1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
//===--- TypeCheckCompletionCallback.cpp ----------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/IDE/TypeCheckCompletionCallback.h"
#include "swift/IDE/CompletionLookup.h"
#include "swift/Sema/CompletionContextFinder.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/IDETypeChecking.h"
using namespace swift;
using namespace swift::ide;
using namespace swift::constraints;
void TypeCheckCompletionCallback::fallbackTypeCheck(DeclContext *DC) {
assert(!GotCallback);
CompletionContextFinder finder(DC);
if (!finder.hasCompletionExpr())
return;
auto fallback = finder.getFallbackCompletionExpr();
if (!fallback || isa<AbstractClosureExpr>(fallback->DC)) {
// If the expression is embedded in a closure, the constraint system tries
// to retrieve that closure's type, which will fail since we won't have
// generated any type variables for it. Thus, fallback type checking isn't
// available in this case.
return;
}
SyntacticElementTarget completionTarget(fallback->E, fallback->DC, CTP_Unused,
Type(),
/*isDiscared=*/true);
typeCheckForCodeCompletion(completionTarget, /*needsPrecheck=*/true,
[&](const Solution &S) { sawSolution(S); });
}
// MARK: - Utility functions for subclasses of TypeCheckCompletionCallback
Type swift::ide::getTypeForCompletion(const constraints::Solution &S,
ASTNode Node) {
// Use the contextual type, unless it is still unresolved, in which case fall
// back to getting the type from the expression.
if (auto ContextualType = S.getContextualType(Node)) {
if (!ContextualType->hasUnresolvedType())
return ContextualType;
}
if (!S.hasType(Node)) {
assert(false && "Expression wasn't type checked?");
return nullptr;
}
Type Result;
if (isExpr<CodeCompletionExpr>(Node)) {
Result = S.simplifyTypeForCodeCompletion(S.getType(Node));
} else {
Result = S.getResolvedType(Node);
}
if (Result && Result->is<UnresolvedType>()) {
Result = Type();
}
return Result;
}
/// If the code completion expression \p E occurs in a pattern matching
/// position, we have an AST that looks like this.
/// \code
/// (binary_expr implicit type='$T3'
/// (overloaded_decl_ref_expr function_ref=compound decls=[
/// Swift.(file).~=,
/// Swift.(file).Optional extension.~=])
/// (argument_list implicit
/// (argument
/// (code_completion_expr implicit type='$T1'))
/// (argument
/// (declref_expr implicit decl=swift_ide_test.(file).foo(x:).$match))))
/// \endcode
/// If the code completion expression occurs in such an AST, return the
/// declaration of the \c $match variable, otherwise return \c nullptr.
static VarDecl *getMatchVarIfInPatternMatch(Expr *E, const Solution &S) {
if (auto EP = S.getExprPatternFor(E))
return EP.get()->getMatchVar();
// TODO: Once ExprPattern type-checking is fully moved into the solver,
// the below can be deleted.
auto &CS = S.getConstraintSystem();
auto &Context = CS.getASTContext();
auto *Binary = dyn_cast_or_null<BinaryExpr>(CS.getParentExpr(E));
if (!Binary || !Binary->isImplicit() || Binary->getLHS() != E) {
return nullptr;
}
auto CalledOperator = Binary->getFn();
if (!isPatternMatchingOperator(CalledOperator)) {
return nullptr;
}
auto MatchArg = dyn_cast_or_null<DeclRefExpr>(Binary->getRHS());
if (!MatchArg || !MatchArg->isImplicit()) {
return nullptr;
}
auto MatchVar = MatchArg->getDecl();
if (MatchVar && MatchVar->isImplicit() &&
MatchVar->getBaseName() == Context.Id_PatternMatchVar) {
return dyn_cast<VarDecl>(MatchVar);
} else {
return nullptr;
}
}
Type swift::ide::getPatternMatchType(const constraints::Solution &S, Expr *E) {
auto MatchVar = getMatchVarIfInPatternMatch(E, S);
if (!MatchVar)
return nullptr;
if (S.hasType(MatchVar))
return S.getResolvedType(MatchVar);
// If the ExprPattern wasn't solved as part of the constraint system, it's
// not part of the solution.
// TODO: This can be removed once ExprPattern type-checking is fully part
// of the constraint system.
if (auto T = S.getConstraintSystem().getVarType(MatchVar))
return T;
return getTypeForCompletion(S, MatchVar);
}
void swift::ide::getSolutionSpecificVarTypes(
const constraints::Solution &S,
llvm::SmallDenseMap<const VarDecl *, Type> &Result) {
assert(Result.empty());
for (auto NT : S.nodeTypes) {
if (auto VD = dyn_cast_or_null<VarDecl>(NT.first.dyn_cast<Decl *>())) {
Result[VD] = S.simplifyType(NT.second);
}
}
}
void WithSolutionSpecificVarTypesRAII::setInterfaceType(VarDecl *VD, Type Ty) {
VD->getASTContext().evaluator.cacheOutput(InterfaceTypeRequest{VD},
std::move(Ty));
}
bool swift::ide::isImpliedResult(const Solution &S, Expr *CompletionExpr) {
return S.isImpliedResult(CompletionExpr).has_value();
}
bool swift::ide::isContextAsync(const constraints::Solution &S,
DeclContext *DC) {
// We are in an async context if
// - the decl context is async
if (S.getConstraintSystem().isAsynchronousContext(DC)) {
return true;
}
// - the decl context is sync but it's used in a context that expectes an
// async function. This happens if the code completion token is in a
// closure that doesn't contain any async calles. Thus the closure is
// type-checked as non-async, but it might get converted to an async
// closure based on its contextual type
if (auto target = S.getTargetFor(dyn_cast<ClosureExpr>(DC))) {
if (auto ContextTy = target->getClosureContextualType()) {
if (auto ContextFuncTy =
S.simplifyType(ContextTy)->getAs<AnyFunctionType>()) {
return ContextFuncTy->isAsync();
}
}
}
// - we did not record any information about async-ness of the context in the
// solution, but the type information recorded AST declares the context as
// async.
return canDeclContextHandleAsync(DC);
}
bool swift::ide::nullableTypesEqual(Type LHS, Type RHS) {
if (LHS.isNull() && RHS.isNull()) {
return true;
} else if (LHS.isNull() || RHS.isNull()) {
// One type is null but the other is not.
return false;
} else {
return LHS->isEqual(RHS);
}
}
|