1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
//===--- GenConstant.cpp - Swift IR Generation For Constants --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for constant values.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Constants.h"
#include "BitPatternReader.h"
#include "Explosion.h"
#include "GenConstant.h"
#include "GenEnum.h"
#include "GenIntegerLiteral.h"
#include "GenStruct.h"
#include "GenTuple.h"
#include "TypeInfo.h"
#include "StructLayout.h"
#include "Callee.h"
#include "ConstantBuilder.h"
#include "DebugTypeInfo.h"
#include "swift/IRGen/Linking.h"
#include "swift/Basic/Range.h"
#include "swift/SIL/SILModule.h"
#include "llvm/Support/BLAKE3.h"
using namespace swift;
using namespace irgen;
llvm::Constant *irgen::emitConstantInt(IRGenModule &IGM,
IntegerLiteralInst *ILI) {
BuiltinIntegerWidth width
= ILI->getType().castTo<AnyBuiltinIntegerType>()->getWidth();
// Handle arbitrary-precision integers.
if (width.isArbitraryWidth()) {
auto pair = emitConstantIntegerLiteral(IGM, ILI);
auto type = IGM.getIntegerLiteralTy();
return llvm::ConstantStruct::get(type, { pair.Data, pair.Flags });
}
APInt value = ILI->getValue();
// The value may need truncation if its type had an abstract size.
if (width.isPointerWidth()) {
unsigned pointerWidth = IGM.getPointerSize().getValueInBits();
assert(pointerWidth <= value.getBitWidth()
&& "lost precision at AST/SIL level?!");
if (pointerWidth < value.getBitWidth())
value = value.trunc(pointerWidth);
} else {
assert(width.isFixedWidth() && "impossible width value");
}
return llvm::ConstantInt::get(IGM.getLLVMContext(), value);
}
llvm::Constant *irgen::emitConstantZero(IRGenModule &IGM, BuiltinInst *BI) {
assert(IGM.getSILModule().getBuiltinInfo(BI->getName()).ID ==
BuiltinValueKind::ZeroInitializer);
auto helper = [&](CanType astType) -> llvm::Constant * {
if (auto type = astType->getAs<BuiltinIntegerType>()) {
APInt zero(type->getWidth().getLeastWidth(), 0);
return llvm::ConstantInt::get(IGM.getLLVMContext(), zero);
}
if (auto type = astType->getAs<BuiltinFloatType>()) {
const llvm::fltSemantics *sema = nullptr;
switch (type->getFPKind()) {
case BuiltinFloatType::IEEE16: sema = &APFloat::IEEEhalf(); break;
case BuiltinFloatType::IEEE32: sema = &APFloat::IEEEsingle(); break;
case BuiltinFloatType::IEEE64: sema = &APFloat::IEEEdouble(); break;
case BuiltinFloatType::IEEE80: sema = &APFloat::x87DoubleExtended(); break;
case BuiltinFloatType::IEEE128: sema = &APFloat::IEEEquad(); break;
case BuiltinFloatType::PPC128: sema = &APFloat::PPCDoubleDouble(); break;
}
auto zero = APFloat::getZero(*sema);
return llvm::ConstantFP::get(IGM.getLLVMContext(), zero);
}
llvm_unreachable("SIL allowed an unknown type?");
};
if (auto vector = BI->getType().getAs<BuiltinVectorType>()) {
auto zero = helper(vector.getElementType());
auto count = llvm::ElementCount::getFixed(vector->getNumElements());
return llvm::ConstantVector::getSplat(count, zero);
}
return helper(BI->getType().getASTType());
}
llvm::Constant *irgen::emitConstantFP(IRGenModule &IGM, FloatLiteralInst *FLI) {
return llvm::ConstantFP::get(IGM.getLLVMContext(), FLI->getValue());
}
llvm::Constant *irgen::emitAddrOfConstantString(IRGenModule &IGM,
StringLiteralInst *SLI) {
auto encoding = SLI->getEncoding();
bool useOSLogEncoding = encoding == StringLiteralInst::Encoding::UTF8_OSLOG;
switch (encoding) {
case StringLiteralInst::Encoding::Bytes:
case StringLiteralInst::Encoding::UTF8:
case StringLiteralInst::Encoding::UTF8_OSLOG:
return IGM.getAddrOfGlobalString(SLI->getValue(), false, useOSLogEncoding);
case StringLiteralInst::Encoding::ObjCSelector:
llvm_unreachable("cannot get the address of an Objective-C selector");
}
llvm_unreachable("bad string encoding");
}
namespace {
/// Fill in the missing values for padding.
void insertPadding(SmallVectorImpl<Explosion> &elements,
llvm::StructType *sTy) {
// fill in any gaps, which are the explicit padding that swiftc inserts.
for (unsigned i = 0, e = elements.size(); i != e; ++i) {
if (elements[i].empty()) {
auto *eltTy = sTy->getElementType(i);
assert(eltTy->isArrayTy() &&
eltTy->getArrayElementType()->isIntegerTy(8) &&
"Unexpected non-byte-array type for constant struct padding");
elements[i].add(llvm::UndefValue::get(eltTy));
}
}
}
/// Creates a struct which contains all values of `explosions`.
///
/// If all explosions have a single element and those elements match the
/// elements of `structTy`, it uses this type as result type.
/// Otherwise, it creates an anonymous struct. This can be the case for enums.
llvm::Constant *createStructFromExplosion(SmallVectorImpl<Explosion> &explosions,
llvm::StructType *structTy) {
assert(explosions.size() == structTy->getNumElements());
bool canUseStructType = true;
llvm::SmallVector<llvm::Constant *, 32> values;
unsigned idx = 0;
for (auto &elmt : explosions) {
if (elmt.size() != 1)
canUseStructType = false;
for (llvm::Value *v : elmt.claimAll()) {
if (v->getType() != structTy->getElementType(idx))
canUseStructType = false;
values.push_back(cast<llvm::Constant>(v));
}
idx++;
}
if (canUseStructType) {
return llvm::ConstantStruct::get(structTy, values);
} else {
return llvm::ConstantStruct::getAnon(values, /*Packed=*/ true);
}
}
void initWithEmptyExplosions(SmallVectorImpl<Explosion> &explosions,
unsigned count) {
for (unsigned i = 0; i < count; i++) {
explosions.push_back(Explosion());
}
}
template <typename InstTy, typename NextIndexFunc>
Explosion emitConstantStructOrTuple(IRGenModule &IGM, InstTy inst,
NextIndexFunc nextIndex, bool flatten) {
auto type = inst->getType();
auto *sTy = cast<llvm::StructType>(IGM.getTypeInfo(type).getStorageType());
SmallVector<Explosion, 32> elements;
initWithEmptyExplosions(elements, sTy->getNumElements());
for (unsigned i = 0, e = inst->getElements().size(); i != e; ++i) {
auto operand = inst->getOperand(i);
std::optional<unsigned> index = nextIndex(IGM, type, i);
if (index.has_value()) {
unsigned idx = index.value();
assert(elements[idx].empty() &&
"Unexpected constant struct field overlap");
elements[idx] = emitConstantValue(IGM, operand, flatten);
}
}
if (flatten) {
Explosion out;
for (auto &elmt : elements) {
out.add(elmt.claimAll());
}
return out;
}
insertPadding(elements, sTy);
return createStructFromExplosion(elements, sTy);
}
} // end anonymous namespace
/// Returns the usub_with_overflow builtin if \p TE extracts the result of
/// such a subtraction, which is required to have an integer_literal as right
/// operand.
static BuiltinInst *getOffsetSubtract(const TupleExtractInst *TE, SILModule &M) {
// Match the pattern:
// tuple_extract(usub_with_overflow(x, integer_literal, integer_literal 0), 0)
if (TE->getFieldIndex() != 0)
return nullptr;
auto *BI = dyn_cast<BuiltinInst>(TE->getOperand());
if (!BI)
return nullptr;
if (M.getBuiltinInfo(BI->getName()).ID != BuiltinValueKind::USubOver)
return nullptr;
if (!isa<IntegerLiteralInst>(BI->getArguments()[1]))
return nullptr;
auto *overflowFlag = dyn_cast<IntegerLiteralInst>(BI->getArguments()[2]);
if (!overflowFlag || !overflowFlag->getValue().isZero())
return nullptr;
return BI;
}
static bool isPowerOfTwo(unsigned x) {
return (x & -x) == x;
}
/// Replace i24, i40, i48 and i56 constants in `e` with the corresponding byte values.
/// Such unaligned integer constants are not correctly layed out in the data section.
static Explosion replaceUnalignedIntegerValues(IRGenModule &IGM, Explosion e) {
Explosion out;
while (!e.empty()) {
llvm::Value *v = e.claimNext();
if (auto *constInt = dyn_cast<llvm::ConstantInt>(v)) {
unsigned size = constInt->getBitWidth();
if (size % 8 == 0 && !isPowerOfTwo(size)) {
BitPatternReader reader(constInt->getValue(), IGM.Triple.isLittleEndian());
while (size > 0) {
APInt byte = reader.read(8);
out.add(llvm::ConstantInt::get(IGM.getLLVMContext(), byte));
size -= 8;
}
continue;
}
}
out.add(v);
}
return out;
}
Explosion irgen::emitConstantValue(IRGenModule &IGM, SILValue operand,
bool flatten) {
if (auto *SI = dyn_cast<StructInst>(operand)) {
// The only way to get a struct's stored properties (which we need to map to
// their physical/LLVM index) is to iterate over the properties
// progressively. Fortunately the iteration order matches the order of
// operands in a StructInst.
auto StoredProperties = SI->getStructDecl()->getStoredProperties();
auto Iter = StoredProperties.begin();
return emitConstantStructOrTuple(
IGM, SI, [&Iter](IRGenModule &IGM, SILType Type, unsigned _i) mutable {
(void)_i;
auto *FD = *Iter++;
return irgen::getPhysicalStructFieldIndex(IGM, Type, FD);
}, flatten);
} else if (auto *TI = dyn_cast<TupleInst>(operand)) {
return emitConstantStructOrTuple(IGM, TI,
irgen::getPhysicalTupleElementStructIndex,
flatten);
} else if (auto *ei = dyn_cast<EnumInst>(operand)) {
auto &strategy = getEnumImplStrategy(IGM, ei->getType());
if (strategy.emitPayloadDirectlyIntoConstant()) {
if (ei->hasOperand()) {
return emitConstantValue(IGM, ei->getOperand(), flatten);
}
return Explosion();
}
Explosion data;
if (ei->hasOperand()) {
data = emitConstantValue(IGM, ei->getOperand(), /*flatten=*/ true);
}
// Use `emitValueInjection` to create the enum constant.
// Usually this method creates code in the current function. But if all
// arguments to the enum are constant, the builder never has to emit an
// instruction. Instead it can constant fold everything and just returns
// the final constant.
IRBuilder builder(IGM.getLLVMContext(), false);
Explosion out;
strategy.emitValueInjection(IGM, builder, ei->getElement(), data, out);
return replaceUnalignedIntegerValues(IGM, std::move(out));
} else if (auto *ILI = dyn_cast<IntegerLiteralInst>(operand)) {
return emitConstantInt(IGM, ILI);
} else if (auto *FLI = dyn_cast<FloatLiteralInst>(operand)) {
return emitConstantFP(IGM, FLI);
} else if (auto *SLI = dyn_cast<StringLiteralInst>(operand)) {
return emitAddrOfConstantString(IGM, SLI);
} else if (auto *BI = dyn_cast<BuiltinInst>(operand)) {
auto args = BI->getArguments();
switch (IGM.getSILModule().getBuiltinInfo(BI->getName()).ID) {
case BuiltinValueKind::ZeroInitializer:
return emitConstantZero(IGM, BI);
case BuiltinValueKind::PtrToInt: {
auto *ptr = emitConstantValue(IGM, args[0]).claimNextConstant();
return llvm::ConstantExpr::getPtrToInt(ptr, IGM.IntPtrTy);
}
case BuiltinValueKind::IntToPtr: {
auto *num = emitConstantValue(IGM, args[0]).claimNextConstant();
return llvm::ConstantExpr::getIntToPtr(num, IGM.Int8PtrTy);
}
case BuiltinValueKind::ZExtOrBitCast: {
auto *val = emitConstantValue(IGM, args[0]).claimNextConstant();
return llvm::ConstantExpr::getZExtOrBitCast(val,
IGM.getStorageType(BI->getType()));
}
case BuiltinValueKind::StringObjectOr: {
// It is a requirement that the or'd bits in the left argument are
// initialized with 0. Therefore the or-operation is equivalent to an
// addition. We need an addition to generate a valid relocation.
auto *rhs = emitConstantValue(IGM, args[1]).claimNextConstant();
if (auto *TE = dyn_cast<TupleExtractInst>(args[0])) {
// Handle StringObjectOr(tuple_extract(usub_with_overflow(x, offset)), bits)
// This pattern appears in UTF8 String literal construction.
// Generate the equivalent: add(x, sub(bits - offset)
BuiltinInst *SubtrBI = getOffsetSubtract(TE, IGM.getSILModule());
assert(SubtrBI && "unsupported argument of StringObjectOr");
auto subArgs = SubtrBI->getArguments();
auto *ptr = emitConstantValue(IGM, subArgs[0]).claimNextConstant();
auto *offset = emitConstantValue(IGM, subArgs[1]).claimNextConstant();
auto *totalOffset = llvm::ConstantExpr::getSub(rhs, offset);
return llvm::ConstantExpr::getAdd(ptr, totalOffset);
}
auto *lhs = emitConstantValue(IGM, args[0]).claimNextConstant();
return llvm::ConstantExpr::getAdd(lhs, rhs);
}
default:
llvm_unreachable("unsupported builtin for constant expression");
}
} else if (auto *VTBI = dyn_cast<ValueToBridgeObjectInst>(operand)) {
auto *val = emitConstantValue(IGM, VTBI->getOperand()).claimNextConstant();
auto *sTy = IGM.getTypeInfo(VTBI->getType()).getStorageType();
return llvm::ConstantExpr::getIntToPtr(val, sTy);
} else if (auto *CFI = dyn_cast<ConvertFunctionInst>(operand)) {
return emitConstantValue(IGM, CFI->getOperand(), flatten);
} else if (auto *T2TFI = dyn_cast<ThinToThickFunctionInst>(operand)) {
SILType type = operand->getType();
auto *sTy = cast<llvm::StructType>(IGM.getTypeInfo(type).getStorageType());
auto *function = llvm::ConstantExpr::getBitCast(
emitConstantValue(IGM, T2TFI->getCallee()).claimNextConstant(),
sTy->getTypeAtIndex((unsigned)0));
auto *context = llvm::ConstantExpr::getBitCast(
llvm::ConstantPointerNull::get(IGM.OpaquePtrTy),
sTy->getTypeAtIndex((unsigned)1));
if (flatten) {
Explosion out;
out.add({function, context});
return out;
}
return llvm::ConstantStruct::get(sTy, {function, context});
} else if (auto *FRI = dyn_cast<FunctionRefInst>(operand)) {
SILFunction *fn = FRI->getReferencedFunction();
llvm::Constant *fnPtr = IGM.getAddrOfSILFunction(fn, NotForDefinition);
CanSILFunctionType fnType = FRI->getType().getAs<SILFunctionType>();
if (irgen::classifyFunctionPointerKind(fn).isAsyncFunctionPointer()) {
llvm::Constant *asyncFnPtr = IGM.getAddrOfAsyncFunctionPointer(fn);
fnPtr = llvm::ConstantExpr::getBitCast(asyncFnPtr, fnPtr->getType());
}
auto authInfo = PointerAuthInfo::forFunctionPointer(IGM, fnType);
if (authInfo.isSigned()) {
auto constantDiscriminator =
cast<llvm::Constant>(authInfo.getDiscriminator());
assert(!constantDiscriminator->getType()->isPointerTy());
fnPtr = IGM.getConstantSignedPointer(fnPtr, authInfo.getKey(), nullptr,
constantDiscriminator);
}
llvm::Type *ty = IGM.getTypeInfo(FRI->getType()).getStorageType();
fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, ty);
return fnPtr;
} else if (auto *gAddr = dyn_cast<GlobalAddrInst>(operand)) {
SILGlobalVariable *var = gAddr->getReferencedGlobal();
auto &ti = IGM.getTypeInfo(var->getLoweredType());
auto expansion = IGM.getResilienceExpansionForLayout(var);
assert(ti.isFixedSize(expansion));
if (ti.isKnownEmpty(expansion)) {
return llvm::ConstantPointerNull::get(IGM.OpaquePtrTy);
}
Address addr = IGM.getAddrOfSILGlobalVariable(var, ti, NotForDefinition);
return addr.getAddress();
} else if (auto *atp = dyn_cast<AddressToPointerInst>(operand)) {
auto *val = emitConstantValue(IGM, atp->getOperand()).claimNextConstant();
return val;
} else {
llvm_unreachable("Unsupported SILInstruction in static initializer!");
}
}
llvm::Constant *irgen::emitConstantObject(IRGenModule &IGM, ObjectInst *OI,
StructLayout *ClassLayout) {
auto *sTy = cast<llvm::StructType>(ClassLayout->getType());
SmallVector<Explosion, 32> elements;
initWithEmptyExplosions(elements, sTy->getNumElements());
unsigned NumElems = OI->getAllElements().size();
assert(NumElems == ClassLayout->getElements().size());
// Construct the object init value including tail allocated elements.
for (unsigned i = 0; i != NumElems; ++i) {
SILValue Val = OI->getAllElements()[i];
const ElementLayout &EL = ClassLayout->getElements()[i];
if (!EL.isEmpty()) {
unsigned idx = EL.getStructIndex();
assert(idx != 0 && "the first element is the object header");
assert(elements[idx].empty() &&
"Unexpected constant struct field overlap");
elements[idx] = emitConstantValue(IGM, Val);
}
}
// Construct the object header.
llvm::StructType *ObjectHeaderTy = cast<llvm::StructType>(sTy->getElementType(0));
if (IGM.canMakeStaticObjectReadOnly(OI->getType())) {
if (!IGM.swiftImmortalRefCount) {
auto *var = new llvm::GlobalVariable(IGM.Module, IGM.Int8Ty,
/*constant*/ true, llvm::GlobalValue::ExternalLinkage,
/*initializer*/ nullptr, "_swiftImmortalRefCount");
IGM.swiftImmortalRefCount = var;
}
if (!IGM.swiftStaticArrayMetadata) {
auto *classDecl = IGM.getStaticArrayStorageDecl();
assert(classDecl && "no __StaticArrayStorage in stdlib");
CanType classTy = CanType(ClassType::get(classDecl, Type(), IGM.Context));
LinkEntity entity = LinkEntity::forTypeMetadata(classTy, TypeMetadataAddress::AddressPoint);
auto *metatype = IGM.getAddrOfLLVMVariable(entity, NotForDefinition, DebugTypeInfo());
IGM.swiftStaticArrayMetadata = cast<llvm::GlobalVariable>(metatype);
}
elements[0].add(llvm::ConstantStruct::get(ObjectHeaderTy, {
IGM.swiftStaticArrayMetadata,
llvm::ConstantExpr::getPtrToInt(IGM.swiftImmortalRefCount, IGM.IntPtrTy)}));
} else {
elements[0].add(llvm::Constant::getNullValue(ObjectHeaderTy));
}
insertPadding(elements, sTy);
return createStructFromExplosion(elements, sTy);
}
void ConstantAggregateBuilderBase::addUniqueHash(StringRef data) {
llvm::BLAKE3 hasher;
hasher.update(data);
auto rawHash = hasher.final();
auto truncHash = llvm::ArrayRef(rawHash).slice(0, NumBytes_UniqueHash);
add(llvm::ConstantDataArray::get(IGM().getLLVMContext(), truncHash));
}
|