
auto DeclaredVar = Capture.getVar();
if (DeclaredVar->getLoc() != Init->getLoc()) {
// We have a capture like `[foo]` if the declared var and the
// reference share the same location.
continue;
}
if (auto UDRE = dyn_cast<UnresolvedDeclRefExpr>(Init)) {
if (DC) {
Init = resolveDeclRefExpr(UDRE, DC, /*replaceInvalidRefsWithErrors=*/false);
}
}
auto *ReferencedVar = Init->getReferencedDecl().getDecl();
if (!ReferencedVar)
continue;
Result.emplace_back(std::make_pair(DeclaredVar, ReferencedVar));
}
return Result;
}
SmallVector<std::pair<ValueDecl *, ValueDecl *>, 1>
swift::getShorthandShadows(LabeledConditionalStmt *CondStmt, DeclContext *DC) {
SmallVector<std::pair<ValueDecl *, ValueDecl *>, 1> Result;
for (const StmtConditionElement &Cond : CondStmt->getCond()) {
if (Cond.getKind() != StmtConditionElement::CK_PatternBinding)
continue;
Expr *Init = Cond.getInitializer();
if (auto UDRE = dyn_cast<UnresolvedDeclRefExpr>(Init)) {
if (DC) {
Init = resolveDeclRefExpr(UDRE, DC, /*replaceInvalidRefsWithErrors=*/false);
}
}
auto ReferencedVar = Init->getReferencedDecl().getDecl();
if (!ReferencedVar)
continue;
Cond.getPattern()->forEachVariable([&](VarDecl *DeclaredVar) {
if (DeclaredVar->getLoc() != Init->getLoc())
return;
Result.emplace_back(std::make_pair(DeclaredVar, ReferencedVar));
});
}
return Result;
}
|