1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
//===--- DotExprCodeCompletion.cpp ----------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/IDE/PostfixCompletion.h"
#include "swift/IDE/CodeCompletion.h"
#include "swift/IDE/CompletionLookup.h"
#include "swift/Sema/CompletionContextFinder.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/IDETypeChecking.h"
using namespace swift;
using namespace swift::constraints;
using namespace swift::ide;
bool PostfixCompletionCallback::Result::tryMerge(const Result &Other,
DeclContext *DC) {
if (BaseDecl != Other.BaseDecl)
return false;
// These properties should match if we are talking about the same BaseDecl.
assert(IsBaseDeclUnapplied == Other.IsBaseDeclUnapplied);
assert(BaseIsStaticMetaType == Other.BaseIsStaticMetaType);
auto baseTy = tryMergeBaseTypeForCompletionLookup(BaseTy, Other.BaseTy, DC);
if (!baseTy)
return false;
BaseTy = baseTy;
// There could be multiple results that have different actor isolations if the
// closure is an argument to a function that has multiple overloads with
// different isolations for the closure. Producing multiple results for these
// is usually not very enlightning. For now, we just pick the first actor
// isolation that we find. This is good enough in practice.
// What we should really do is probably merge these two actor isolations and
// pick the weakest isolation for each closure.
for (auto &OtherExpectedTy : Other.ExpectedTypes) {
auto IsEqual = [&](Type Ty) { return Ty->isEqual(OtherExpectedTy); };
if (llvm::any_of(ExpectedTypes, IsEqual)) {
// We already know if this expected type
continue;
}
ExpectedTypes.push_back(OtherExpectedTy);
}
ExpectsNonVoid &= Other.ExpectsNonVoid;
IsImpliedResult |= Other.IsImpliedResult;
IsInAsyncContext |= Other.IsInAsyncContext;
return true;
}
void PostfixCompletionCallback::addResult(const Result &Res) {
for (auto idx : indices(Results)) {
if (Results[idx].tryMerge(Res, DC))
return;
}
Results.push_back(Res);
}
void PostfixCompletionCallback::fallbackTypeCheck(DeclContext *DC) {
assert(!gotCallback());
// Default to checking the completion expression in isolation.
Expr *fallbackExpr = CompletionExpr;
DeclContext *fallbackDC = DC;
CompletionContextFinder finder(DC);
if (finder.hasCompletionExpr()) {
if (auto fallback = finder.getFallbackCompletionExpr()) {
fallbackExpr = fallback->E;
fallbackDC = fallback->DC;
}
}
if (isa<AbstractClosureExpr>(fallbackDC)) {
// If the expression is embedded in a closure, the constraint system tries
// to retrieve that closure's type, which will fail since we won't have
// generated any type variables for it. Thus, fallback type checking isn't
// available in this case.
return;
}
SyntacticElementTarget completionTarget(fallbackExpr, fallbackDC, CTP_Unused,
Type(),
/*isDiscared=*/true);
typeCheckForCodeCompletion(completionTarget, /*needsPrecheck*/ true,
[&](const Solution &S) { sawSolution(S); });
}
static ActorIsolation
getClosureActorIsolation(const Solution &S, AbstractClosureExpr *ACE) {
auto getType = [&S](Expr *E) -> Type {
// Prefer the contextual type of the closure because it might be 'weaker'
// than the type determined for the closure by the constraints system. E.g.
// the contextual type might have a global actor attribute but because no
// methods from that global actor are called in the closure, the closure has
// a non-actor type.
if (auto target = S.getTargetFor(dyn_cast<ClosureExpr>(E))) {
if (auto Ty = target->getClosureContextualType())
return Ty;
}
if (!S.hasType(E)) {
return Type();
}
return getTypeForCompletion(S, E);
};
auto getClosureActorIsolationThunk = [&S](AbstractClosureExpr *ACE) {
return getClosureActorIsolation(S, ACE);
};
return determineClosureActorIsolation(ACE, getType,
getClosureActorIsolationThunk);
}
/// Returns \c true if \p Choice refers to a function that hasn't been called
/// yet.
static bool isUnappliedFunctionRef(const OverloadChoice &Choice) {
if (!Choice.isDecl()) {
return false;
}
switch (Choice.getFunctionRefKind()) {
case FunctionRefKind::Unapplied:
return true;
case FunctionRefKind::SingleApply:
if (auto BaseTy = Choice.getBaseType()) {
// We consider curried member calls as unapplied. E.g.
// MyStruct.someInstanceFunc(theInstance)#^COMPLETE^#
// is unapplied.
return BaseTy->is<MetatypeType>() && !Choice.getDeclOrNull()->isStatic();
} else {
return false;
}
default:
return false;
}
}
void PostfixCompletionCallback::sawSolutionImpl(
const constraints::Solution &S) {
auto &CS = S.getConstraintSystem();
auto *ParsedExpr = CompletionExpr->getBase();
auto *SemanticExpr = ParsedExpr->getSemanticsProvidingExpr();
if (!S.hasType(ParsedExpr)) {
return;
}
auto BaseTy = getTypeForCompletion(S, ParsedExpr);
// If base type couldn't be determined (e.g. because base expression
// is an invalid reference), let's not attempt to do a lookup since
// it wouldn't produce any useful results anyway.
if (!BaseTy)
return;
auto *Locator = CS.getConstraintLocator(SemanticExpr);
Type ExpectedTy = getTypeForCompletion(S, CompletionExpr);
Expr *ParentExpr = CS.getParentExpr(CompletionExpr);
auto *CalleeLocator = S.getCalleeLocator(Locator);
ValueDecl *ReferencedDecl = nullptr;
bool IsBaseDeclUnapplied = false;
if (auto SelectedOverload = S.getOverloadChoiceIfAvailable(CalleeLocator)) {
ReferencedDecl = SelectedOverload->choice.getDeclOrNull();
IsBaseDeclUnapplied = isUnappliedFunctionRef(SelectedOverload->choice);
}
bool BaseIsStaticMetaType = S.isStaticallyDerivedMetatype(ParsedExpr);
bool ExpectsNonVoid = false;
SmallVector<Type, 4> ExpectedTypes;
if (ExpectedTy) {
ExpectedTypes.push_back(ExpectedTy);
ExpectsNonVoid = !ExpectedTy->isVoid();
} else {
// If we don't know what the expected type is, assume it must be non-Void
// if we have a contextual type that is not unused. This prevents us from
// suggesting Void values for e.g bindings without explicit types.
ExpectsNonVoid |= !ParentExpr &&
CS.getContextualTypePurpose(CompletionExpr) != CTP_Unused;
for (auto SAT : S.targets) {
if (ExpectsNonVoid) {
// ExpectsNonVoid is already set. No need to iterate further.
break;
}
if (SAT.second.getAsExpr() == CompletionExpr) {
ExpectsNonVoid |=
SAT.second.getExprContextualTypePurpose() != CTP_Unused;
}
}
}
bool IsImpliedResult = isImpliedResult(S, CompletionExpr);
bool IsInAsyncContext = isContextAsync(S, DC);
llvm::DenseMap<AbstractClosureExpr *, ActorIsolation>
ClosureActorIsolations;
for (auto SAT : S.targets) {
if (auto ACE = getAsExpr<AbstractClosureExpr>(SAT.second.getAsASTNode())) {
ClosureActorIsolations[ACE] = getClosureActorIsolation(S, ACE);
}
}
Result Res = {
BaseTy,
ReferencedDecl,
IsBaseDeclUnapplied,
BaseIsStaticMetaType,
ExpectedTypes,
ExpectsNonVoid,
IsImpliedResult,
IsInAsyncContext,
ClosureActorIsolations
};
addResult(Res);
}
/// Returns \c true if \p T is '_OptionalNilComparisonType'.
static bool isOptionalNilComparisonType(Type T) {
if (!T) {
return false;
}
auto *nominal = T->getAnyNominal();
if (!nominal) {
return false;
}
return (nominal->isStdlibDecl() &&
nominal->getName() ==
nominal->getASTContext().Id_OptionalNilComparisonType);
}
static DeclRefKind getDeclRefKindOfOperator(OperatorDecl *op) {
switch (op->getKind()) {
case DeclKind::PrefixOperator:
return DeclRefKind::PrefixOperator;
case DeclKind::PostfixOperator:
return DeclRefKind::PostfixOperator;
case DeclKind::InfixOperator:
return DeclRefKind::BinaryOperator;
default:
llvm_unreachable("unexpected operator kind");
}
}
/// Return type of \c getOperatorCompletionTypes.
struct OperatorResultTypes {
/// If we are trying to complete a binary operator, the type the operator
/// expects for the RHS. Null for postfix operators.
Type RHSType;
/// The type the operator returns when called.
Type ResultType;
bool operator==(const OperatorResultTypes &Other) const {
return nullableTypesEqual(RHSType, Other.RHSType) &&
nullableTypesEqual(ResultType, Other.ResultType);
}
};
/// Builds a constriant system that tries applying the operator \p op on a LHS
/// of type \p LHSType. If that succeeds, returns the result type of the
/// operator call and (in case of binary operators) the expected type for the
/// RHS.
static SmallVector<OperatorResultTypes>
getOperatorCompletionTypes(DeclContext *DC, Type LHSType, OperatorDecl *Op) {
ConstraintSystemOptions options;
options |= ConstraintSystemFlags::SuppressDiagnostics;
ConstraintSystem CS(DC, options);
// The source loc of the generated expression doesn't matter.
SourceLoc Loc;
// We represent the LHS and RHS by CodeCompletionExprs because there's no
// other better choice. rhs will have its type set in the constraint system
// below and, in case of binary operators, rhs will be inspected for its type
// when the constraint system has been solved.
CodeCompletionExpr LHS(Loc);
CodeCompletionExpr RHS(Loc);
UnresolvedDeclRefExpr UDRE(DeclNameRef(Op->getName()),
getDeclRefKindOfOperator(Op), DeclNameLoc(Loc));
DiagnosticTransaction IgnoreDiags(DC->getASTContext().Diags);
Expr *OpExpr =
resolveDeclRefExpr(&UDRE, DC, /*replaceInvalidRefsWithErrors=*/true);
IgnoreDiags.abort();
if (isa<ErrorExpr>(OpExpr)) {
// If we couldn't resolve the operator (e.g. because there is only an
// operator definition but no decls that implement it), we can't call the
// operator.
return {};
}
Expr *OpCallExpr;
switch (Op->getKind()) {
case DeclKind::PrefixOperator:
// Don't insert prefix operators in postfix position.
return {};
case DeclKind::PostfixOperator:
OpCallExpr = PostfixUnaryExpr::create(DC->getASTContext(), OpExpr, &LHS);
break;
case DeclKind::InfixOperator:
OpCallExpr = BinaryExpr::create(DC->getASTContext(), &LHS, OpExpr, &RHS,
/*implicit*/ true);
break;
default:
llvm_unreachable("unexpected operator kind");
}
CS.preCheckExpression(OpCallExpr, DC, /*replaceInvalidRefsWithErrors=*/true);
OpCallExpr = CS.generateConstraints(OpCallExpr, DC);
CS.assignFixedType(CS.getType(&LHS)->getAs<TypeVariableType>(), LHSType);
SmallVector<Solution, 1> Solutions;
CS.solve(Solutions);
SmallVector<OperatorResultTypes> Results;
for (auto &S : Solutions) {
Type RHSType;
if (Op->getKind() == DeclKind::InfixOperator) {
RHSType = getTypeForCompletion(S, &RHS);
}
Type ResultType = getTypeForCompletion(S, OpCallExpr);
OperatorResultTypes ResultTypes = {RHSType, ResultType};
if (llvm::is_contained(Results, ResultTypes)) {
continue;
}
if (S.getFixedScore().Data[SK_ValueToOptional] > 0) {
if (Op->getName().str() == "??" || isOptionalNilComparisonType(RHSType)) {
// Don't suggest optional operators that need to demote the LHS to an
// Optional to become applicable.
continue;
}
}
Results.push_back(ResultTypes);
}
return Results;
}
/// Adds applicable operator suggestions to \p Lookup.
static void addOperatorResults(Type LHSType, ArrayRef<OperatorDecl *> Operators,
DeclContext *DC, CompletionLookup &Lookup) {
for (auto Op : Operators) {
switch (Op->getKind()) {
case DeclKind::PrefixOperator:
break;
case DeclKind::PostfixOperator:
for (auto operatorType : getOperatorCompletionTypes(DC, LHSType, Op)) {
Lookup.addPostfixOperatorCompletion(Op, operatorType.ResultType);
}
break;
case DeclKind::InfixOperator:
for (auto operatorType : getOperatorCompletionTypes(DC, LHSType, Op)) {
Lookup.addInfixOperatorCompletion(Op, operatorType.ResultType,
operatorType.RHSType);
}
break;
default:
llvm_unreachable("unexpected operator kind");
}
}
if (LHSType->hasLValueType()) {
Lookup.addAssignmentOperator(LHSType->getRValueType());
}
if (auto ValueT = LHSType->getRValueType()->getOptionalObjectType()) {
Lookup.addPostfixBang(ValueT);
}
}
void PostfixCompletionCallback::collectResults(
SourceLoc DotLoc, bool IsInSelector, bool IncludeOperators,
bool HasLeadingSpace, CodeCompletionContext &CompletionCtx) {
ASTContext &Ctx = DC->getASTContext();
CompletionLookup Lookup(CompletionCtx.getResultSink(), Ctx, DC,
&CompletionCtx);
if (DotLoc.isValid()) {
assert(!IncludeOperators && "We shouldn't be suggesting operators if we "
"are completing after a dot");
Lookup.setHaveDot(DotLoc);
}
Lookup.setHaveLeadingSpace(HasLeadingSpace);
Expr *BaseExpr = CompletionExpr->getBase();
Lookup.setIsSuperRefExpr(isa<SuperRefExpr>(BaseExpr));
if (auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
Lookup.setIsSelfRefExpr(DRE->getDecl()->getName() == Ctx.Id_self);
if (isa<BindOptionalExpr>(BaseExpr) || isa<ForceValueExpr>(BaseExpr))
Lookup.setIsUnwrappedOptional(true);
if (IsInSelector) {
Lookup.includeInstanceMembers();
Lookup.setPreferFunctionReferencesToCalls();
}
SmallVector<OperatorDecl *> Operators;
if (IncludeOperators) {
Lookup.collectOperators(Operators);
}
// The type context that is being used for global results.
ExpectedTypeContext UnifiedTypeContext;
UnifiedTypeContext.setPreferNonVoid(true);
bool UnifiedCanHandleAsync = false;
// The base types of the result for which we already returned results.
// Used so we only return keyword and operator completions once for each base
// type.
llvm::SmallPtrSet<Type, 2> ProcessedBaseTypes;
Lookup.shouldCheckForDuplicates(Results.size() > 1);
for (auto &Result : Results) {
Lookup.setCanCurrDeclContextHandleAsync(Result.IsInAsyncContext);
Lookup.setClosureActorIsolations(Result.ClosureActorIsolations);
Lookup.setIsStaticMetatype(Result.BaseIsStaticMetaType);
if (!ProcessedBaseTypes.contains(Result.BaseTy)) {
Lookup.getPostfixKeywordCompletions(Result.BaseTy, BaseExpr);
}
Lookup.setExpectedTypes(Result.ExpectedTypes, Result.IsImpliedResult,
Result.ExpectsNonVoid);
if (isDynamicLookup(Result.BaseTy))
Lookup.setIsDynamicLookup();
Lookup.getValueExprCompletions(Result.BaseTy, Result.BaseDecl,
Result.IsBaseDeclUnapplied);
// `==`, `<=` etc can be used on `Void` because `Void` is just an empty
// tuple. But that doesn’t really make sense so we shouldn't be suggesting
// any operators based on `Void`.
if (IncludeOperators && !Result.BaseIsStaticMetaType &&
!Result.BaseTy->isVoid() &&
!ProcessedBaseTypes.contains(Result.BaseTy)) {
addOperatorResults(Result.BaseTy, Operators, DC, Lookup);
}
UnifiedTypeContext.merge(*Lookup.getExpectedTypeContext());
UnifiedCanHandleAsync |= Result.IsInAsyncContext;
ProcessedBaseTypes.insert(Result.BaseTy);
}
collectCompletionResults(CompletionCtx, Lookup, DC, UnifiedTypeContext,
UnifiedCanHandleAsync);
}
|