1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
|
//===--- GenBuiltin.cpp - IR Generation for calls to builtin functions ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for the assorted operations that
// are performed by builtin functions.
//
//===----------------------------------------------------------------------===//
#include "GenBuiltin.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/ADT/StringSwitch.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/Types.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "clang/AST/ASTContext.h"
#include "Explosion.h"
#include "GenCall.h"
#include "GenCast.h"
#include "GenConcurrency.h"
#include "GenDistributed.h"
#include "GenEnum.h"
#include "GenPointerAuth.h"
#include "GenIntegerLiteral.h"
#include "GenOpaque.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
using namespace swift;
using namespace irgen;
static void emitCastBuiltin(IRGenFunction &IGF, SILType destType,
Explosion &result,
Explosion &args,
llvm::Instruction::CastOps opcode) {
llvm::Value *input = args.claimNext();
assert(args.empty() && "wrong operands to cast operation");
llvm::Type *destTy = IGF.IGM.getStorageType(destType);
llvm::Value *output = IGF.Builder.CreateCast(opcode, input, destTy);
result.add(output);
}
static void emitCastOrBitCastBuiltin(IRGenFunction &IGF,
SILType destType,
Explosion &result,
Explosion &args,
BuiltinValueKind BV) {
llvm::Value *input = args.claimNext();
assert(args.empty() && "wrong operands to cast operation");
llvm::Type *destTy = IGF.IGM.getStorageType(destType);
llvm::Value *output;
switch (BV) {
default: llvm_unreachable("Not a cast-or-bitcast operation");
case BuiltinValueKind::TruncOrBitCast:
output = IGF.Builder.CreateTruncOrBitCast(input, destTy); break;
case BuiltinValueKind::ZExtOrBitCast:
output = IGF.Builder.CreateZExtOrBitCast(input, destTy); break;
case BuiltinValueKind::SExtOrBitCast:
output = IGF.Builder.CreateSExtOrBitCast(input, destTy); break;
}
result.add(output);
}
static void emitCompareBuiltin(IRGenFunction &IGF, Explosion &result,
Explosion &args, llvm::CmpInst::Predicate pred) {
llvm::Value *lhs = args.claimNext();
llvm::Value *rhs = args.claimNext();
llvm::Value *v;
if (lhs->getType()->isFPOrFPVectorTy())
v = IGF.Builder.CreateFCmp(pred, lhs, rhs);
else
v = IGF.Builder.CreateICmp(pred, lhs, rhs);
result.add(v);
}
static void emitTypeTraitBuiltin(IRGenFunction &IGF,
Explosion &out,
Explosion &args,
SubstitutionMap substitutions,
TypeTraitResult (TypeBase::*trait)()) {
assert(substitutions.getReplacementTypes().size() == 1
&& "type trait should have gotten single type parameter");
args.claimNext();
// Lower away the trait to a tristate 0 = no, 1 = yes, 2 = maybe.
unsigned result;
switch ((substitutions.getReplacementTypes()[0].getPointer()->*trait)()) {
case TypeTraitResult::IsNot:
result = 0;
break;
case TypeTraitResult::Is:
result = 1;
break;
case TypeTraitResult::CanBe:
result = 2;
break;
}
out.add(llvm::ConstantInt::get(IGF.IGM.Int8Ty, result));
}
static std::pair<SILType, const TypeInfo &>
getLoweredTypeAndTypeInfo(IRGenModule &IGM, Type unloweredType) {
auto lowered = IGM.getLoweredType(unloweredType);
return {lowered, IGM.getTypeInfo(lowered)};
}
static std::pair<SILType, const TypeInfo &>
getMaximallyAbstractedLoweredTypeAndTypeInfo(IRGenModule &IGM, Type unloweredType) {
auto lowered = IGM.getLoweredType(AbstractionPattern::getOpaque(), unloweredType);
return {lowered, IGM.getTypeInfo(lowered)};
}
/// emitBuiltinCall - Emit a call to a builtin function.
void irgen::emitBuiltinCall(IRGenFunction &IGF, const BuiltinInfo &Builtin,
BuiltinInst *Inst, ArrayRef<SILType> argTypes,
Explosion &args, Explosion &out) {
Identifier FnId = Inst->getName();
SILType resultType = Inst->getType();
SubstitutionMap substitutions = Inst->getSubstitutions();
if (Builtin.ID == BuiltinValueKind::COWBufferForReading) {
// Just forward the incoming argument.
assert(args.size() == 1 && "Expecting one incoming argument");
out = std::move(args);
return;
}
if (Builtin.ID == BuiltinValueKind::OnFastPath) {
// The onFastPath builtin has only an effect on SIL level, so we lower it
// to a no-op.
return;
}
// These builtins don't care about their argument:
if (Builtin.ID == BuiltinValueKind::Sizeof) {
(void)args.claimAll();
auto valueTy = getMaximallyAbstractedLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
out.add(valueTy.second.getSize(IGF, valueTy.first));
return;
}
if (Builtin.ID == BuiltinValueKind::Strideof) {
(void)args.claimAll();
auto valueTy = getMaximallyAbstractedLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
out.add(valueTy.second.getStride(IGF, valueTy.first));
return;
}
if (Builtin.ID == BuiltinValueKind::Alignof) {
(void)args.claimAll();
auto valueTy = getMaximallyAbstractedLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
// The alignof value is one greater than the alignment mask.
out.add(IGF.Builder.CreateAdd(
valueTy.second.getAlignmentMask(IGF, valueTy.first),
IGF.IGM.getSize(Size(1))));
return;
}
if (Builtin.ID == BuiltinValueKind::IsPOD) {
(void)args.claimAll();
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
out.add(valueTy.second.getIsTriviallyDestroyable(IGF, valueTy.first));
return;
}
if (Builtin.ID == BuiltinValueKind::IsConcrete) {
(void)args.claimAll();
auto isConcrete = !substitutions.getReplacementTypes()[0]->hasArchetype();
out.add(llvm::ConstantInt::get(IGF.IGM.Int1Ty, isConcrete));
return;
}
if (Builtin.ID == BuiltinValueKind::IsBitwiseTakable) {
(void)args.claimAll();
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
out.add(valueTy.second.getIsBitwiseTakable(IGF, valueTy.first));
return;
}
// addressof expects an lvalue argument.
if (Builtin.ID == BuiltinValueKind::AddressOf) {
llvm::Value *address = args.claimNext();
llvm::Value *value = IGF.Builder.CreateBitCast(address,
IGF.IGM.Int8PtrTy);
out.add(value);
return;
}
// getCurrentAsyncTask has no arguments.
if (Builtin.ID == BuiltinValueKind::GetCurrentAsyncTask) {
auto task = IGF.getAsyncTask();
if (!task->getType()->isPointerTy()) {
out.add(IGF.Builder.CreateIntToPtr(task, IGF.IGM.RefCountedPtrTy));
} else {
out.add(IGF.Builder.CreateBitCast(task, IGF.IGM.RefCountedPtrTy));
}
return;
}
// emitGetCurrentExecutor has no arguments.
if (Builtin.ID == BuiltinValueKind::GetCurrentExecutor) {
emitGetCurrentExecutor(IGF, out);
return;
}
if (Builtin.ID == BuiltinValueKind::StartAsyncLet) {
auto taskOptions = args.claimNext();
auto taskFunction = args.claimNext();
auto taskContext = args.claimNext();
taskOptions = IGF.Builder.CreateIntToPtr(taskOptions,
IGF.IGM.SwiftTaskOptionRecordPtrTy);
auto asyncLet = emitBuiltinStartAsyncLet(
IGF,
taskOptions,
taskFunction,
taskContext,
nullptr,
substitutions
);
out.add(asyncLet);
return;
}
if (Builtin.ID == BuiltinValueKind::StartAsyncLetWithLocalBuffer) {
auto taskOptions = args.claimNext();
auto taskFunction = args.claimNext();
auto taskContext = args.claimNext();
auto localBuffer = args.claimNext();
taskOptions = IGF.Builder.CreateIntToPtr(taskOptions,
IGF.IGM.SwiftTaskOptionRecordPtrTy);
auto asyncLet = emitBuiltinStartAsyncLet(
IGF,
taskOptions,
taskFunction,
taskContext,
localBuffer,
substitutions
);
out.add(asyncLet);
return;
}
if (Builtin.ID == BuiltinValueKind::EndAsyncLet) {
emitEndAsyncLet(IGF, args.claimNext());
// Ignore a second operand which is inserted by ClosureLifetimeFixup and
// only used for dependency tracking.
(void)args.claimAll();
return;
}
if (Builtin.ID == BuiltinValueKind::EndAsyncLetLifetime) {
IGF.Builder.CreateLifetimeEnd(args.claimNext());
// Ignore a second operand which is inserted by ClosureLifetimeFixup and
// only used for dependency tracking.
(void)args.claimAll();
return;
}
if (Builtin.ID == BuiltinValueKind::TaskRunInline) {
auto result = args.claimNext();
auto closure = args.claimNext();
auto closureContext = args.claimNext();
emitTaskRunInline(IGF, substitutions, result, closure, closureContext);
return;
}
if (Builtin.ID == BuiltinValueKind::CreateTaskGroup) {
llvm::Value *groupFlags = nullptr;
// Claim metadata pointer.
(void)args.claimAll();
out.add(emitCreateTaskGroup(IGF, substitutions, groupFlags));
return;
}
if (Builtin.ID == BuiltinValueKind::CreateTaskGroupWithFlags) {
auto groupFlags = args.claimNext();
// Claim the remaining metadata pointer.
if (args.size() == 1) {
(void)args.claimNext();
} else if (args.size() > 1) {
llvm_unreachable("createTaskGroupWithFlags expects 1 or 2 arguments");
}
out.add(emitCreateTaskGroup(IGF, substitutions, groupFlags));
return;
}
if (Builtin.ID == BuiltinValueKind::DestroyTaskGroup) {
emitDestroyTaskGroup(IGF, args.claimNext());
return;
}
// Everything else cares about the (rvalue) argument.
if (Builtin.ID == BuiltinValueKind::CancelAsyncTask) {
emitTaskCancel(IGF, args.claimNext());
return;
}
if (Builtin.ID == BuiltinValueKind::ConvertTaskToJob) {
auto task = args.claimNext();
// The job object starts at the beginning of the task.
auto job = IGF.Builder.CreateBitCast(task, IGF.IGM.SwiftJobPtrTy);
out.add(job);
return;
}
if (Builtin.ID == BuiltinValueKind::InitializeDefaultActor ||
Builtin.ID == BuiltinValueKind::InitializeNonDefaultDistributedActor ||
Builtin.ID == BuiltinValueKind::DestroyDefaultActor) {
irgen::FunctionPointer fn;
switch (Builtin.ID) {
case BuiltinValueKind::InitializeDefaultActor:
fn = IGF.IGM.getDefaultActorInitializeFunctionPointer();
break;
case BuiltinValueKind::InitializeNonDefaultDistributedActor:
fn = IGF.IGM.getNonDefaultDistributedActorInitializeFunctionPointer();
break;
case BuiltinValueKind::DestroyDefaultActor:
fn = IGF.IGM.getDefaultActorDestroyFunctionPointer();
break;
default:
llvm_unreachable("unhandled builtin id!");
}
auto actor = args.claimNext();
actor = IGF.Builder.CreateBitCast(actor, IGF.IGM.RefCountedPtrTy);
auto call = IGF.Builder.CreateCall(fn, {actor});
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
return;
}
if (Builtin.ID == BuiltinValueKind::ResumeThrowingContinuationReturning ||
Builtin.ID == BuiltinValueKind::ResumeNonThrowingContinuationReturning) {
auto continuation = args.claimNext();
auto valueTy = argTypes[1];
auto valuePtr = args.claimNext();
bool throwing =
(Builtin.ID == BuiltinValueKind::ResumeThrowingContinuationReturning);
IGF.emitResumeAsyncContinuationReturning(continuation, valuePtr, valueTy,
throwing);
return;
}
if (Builtin.ID == BuiltinValueKind::ResumeThrowingContinuationThrowing) {
auto continuation = args.claimNext();
auto error = args.claimNext();
IGF.emitResumeAsyncContinuationThrowing(continuation, error);
return;
}
if (Builtin.ID == BuiltinValueKind::BuildMainActorExecutorRef) {
emitBuildMainActorExecutorRef(IGF, out);
return;
}
if (Builtin.ID == BuiltinValueKind::BuildDefaultActorExecutorRef) {
auto actor = args.claimNext();
emitBuildDefaultActorExecutorRef(IGF, actor, out);
return;
}
if (Builtin.ID == BuiltinValueKind::BuildOrdinaryTaskExecutorRef) {
auto actor = args.claimNext();
auto type = substitutions.getReplacementTypes()[0]->getCanonicalType();
auto conf = substitutions.getConformances()[0];
emitBuildOrdinaryTaskExecutorRef(IGF, actor, type, conf, out);
return;
}
if (Builtin.ID == BuiltinValueKind::BuildOrdinarySerialExecutorRef) {
auto actor = args.claimNext();
auto type = substitutions.getReplacementTypes()[0]->getCanonicalType();
auto conf = substitutions.getConformances()[0];
emitBuildOrdinarySerialExecutorRef(IGF, actor, type, conf, out);
return;
}
if (Builtin.ID == BuiltinValueKind::BuildComplexEqualitySerialExecutorRef) {
auto actor = args.claimNext();
auto type = substitutions.getReplacementTypes()[0]->getCanonicalType();
auto conf = substitutions.getConformances()[0];
emitBuildComplexEqualitySerialExecutorRef(IGF, actor, type, conf, out);
return;
}
if (Builtin.ID == BuiltinValueKind::InitializeDistributedRemoteActor) {
auto actorMetatype = args.claimNext();
emitDistributedActorInitializeRemote(IGF, resultType, actorMetatype, out);
return;
}
// If this is an LLVM IR intrinsic, lower it to an intrinsic call.
const IntrinsicInfo &IInfo = IGF.getSILModule().getIntrinsicInfo(FnId);
llvm::Intrinsic::ID IID = IInfo.ID;
// Emit non-mergeable traps only.
if (IGF.Builder.isTrapIntrinsic(IID)) {
IGF.Builder.CreateNonMergeableTrap(IGF.IGM, StringRef());
return;
}
// Implement the ptrauth builtins as no-ops when the Clang
// intrinsics are disabled.
if ((IID == llvm::Intrinsic::ptrauth_sign ||
IID == llvm::Intrinsic::ptrauth_auth ||
IID == llvm::Intrinsic::ptrauth_resign ||
IID == llvm::Intrinsic::ptrauth_strip) &&
!IGF.IGM.getClangASTContext().getLangOpts().PointerAuthIntrinsics) {
out.add(args.claimNext()); // Return the input pointer.
(void) args.claimNext(); // Ignore the key.
if (IID != llvm::Intrinsic::ptrauth_strip) {
(void) args.claimNext(); // Ignore the discriminator.
}
if (IID == llvm::Intrinsic::ptrauth_resign) {
(void) args.claimNext(); // Ignore the new key.
(void) args.claimNext(); // Ignore the new discriminator.
}
return;
}
if (IID != llvm::Intrinsic::not_intrinsic) {
SmallVector<llvm::Type*, 4> ArgTys;
for (auto T : IInfo.Types)
ArgTys.push_back(IGF.IGM.getStorageTypeForLowered(T->getCanonicalType()));
auto F = llvm::Intrinsic::getDeclaration(&IGF.IGM.Module,
(llvm::Intrinsic::ID)IID, ArgTys);
llvm::FunctionType *FT = F->getFunctionType();
SmallVector<llvm::Value*, 8> IRArgs;
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
IRArgs.push_back(args.claimNext());
llvm::Value *TheCall = IGF.Builder.CreateIntrinsicCall(
(llvm::Intrinsic::ID)IID, ArgTys, IRArgs);
if (!TheCall->getType()->isVoidTy())
extractScalarResults(IGF, TheCall->getType(), TheCall, out);
return;
}
if (Builtin.ID == BuiltinValueKind::StringObjectOr) {
llvm::Value *lhs = args.claimNext();
llvm::Value *rhs = args.claimNext();
llvm::Value *v = IGF.Builder.CreateOr(lhs, rhs);
return out.add(v);
}
// TODO: A linear series of ifs is suboptimal.
#define BUILTIN_SIL_OPERATION(id, name, overload) \
if (Builtin.ID == BuiltinValueKind::id) \
llvm_unreachable(name " builtin should be lowered away by SILGen!");
#define BUILTIN_CAST_OPERATION(id, name, attrs) \
if (Builtin.ID == BuiltinValueKind::id) \
return emitCastBuiltin(IGF, resultType, out, args, \
llvm::Instruction::id);
#define BUILTIN_CAST_OR_BITCAST_OPERATION(id, name, attrs) \
if (Builtin.ID == BuiltinValueKind::id) \
return emitCastOrBitCastBuiltin(IGF, resultType, out, args, \
BuiltinValueKind::id);
#define BUILTIN_BINARY_OPERATION_OVERLOADED_STATIC(id, name, attrs, overload) \
if (Builtin.ID == BuiltinValueKind::id) { \
llvm::Value *lhs = args.claimNext(); \
llvm::Value *rhs = args.claimNext(); \
llvm::Value *v = IGF.Builder.Create##id(lhs, rhs); \
return out.add(v); \
}
#define BUILTIN_BINARY_OPERATION_POLYMORPHIC(id, name) \
if (Builtin.ID == BuiltinValueKind::id) { \
/* This builtin must be guarded so that dynamically it is never called. */ \
IGF.emitTrap("invalid use of polymorphic builtin", /*Unreachable*/ false); \
auto returnValue = llvm::UndefValue::get(IGF.IGM.Int8PtrTy); \
/* Consume the arguments of the builtin. */ \
(void)args.claimAll(); \
return out.add(returnValue); \
}
#define BUILTIN_RUNTIME_CALL(id, name, attrs) \
if (Builtin.ID == BuiltinValueKind::id) { \
auto fn = IGF.IGM.get##id##FunctionPointer(); \
llvm::CallInst *call = IGF.Builder.CreateCall(fn, args.claimNext()); \
return out.add(call); \
}
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, uncheckedID, attrs, \
overload) \
if (Builtin.ID == BuiltinValueKind::id) { \
SmallVector<llvm::Type *, 2> ArgTys; \
auto opType = Builtin.Types[0]->getCanonicalType(); \
ArgTys.push_back(IGF.IGM.getStorageTypeForLowered(opType)); \
auto F = llvm::Intrinsic::getDeclaration( \
&IGF.IGM.Module, getLLVMIntrinsicIDForBuiltinWithOverflow(Builtin.ID), \
ArgTys); \
SmallVector<llvm::Value *, 2> IRArgs; \
IRArgs.push_back(args.claimNext()); \
IRArgs.push_back(args.claimNext()); \
args.claimNext(); \
llvm::Value *TheCall = IGF.Builder.CreateCall( \
cast<llvm::FunctionType>(F->getValueType()), F, IRArgs); \
extractScalarResults(IGF, TheCall->getType(), TheCall, out); \
return; \
}
// FIXME: We could generate the code to dynamically report the overflow if the
// third argument is true. Now, we just ignore it.
#define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) \
if (Builtin.ID == BuiltinValueKind::id) \
return emitCompareBuiltin(IGF, out, args, llvm::CmpInst::id);
#define BUILTIN_TYPE_TRAIT_OPERATION(id, name) \
if (Builtin.ID == BuiltinValueKind::id) \
return emitTypeTraitBuiltin(IGF, out, args, substitutions, &TypeBase::name);
#define BUILTIN(ID, Name, Attrs) // Ignore the rest.
#include "swift/AST/Builtins.def"
if (Builtin.ID == BuiltinValueKind::GlobalStringTablePointer) {
// This builtin should be used only on strings constructed from a
// string literal. If we ever get to the point of executing this builtin
// at run time, it implies an incorrect use of the builtin and must result
// in a trap.
IGF.emitTrap("invalid use of globalStringTablePointer",
/*Unreachable=*/false);
auto returnValue = llvm::UndefValue::get(IGF.IGM.Int8PtrTy);
// Consume the arguments of the builtin.
(void)args.claimAll();
return out.add(returnValue);
}
if (Builtin.ID == BuiltinValueKind::WillThrow) {
// willThrow is emitted like a Swift function call with the error in
// the error return register. We also have to pass a fake context
// argument due to how swiftcc works in clang.
auto error = args.claimNext();
if (IGF.IGM.Context.LangOpts.ThrowsAsTraps) {
return;
}
auto fn = IGF.IGM.getWillThrowFunctionPointer();
auto errorTy = IGF.IGM.Context.getErrorExistentialType();
auto errorBuffer = IGF.getCalleeErrorResultSlot(
SILType::getPrimitiveObjectType(errorTy), false);
IGF.Builder.CreateStore(error, errorBuffer);
auto context = llvm::UndefValue::get(IGF.IGM.Int8PtrTy);
llvm::CallInst *call = IGF.Builder.CreateCall(fn,
{context, errorBuffer.getAddress()});
call->setCallingConv(IGF.IGM.SwiftCC);
call->addFnAttr(llvm::Attribute::NoUnwind);
call->addParamAttr(1, llvm::Attribute::ReadOnly);
auto attrs = call->getAttributes();
IGF.IGM.addSwiftSelfAttributes(attrs, 0);
IGF.IGM.addSwiftErrorAttributes(attrs, 1);
call->setAttributes(attrs);
IGF.Builder.CreateStore(llvm::ConstantPointerNull::get(IGF.IGM.ErrorPtrTy),
errorBuffer);
return out.add(call);
}
if (Builtin.ID == BuiltinValueKind::FNeg) {
llvm::Value *rhs = args.claimNext();
llvm::Value *lhs = llvm::ConstantFP::get(rhs->getType(), "-0.0");
llvm::Value *v = IGF.Builder.CreateFSub(lhs, rhs);
return out.add(v);
}
if (Builtin.ID == BuiltinValueKind::AssumeTrue) {
llvm::Value *v = args.claimNext();
if (v->getType() == IGF.IGM.Int1Ty) {
IGF.Builder.CreateIntrinsicCall(llvm::Intrinsic::assume, v);
}
return;
}
if (Builtin.ID == BuiltinValueKind::AssumeNonNegative) {
llvm::Value *v = args.claimNext();
// Set a value range on the load instruction, which must be the argument of
// the builtin.
if (isa<llvm::LoadInst>(v) || isa<llvm::CallInst>(v)) {
// The load must be post-dominated by the builtin. Otherwise we would get
// a wrong assumption in the else-branch in this example:
// x = f()
// if condition {
// y = assumeNonNegative(x)
// } else {
// // x might be negative here!
// }
// For simplicity we just enforce that both the load and the builtin must
// be in the same block.
llvm::Instruction *I = static_cast<llvm::Instruction *>(v);
if (I->getParent() == IGF.Builder.GetInsertBlock()) {
llvm::LLVMContext &ctx = IGF.IGM.Module.getContext();
auto *intType = dyn_cast<llvm::IntegerType>(v->getType());
llvm::Metadata *rangeElems[] = {
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(intType, 0)),
llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(intType,
APInt::getSignedMaxValue(intType->getBitWidth())))
};
llvm::MDNode *range = llvm::MDNode::get(ctx, rangeElems);
I->setMetadata(llvm::LLVMContext::MD_range, range);
}
}
// Don't generate any code for the builtin.
return out.add(v);
}
if (Builtin.ID == BuiltinValueKind::AllocRaw) {
auto size = args.claimNext();
auto align = args.claimNext();
// Translate the alignment to a mask.
auto alignMask = IGF.Builder.CreateSub(align, IGF.IGM.getSize(Size(1)));
auto alloc = IGF.emitAllocRawCall(size, alignMask, "builtin-allocRaw");
out.add(alloc);
return;
}
if (Builtin.ID == BuiltinValueKind::DeallocRaw) {
auto pointer = args.claimNext();
auto size = args.claimNext();
auto align = args.claimNext();
// Translate the alignment to a mask.
auto alignMask = IGF.Builder.CreateSub(align, IGF.IGM.getSize(Size(1)));
IGF.emitDeallocRawCall(pointer, size, alignMask);
return;
}
if (Builtin.ID == BuiltinValueKind::Fence) {
SmallVector<Type, 4> Types;
StringRef BuiltinName =
getBuiltinBaseName(IGF.IGM.Context, FnId.str(), Types);
BuiltinName = BuiltinName.drop_front(strlen("fence_"));
// Decode the ordering argument, which is required.
auto underscore = BuiltinName.find('_');
auto ordering = decodeLLVMAtomicOrdering(BuiltinName.substr(0, underscore));
assert(ordering != llvm::AtomicOrdering::NotAtomic);
BuiltinName = BuiltinName.substr(underscore);
// Accept singlethread if present.
bool isSingleThread = BuiltinName.starts_with("_singlethread");
if (isSingleThread)
BuiltinName = BuiltinName.drop_front(strlen("_singlethread"));
assert(BuiltinName.empty() && "Mismatch with sema");
IGF.Builder.CreateFence(ordering, isSingleThread
? llvm::SyncScope::SingleThread
: llvm::SyncScope::System);
return;
}
if (Builtin.ID == BuiltinValueKind::Ifdef) {
// Ifdef not constant folded, which means it was not @_alwaysEmitIntoClient
IGF.IGM.error(
Inst->getLoc().getSourceLoc(),
"Builtin.ifdef can only be used in @_alwaysEmitIntoClient functions");
out.add(IGF.Builder.getInt32(0));
return;
}
if (Builtin.ID == BuiltinValueKind::CmpXChg) {
SmallVector<Type, 4> Types;
StringRef BuiltinName =
getBuiltinBaseName(IGF.IGM.Context, FnId.str(), Types);
BuiltinName = BuiltinName.drop_front(strlen("cmpxchg_"));
// Decode the success- and failure-ordering arguments, which are required.
SmallVector<StringRef, 4> Parts;
BuiltinName.split(Parts, "_");
assert(Parts.size() >= 2 && "Mismatch with sema");
auto successOrdering = decodeLLVMAtomicOrdering(Parts[0]);
auto failureOrdering = decodeLLVMAtomicOrdering(Parts[1]);
assert(successOrdering != llvm::AtomicOrdering::NotAtomic);
assert(failureOrdering != llvm::AtomicOrdering::NotAtomic);
auto NextPart = Parts.begin() + 2;
// Accept weak, volatile, and singlethread if present.
bool isWeak = false, isVolatile = false, isSingleThread = false;
if (NextPart != Parts.end() && *NextPart == "weak") {
isWeak = true;
++NextPart;
}
if (NextPart != Parts.end() && *NextPart == "volatile") {
isVolatile = true;
++NextPart;
}
if (NextPart != Parts.end() && *NextPart == "singlethread") {
isSingleThread = true;
++NextPart;
}
assert(NextPart == Parts.end() && "Mismatch with sema");
auto pointer = args.claimNext();
auto cmp = args.claimNext();
auto newval = args.claimNext();
llvm::Type *origTy = cmp->getType();
if (origTy->isPointerTy()) {
cmp = IGF.Builder.CreatePtrToInt(cmp, IGF.IGM.IntPtrTy);
newval = IGF.Builder.CreatePtrToInt(newval, IGF.IGM.IntPtrTy);
}
pointer = IGF.Builder.CreateBitCast(pointer,
llvm::PointerType::getUnqual(cmp->getType()));
llvm::Value *value = IGF.Builder.CreateAtomicCmpXchg(
pointer, cmp, newval, llvm::MaybeAlign(),
successOrdering, failureOrdering,
isSingleThread ? llvm::SyncScope::SingleThread
: llvm::SyncScope::System);
cast<llvm::AtomicCmpXchgInst>(value)->setVolatile(isVolatile);
cast<llvm::AtomicCmpXchgInst>(value)->setWeak(isWeak);
auto valueLoaded = IGF.Builder.CreateExtractValue(value, {0});
auto loadSuccessful = IGF.Builder.CreateExtractValue(value, {1});
if (origTy->isPointerTy())
valueLoaded = IGF.Builder.CreateIntToPtr(valueLoaded, origTy);
out.add(valueLoaded);
out.add(loadSuccessful);
return;
}
if (Builtin.ID == BuiltinValueKind::AtomicRMW) {
using namespace llvm;
SmallVector<Type, 4> Types;
StringRef BuiltinName = getBuiltinBaseName(IGF.IGM.Context,
FnId.str(), Types);
BuiltinName = BuiltinName.drop_front(strlen("atomicrmw_"));
auto underscore = BuiltinName.find('_');
StringRef SubOp = BuiltinName.substr(0, underscore);
AtomicRMWInst::BinOp SubOpcode = StringSwitch<AtomicRMWInst::BinOp>(SubOp)
.Case("xchg", AtomicRMWInst::Xchg)
.Case("add", AtomicRMWInst::Add)
.Case("sub", AtomicRMWInst::Sub)
.Case("and", AtomicRMWInst::And)
.Case("nand", AtomicRMWInst::Nand)
.Case("or", AtomicRMWInst::Or)
.Case("xor", AtomicRMWInst::Xor)
.Case("max", AtomicRMWInst::Max)
.Case("min", AtomicRMWInst::Min)
.Case("umax", AtomicRMWInst::UMax)
.Case("umin", AtomicRMWInst::UMin);
BuiltinName = BuiltinName.drop_front(underscore+1);
// Decode the ordering argument, which is required.
underscore = BuiltinName.find('_');
auto ordering = decodeLLVMAtomicOrdering(BuiltinName.substr(0, underscore));
assert(ordering != llvm::AtomicOrdering::NotAtomic);
BuiltinName = BuiltinName.substr(underscore);
// Accept volatile and singlethread if present.
bool isVolatile = BuiltinName.starts_with("_volatile");
if (isVolatile) BuiltinName = BuiltinName.drop_front(strlen("_volatile"));
bool isSingleThread = BuiltinName.starts_with("_singlethread");
if (isSingleThread)
BuiltinName = BuiltinName.drop_front(strlen("_singlethread"));
assert(BuiltinName.empty() && "Mismatch with sema");
auto pointer = args.claimNext();
auto val = args.claimNext();
// Handle atomic ops on pointers by casting to intptr_t.
llvm::Type *origTy = val->getType();
if (origTy->isPointerTy())
val = IGF.Builder.CreatePtrToInt(val, IGF.IGM.IntPtrTy);
pointer = IGF.Builder.CreateBitCast(pointer,
llvm::PointerType::getUnqual(val->getType()));
llvm::Value *value = IGF.Builder.CreateAtomicRMW(
SubOpcode, pointer, val, llvm::MaybeAlign(), ordering,
isSingleThread ? llvm::SyncScope::SingleThread
: llvm::SyncScope::System);
cast<AtomicRMWInst>(value)->setVolatile(isVolatile);
if (origTy->isPointerTy())
value = IGF.Builder.CreateIntToPtr(value, origTy);
out.add(value);
return;
}
if (Builtin.ID == BuiltinValueKind::AtomicLoad
|| Builtin.ID == BuiltinValueKind::AtomicStore) {
using namespace llvm;
SmallVector<Type, 4> Types;
StringRef BuiltinName = getBuiltinBaseName(IGF.IGM.Context,
FnId.str(), Types);
auto underscore = BuiltinName.find('_');
BuiltinName = BuiltinName.substr(underscore+1);
underscore = BuiltinName.find('_');
auto ordering = decodeLLVMAtomicOrdering(BuiltinName.substr(0, underscore));
assert(ordering != llvm::AtomicOrdering::NotAtomic);
BuiltinName = BuiltinName.substr(underscore);
// Accept volatile and singlethread if present.
bool isVolatile = BuiltinName.starts_with("_volatile");
if (isVolatile) BuiltinName = BuiltinName.drop_front(strlen("_volatile"));
bool isSingleThread = BuiltinName.starts_with("_singlethread");
if (isSingleThread)
BuiltinName = BuiltinName.drop_front(strlen("_singlethread"));
assert(BuiltinName.empty() && "Mismatch with sema");
auto pointer = args.claimNext();
auto &valueTI = IGF.getTypeInfoForUnlowered(Types[0]);
auto schema = valueTI.getSchema();
assert(schema.size() == 1 && "not a scalar type?!");
auto origValueTy = schema[0].getScalarType();
// If the type is floating-point, then we need to bitcast to integer.
auto valueTy = origValueTy;
if (valueTy->isFloatingPointTy()) {
valueTy = llvm::IntegerType::get(IGF.IGM.getLLVMContext(),
valueTy->getPrimitiveSizeInBits());
}
pointer = IGF.Builder.CreateBitCast(pointer, valueTy->getPointerTo());
if (Builtin.ID == BuiltinValueKind::AtomicLoad) {
auto load = IGF.Builder.CreateLoad(pointer, valueTy,
valueTI.getBestKnownAlignment());
load->setAtomic(ordering, isSingleThread ? llvm::SyncScope::SingleThread
: llvm::SyncScope::System);
load->setVolatile(isVolatile);
llvm::Value *value = load;
if (valueTy != origValueTy)
value = IGF.Builder.CreateBitCast(value, origValueTy);
out.add(value);
return;
} else if (Builtin.ID == BuiltinValueKind::AtomicStore) {
llvm::Value *value = args.claimNext();
if (valueTy != origValueTy)
value = IGF.Builder.CreateBitCast(value, valueTy);
auto store = IGF.Builder.CreateStore(value, pointer,
valueTI.getBestKnownAlignment());
store->setAtomic(ordering, isSingleThread ? llvm::SyncScope::SingleThread
: llvm::SyncScope::System);
store->setVolatile(isVolatile);
return;
} else {
llvm_unreachable("out of sync with outer conditional");
}
}
if (Builtin.ID == BuiltinValueKind::ExtractElement) {
using namespace llvm;
auto vector = args.claimNext();
auto index = args.claimNext();
out.add(IGF.Builder.CreateExtractElement(vector, index));
return;
}
if (Builtin.ID == BuiltinValueKind::InsertElement) {
using namespace llvm;
auto vector = args.claimNext();
auto newValue = args.claimNext();
auto index = args.claimNext();
out.add(IGF.Builder.CreateInsertElement(vector, newValue, index));
return;
}
if (Builtin.ID == BuiltinValueKind::ShuffleVector) {
using namespace llvm;
auto dict0 = args.claimNext();
auto dict1 = args.claimNext();
auto index = args.claimNext();
out.add(IGF.Builder.CreateShuffleVector(dict0, dict1, index));
return;
}
if (Builtin.ID == BuiltinValueKind::SToSCheckedTrunc ||
Builtin.ID == BuiltinValueKind::UToUCheckedTrunc ||
Builtin.ID == BuiltinValueKind::SToUCheckedTrunc) {
bool Signed = (Builtin.ID == BuiltinValueKind::SToSCheckedTrunc);
auto FromType = Builtin.Types[0]->getCanonicalType();
auto ToTy = cast<llvm::IntegerType>(
IGF.IGM.getStorageTypeForLowered(Builtin.Types[1]->getCanonicalType()));
auto FromTy = IGF.IGM.getStorageTypeForLowered(FromType);
// Handle the arbitrary-precision truncate specially.
if (isa<BuiltinIntegerLiteralType>(FromType)) {
emitIntegerLiteralCheckedTrunc(IGF, args, IGF.IGM.SizeTy, ToTy, Signed,
out);
return;
}
// Compute the result for SToSCheckedTrunc_IntFrom_IntTo(Arg):
// Res = trunc_IntTo(Arg)
// Ext = sext_IntFrom(Res)
// OverflowFlag = (Arg == Ext) ? 0 : 1
// return (resultVal, OverflowFlag)
//
// Compute the result for UToUCheckedTrunc_IntFrom_IntTo(Arg)
// and SToUCheckedTrunc_IntFrom_IntTo(Arg):
// Res = trunc_IntTo(Arg)
// Ext = zext_IntFrom(Res)
// OverflowFlag = (Arg == Ext) ? 0 : 1
// return (Res, OverflowFlag)
llvm::Value *Arg = args.claimNext();
llvm::Value *Res = IGF.Builder.CreateTrunc(Arg, ToTy);
llvm::Value *Ext = Signed ? IGF.Builder.CreateSExt(Res, FromTy) :
IGF.Builder.CreateZExt(Res, FromTy);
llvm::Value *OverflowCond = IGF.Builder.CreateICmpEQ(Arg, Ext);
llvm::Value *OverflowFlag = IGF.Builder.CreateSelect(OverflowCond,
llvm::ConstantInt::get(IGF.IGM.Int1Ty, 0),
llvm::ConstantInt::get(IGF.IGM.Int1Ty, 1));
// Return the tuple - the result + the overflow flag.
out.add(Res);
return out.add(OverflowFlag);
}
if (Builtin.ID == BuiltinValueKind::UToSCheckedTrunc) {
auto FromTy =
IGF.IGM.getStorageTypeForLowered(Builtin.Types[0]->getCanonicalType());
auto ToTy =
IGF.IGM.getStorageTypeForLowered(Builtin.Types[1]->getCanonicalType());
llvm::Type *ToMinusOneTy =
llvm::Type::getIntNTy(ToTy->getContext(), ToTy->getIntegerBitWidth() - 1);
// Compute the result for UToSCheckedTrunc_IntFrom_IntTo(Arg):
// Res = trunc_IntTo(Arg)
// Trunc = trunc_'IntTo-1bit'(Arg)
// Ext = zext_IntFrom(Trunc)
// OverflowFlag = (Arg == Ext) ? 0 : 1
// return (Res, OverflowFlag)
llvm::Value *Arg = args.claimNext();
llvm::Value *Res = IGF.Builder.CreateTrunc(Arg, ToTy);
llvm::Value *Trunc = IGF.Builder.CreateTrunc(Arg, ToMinusOneTy);
llvm::Value *Ext = IGF.Builder.CreateZExt(Trunc, FromTy);
llvm::Value *OverflowCond = IGF.Builder.CreateICmpEQ(Arg, Ext);
llvm::Value *OverflowFlag = IGF.Builder.CreateSelect(OverflowCond,
llvm::ConstantInt::get(IGF.IGM.Int1Ty, 0),
llvm::ConstantInt::get(IGF.IGM.Int1Ty, 1));
// Return the tuple: (the result, the overflow flag).
out.add(Res);
return out.add(OverflowFlag);
}
// We are currently emitting code for '_convertFromBuiltinIntegerLiteral',
// which will call the builtin and pass it a non-compile-time-const parameter.
if (Builtin.ID == BuiltinValueKind::IntToFPWithOverflow) {
assert(Builtin.Types[0]->is<BuiltinIntegerLiteralType>());
auto toType =
IGF.IGM.getStorageTypeForLowered(Builtin.Types[1]->getCanonicalType());
auto result = emitIntegerLiteralToFP(IGF, args, toType);
out.add(result);
return;
}
if (Builtin.ID == BuiltinValueKind::BitWidth) {
assert(Builtin.Types[0]->is<BuiltinIntegerLiteralType>());
out.add(emitIntLiteralBitWidth(IGF, args));
return;
}
if (Builtin.ID == BuiltinValueKind::IsNegative) {
assert(Builtin.Types[0]->is<BuiltinIntegerLiteralType>());
out.add(emitIntLiteralIsNegative(IGF, args));
return;
}
if (Builtin.ID == BuiltinValueKind::WordAtIndex) {
assert(Builtin.Types[0]->is<BuiltinIntegerLiteralType>());
out.add(emitIntLiteralWordAtIndex(IGF, args));
return;
}
if (Builtin.ID == BuiltinValueKind::Once
|| Builtin.ID == BuiltinValueKind::OnceWithContext) {
// The input type is statically (Builtin.RawPointer, @convention(thin) () -> ()).
llvm::Value *PredPtr = args.claimNext();
// Cast the predicate to a OnceTy pointer.
PredPtr = IGF.Builder.CreateBitCast(PredPtr, IGF.IGM.OnceTy->getPointerTo());
llvm::Value *FnCode = args.claimNext();
// Get the context if any.
llvm::Value *Context;
if (Builtin.ID == BuiltinValueKind::OnceWithContext) {
Context = args.claimNext();
} else {
Context = llvm::UndefValue::get(IGF.IGM.Int8PtrTy);
}
// If we know the platform runtime's "done" value, emit the check inline.
llvm::BasicBlock *doneBB = nullptr;
llvm::BasicBlock *beforeBB = IGF.Builder.GetInsertBlock();
if (auto ExpectedPred = IGF.IGM.TargetInfo.OnceDonePredicateValue) {
auto PredValue = IGF.Builder.CreateLoad(PredPtr, IGF.IGM.OnceTy,
IGF.IGM.getPointerAlignment());
auto ExpectedPredValue = llvm::ConstantInt::getSigned(IGF.IGM.OnceTy,
*ExpectedPred);
auto PredIsDone = IGF.Builder.CreateICmpEQ(PredValue, ExpectedPredValue);
PredIsDone = IGF.Builder.CreateExpect(PredIsDone,
llvm::ConstantInt::get(IGF.IGM.Int1Ty, 1));
auto notDoneBB = IGF.createBasicBlock("once_not_done");
doneBB = IGF.createBasicBlock("once_done");
IGF.Builder.CreateCondBr(PredIsDone, doneBB, notDoneBB);
IGF.Builder.SetInsertPoint(&IGF.CurFn->back());
IGF.Builder.emitBlock(notDoneBB);
}
// Emit the runtime "once" call.
auto call = IGF.Builder.CreateCall(IGF.IGM.getOnceFunctionPointer(),
{PredPtr, FnCode, Context});
call->setCallingConv(IGF.IGM.DefaultCC);
// If we emitted the "done" check inline, join the branches.
if (auto ExpectedPred = IGF.IGM.TargetInfo.OnceDonePredicateValue) {
IGF.Builder.CreateBr(doneBB);
IGF.Builder.SetInsertPoint(beforeBB);
IGF.Builder.emitBlock(doneBB);
// We can assume the once predicate is in the "done" state now.
auto PredValue = IGF.Builder.CreateLoad(PredPtr, IGF.IGM.OnceTy,
IGF.IGM.getPointerAlignment());
auto ExpectedPredValue = llvm::ConstantInt::getSigned(IGF.IGM.OnceTy,
*ExpectedPred);
auto PredIsDone = IGF.Builder.CreateICmpEQ(PredValue, ExpectedPredValue);
IGF.Builder.CreateAssumption(PredIsDone);
}
// No return value.
return;
}
if (Builtin.ID == BuiltinValueKind::AssertConf) {
// Replace the call to assert_configuration by the Debug configuration
// value.
// TODO: assert(IGF.IGM.getOptions().AssertConfig ==
// SILOptions::DisableReplacement);
// Make sure this only happens in a mode where we build a library dylib.
llvm::Value *DebugAssert = IGF.Builder.getInt32(SILOptions::Debug);
out.add(DebugAssert);
return;
}
if (Builtin.ID == BuiltinValueKind::DestroyArray) {
// The input type is (T.Type, Builtin.RawPointer, Builtin.Word).
/* metatype (which may be thin) */
if (args.size() == 3)
args.claimNext();
llvm::Value *ptr = args.claimNext();
llvm::Value *count = args.claimNext();
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
// In Embedded Swift we don't have metadata and witness tables, so we can't
// just use TypeInfo's destroyArray, which needs metadata to emit a call to
// swift_arrayDestroy. Emit a loop to destroy elements directly instead.
if (IGF.IGM.Context.LangOpts.hasFeature(Feature::Embedded)) {
SILType elemTy = valueTy.first;
const TypeInfo &elemTI = valueTy.second;
if (elemTI.isTriviallyDestroyable(ResilienceExpansion::Maximal) ==
IsTriviallyDestroyable)
return;
llvm::Value *firstElem =
IGF.Builder.CreatePtrToInt(IGF.Builder.CreateBitCast(
ptr, elemTI.getStorageType()->getPointerTo()), IGF.IGM.IntPtrTy);
auto *origBB = IGF.Builder.GetInsertBlock();
auto *headerBB = IGF.createBasicBlock("loop_header");
auto *loopBB = IGF.createBasicBlock("loop_body");
auto *exitBB = IGF.createBasicBlock("loop_exit");
IGF.Builder.CreateBr(headerBB);
IGF.Builder.emitBlock(headerBB);
auto *phi = IGF.Builder.CreatePHI(count->getType(), 2);
phi->addIncoming(llvm::ConstantInt::get(count->getType(), 0), origBB);
llvm::Value *cmp = IGF.Builder.CreateICmpSLT(phi, count);
IGF.Builder.CreateCondBr(cmp, loopBB, exitBB);
IGF.Builder.emitBlock(loopBB);
llvm::Value *offset =
IGF.Builder.CreateMul(phi, elemTI.getStaticStride(IGF.IGM));
llvm::Value *added = IGF.Builder.CreateAdd(firstElem, offset);
llvm::Value *addr = IGF.Builder.CreateIntToPtr(
added, elemTI.getStorageType()->getPointerTo());
bool isOutlined = false;
elemTI.destroy(IGF, elemTI.getAddressForPointer(addr), elemTy,
isOutlined);
auto *one = llvm::ConstantInt::get(count->getType(), 1);
auto *add = IGF.Builder.CreateAdd(phi, one);
phi->addIncoming(add, loopBB);
IGF.Builder.CreateBr(headerBB);
IGF.Builder.emitBlock(exitBB);
return;
}
ptr = IGF.Builder.CreateBitCast(ptr,
valueTy.second.getStorageType()->getPointerTo());
Address array = valueTy.second.getAddressForPointer(ptr);
valueTy.second.destroyArray(IGF, array, count, valueTy.first);
return;
}
if (Builtin.ID == BuiltinValueKind::CopyArray ||
Builtin.ID == BuiltinValueKind::TakeArrayNoAlias ||
Builtin.ID == BuiltinValueKind::TakeArrayFrontToBack ||
Builtin.ID == BuiltinValueKind::TakeArrayBackToFront ||
Builtin.ID == BuiltinValueKind::AssignCopyArrayNoAlias ||
Builtin.ID == BuiltinValueKind::AssignCopyArrayFrontToBack ||
Builtin.ID == BuiltinValueKind::AssignCopyArrayBackToFront ||
Builtin.ID == BuiltinValueKind::AssignTakeArray) {
// The input type is (T.Type, Builtin.RawPointer, Builtin.RawPointer, Builtin.Word).
/* metatype (which may be thin) */
if (args.size() == 4)
args.claimNext();
llvm::Value *dest = args.claimNext();
llvm::Value *src = args.claimNext();
llvm::Value *count = args.claimNext();
// In Embedded Swift we don't have metadata and witness tables, so we can't
// just use TypeInfo's initialize... and assign... APIs, which need
// metadata to emit calls. Emit a loop to process elements directly instead.
if (IGF.IGM.Context.LangOpts.hasFeature(Feature::Embedded)) {
auto tyPair = getLoweredTypeAndTypeInfo(
IGF.IGM, substitutions.getReplacementTypes()[0]);
SILType elemTy = tyPair.first;
const TypeInfo &elemTI = tyPair.second;
// Do nothing for zero-sized POD array elements.
if (llvm::Constant *SizeConst = elemTI.getStaticSize(IGF.IGM)) {
auto *SizeInt = cast<llvm::ConstantInt>(SizeConst);
if (SizeInt->getSExtValue() == 0 &&
elemTI.isTriviallyDestroyable(ResilienceExpansion::Maximal) ==
IsTriviallyDestroyable)
return;
}
llvm::Value *firstSrcElem = IGF.Builder.CreatePtrToInt(
IGF.Builder.CreateBitCast(src,
elemTI.getStorageType()->getPointerTo()),
IGF.IGM.IntPtrTy);
llvm::Value *firstDestElem = IGF.Builder.CreatePtrToInt(
IGF.Builder.CreateBitCast(dest,
elemTI.getStorageType()->getPointerTo()),
IGF.IGM.IntPtrTy);
auto *origBB = IGF.Builder.GetInsertBlock();
auto *headerBB = IGF.createBasicBlock("loop_header");
auto *loopBB = IGF.createBasicBlock("loop_body");
auto *exitBB = IGF.createBasicBlock("loop_exit");
IGF.Builder.CreateBr(headerBB);
IGF.Builder.emitBlock(headerBB);
auto *phi = IGF.Builder.CreatePHI(count->getType(), 2);
phi->addIncoming(llvm::ConstantInt::get(count->getType(), 0), origBB);
llvm::Value *cmp = IGF.Builder.CreateICmpSLT(phi, count);
IGF.Builder.CreateCondBr(cmp, loopBB, exitBB);
IGF.Builder.emitBlock(loopBB);
llvm::Value *idx = phi;
switch (Builtin.ID) {
case BuiltinValueKind::TakeArrayBackToFront:
case BuiltinValueKind::AssignCopyArrayBackToFront: {
llvm::Value *countMinusIdx = IGF.Builder.CreateSub(count, phi);
auto *one = llvm::ConstantInt::get(count->getType(), 1);
idx = IGF.Builder.CreateSub(countMinusIdx, one);
break;
}
default:
break;
}
llvm::Value *offset =
IGF.Builder.CreateMul(idx, elemTI.getStaticStride(IGF.IGM));
llvm::Value *srcAdded = IGF.Builder.CreateAdd(firstSrcElem, offset);
auto *srcElem = IGF.Builder.CreateIntToPtr(
srcAdded, elemTI.getStorageType()->getPointerTo());
llvm::Value *dstAdded = IGF.Builder.CreateAdd(firstDestElem, offset);
auto *destElem = IGF.Builder.CreateIntToPtr(
dstAdded, elemTI.getStorageType()->getPointerTo());
Address destAddr = elemTI.getAddressForPointer(destElem);
Address srcAddr = elemTI.getAddressForPointer(srcElem);
bool isOutlined = false;
switch (Builtin.ID) {
case BuiltinValueKind::CopyArray:
elemTI.initializeWithCopy(IGF, destAddr, srcAddr, elemTy, isOutlined);
break;
case BuiltinValueKind::TakeArrayNoAlias:
case BuiltinValueKind::TakeArrayFrontToBack:
case BuiltinValueKind::TakeArrayBackToFront:
elemTI.initializeWithTake(IGF, destAddr, srcAddr, elemTy, isOutlined);
break;
case BuiltinValueKind::AssignCopyArrayNoAlias:
case BuiltinValueKind::AssignCopyArrayFrontToBack:
case BuiltinValueKind::AssignCopyArrayBackToFront:
elemTI.assignWithCopy(IGF, destAddr, srcAddr, elemTy, isOutlined);
break;
case BuiltinValueKind::AssignTakeArray:
elemTI.assignWithTake(IGF, destAddr, srcAddr, elemTy, isOutlined);
break;
default:
llvm_unreachable("out of sync with if condition");
}
auto *one = llvm::ConstantInt::get(count->getType(), 1);
auto *addIdx = IGF.Builder.CreateAdd(phi, one);
phi->addIncoming(addIdx, loopBB);
IGF.Builder.CreateBr(headerBB);
IGF.Builder.emitBlock(exitBB);
return;
}
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
dest = IGF.Builder.CreateBitCast(dest,
valueTy.second.getStorageType()->getPointerTo());
src = IGF.Builder.CreateBitCast(src,
valueTy.second.getStorageType()->getPointerTo());
Address destArray = valueTy.second.getAddressForPointer(dest);
Address srcArray = valueTy.second.getAddressForPointer(src);
switch (Builtin.ID) {
case BuiltinValueKind::CopyArray:
valueTy.second.initializeArrayWithCopy(IGF, destArray, srcArray, count,
valueTy.first);
break;
case BuiltinValueKind::TakeArrayNoAlias:
valueTy.second.initializeArrayWithTakeNoAlias(IGF, destArray, srcArray,
count, valueTy.first);
break;
case BuiltinValueKind::TakeArrayFrontToBack:
valueTy.second.initializeArrayWithTakeFrontToBack(IGF, destArray, srcArray,
count, valueTy.first);
break;
case BuiltinValueKind::TakeArrayBackToFront:
valueTy.second.initializeArrayWithTakeBackToFront(IGF, destArray, srcArray,
count, valueTy.first);
break;
case BuiltinValueKind::AssignCopyArrayNoAlias:
valueTy.second.assignArrayWithCopyNoAlias(IGF, destArray, srcArray, count,
valueTy.first);
break;
case BuiltinValueKind::AssignCopyArrayFrontToBack:
valueTy.second.assignArrayWithCopyFrontToBack(IGF, destArray, srcArray,
count, valueTy.first);
break;
case BuiltinValueKind::AssignCopyArrayBackToFront:
valueTy.second.assignArrayWithCopyBackToFront(IGF, destArray, srcArray,
count, valueTy.first);
break;
case BuiltinValueKind::AssignTakeArray:
valueTy.second.assignArrayWithTake(IGF, destArray, srcArray, count,
valueTy.first);
break;
default:
llvm_unreachable("out of sync with if condition");
}
return;
}
if (Builtin.ID == BuiltinValueKind::CondUnreachable) {
// conditionallyUnreachable is a no-op by itself. Since it's noreturn, there
// should be a true unreachable terminator right after.
return;
}
if (Builtin.ID == BuiltinValueKind::ZeroInitializer) {
// Build a zero initializer of the result type.
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
if (args.size() > 0) {
// `memset` the memory addressed by the argument.
auto address = args.claimNext();
IGF.Builder.CreateMemSet(valueTy.second.getAddressForPointer(address),
llvm::ConstantInt::get(IGF.IGM.Int8Ty, 0),
valueTy.second.getSize(IGF, argTypes[0]));
} else {
auto schema = valueTy.second.getSchema();
for (auto &elt : schema) {
out.add(llvm::Constant::getNullValue(elt.getScalarType()));
}
}
return;
}
if (Builtin.ID == BuiltinValueKind::GetObjCTypeEncoding) {
(void)args.claimAll();
Type valueTy = substitutions.getReplacementTypes()[0];
// Get the type encoding for the associated clang type.
auto clangTy = IGF.IGM.getClangType(valueTy->getCanonicalType());
std::string encoding;
IGF.IGM.getClangASTContext().getObjCEncodingForType(clangTy, encoding);
auto globalString = IGF.IGM.getAddrOfGlobalString(encoding);
out.add(globalString);
return;
}
if (Builtin.ID == BuiltinValueKind::TSanInoutAccess) {
auto address = args.claimNext();
// The tsanInoutAccess builtin takes a single argument, the address
// of the accessed storage
SILType accessedType = argTypes[0];
// Empty types (such as structs without stored properties) have a
// meaningless value for their address. We not should call into the
// TSan runtime to check for data races on accesses on such addresses.
if (!IGF.IGM.getTypeInfo(accessedType)
.isKnownEmpty(ResilienceExpansion::Maximal)) {
IGF.emitTSanInoutAccessCall(address);
}
return;
}
if (Builtin.ID == BuiltinValueKind::TargetOSVersionAtLeast) {
auto major = args.claimNext();
auto minor = args.claimNext();
auto patch = args.claimNext();
auto result = IGF.emitTargetOSVersionAtLeastCall(major, minor, patch);
out.add(result);
return;
}
if (Builtin.ID == BuiltinValueKind::TypePtrAuthDiscriminator) {
(void)args.claimAll();
Type valueTy = substitutions.getReplacementTypes()[0];
// The type should lower statically to a SILFunctionType.
auto loweredTy = IGF.IGM.getLoweredType(valueTy).castTo<SILFunctionType>();
out.add(PointerAuthEntity(loweredTy).getTypeDiscriminator(IGF.IGM));
return;
}
if (Builtin.ID == BuiltinValueKind::IsSameMetatype) {
auto metatypeLHS = args.claimNext();
auto metatypeRHS = args.claimNext();
(void)args.claimAll();
llvm::Value *metatypeLHSCasted =
IGF.Builder.CreateBitCast(metatypeLHS, IGF.IGM.Int8PtrTy);
llvm::Value *metatypeRHSCasted =
IGF.Builder.CreateBitCast(metatypeRHS, IGF.IGM.Int8PtrTy);
out.add(IGF.Builder.CreateICmpEQ(metatypeLHSCasted, metatypeRHSCasted));
return;
}
if (Builtin.ID == BuiltinValueKind::AutoDiffCreateLinearMapContextWithType) {
auto topLevelSubcontextMetaType = args.claimNext();
out.add(emitAutoDiffCreateLinearMapContextWithType(
IGF, topLevelSubcontextMetaType)
.getAddress());
return;
}
if (Builtin.ID == BuiltinValueKind::AutoDiffProjectTopLevelSubcontext) {
Address allocatorAddr(args.claimNext(), IGF.IGM.RefCountedStructTy,
IGF.IGM.getPointerAlignment());
out.add(
emitAutoDiffProjectTopLevelSubcontext(IGF, allocatorAddr).getAddress());
return;
}
if (Builtin.ID == BuiltinValueKind::AutoDiffAllocateSubcontextWithType) {
Address allocatorAddr(args.claimNext(), IGF.IGM.RefCountedStructTy,
IGF.IGM.getPointerAlignment());
auto subcontextMetatype = args.claimNext();
out.add(emitAutoDiffAllocateSubcontextWithType(IGF, allocatorAddr,
subcontextMetatype)
.getAddress());
return;
}
if (Builtin.ID == BuiltinValueKind::Copy) {
auto input = args.claimNext();
auto result = args.claimNext();
SILType addrTy = argTypes[0];
const TypeInfo &addrTI = IGF.getTypeInfo(addrTy);
Address inputAttr = addrTI.getAddressForPointer(input);
Address resultAttr = addrTI.getAddressForPointer(result);
addrTI.initializeWithCopy(IGF, resultAttr, inputAttr, addrTy, false);
return;
}
if (Builtin.ID == BuiltinValueKind::AssumeAlignment) {
// A no-op pointer cast that passes on its first value. Common occurrences of
// this builtin should already be removed with the alignment guarantee moved
// to the subsequent load or store.
//
// TODO: Consider lowering to an LLVM intrinsic if there is any benefit:
// 'call void @llvm.assume(i1 true) ["align"(i32* %arg0, i32 %arg1)]'
auto pointerSrc = args.claimNext();
(void)args.claimAll();
out.add(pointerSrc);
return;
}
if (Builtin.ID == BuiltinValueKind::AllocVector) {
(void)args.claimAll();
IGF.emitTrap("escaped vector allocation", /*EmitUnreachable=*/true);
out.add(llvm::UndefValue::get(IGF.IGM.Int8PtrTy));
llvm::BasicBlock *contBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
IGF.Builder.emitBlock(contBB);
return;
}
if (Builtin.ID == BuiltinValueKind::GetEnumTag) {
auto arg = args.claimNext();
auto ty = argTypes[0];
auto &ti = IGF.getTypeInfo(ty);
// If the type is just an archetype, then we know nothing about the enum
// strategy for it. Just call the vwt function. Otherwise, we know that this
// is at least an enum and can optimize away some of the cost of getEnumTag.
if (!ty.is<ArchetypeType>()) {
assert(ty.getEnumOrBoundGenericEnum() && "expected enum type in "
"getEnumTag builtin!");
auto &strategy = getEnumImplStrategy(IGF.IGM, ty);
out.add(strategy.emitGetEnumTag(IGF, ty, ti.getAddressForPointer(arg)));
return;
}
out.add(emitGetEnumTagCall(IGF, ty, ti.getAddressForPointer(arg)));
return;
}
if (Builtin.ID == BuiltinValueKind::InjectEnumTag) {
auto input = args.claimNext();
auto tag = args.claimNext();
auto inputTy = argTypes[0];
auto &inputTi = IGF.getTypeInfo(inputTy);
// In order for us to call 'storeTag' on an enum strategy (when type is not
// an archetype), we'd need to be able to map the tag back into an
// EnumElementDecl which might be fragile. We don't really care about being
// able to optimize this vwt function call anyway because we expect most
// use cases to be the truly dynamic case where the compiler has no static
// information about the type to be able to optimize it away. Just call the
// vwt function.
emitDestructiveInjectEnumTagCall(IGF, inputTy, tag,
inputTi.getAddressForPointer(input));
return;
}
// LLVM must not see the address generated here as 'invariant' or immutable
// ever. A raw layout's address defies all formal access, so immutable looking
// uses may actually mutate the underlying value!
if (Builtin.ID == BuiltinValueKind::AddressOfRawLayout) {
auto addr = args.claimNext();
auto value = IGF.Builder.CreateBitCast(addr, IGF.IGM.Int8PtrTy);
out.add(value);
return;
}
llvm_unreachable("IRGen unimplemented for this builtin!");
}
|