1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
//===--- Fulfillment.cpp - Static metadata search ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements routines for searching for ways to find metadata
// from other metadata.
//
//===----------------------------------------------------------------------===//
#include "Fulfillment.h"
#include "IRGenModule.h"
#include "GenericRequirement.h"
#include "MetadataRequest.h"
#include "ProtocolInfo.h"
#include "swift/AST/Decl.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/SIL/SILWitnessTable.h"
#include "swift/SIL/TypeLowering.h"
using namespace swift;
using namespace irgen;
/// Is metadata for the given type kind a "leaf", or does it possibly
/// store any other type metadata that we can statically extract?
///
/// It's okay to conservatively answer "no". It's more important for this
/// to be quick than for it to be accurate; don't recurse.
static bool isLeafTypeMetadata(CanType type) {
switch (type->getKind()) {
#define SUGARED_TYPE(ID, SUPER) \
case TypeKind::ID:
#define UNCHECKED_TYPE(ID, SUPER) \
case TypeKind::ID:
#define TYPE(ID, SUPER)
#include "swift/AST/TypeNodes.def"
case TypeKind::Error:
llvm_unreachable("kind is invalid for a canonical type");
#define ARTIFICIAL_TYPE(ID, SUPER) \
case TypeKind::ID:
#define TYPE(ID, SUPER)
#include "swift/AST/TypeNodes.def"
case TypeKind::LValue:
case TypeKind::InOut:
case TypeKind::DynamicSelf:
case TypeKind::PackExpansion:
case TypeKind::PackElement:
case TypeKind::BuiltinTuple:
llvm_unreachable("these types do not have metadata");
// All the builtin types are leaves.
#define BUILTIN_TYPE(ID, SUPER) \
case TypeKind::ID:
#define TYPE(ID, SUPER)
#include "swift/AST/TypeNodes.def"
case TypeKind::Module:
return true;
// Type parameters are statically opaque.
case TypeKind::PrimaryArchetype:
case TypeKind::OpenedArchetype:
case TypeKind::OpaqueTypeArchetype:
case TypeKind::PackArchetype:
case TypeKind::ElementArchetype:
case TypeKind::GenericTypeParam:
case TypeKind::DependentMember:
return true;
// Only the empty tuple is a leaf.
case TypeKind::Tuple:
return cast<TupleType>(type)->getNumElements() == 0;
case TypeKind::Pack:
return cast<PackType>(type)->getNumElements() == 0;
// Nominal types might have generic parents.
case TypeKind::Class:
case TypeKind::Enum:
case TypeKind::Protocol:
case TypeKind::Struct:
return !cast<NominalType>(type)->getDecl()->isGenericContext();
// Bound generic types have type arguments.
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericEnum:
case TypeKind::BoundGenericStruct:
return false;
// Functions have component types.
case TypeKind::Function:
case TypeKind::GenericFunction: // included for future-proofing
return false;
// Protocol compositions have component types.
case TypeKind::ProtocolComposition:
return false;
// Parametrized protocols have component types.
case TypeKind::ParameterizedProtocol:
return false;
// Existential types have constraint types.
case TypeKind::Existential:
return false;
// Metatypes have instance types.
case TypeKind::Metatype:
case TypeKind::ExistentialMetatype:
return false;
}
llvm_unreachable("bad type kind");
}
/// Given that we have a source for metadata of the given type, check
/// to see if it fulfills anything.
///
/// \param isExact - true if the metadata is known to be exactly the
/// metadata for the given type, false if it might be a subtype
bool FulfillmentMap::searchTypeMetadata(IRGenModule &IGM, CanType type,
IsExact_t isExact,
MetadataState metadataState,
unsigned source, MetadataPath &&path,
const InterestingKeysCallback &keys) {
// If this is an exact source, and it's an interesting type, add this
// as a fulfillment.
if (isExact && keys.isInterestingType(type)) {
// If the type isn't a leaf type, also check it as an inexact match.
bool hadFulfillment = false;
if (!isLeafTypeMetadata(type)) {
hadFulfillment |= searchTypeMetadata(IGM, type, IsInexact, metadataState,
source, MetadataPath(path), keys);
}
// Consider its super class bound.
if (metadataState == MetadataState::Complete) {
if (auto superclassTy = keys.getSuperclassBound(type)) {
hadFulfillment |= searchNominalTypeMetadata(
IGM, superclassTy, metadataState, source, std::move(path), keys);
}
}
// Add the fulfillment.
hadFulfillment |= addFulfillment(GenericRequirement::forMetadata(type),
source, std::move(path), metadataState);
return hadFulfillment;
}
// Search the superclass fields. We can only do this if the metadata
// is complete.
if (metadataState == MetadataState::Complete &&
keys.isInterestingType(type)) {
if (auto superclassTy = keys.getSuperclassBound(type)) {
return searchNominalTypeMetadata(IGM, superclassTy, metadataState,
source, std::move(path), keys);
}
}
// Inexact metadata will be a problem if we ever try to use this
// to remember that we already have the metadata for something.
if (isa<NominalType>(type) || isa<BoundGenericType>(type)) {
return searchNominalTypeMetadata(IGM, type, metadataState,
source, std::move(path), keys);
}
if (auto tupleType = dyn_cast<TupleType>(type)) {
if (tupleType->getNumElements() == 1 &&
isa<PackExpansionType>(tupleType.getElementType(0))) {
bool hadFulfillment = false;
auto packType = tupleType.getInducedPackType();
{
auto argPath = path;
argPath.addTuplePackComponent();
hadFulfillment |= searchTypeMetadataPack(IGM, packType,
isExact, metadataState, source,
std::move(argPath), keys);
}
{
auto argPath = path;
argPath.addTupleShapeComponent();
hadFulfillment |= searchShapeRequirement(IGM, packType, source,
std::move(argPath));
}
return hadFulfillment;
}
}
// TODO: functions
// TODO: metatypes
return false;
}
static CanType getSingletonPackExpansionParameter(
CanPackType packType, const FulfillmentMap::InterestingKeysCallback &keys,
std::optional<unsigned> &packExpansionComponent) {
if (auto expansion = packType.unwrapSingletonPackExpansion()) {
if (keys.isInterestingPackExpansion(expansion)) {
packExpansionComponent = 0;
return expansion.getPatternType();
}
}
return CanType();
}
bool FulfillmentMap::searchTypeMetadataPack(IRGenModule &IGM,
CanPackType packType,
IsExact_t isExact,
MetadataState metadataState,
unsigned source,
MetadataPath &&path,
const InterestingKeysCallback &keys) {
// We can fulfill pack parameters if the pack is a singleton pack
// expansion over one.
// TODO: we can also fulfill pack expansions if we can slice away
// constant-sized prefixes and suffixes.
std::optional<unsigned> packExpansionComponent;
if (auto parameter = getSingletonPackExpansionParameter(packType, keys,
packExpansionComponent)) {
MetadataPath singletonPath = path;
singletonPath.addPackExpansionPatternComponent(*packExpansionComponent);
return addFulfillment(GenericRequirement::forMetadata(parameter),
source, std::move(singletonPath), metadataState);
}
// TODO: fulfill non-expansion metadata out of the pack
// TODO: fulfill the pack type itself
return false;
}
bool FulfillmentMap::searchConformance(
IRGenModule &IGM, const ProtocolConformance *conformance,
unsigned sourceIndex, MetadataPath &&path,
const InterestingKeysCallback &interestingKeys) {
bool hadFulfillment = false;
SILWitnessTable::enumerateWitnessTableConditionalConformances(
conformance, [&](unsigned index, CanType type, ProtocolDecl *protocol) {
std::optional<unsigned> packExpansionComponent;
if (auto packType = dyn_cast<PackType>(type)) {
auto param =
getSingletonPackExpansionParameter(packType, interestingKeys,
packExpansionComponent);
if (!param)
return /*finished?*/ false;
type = param;
}
MetadataPath conditionalPath = path;
conditionalPath.addConditionalConformanceComponent(index);
if (packExpansionComponent)
conditionalPath.addPackExpansionPatternComponent(*packExpansionComponent);
hadFulfillment |=
searchWitnessTable(IGM, type, protocol, sourceIndex,
std::move(conditionalPath), interestingKeys);
return /*finished?*/ false;
});
return hadFulfillment;
}
bool FulfillmentMap::searchWitnessTable(IRGenModule &IGM,
CanType type, ProtocolDecl *protocol,
unsigned source, MetadataPath &&path,
const InterestingKeysCallback &keys) {
assert(Lowering::TypeConverter::protocolRequiresWitnessTable(protocol));
llvm::SmallPtrSet<ProtocolDecl*, 4> interestingConformancesBuffer;
llvm::SmallPtrSetImpl<ProtocolDecl *> *interestingConformances = nullptr;
// If the interesting-keys set is limiting the set of interesting
// conformances, collect that filter.
if (keys.hasInterestingType(type) &&
keys.hasLimitedInterestingConformances(type)) {
// Bail out immediately if the set is empty.
// This only makes sense because we're not trying to fulfill
// associated types this way.
auto requiredConformances = keys.getInterestingConformances(type);
if (requiredConformances.empty()) return false;
interestingConformancesBuffer.insert(requiredConformances.begin(),
requiredConformances.end());
interestingConformances = &interestingConformancesBuffer;
}
return searchWitnessTable(IGM, type, protocol, source, std::move(path), keys,
interestingConformances);
}
bool FulfillmentMap::searchWitnessTable(
IRGenModule &IGM, CanType type, ProtocolDecl *protocol, unsigned source,
MetadataPath &&path, const InterestingKeysCallback &keys,
llvm::SmallPtrSetImpl<ProtocolDecl *> *interestingConformances) {
bool hadFulfillment = false;
auto &pi = IGM.getProtocolInfo(protocol,
ProtocolInfoKind::RequirementSignature);
for (auto &entry : pi.getWitnessEntries()) {
if (!entry.isBase()) continue;
ProtocolDecl *inherited = entry.getBase();
MetadataPath inheritedPath = path;
inheritedPath.addInheritedProtocolComponent(pi.getBaseWitnessIndex(&entry));
hadFulfillment |= searchWitnessTable(IGM, type, inherited,
source, std::move(inheritedPath),
keys, interestingConformances);
}
// If we're not limiting the set of interesting conformances, or if
// this is an interesting conformance, record it.
if (!interestingConformances || interestingConformances->count(protocol)) {
hadFulfillment |= addFulfillment(
GenericRequirement::forWitnessTable(type, protocol), source,
std::move(path), MetadataState::Complete);
}
return hadFulfillment;
}
bool FulfillmentMap::searchNominalTypeMetadata(IRGenModule &IGM,
CanType type,
MetadataState metadataState,
unsigned source,
MetadataPath &&path,
const InterestingKeysCallback &keys) {
// Objective-C generics don't preserve their generic parameters at runtime,
// so they aren't able to fulfill type metadata requirements.
if (type.getAnyNominal()->hasClangNode()) {
return false;
}
auto *nominal = type.getAnyNominal();
if (!nominal->isGenericContext() || isa<ProtocolDecl>(nominal)) {
return false;
}
bool hadFulfillment = false;
auto subs = type->getContextSubstitutionMap(IGM.getSwiftModule(), nominal);
GenericTypeRequirements requirements(IGM, nominal);
for (unsigned reqtIndex : indices(requirements.getRequirements())) {
auto requirement = requirements.getRequirements()[reqtIndex];
auto arg = requirement.getTypeParameter().subst(subs)->getCanonicalType();
// Skip uninteresting type arguments.
if (!keys.hasInterestingType(arg))
continue;
switch (requirement.getKind()) {
case GenericRequirement::Kind::Shape: {
// If the fulfilled value is a shape class, refine the path.
MetadataPath argPath = path;
argPath.addNominalTypeArgumentShapeComponent(reqtIndex);
hadFulfillment |= searchShapeRequirement(IGM, arg, source,
std::move(argPath));
break;
}
case GenericRequirement::Kind::Metadata:
case GenericRequirement::Kind::MetadataPack: {
// If the fulfilled value is type metadata, refine the path.
auto argState =
getPresumedMetadataStateForTypeArgument(metadataState);
MetadataPath argPath = path;
argPath.addNominalTypeArgumentComponent(reqtIndex);
if (requirement.getKind() == GenericRequirement::Kind::Metadata)
hadFulfillment |=
searchTypeMetadata(IGM, arg, IsExact, argState,
source, std::move(argPath), keys);
else
hadFulfillment |=
searchTypeMetadataPack(IGM, cast<PackType>(arg), IsExact, argState,
source, std::move(argPath), keys);
break;
}
case GenericRequirement::Kind::WitnessTablePack:
case GenericRequirement::Kind::WitnessTable: {
std::optional<unsigned> packExpansionComponent;
if (requirement.getKind() == GenericRequirement::Kind::WitnessTable) {
// Ignore it unless the type itself is interesting.
if (!keys.isInterestingType(arg))
continue;
} else {
// Ignore it unless the pack is a singleton pack expansion of a
// type parameter, in which case use that type below.
auto param =
getSingletonPackExpansionParameter(cast<PackType>(arg), keys,
packExpansionComponent);
if (!param) continue;
arg = param;
}
// Refine the path.
MetadataPath argPath = path;
argPath.addNominalTypeArgumentConformanceComponent(reqtIndex);
if (packExpansionComponent)
argPath.addPackExpansionPatternComponent(*packExpansionComponent);
// This code just handles packs directly.
hadFulfillment |=
searchWitnessTable(IGM, arg, requirement.getProtocol(),
source, std::move(argPath), keys);
break;
}
}
}
return hadFulfillment;
}
bool FulfillmentMap::searchShapeRequirement(IRGenModule &IGM, CanType argType,
unsigned source, MetadataPath &&path) {
// argType is the substitution for a pack parameter, so it should always
// be a pack.
auto packType = cast<PackType>(argType);
// For now, don't try to fulfill shapes if this isn't a singleton
// pack containing a pack expansion. In theory, though, as long as
// there aren't expansions over pack parameters with different shapes,
// we should always be able to turn this into the equation
// `ax + b = <fulfilled count>` and then solve that.
auto expansion = packType.unwrapSingletonPackExpansion();
if (!expansion)
return false;
path.addPackExpansionCountComponent(0);
auto parameter = expansion.getCountType();
// Add the fulfillment.
return addFulfillment(GenericRequirement::forShape(parameter),
source, std::move(path), MetadataState::Complete);
}
/// Testify that there's a fulfillment at the given path.
bool FulfillmentMap::addFulfillment(GenericRequirement key,
unsigned source,
MetadataPath &&path,
MetadataState metadataState) {
// Only add a fulfillment if we don't have any previous
// fulfillment for that value or if it 's cheaper than the existing
// fulfillment.
auto it = Fulfillments.find(key);
if (it != Fulfillments.end()) {
// If the new fulfillment is worse than the existing one, ignore it.
auto existingState = it->second.getState();
if (!isAtLeast(metadataState, existingState)) {
return false;
}
// Consider cost only if the fulfillments are equivalent in state.
// TODO: this is potentially suboptimal, but it generally won't matter.
if (metadataState == existingState &&
path.cost() >= it->second.Path.cost()) {
return false;
}
it->second.SourceIndex = source;
it->second.Path = std::move(path);
return true;
} else {
Fulfillments.insert({ key, Fulfillment(source, std::move(path),
metadataState) });
return true;
}
}
static StringRef getStateName(MetadataState state) {
switch (state) {
case MetadataState::Complete: return "complete";
case MetadataState::NonTransitiveComplete: return "non-transitive-complete";
case MetadataState::LayoutComplete: return "layout-complete";
case MetadataState::Abstract: return "abstract";
}
llvm_unreachable("unhandled state");
}
void FulfillmentMap::dump() const {
auto &out = llvm::errs();
for (auto &entry : Fulfillments) {
out << "(";
entry.first.dump(out);
out << ") => " << getStateName(entry.second.getState())
<< " at sources[" << entry.second.SourceIndex
<< "]." << entry.second.Path << "\n";
}
}
|