1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
|
//===--- GenCast.cpp - Swift IR Generation for dynamic casts --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for dynamic casts.
//
//===----------------------------------------------------------------------===//
#include "GenCast.h"
#include "Explosion.h"
#include "GenEnum.h"
#include "GenExistential.h"
#include "GenHeap.h"
#include "GenProto.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "MetadataRequest.h"
#include "TypeInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/ABI/MetadataValues.h"
using namespace swift;
using namespace irgen;
/// Compute the flags to pass to swift_dynamicCast.
static DynamicCastFlags getDynamicCastFlags(CastConsumptionKind consumptionKind,
CheckedCastMode mode) {
DynamicCastFlags flags = DynamicCastFlags::Default;
if (mode == CheckedCastMode::Unconditional)
flags |= DynamicCastFlags::Unconditional;
if (shouldDestroyOnFailure(consumptionKind))
flags |= DynamicCastFlags::DestroyOnFailure;
if (shouldTakeOnSuccess(consumptionKind))
flags |= DynamicCastFlags::TakeOnSuccess;
return flags;
}
/// Emit a checked cast, starting with a value in memory.
llvm::Value *irgen::emitCheckedCast(IRGenFunction &IGF,
Address src,
CanType srcType,
Address dest,
CanType targetType,
CastConsumptionKind consumptionKind,
CheckedCastMode mode) {
// TODO: attempt to specialize this based on the known types.
DynamicCastFlags flags = getDynamicCastFlags(consumptionKind, mode);
// Cast both addresses to opaque pointer type.
dest = IGF.Builder.CreateElementBitCast(dest, IGF.IGM.OpaqueTy);
src = IGF.Builder.CreateElementBitCast(src, IGF.IGM.OpaqueTy);
// Load type metadata for the source's static type and the target type.
llvm::Value *srcMetadata = IGF.emitTypeMetadataRef(srcType);
llvm::Value *targetMetadata = IGF.emitTypeMetadataRef(targetType);
llvm::Value *args[] = {
dest.getAddress(), src.getAddress(),
srcMetadata, targetMetadata,
IGF.IGM.getSize(Size(unsigned(flags)))
};
auto call =
IGF.Builder.CreateCall(IGF.IGM.getDynamicCastFunctionPointer(), args);
call->setDoesNotThrow();
return call;
}
FailableCastResult irgen::emitClassIdenticalCast(IRGenFunction &IGF,
llvm::Value *from,
SILType fromType,
SILType toType,
GenericSignature fnSig) {
// Check metatype objects directly. Don't try to find their meta-metatype.
auto isMetatype = false;
if (auto metaType = toType.getAs<MetatypeType>()) {
isMetatype = true;
assert(metaType->getRepresentation() != MetatypeRepresentation::ObjC &&
"not implemented");
toType = IGF.IGM.getLoweredType(metaType.getInstanceType());
}
// Emit a reference to the heap metadata for the target type.
// If we're allowed to do a conservative check, try to just use the
// global class symbol. If the class has been re-allocated, this
// might not be the heap metadata actually in use, and hence the
// test might fail; but it's a much faster check.
// TODO: use ObjC class references
llvm::Value *targetMetadata;
if ((targetMetadata =
tryEmitConstantHeapMetadataRef(IGF.IGM, toType.getASTType(),
/*allowUninitialized*/ false))) {
// ok
} else {
targetMetadata
= emitClassHeapMetadataRef(IGF, toType.getASTType(),
MetadataValueType::ObjCClass,
MetadataState::Complete,
/*allowUninitialized*/ false);
}
// Handle checking a metatype object's type by directly comparing the address
// of the metatype value to the subclass's static metatype instance.
//
// %1 = value_metatype $Super.Type, %0 : $A
// checked_cast_br [exact] Super.Type in %1 : $Super.Type to $Sub.Type
// =>
// icmp eq %1, @metadata.Sub
llvm::Value *objectMetadata = isMetatype ? from :
emitHeapMetadataRefForHeapObject(IGF, from, fromType, fnSig);
objectMetadata = IGF.Builder.CreateBitCast(objectMetadata,
targetMetadata->getType());
llvm::Value *cond = IGF.Builder.CreateICmpEQ(objectMetadata, targetMetadata);
return {cond, from};
}
/// Returns an ArrayRef with the set of arguments to pass to a dynamic cast call.
///
/// `argsBuf` should be passed in as a reference to an array with three nullptr
/// values at the end. These will be dropped from the return ArrayRef for a
/// conditional cast, or filled in with source location arguments for an
/// unconditional cast.
template<unsigned n>
static ArrayRef<llvm::Value*>
getDynamicCastArguments(IRGenFunction &IGF,
llvm::Value *(&argsBuf)[n], CheckedCastMode mode
/*TODO , SILLocation location*/)
{
switch (mode) {
case CheckedCastMode::Unconditional:
// TODO: Pass along location info if available for unconditional casts, so
// that the runtime error for a failed cast can report the source of the
// error from user code.
argsBuf[n-3] = llvm::ConstantPointerNull::get(IGF.IGM.Int8PtrTy);
argsBuf[n-2] = llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0);
argsBuf[n-1] = llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0);
return argsBuf;
case CheckedCastMode::Conditional:
return llvm::ArrayRef(argsBuf, n - 3);
break;
}
llvm_unreachable("covered switch");
}
/// Emit a checked unconditional downcast of a class value.
llvm::Value *irgen::emitClassDowncast(IRGenFunction &IGF, llvm::Value *from,
CanType toType, CheckedCastMode mode) {
// Emit the value we're casting from.
if (from->getType() != IGF.IGM.Int8PtrTy)
from = IGF.Builder.CreateBitOrPointerCast(from, IGF.IGM.Int8PtrTy);
// Emit a reference to the metadata and figure out what cast
// function to use.
llvm::Value *metadataRef;
FunctionPointer castFn;
// If true, the target class is not known at compile time because it is a
// class-bounded archetype or the dynamic Self type.
bool nonSpecificClass = false;
// Get the best known type information about the destination type.
ClassDecl *destClass = nullptr;
if (auto archetypeTy = dyn_cast<ArchetypeType>(toType)) {
nonSpecificClass = true;
if (auto superclassTy = archetypeTy->getSuperclass())
destClass = superclassTy->getClassOrBoundGenericClass();
} else if (auto selfTy = dyn_cast<DynamicSelfType>(toType)) {
nonSpecificClass = true;
destClass = selfTy->getSelfType()->getClassOrBoundGenericClass();
} else {
destClass = toType.getClassOrBoundGenericClass();
assert(destClass != nullptr);
}
// If the destination type is known to have a Swift-compatible
// implementation, use the most specific entrypoint.
if (destClass && destClass->hasKnownSwiftImplementation()) {
metadataRef = IGF.emitTypeMetadataRef(toType);
switch (mode) {
case CheckedCastMode::Unconditional:
castFn = IGF.IGM.getDynamicCastClassUnconditionalFunctionPointer();
break;
case CheckedCastMode::Conditional:
castFn = IGF.IGM.getDynamicCastClassFunctionPointer();
break;
}
// If the destination type is a CF type or a non-specific
// class-bounded archetype, use the most general cast entrypoint.
} else if (nonSpecificClass ||
destClass->getForeignClassKind()==ClassDecl::ForeignKind::CFType) {
metadataRef = IGF.emitTypeMetadataRef(toType);
switch (mode) {
case CheckedCastMode::Unconditional:
castFn = IGF.IGM.getDynamicCastUnknownClassUnconditionalFunctionPointer();
break;
case CheckedCastMode::Conditional:
castFn = IGF.IGM.getDynamicCastUnknownClassFunctionPointer();
break;
}
// Otherwise, use the ObjC-specific entrypoint.
} else {
metadataRef = emitObjCHeapMetadataRef(IGF, destClass);
switch (mode) {
case CheckedCastMode::Unconditional:
castFn = IGF.IGM.getDynamicCastObjCClassUnconditionalFunctionPointer();
break;
case CheckedCastMode::Conditional:
castFn = IGF.IGM.getDynamicCastObjCClassFunctionPointer();
break;
}
}
if (metadataRef->getType() != IGF.IGM.Int8PtrTy)
metadataRef = IGF.Builder.CreateBitCast(metadataRef, IGF.IGM.Int8PtrTy);
// Call the (unconditional) dynamic cast.
llvm::Value *argsBuf[] = {
from,
metadataRef,
nullptr,
nullptr,
nullptr,
};
auto call = IGF.Builder.CreateCall(
castFn, getDynamicCastArguments(IGF, argsBuf, mode));
call->setDoesNotThrow();
llvm::Type *subTy = IGF.getTypeInfoForUnlowered(toType).getStorageType();
return IGF.Builder.CreateBitCast(call, subTy);
}
/// Emit a checked cast of a metatype.
void irgen::emitMetatypeDowncast(IRGenFunction &IGF,
llvm::Value *metatype,
CanMetatypeType toMetatype,
CheckedCastMode mode,
Explosion &ex) {
// Pick a runtime entry point and target metadata based on what kind of
// representation we're casting.
FunctionPointer castFn;
llvm::Value *toMetadata;
switch (toMetatype->getRepresentation()) {
case MetatypeRepresentation::Thick: {
// Get the Swift metadata for the type we're checking.
toMetadata = IGF.emitTypeMetadataRef(toMetatype.getInstanceType());
switch (mode) {
case CheckedCastMode::Unconditional:
castFn = IGF.IGM.getDynamicCastMetatypeUnconditionalFunctionPointer();
break;
case CheckedCastMode::Conditional:
castFn = IGF.IGM.getDynamicCastMetatypeFunctionPointer();
break;
}
break;
}
case MetatypeRepresentation::ObjC: {
assert(IGF.IGM.ObjCInterop && "should have objc runtime");
// Get the ObjC metadata for the type we're checking.
toMetadata = emitClassHeapMetadataRef(IGF, toMetatype.getInstanceType(),
MetadataValueType::ObjCClass,
MetadataState::Complete);
switch (mode) {
case CheckedCastMode::Unconditional:
castFn =
IGF.IGM.getDynamicCastObjCClassMetatypeUnconditionalFunctionPointer();
break;
case CheckedCastMode::Conditional:
castFn = IGF.IGM.getDynamicCastObjCClassMetatypeFunctionPointer();
break;
}
break;
}
case MetatypeRepresentation::Thin:
llvm_unreachable("not implemented");
}
llvm::Value *argsBuf[] = {
metatype,
toMetadata,
nullptr,
nullptr,
nullptr,
};
auto call = IGF.Builder.CreateCall(
castFn, getDynamicCastArguments(IGF, argsBuf, mode));
call->setDoesNotThrow();
ex.add(call);
}
/// Emit a Protocol* value referencing an ObjC protocol.
llvm::Value *irgen::emitReferenceToObjCProtocol(IRGenFunction &IGF,
ProtocolDecl *proto) {
assert(proto->isObjC() && "not an objc protocol");
// Get the address of the global variable the protocol reference gets
// indirected through.
auto protocolRefAddr =
IGF.IGM.getAddrOfObjCProtocolRef(proto, NotForDefinition);
return IGF.Builder.CreateLoad(protocolRefAddr);
}
/// Emit a helper function to look up \c numProtocols witness tables given
/// a value and a type metadata reference.
///
/// If \p checkClassConstraint is true, we must emit an explicit check that the
/// instance is a class.
///
/// If \p checkSuperclassConstraint is true, we are given an additional parameter
/// with a superclass type in it, and must emit a check that the instance is a
/// subclass of the given class.
///
/// The function's input type is (value, metadataValue, superclass?, protocol...)
/// The function's output type is (value, witnessTable...)
///
/// The value is NULL if the cast failed.
static FunctionPointer
emitExistentialScalarCastFn(IRGenModule &IGM, unsigned numProtocols,
CheckedCastMode mode, bool checkClassConstraint,
bool checkSuperclassConstraint) {
assert(!checkSuperclassConstraint || checkClassConstraint);
// Build the function name.
llvm::SmallString<32> name;
{
llvm::raw_svector_ostream os(name);
os << "dynamic_cast_existential_";
os << numProtocols;
if (checkSuperclassConstraint)
os << "_superclass";
else if (checkClassConstraint)
os << "_class";
switch (mode) {
case CheckedCastMode::Unconditional:
os << "_unconditional";
break;
case CheckedCastMode::Conditional:
os << "_conditional";
break;
}
}
// Build the function type.
llvm::SmallVector<llvm::Type *, 4> argTys;
llvm::SmallVector<llvm::Type *, 4> returnTys;
argTys.push_back(IGM.Int8PtrTy);
argTys.push_back(IGM.TypeMetadataPtrTy);
returnTys.push_back(IGM.Int8PtrTy);
if (checkSuperclassConstraint)
argTys.push_back(IGM.TypeMetadataPtrTy);
for (unsigned i = 0; i < numProtocols; ++i) {
argTys.push_back(IGM.ProtocolDescriptorPtrTy);
returnTys.push_back(IGM.WitnessTablePtrTy);
}
llvm::Type *returnTy = llvm::StructType::get(IGM.getLLVMContext(), returnTys);
auto fn = IGM.getOrCreateHelperFunction(
name, returnTy, argTys, [&](IRGenFunction &IGF) {
Explosion args = IGF.collectParameters();
auto value = args.claimNext();
auto ref = args.claimNext();
auto failBB = IGF.createBasicBlock("fail");
auto conformsToProtocol = IGM.getConformsToProtocolFunctionPointer();
Explosion rets;
rets.add(value);
// Check the class constraint if necessary.
if (checkSuperclassConstraint) {
auto superclassMetadata = args.claimNext();
auto castFn = IGF.IGM.getDynamicCastMetatypeFunctionPointer();
auto castResult =
IGF.Builder.CreateCall(castFn, {ref, superclassMetadata});
// FIXME: Eventually, we may want to throw.
castResult->setDoesNotThrow();
auto isClass = IGF.Builder.CreateICmpNE(
castResult,
llvm::ConstantPointerNull::get(IGF.IGM.TypeMetadataPtrTy));
auto contBB = IGF.createBasicBlock("cont");
IGF.Builder.CreateCondBr(isClass, contBB, failBB);
IGF.Builder.emitBlock(contBB);
} else if (checkClassConstraint) {
auto isClass =
IGF.Builder.CreateCall(IGM.getIsClassTypeFunctionPointer(), ref);
auto contBB = IGF.createBasicBlock("cont");
IGF.Builder.CreateCondBr(isClass, contBB, failBB);
IGF.Builder.emitBlock(contBB);
}
// Look up each protocol conformance we want.
for (unsigned i = 0; i < numProtocols; ++i) {
auto proto = args.claimNext();
auto witness =
IGF.Builder.CreateCall(conformsToProtocol, {ref, proto});
auto isNull = IGF.Builder.CreateICmpEQ(
witness, llvm::ConstantPointerNull::get(IGM.WitnessTablePtrTy));
auto contBB = IGF.createBasicBlock("cont");
IGF.Builder.CreateCondBr(isNull, failBB, contBB);
IGF.Builder.emitBlock(contBB);
rets.add(witness);
}
// If we succeeded, return the witnesses.
IGF.emitScalarReturn(returnTy, rets);
// If we failed, return nil or trap.
IGF.Builder.emitBlock(failBB);
switch (mode) {
case CheckedCastMode::Conditional: {
auto null = llvm::ConstantStruct::getNullValue(returnTy);
IGF.Builder.CreateRet(null);
break;
}
case CheckedCastMode::Unconditional: {
IGF.emitTrap("type cast failed", /*EmitUnreachable=*/true);
break;
}
}
});
auto fnType = llvm::FunctionType::get(returnTy, argTys, false);
auto sig = Signature(fnType, {}, IGM.DefaultCC);
return FunctionPointer::forDirect(FunctionPointer::Kind::Function, fn,
nullptr, sig);
}
llvm::Value *irgen::emitMetatypeToAnyObjectDowncast(IRGenFunction &IGF,
llvm::Value *metatypeValue,
CanAnyMetatypeType type,
CheckedCastMode mode) {
// If ObjC interop is enabled, casting a metatype to AnyObject succeeds
// if the metatype is for a class.
if (!IGF.IGM.ObjCInterop)
return nullptr;
switch (type->getRepresentation()) {
case MetatypeRepresentation::ObjC:
// Metatypes that can be represented as ObjC trivially cast to AnyObject.
return IGF.Builder.CreateBitCast(metatypeValue, IGF.IGM.ObjCPtrTy);
case MetatypeRepresentation::Thin:
// Metatypes that can be thin would never be classes.
// TODO: Final class metatypes could in principle be thin.
assert(!type.getInstanceType()->mayHaveSuperclass()
&& "classes should not have thin metatypes (yet)");
return nullptr;
case MetatypeRepresentation::Thick: {
auto instanceTy = type.getInstanceType();
// Is the type obviously a class?
if (instanceTy->mayHaveSuperclass()) {
// Get the ObjC metadata for the class.
auto heapMetadata = emitClassHeapMetadataRefForMetatype(IGF,metatypeValue,
instanceTy);
return IGF.Builder.CreateBitCast(heapMetadata, IGF.IGM.ObjCPtrTy);
}
// If it's not a class, we can't handle it here
if (!isa<ArchetypeType>(instanceTy) && !isa<ExistentialMetatypeType>(type)) {
return nullptr;
}
// Ask the runtime whether this is class metadata.
FunctionPointer castFn;
switch (mode) {
case CheckedCastMode::Conditional:
castFn =
IGF.IGM.getDynamicCastMetatypeToObjectConditionalFunctionPointer();
break;
case CheckedCastMode::Unconditional:
castFn =
IGF.IGM.getDynamicCastMetatypeToObjectUnconditionalFunctionPointer();
break;
}
llvm::Value *argsBuf[] = {
metatypeValue,
nullptr,
nullptr,
nullptr,
};
auto call = IGF.Builder.CreateCall(
castFn, getDynamicCastArguments(IGF, argsBuf, mode));
return call;
}
}
llvm_unreachable("invalid metatype representation");
}
/// Emit a checked cast to a protocol or protocol composition.
void irgen::emitScalarExistentialDowncast(
IRGenFunction &IGF, llvm::Value *value, SILType srcType, SILType destType,
CheckedCastMode mode, std::optional<MetatypeRepresentation> metatypeKind,
GenericSignature fnSig, Explosion &ex) {
auto srcInstanceType = srcType.getASTType();
auto destInstanceType = destType.getASTType();
while (auto metatypeType = dyn_cast<ExistentialMetatypeType>(
destInstanceType)) {
destInstanceType = metatypeType.getInstanceType();
srcInstanceType = cast<AnyMetatypeType>(srcInstanceType).getInstanceType();
}
auto layout = destInstanceType.getExistentialLayout();
// Look up witness tables for the protocols that need them and get
// references to the ObjC Protocol* values for the objc protocols.
SmallVector<llvm::Value*, 4> objcProtos;
SmallVector<llvm::Value*, 4> witnessTableProtos;
bool hasClassConstraint = layout.requiresClass();
bool hasClassConstraintByProtocol = false;
bool hasSuperclassConstraint = bool(layout.explicitSuperclass);
for (auto protoDecl : layout.getProtocols()) {
// If the protocol introduces a class constraint, track whether we need
// to check for it independent of protocol witnesses.
if (protoDecl->requiresClass()) {
assert(hasClassConstraint);
hasClassConstraintByProtocol = true;
}
if (Lowering::TypeConverter::protocolRequiresWitnessTable(protoDecl)) {
auto descriptor = IGF.IGM.getAddrOfProtocolDescriptor(protoDecl);
witnessTableProtos.push_back(descriptor);
}
if (protoDecl->isObjC())
objcProtos.push_back(emitReferenceToObjCProtocol(IGF, protoDecl));
}
llvm::Type *resultType;
if (metatypeKind) {
switch (*metatypeKind) {
case MetatypeRepresentation::Thin:
llvm_unreachable("can't cast to thin metatype");
case MetatypeRepresentation::Thick:
resultType = IGF.IGM.TypeMetadataPtrTy;
break;
case MetatypeRepresentation::ObjC:
resultType = IGF.IGM.ObjCClassPtrTy;
break;
}
} else {
auto schema = IGF.getTypeInfo(destType).getSchema();
resultType = schema[0].getScalarType();
}
// The source of a scalar cast is statically known to be a class or a
// metatype, so we only have to check the class constraint in two cases:
//
// 1) The destination type has a superclass constraint that is
// more derived than what the source type is known to be.
//
// 2) We are casting between metatypes, in which case the source might
// be a non-class metatype.
bool checkClassConstraint = false;
if ((bool)metatypeKind &&
hasClassConstraint &&
!hasClassConstraintByProtocol &&
!srcInstanceType->mayHaveSuperclass())
checkClassConstraint = true;
// If the source has an equal or more derived superclass constraint than
// the destination, we can elide the superclass check.
//
// Note that destInstanceType is always an existential type, so calling
// getSuperclass() returns the superclass constraint of the existential,
// not the superclass of some concrete class.
bool checkSuperclassConstraint = false;
if (hasSuperclassConstraint) {
Type srcSuperclassType = srcInstanceType;
if (srcSuperclassType->isExistentialType()) {
srcSuperclassType = srcSuperclassType->getSuperclass();
// Look for an AnyObject superclass (getSuperclass() returns nil).
if (!srcSuperclassType && srcInstanceType->isClassExistentialType())
checkSuperclassConstraint = true;
}
if (srcSuperclassType) {
checkSuperclassConstraint =
!destInstanceType->getSuperclass()->isExactSuperclassOf(
srcSuperclassType);
}
}
if (checkSuperclassConstraint)
checkClassConstraint = true;
llvm::Value *resultValue = value;
// If we don't have anything we really need to check, then trivially succeed.
if (objcProtos.empty() && witnessTableProtos.empty() &&
!checkClassConstraint) {
resultValue = IGF.Builder.CreateBitCast(value, resultType);
ex.add(resultValue);
return;
}
// Check the ObjC protocol conformances if there were any.
llvm::Value *objcCast = nullptr;
if (!objcProtos.empty()) {
// Get the ObjC instance or class object to check for these conformances.
llvm::Value *objcObject;
if (metatypeKind) {
switch (*metatypeKind) {
case MetatypeRepresentation::Thin:
llvm_unreachable("can't cast to thin metatype");
case MetatypeRepresentation::Thick: {
// The metadata might be for a non-class type, which wouldn't have
// an ObjC class object.
objcObject = nullptr;
break;
}
case MetatypeRepresentation::ObjC:
// Metatype is already an ObjC object.
objcObject = value;
break;
}
} else {
// Class instance is already an ObjC object.
objcObject = value;
}
if (objcObject)
objcObject = IGF.Builder.CreateBitCast(objcObject,
IGF.IGM.UnknownRefCountedPtrTy);
// Pick the cast function based on the cast mode and on whether we're
// casting a Swift metatype or ObjC object.
FunctionPointer castFn;
switch (mode) {
case CheckedCastMode::Unconditional:
castFn =
objcObject
? IGF.IGM.getDynamicCastObjCProtocolUnconditionalFunctionPointer()
: IGF.IGM
.getDynamicCastTypeToObjCProtocolUnconditionalFunctionPointer();
break;
case CheckedCastMode::Conditional:
castFn =
objcObject
? IGF.IGM.getDynamicCastObjCProtocolConditionalFunctionPointer()
: IGF.IGM
.getDynamicCastTypeToObjCProtocolConditionalFunctionPointer();
break;
}
llvm::Value *objcCastObject = objcObject ? objcObject : value;
Address protoRefsBuf = IGF.createAlloca(
llvm::ArrayType::get(IGF.IGM.Int8PtrTy,
objcProtos.size()),
IGF.IGM.getPointerAlignment(),
"objc_protocols");
protoRefsBuf =
IGF.Builder.CreateElementBitCast(protoRefsBuf, IGF.IGM.Int8PtrTy);
for (unsigned index : indices(objcProtos)) {
Address protoRefSlot = IGF.Builder.CreateConstArrayGEP(
protoRefsBuf, index,
IGF.IGM.getPointerSize());
IGF.Builder.CreateStore(objcProtos[index], protoRefSlot);
++index;
}
llvm::Value *argsBuf[] = {
objcCastObject,
IGF.IGM.getSize(Size(objcProtos.size())),
protoRefsBuf.getAddress(),
nullptr,
nullptr,
nullptr,
};
auto call = IGF.Builder.CreateCall(
castFn, getDynamicCastArguments(IGF, argsBuf, mode));
objcCast = call;
resultValue = IGF.Builder.CreateBitCast(objcCast, resultType);
}
// If we don't need to look up any witness tables, we're done.
if (witnessTableProtos.empty() && !checkClassConstraint) {
ex.add(resultValue);
return;
}
// If we're doing a conditional cast, and the ObjC protocol checks failed,
// then the cast is done.
std::optional<ConditionalDominanceScope> condition;
llvm::BasicBlock *origBB = nullptr, *successBB = nullptr, *contBB = nullptr;
if (!objcProtos.empty()) {
switch (mode) {
case CheckedCastMode::Unconditional:
break;
case CheckedCastMode::Conditional: {
origBB = IGF.Builder.GetInsertBlock();
successBB = IGF.createBasicBlock("success");
contBB = IGF.createBasicBlock("cont");
auto isNull = IGF.Builder.CreateICmpEQ(objcCast,
llvm::ConstantPointerNull::get(
cast<llvm::PointerType>(objcCast->getType())));
IGF.Builder.CreateCondBr(isNull, contBB, successBB);
IGF.Builder.emitBlock(successBB);
condition.emplace(IGF);
}
}
}
// Get the Swift type metadata for the type.
llvm::Value *metadataValue;
if (metatypeKind) {
switch (*metatypeKind) {
case MetatypeRepresentation::Thin:
llvm_unreachable("can't cast to thin metatype");
case MetatypeRepresentation::Thick:
// The value is already a native metatype.
metadataValue = value;
break;
case MetatypeRepresentation::ObjC:
// Get the type metadata from the ObjC class, which may be a wrapper.
metadataValue = emitObjCMetadataRefForMetadata(IGF, value);
}
} else {
// Get the type metadata for the instance.
metadataValue = emitDynamicTypeOfHeapObject(IGF, value,
MetatypeRepresentation::Thick,
srcType,
fnSig);
}
// Look up witness tables for the protocols that need them.
auto fn = emitExistentialScalarCastFn(IGF.IGM,
witnessTableProtos.size(),
mode,
checkClassConstraint,
checkSuperclassConstraint);
llvm::SmallVector<llvm::Value *, 4> args;
if (resultValue->getType() != IGF.IGM.Int8PtrTy)
resultValue = IGF.Builder.CreateBitCast(resultValue, IGF.IGM.Int8PtrTy);
args.push_back(resultValue);
args.push_back(metadataValue);
if (checkSuperclassConstraint)
args.push_back(IGF.emitTypeMetadataRef(CanType(layout.explicitSuperclass)));
for (auto proto : witnessTableProtos)
args.push_back(proto);
auto valueAndWitnessTables = IGF.Builder.CreateCall(fn, args);
resultValue = IGF.Builder.CreateExtractValue(valueAndWitnessTables, 0);
if (resultValue->getType() != resultType)
resultValue = IGF.Builder.CreateBitCast(resultValue, resultType);
ex.add(resultValue);
for (unsigned i = 0, e = witnessTableProtos.size(); i < e; ++i) {
auto wt = IGF.Builder.CreateExtractValue(valueAndWitnessTables, i + 1);
ex.add(wt);
}
// If we had conditional ObjC checks, join the failure paths.
if (contBB) {
condition.reset();
IGF.Builder.CreateBr(contBB);
IGF.Builder.emitBlock(contBB);
// Return null on the failure path.
Explosion successEx = std::move(ex);
ex.reset();
while (!successEx.empty()) {
auto successVal = successEx.claimNext();
auto failureVal = llvm::Constant::getNullValue(successVal->getType());
auto phi = IGF.Builder.CreatePHI(successVal->getType(), 2);
phi->addIncoming(successVal, successBB);
phi->addIncoming(failureVal, origBB);
ex.add(phi);
}
}
}
/// Emit a checked cast of a scalar value.
///
/// This is not just an implementation of emitCheckedCast for scalar types;
/// it imposes strict restrictions on the source and target types that ensure
/// that the actual value isn't changed in any way, thus preserving its
/// reference identity.
///
/// These restrictions are set by \c canSILUseScalarCheckedCastInstructions.
/// Essentially, both the source and target types must be one of:
/// - a (possibly generic) concrete class type,
/// - a class-bounded archetype,
/// - a class-bounded existential,
/// - a concrete metatype, or
/// - an existential metatype.
///
/// Furthermore, if the target type is a metatype, the source type must be
/// a metatype. This restriction isn't obviously necessary; it's just that
/// the runtime support for checking that an object instance is a metatype
/// isn't exposed.
void irgen::emitScalarCheckedCast(IRGenFunction &IGF,
Explosion &value,
SILType sourceLoweredType,
CanType sourceFormalType,
SILType targetLoweredType,
CanType targetFormalType,
CheckedCastMode mode,
GenericSignature fnSig,
Explosion &out) {
assert(sourceLoweredType.isObject());
assert(targetLoweredType.isObject());
llvm::BasicBlock *nilCheckBB = nullptr;
llvm::BasicBlock *nilMergeBB = nullptr;
// Merge the nil check and return the merged result: either nil or the value.
auto returnNilCheckedResult = [&](IRBuilder &Builder,
Explosion &nonNilResult) {
if (nilCheckBB) {
auto notNilBB = Builder.GetInsertBlock();
Builder.CreateBr(nilMergeBB);
Builder.emitBlock(nilMergeBB);
// Insert result phi.
Explosion result;
while (!nonNilResult.empty()) {
auto val = nonNilResult.claimNext();
auto valTy = cast<llvm::PointerType>(val->getType());
auto nil = llvm::ConstantPointerNull::get(valTy);
auto phi = Builder.CreatePHI(valTy, 2);
phi->addIncoming(nil, nilCheckBB);
phi->addIncoming(val, notNilBB);
result.add(phi);
}
out = std::move(result);
} else {
out = std::move(nonNilResult);
}
};
bool sourceWrappedInOptional = false;
std::optional<ConditionalDominanceScope> domScope;
if (auto sourceOptObjectType = sourceLoweredType.getOptionalObjectType()) {
// Translate the value from an enum representation to a possibly-null
// representation. Note that we assume that this projection is safe
// for the particular case of an optional class-reference or metatype
// value.
Explosion optValue;
auto someDecl = IGF.IGM.Context.getOptionalSomeDecl();
emitProjectLoadableEnum(IGF, sourceLoweredType, value, someDecl, optValue);
assert(value.empty());
value = std::move(optValue);
sourceLoweredType = sourceOptObjectType;
sourceFormalType = sourceFormalType.getOptionalObjectType();
sourceWrappedInOptional = true;
// We need a null-check because the runtime function can't handle null in
// some of the cases.
if (targetLoweredType.isExistentialType()) {
auto &Builder = IGF.Builder;
auto val = value.getAll()[0];
auto isNotNil = Builder.CreateICmpNE(
val, llvm::ConstantPointerNull::get(
cast<llvm::PointerType>(val->getType())));
auto *isNotNilContBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
nilMergeBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
nilCheckBB = Builder.GetInsertBlock();
Builder.CreateCondBr(isNotNil, isNotNilContBB, nilMergeBB);
Builder.emitBlock(isNotNilContBB);
domScope.emplace(IGF);
}
}
// If the source value is a metatype, either do a metatype-to-metatype
// cast or cast it to an object instance and continue.
if (auto sourceMetatype = sourceLoweredType.getAs<AnyMetatypeType>()) {
llvm::Value *metatypeVal = nullptr;
if (sourceMetatype->getRepresentation() != MetatypeRepresentation::Thin)
metatypeVal = value.claimNext();
// If the metatype is existential, there may be witness tables in the
// value, which we don't need.
// TODO: In existential-to-existential casts, we should carry over common
// witness tables from the source to the destination.
(void)value.claimAll();
SmallVector<ProtocolDecl*, 1> protocols;
// Casts to existential metatypes.
if (auto existential = targetLoweredType.getAs<ExistentialMetatypeType>()) {
emitScalarExistentialDowncast(IGF, metatypeVal, sourceLoweredType,
targetLoweredType, mode,
existential->getRepresentation(),
fnSig,
out);
return;
// Casts to concrete metatypes.
} else if (auto destMetaType = targetLoweredType.getAs<MetatypeType>()) {
emitMetatypeDowncast(IGF, metatypeVal, destMetaType, mode, out);
return;
}
// Otherwise, this is a metatype-to-object cast.
assert(targetLoweredType.isAnyClassReferenceType());
// Can we convert the metatype value to AnyObject using Obj-C machinery?
llvm::Value *object =
emitMetatypeToAnyObjectDowncast(IGF, metatypeVal, sourceMetatype, mode);
if (object == nullptr) {
// Obj-C cast routine failed, use swift_dynamicCast instead
if (sourceMetatype->getRepresentation() == MetatypeRepresentation::Thin
|| metatypeVal == nullptr) {
// Earlier stages *should* never generate a checked cast with a thin metatype argument.
// TODO: Move this assertion up to apply to all checked cast operations.
// In assert builds, enforce this by failing here:
assert(false && "Invalid SIL: General checked_cast_br cannot have thin argument");
// In non-assert builds, stay compatible with previous behavior by emitting a null load.
object = llvm::ConstantPointerNull::get(IGF.IGM.ObjCPtrTy);
} else {
Address src = IGF.createAlloca(metatypeVal->getType(),
IGF.IGM.getPointerAlignment(),
"castSrc");
IGF.Builder.CreateStore(metatypeVal, src);
llvm::PointerType *destPtrType = IGF.IGM.getStoragePointerType(targetLoweredType);
Address dest = IGF.createAlloca(destPtrType,
IGF.IGM.getPointerAlignment(),
"castDest");
IGF.Builder.CreateStore(llvm::ConstantPointerNull::get(destPtrType), dest);
llvm::Value *success = emitCheckedCast(IGF,
src, sourceFormalType,
dest, targetFormalType,
CastConsumptionKind::TakeAlways,
mode);
llvm::Value *successResult = IGF.Builder.CreateLoad(dest);
llvm::Value *failureResult = llvm::ConstantPointerNull::get(destPtrType);
llvm::Value *result = IGF.Builder.CreateSelect(success, successResult, failureResult);
object = std::move(result);
}
}
sourceFormalType = IGF.IGM.Context.getAnyObjectType();
sourceLoweredType = SILType::getPrimitiveObjectType(sourceFormalType);
// Continue, pretending that the source value was an (optional) value.
Explosion newValue;
newValue.add(object);
value = std::move(newValue);
}
assert(!targetLoweredType.is<AnyMetatypeType>() &&
"scalar cast of class reference to metatype is unimplemented");
// If the source type is existential, project out the class pointer.
//
// TODO: if we're casting to an existential type, don't throw away the
// protocol conformance information we already have.
llvm::Value *instance;
if (sourceLoweredType.isExistentialType()) {
instance = emitClassExistentialProjection(IGF, value, sourceLoweredType,
CanArchetypeType(), fnSig);
} else {
instance = value.claimNext();
}
if (targetFormalType.isExistentialType()) {
Explosion outRes;
emitScalarExistentialDowncast(
IGF, instance, sourceLoweredType, targetLoweredType, mode,
/*not a metatype*/ std::nullopt, fnSig, outRes);
returnNilCheckedResult(IGF.Builder, outRes);
return;
}
if (llvm::Value *fastResult = emitFastClassCastIfPossible(
IGF, instance, sourceFormalType, targetFormalType,
sourceWrappedInOptional, nilCheckBB, nilMergeBB)) {
Explosion fastExplosion;
fastExplosion.add(fastResult);
returnNilCheckedResult(IGF.Builder, fastExplosion);
return;
}
Explosion outRes;
llvm::Value *result = emitClassDowncast(IGF, instance, targetFormalType,
mode);
out.add(result);
}
/// When casting a class instance to a final class, we can directly compare
/// the isa-pointer with address of the metadata. This avoids a call to
/// `swift_dynamicCastClass`.
/// It also avoids a call to the metadata accessor of the class (which calls
/// `swift_getInitializedObjCClass`). For comparing the metadata pointers it's
/// not required that the metadata is fully initialized.
llvm::Value *irgen::emitFastClassCastIfPossible(
IRGenFunction &IGF, llvm::Value *instance, CanType sourceFormalType,
CanType targetFormalType, bool sourceWrappedInOptional,
llvm::BasicBlock *&nilCheckBB, llvm::BasicBlock *&nilMergeBB) {
if (!doesCastPreserveOwnershipForTypes(IGF.IGM.getSILModule(),
sourceFormalType, targetFormalType)) {
return nullptr;
}
// This does not include generic classes.
auto classTy = dyn_cast<ClassType>(targetFormalType);
if (!classTy)
return nullptr;
ClassDecl *toClass = classTy->getDecl();
// Also exclude non-generic classes nested inside other generic types.
if (toClass->isGenericContext())
return nullptr;
// TODO: we could use the ClassHierarchyAnalysis do also handle "effectively"
// final classes, e.g. not-subclassed internal classes in WMO.
// This would need some rearchitecting of ClassHierarchyAnalysis to make it
// available in IRGen.
if (!toClass->isFinal())
return nullptr;
AncestryOptions forbidden = AncestryOptions(AncestryFlags::ObjC) |
AncestryFlags::Resilient |
AncestryFlags::ResilientOther |
AncestryFlags::ClangImported |
AncestryFlags::ObjCObjectModel;
if (toClass->checkAncestry() & forbidden)
return nullptr;
// If the source was originally wrapped in an Optional, check it for nil now.
if (sourceWrappedInOptional) {
auto isNotNil = IGF.Builder.CreateICmpNE(
instance, llvm::ConstantPointerNull::get(
cast<llvm::PointerType>(instance->getType())));
auto *isNotNilContBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
nilMergeBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
nilCheckBB = IGF.Builder.GetInsertBlock();
IGF.Builder.CreateCondBr(isNotNil, isNotNilContBB, nilMergeBB);
IGF.Builder.emitBlock(isNotNilContBB);
}
// Get the metadata pointer of the destination class type.
llvm::Value *destMetadata = IGF.IGM.getAddrOfTypeMetadata(targetFormalType);
if (IGF.IGM.IRGen.Opts.LazyInitializeClassMetadata) {
llvm::Function *accessor =
IGF.IGM.getAddrOfTypeMetadataAccessFunction(targetFormalType,
NotForDefinition);
auto request = DynamicMetadataRequest(MetadataState::Complete);
// We know that we are not in a generic class context, so we can safely
// determine that the call here does not need to take that into account.
auto response =
IGF.emitGenericTypeMetadataAccessFunctionCall(accessor, {}, request);
destMetadata = response.getMetadata();
}
llvm::Value *lhs = IGF.Builder.CreateBitCast(destMetadata, IGF.IGM.Int8PtrTy);
// Load the isa pointer.
llvm::Value *objMetadata = emitHeapMetadataRefForHeapObject(IGF, instance,
sourceFormalType, GenericSignature(), /*suppress cast*/ true);
llvm::Value *rhs = IGF.Builder.CreateBitCast(objMetadata, IGF.IGM.Int8PtrTy);
// return isa_ptr == metadata_ptr ? instance : nullptr
llvm::Value *isEqual = IGF.Builder.CreateCmp(llvm::CmpInst::Predicate::ICMP_EQ,
lhs, rhs);
auto *instanceTy = cast<llvm::PointerType>(instance->getType());
auto *nullPtr = llvm::ConstantPointerNull::get(instanceTy);
auto *select = IGF.Builder.CreateSelect(isEqual, instance, nullPtr);
llvm::Type *destTy = IGF.getTypeInfoForUnlowered(targetFormalType).getStorageType();
return IGF.Builder.CreateBitCast(select, destTy);
}
|