1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
|
//===--- GenDistributed.cpp - IRGen for distributed features --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2020 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for distributed features.
//
//===----------------------------------------------------------------------===//
#include "GenDistributed.h"
#include "BitPatternBuilder.h"
#include "CallEmission.h"
#include "Callee.h"
#include "ClassTypeInfo.h"
#include "ExtraInhabitants.h"
#include "GenCall.h"
#include "GenClass.h"
#include "GenDecl.h"
#include "GenMeta.h"
#include "GenOpaque.h"
#include "GenProto.h"
#include "GenType.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenMangler.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
#include "ScalarPairTypeInfo.h"
#include "swift/ABI/MetadataValues.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/ExtInfo.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ProtocolConformanceRef.h"
#include "swift/IRGen/Linking.h"
#include "swift/SIL/SILFunction.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/Alignment.h"
using namespace swift;
using namespace irgen;
llvm::Value *irgen::emitDistributedActorInitializeRemote(
IRGenFunction &IGF, SILType selfType, llvm::Value *actorMetatype, Explosion &out) {
auto &classTI = IGF.getTypeInfo(selfType).as<ClassTypeInfo>();
auto &classLayout = classTI.getClassLayout(IGF.IGM, selfType,
/*forBackwardDeployment=*/false);
llvm::Type *destType = classLayout.getType()->getPointerTo();
auto fn = IGF.IGM.getDistributedActorInitializeRemoteFunctionPointer();
actorMetatype =
IGF.Builder.CreateBitCast(actorMetatype, IGF.IGM.TypeMetadataPtrTy);
auto call = IGF.Builder.CreateCall(fn, {actorMetatype});
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
auto result = IGF.Builder.CreateBitCast(call, destType);
out.add(result);
return result;
}
namespace {
using ThunkOrRequirement = llvm::PointerUnion<SILFunction *, AbstractFunctionDecl *>;
static LinkEntity
getAccessorLinking(ThunkOrRequirement accessorFor) {
if (auto *method = accessorFor.dyn_cast<SILFunction *>()) {
assert(method->isDistributed());
return LinkEntity::forDistributedTargetAccessor(method);
}
auto *requirement = accessorFor.get<AbstractFunctionDecl *>();
return LinkEntity::forDistributedTargetAccessor(requirement);
}
struct ArgumentDecoderInfo {
/// The instance of the decoder this information belongs to.
llvm::Value *Decoder;
/// The pointer to `decodeNextArgument` method which
/// could be used to form a call to it.
FunctionPointer MethodPtr;
/// The type of `decodeNextArgument` method.
CanSILFunctionType MethodType;
/// Witness metadata for conformance to DistributedTargetInvocationDecoder
/// protocol.
WitnessMetadata Witness;
/// Indicates whether `decodeNextArgument` is referenced through
/// a protocol witness thunk.
bool UsesWitnessDispatch;
ArgumentDecoderInfo(llvm::Value *decoder, llvm::Value *decoderType,
llvm::Value *decoderWitnessTable,
FunctionPointer decodeNextArgumentPtr,
CanSILFunctionType decodeNextArgumentTy,
bool usesWitnessDispatch)
: Decoder(decoder), MethodPtr(decodeNextArgumentPtr),
MethodType(decodeNextArgumentTy),
UsesWitnessDispatch(usesWitnessDispatch) {
Witness.SelfMetadata = decoderType;
Witness.SelfWitnessTable = decoderWitnessTable;
}
CanSILFunctionType getMethodType() const { return MethodType; }
WitnessMetadata *getWitnessMetadata() const {
return const_cast<WitnessMetadata *>(&Witness);
}
/// Protocol requirements associated with the generic
/// parameter `Argument` of this decode method.
GenericSignature::RequiredProtocols getProtocolRequirements() const {
if (UsesWitnessDispatch)
return {};
auto signature = MethodType->getInvocationGenericSignature();
auto genericParams = signature.getGenericParams();
// func decodeNextArgument<Arg : #SerializationRequirement#>() throws -> Arg
assert(genericParams.size() == 1);
return signature->getRequiredProtocols(genericParams.front());
}
/// Form a callee to a decode method - `decodeNextArgument`.
Callee getCallee() const;
};
struct AccessorTarget {
private:
IRGenFunction &IGF;
ThunkOrRequirement Target;
CanSILFunctionType Type;
mutable std::optional<WitnessMetadata> Witness;
public:
AccessorTarget(IRGenFunction &IGF, ThunkOrRequirement target)
: IGF(IGF), Target(target) {
if (auto *thunk = target.dyn_cast<SILFunction *>()) {
Type = thunk->getLoweredFunctionType();
} else {
auto *requirement = target.get<AbstractFunctionDecl *>();
Type = IGF.IGM.getSILTypes().getConstantFunctionType(
IGF.IGM.getMaximalTypeExpansionContext(),
SILDeclRef(requirement).asDistributed());
}
}
DeclContext *getDeclContext() const {
if (auto *thunk = Target.dyn_cast<SILFunction *>())
return thunk->getDeclContext();
return Target.get<AbstractFunctionDecl *>();
}
CanSILFunctionType getType() const { return Type; }
bool isGeneric() const {
auto sig = Type->getInvocationGenericSignature();
return sig && !sig->areAllParamsConcrete();
}
Callee getCallee(llvm::Value *actorSelf);
LinkEntity getLinking() const { return getAccessorLinking(Target); }
/// Witness metadata is computed lazily upon the first request.
WitnessMetadata *getWitnessMetadata(llvm::Value *actorSelf);
private:
FunctionPointer getPointerToTarget(llvm::Value *actorSelf);
llvm::Value *emitMetadataRef(llvm::Value *actorSelf) const;
};
class DistributedAccessor {
IRGenModule &IGM;
IRGenFunction &IGF;
/// Underlying distributed method for this accessor.
AccessorTarget Target;
/// The interface type of this accessor function.
CanSILFunctionType AccessorType;
/// The asynchronous context associated with this accessor.
AsyncContextLayout AsyncLayout;
/// The list of all arguments that were allocated on the stack.
SmallVector<StackAddress, 4> AllocatedArguments;
/// The list of all the arguments that were loaded.
SmallVector<std::pair<Address, /*type=*/llvm::Value *>, 4> LoadedArguments;
public:
DistributedAccessor(IRGenFunction &IGF, ThunkOrRequirement target,
CanSILFunctionType accessorTy);
CanSILFunctionType getTargetType() const { return Target.getType(); }
void emit();
private:
void decodeArguments(const ArgumentDecoderInfo &decoder,
llvm::Value *argumentTypes, Explosion &arguments);
/// Load an argument value from the given decoder \c decoder
/// to the given explosion \c arguments. Information describing
/// the type of argument comes from runtime metadata.
void decodeArgument(unsigned argumentIdx, const ArgumentDecoderInfo &decoder,
llvm::Value *argumentType, const SILParameterInfo ¶m,
Explosion &arguments);
void lookupWitnessTables(llvm::Value *value,
ArrayRef<ProtocolDecl *> protocols,
Explosion &witnessTables);
/// Load witness table addresses (if any) from the given buffer
/// into the given argument explosion.
///
/// Number of witnesses to load is provided by \c numTables but
/// it's checked against the number of \c expectedWitnessTables.
void emitLoadOfWitnessTables(llvm::Value *witnessTables,
llvm::Value *numTables,
unsigned expectedWitnessTables,
Explosion &arguments);
/// Emit an async return from accessor which does cleanup of
/// all the argument allocations.
void emitReturn(llvm::Value *errorValue);
/// Given an instance of invocation decoder, its type metadata,
/// and protocol witness table, find `decodeNextArgument`.
ArgumentDecoderInfo findArgumentDecoder(llvm::Value *decoder,
llvm::Value *decoderTy,
llvm::Value *witnessTable);
/// The result type of the accessor.
SILType getResultType() const;
/// The error type of this accessor.
SILType getErrorType() const;
};
} // end namespace
/// Compute a type of a distributed method accessor function based
/// on the provided distributed target.
static CanSILFunctionType getAccessorType(IRGenModule &IGM) {
auto &Context = IGM.Context;
// func __accessor__<D: DistributedTargetInvocationDecoder>(
// inout D, <- invocation decoder
// UnsafeRawPointer, <- argument types
// UnsafeRawPointer, <- result buffer
// UnsafeRawPointer?, <- generic parameter substitutions
// UnsafeRawPointer?, <- witness tables
// UInt, <- number of witness tables
// <actor>
// ) async throws
SmallVector<GenericFunctionType::Param, 8> parameters;
// A generic parameter that represents instance of invocation decoder.
auto *decoderType =
GenericTypeParamType::get(/*isParameterPack=*/false,
/*depth=*/0, /*index=*/0, Context);
// decoder
parameters.push_back(GenericFunctionType::Param(
decoderType,
/*label=*/Identifier(),
/*flags=*/ParameterTypeFlags().withInOut(true)));
// argument type buffer
parameters.push_back(
GenericFunctionType::Param(Context.getUnsafeRawPointerType()));
// result buffer
parameters.push_back(
GenericFunctionType::Param(Context.getUnsafeRawPointerType()));
// generic parameter substitutions
parameters.push_back(
GenericFunctionType::Param(Context.getUnsafeRawPointerType()));
// witness tables
parameters.push_back(
GenericFunctionType::Param(Context.getUnsafeRawPointerType()));
// number of witness tables
parameters.push_back(GenericFunctionType::Param(Context.getUIntType()));
// actor
auto actorTypeParam = Context.getAnyObjectType();
parameters.push_back(
GenericFunctionType::Param(actorTypeParam));
auto decoderProtocolTy =
Context
.getProtocol(KnownProtocolKind::DistributedTargetInvocationDecoder)
->getDeclaredInterfaceType();
// Build generic signature that includes all contextual generic parameters.
GenericSignature signature;
{
SmallVector<GenericTypeParamType *, 4> genericParams;
SmallVector<Requirement, 4> genericRequirements;
// Add a generic parameter `D` which stands for decoder type in the
// accessor signature - `inout D`.
genericParams.push_back(decoderType);
// Add a requirement that decoder conforms to the expected protocol.
genericRequirements.push_back(
{RequirementKind::Conformance, decoderType, decoderProtocolTy});
signature = buildGenericSignature(Context, GenericSignature(),
std::move(genericParams),
std::move(genericRequirements),
/*allowInverses=*/true);
}
auto accessorTy = GenericFunctionType::get(
signature, parameters, Context.TheEmptyTupleType,
ASTExtInfoBuilder()
.withRepresentation(FunctionTypeRepresentation::Thin)
.withAsync()
.withThrows()
.build());
return IGM.getLoweredType(accessorTy).castTo<SILFunctionType>();
}
llvm::Function *
IRGenModule::getAddrOfDistributedTargetAccessor(LinkEntity accessor,
ForDefinition_t forDefinition) {
llvm::Function *&entry = GlobalFuncs[accessor];
if (entry) {
if (forDefinition)
updateLinkageForDefinition(*this, entry, accessor);
return entry;
}
Signature signature = getSignature(getAccessorType(*this));
LinkInfo link = LinkInfo::get(*this, accessor, forDefinition);
return createFunction(*this, link, signature);
}
void IRGenModule::emitDistributedTargetAccessor(ThunkOrRequirement target) {
LinkEntity accessorRef = getAccessorLinking(target);
auto *f = getAddrOfDistributedTargetAccessor(accessorRef,
ForDefinition);
if (!f->isDeclaration())
return;
IRGenFunction IGF(*this, f);
auto accessor = DistributedAccessor(IGF, target, getAccessorType(*this));
accessor.emit();
auto targetDecl = cast<AbstractFunctionDecl>(accessorRef.getDecl());
IRGenMangler mangler;
addAccessibleFunction(AccessibleFunction::forDistributed(
mangler.mangleDistributedThunkRecord(targetDecl),
mangler.mangleDistributedThunk(targetDecl),
accessor.getTargetType(),
getAddrOfAsyncFunctionPointer(accessorRef)));
}
DistributedAccessor::DistributedAccessor(IRGenFunction &IGF,
ThunkOrRequirement target,
CanSILFunctionType accessorTy)
: IGM(IGF.IGM), IGF(IGF), Target(IGF, target), AccessorType(accessorTy),
AsyncLayout(getAsyncContextLayout(IGM, AccessorType, AccessorType,
SubstitutionMap())) {
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(IGF, IGF.CurFn);
}
void DistributedAccessor::decodeArguments(const ArgumentDecoderInfo &decoder,
llvm::Value *argumentTypes,
Explosion &arguments) {
auto fnType = Target.getType();
// Cover all of the arguments except to `self` of the actor.
auto parameters = fnType->getParameters().drop_back();
// If there are no parameters to extract, we are done.
if (parameters.empty())
return;
// Cast type buffer to `swift.type**`
argumentTypes =
IGF.Builder.CreateBitCast(argumentTypes, IGM.TypeMetadataPtrPtrTy);
for (unsigned i = 0, n = parameters.size(); i != n; ++i) {
const auto ¶m = parameters[i];
auto paramTy = param.getSILStorageInterfaceType();
// Check whether the native representation is empty e.g.
// this happens for empty enums, and if so - continue to
// the next argument.
if (paramTy.isObject()) {
auto &typeInfo = IGM.getTypeInfo(paramTy);
auto &nativeSchema = typeInfo.nativeParameterValueSchema(IGM);
if (nativeSchema.empty())
continue;
}
Size offset =
Size(i * IGM.DataLayout.getTypeAllocSize(IGM.TypeMetadataPtrTy));
llvm::Align alignment = IGM.DataLayout.getABITypeAlign(IGM.TypeMetadataPtrTy);
// Load metadata describing argument value from argument types buffer.
auto typeLoc = IGF.emitAddressAtOffset(
argumentTypes, Offset(offset), IGM.TypeMetadataPtrTy,
Alignment(alignment.value()), "arg_type_loc");
auto *argumentTy = IGF.Builder.CreateLoad(typeLoc, "arg_type");
// Decode and load argument value using loaded type metadata.
decodeArgument(i, decoder, argumentTy, param, arguments);
}
}
void DistributedAccessor::decodeArgument(unsigned argumentIdx,
const ArgumentDecoderInfo &decoder,
llvm::Value *argumentType,
const SILParameterInfo ¶m,
Explosion &arguments) {
auto ¶mInfo = IGM.getTypeInfo(param.getSILStorageInterfaceType());
// TODO: `emitLoad*` would actually load value witness table every
// time it's called, which is sub-optimal but all of the APIs that
// deal with value witness tables are currently hidden in GenOpaque.cpp
llvm::Value *valueSize = emitLoadOfSize(IGF, argumentType);
Callee callee = decoder.getCallee();
std::unique_ptr<CallEmission> emission =
getCallEmission(IGF, callee.getSwiftContext(), std::move(callee));
StackAddress resultValue = IGF.emitDynamicAlloca(
IGM.Int8Ty, valueSize, paramInfo.getBestKnownAlignment());
llvm::Value *resultAddr = resultValue.getAddress().getAddress();
resultAddr = IGF.Builder.CreateBitCast(resultAddr, IGM.OpaquePtrTy);
Explosion decodeArgs;
// indirect result buffer as `swift.opaque*`
decodeArgs.add(resultAddr);
// substitution Argument -> <argument metadata>
decodeArgs.add(argumentType);
// Lookup witness tables for the requirement on the argument type.
lookupWitnessTables(argumentType, decoder.getProtocolRequirements(),
decodeArgs);
Address calleeErrorSlot;
llvm::Value *decodeError = nullptr;
emission->begin();
{
emission->setArgs(decodeArgs, /*isOutlined=*/false,
decoder.UsesWitnessDispatch ? decoder.getWitnessMetadata()
: nullptr);
Explosion result;
emission->emitToExplosion(result, /*isOutlined=*/false);
assert(result.empty());
// Load error from the slot to emit an early return if necessary.
{
SILFunctionConventions conv(decoder.getMethodType(), IGM.getSILModule());
SILType errorType =
conv.getSILErrorType(IGM.getMaximalTypeExpansionContext());
calleeErrorSlot =
emission->getCalleeErrorSlot(errorType, /*isCalleeAsync=*/true);
decodeError = IGF.Builder.CreateLoad(calleeErrorSlot);
}
}
emission->end();
// Remember to deallocate later.
AllocatedArguments.push_back(resultValue);
// Check whether the error slot has been set and if so
// emit an early return from accessor.
{
auto contBB = IGF.createBasicBlock("");
auto errorBB = IGF.createBasicBlock("on-error");
auto nullError = llvm::Constant::getNullValue(decodeError->getType());
auto hasError = IGF.Builder.CreateICmpNE(decodeError, nullError);
IGF.Builder.CreateCondBr(hasError, errorBB, contBB);
{
IGF.Builder.emitBlock(errorBB);
// Emit an early return if argument decoding failed.
emitReturn(decodeError);
}
IGF.Builder.emitBlock(contBB);
// Reset value of the slot back to `null`
IGF.Builder.CreateStore(nullError, calleeErrorSlot);
}
switch (param.getConvention()) {
case ParameterConvention::Indirect_In: {
// The only way to load opaque type is to allocate a temporary
// variable on the stack for it and initialize from the given address
// either at +0 or +1 depending on convention.
auto stackAddr =
IGF.emitDynamicAlloca(IGM.Int8Ty, valueSize, Alignment(16));
emitInitializeWithCopyCall(IGF, argumentType, stackAddr.getAddress(),
resultValue.getAddress());
// Remember to deallocate a copy.
AllocatedArguments.push_back(stackAddr);
// Don't forget to actually store the argument
arguments.add(stackAddr.getAddressPointer());
break;
}
case ParameterConvention::Indirect_In_Guaranteed: {
// The argument is +0, so we can use the address of the param in
// the context directly.
arguments.add(resultAddr);
LoadedArguments.push_back(std::make_pair(resultValue.getAddress(), argumentType));
break;
}
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
llvm_unreachable("indirect 'inout' parameters are not supported");
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
llvm_unreachable("pack parameters are not supported");
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Direct_Unowned: {
auto paramTy = param.getSILStorageInterfaceType();
Address eltPtr = IGF.Builder.CreateElementBitCast(
resultValue.getAddress(), IGM.getStorageType(paramTy));
cast<LoadableTypeInfo>(paramInfo).loadAsTake(IGF, eltPtr, arguments);
LoadedArguments.push_back(std::make_pair(eltPtr, argumentType));
break;
}
case ParameterConvention::Direct_Owned: {
// Copy the value out at +1.
cast<LoadableTypeInfo>(paramInfo).loadAsCopy(IGF, resultValue.getAddress(),
arguments);
LoadedArguments.push_back(
std::make_pair(resultValue.getAddress(), argumentType));
break;
}
}
}
static llvm::Value *lookupWitnessTable(IRGenFunction &IGF, llvm::Value *witness,
ProtocolDecl *protocol) {
assert(Lowering::TypeConverter::protocolRequiresWitnessTable(protocol));
auto &IGM = IGF.IGM;
auto *protocolDescriptor = IGM.getAddrOfProtocolDescriptor(protocol);
auto *witnessTable = IGF.Builder.CreateCall(
IGM.getConformsToProtocolFunctionPointer(), {witness, protocolDescriptor});
auto failBB = IGF.createBasicBlock("missing-witness");
auto contBB = IGF.createBasicBlock("");
auto isNull = IGF.Builder.CreateICmpEQ(
witnessTable, llvm::ConstantPointerNull::get(IGM.WitnessTablePtrTy));
IGF.Builder.CreateCondBr(isNull, failBB, contBB);
// This operation shouldn't fail because the compiler should have
// checked that the given witness conforms to the protocol. If it
// does fail then accessor should trap.
{
IGF.Builder.emitBlock(failBB);
IGF.emitTrap("missing witness table", /*EmitUnreachable=*/true);
}
IGF.Builder.emitBlock(contBB);
return witnessTable;
}
void DistributedAccessor::lookupWitnessTables(
llvm::Value *value, ArrayRef<ProtocolDecl *> protocols,
Explosion &witnessTables) {
if (protocols.empty())
return;
auto conformsToProtocol = IGM.getConformsToProtocolFunctionPointer();
for (auto *protocol : protocols) {
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(protocol))
continue;
witnessTables.add(lookupWitnessTable(IGF, value, protocol));
}
}
void DistributedAccessor::emitLoadOfWitnessTables(llvm::Value *witnessTables,
llvm::Value *numTables,
unsigned expectedWitnessTables,
Explosion &arguments) {
auto contBB = IGF.createBasicBlock("");
auto unreachableBB = IGF.createBasicBlock("incorrect-witness-tables");
auto incorrectNum = IGF.Builder.CreateICmpNE(
numTables, llvm::ConstantInt::get(IGM.SizeTy, expectedWitnessTables));
// Make sure that we have a correct number of witness tables provided to us.
IGF.Builder.CreateCondBr(incorrectNum, unreachableBB, contBB);
{
IGF.Builder.emitBlock(unreachableBB);
IGF.Builder.CreateUnreachable();
}
IGF.Builder.emitBlock(contBB);
witnessTables = IGF.Builder.CreateBitCast(witnessTables,
IGM.Int8PtrPtrTy->getPointerTo());
for (unsigned i = 0, n = expectedWitnessTables; i != n; ++i) {
auto offset = Size(i * IGM.getPointerSize());
auto alignment = IGM.getPointerAlignment();
auto witnessTableAddr = IGF.emitAddressAtOffset(
witnessTables, Offset(offset), IGM.Int8PtrPtrTy, Alignment(alignment));
arguments.add(IGF.Builder.CreateLoad(witnessTableAddr));
}
}
void DistributedAccessor::emitReturn(llvm::Value *errorValue) {
// Destroy loaded arguments.
// This MUST be done before deallocating, as otherwise we'd try to
// swift_release freed memory, which will be a no-op, however that also would
// mean we never drop retain counts to 0 and miss to run deinitializers of
// classes!
llvm::for_each(LoadedArguments, [&](const auto &argInfo) {
emitDestroyCall(IGF, argInfo.second, argInfo.first);
});
// Deallocate all of the copied arguments. Since allocations happened
// on stack they have to be deallocated in reverse order.
{
for (auto alloca = AllocatedArguments.rbegin();
alloca != AllocatedArguments.rend(); ++alloca) {
IGF.emitDeallocateDynamicAlloca(*alloca);
}
}
Explosion voidResult;
Explosion error;
error.add(errorValue);
emitAsyncReturn(IGF, AsyncLayout, getResultType(), AccessorType, voidResult,
error);
}
void DistributedAccessor::emit() {
auto targetTy = Target.getType();
SILFunctionConventions targetConv(targetTy, IGF.getSILModule());
TypeExpansionContext expansionContext = IGM.getMaximalTypeExpansionContext();
auto params = IGF.collectParameters();
GenericContextScope scope(IGM, targetTy->getInvocationGenericSignature());
auto directResultTy = targetConv.getSILResultType(expansionContext);
const auto &directResultTI = IGM.getTypeInfo(directResultTy);
Explosion arguments;
unsigned numAsyncContextParams =
(unsigned)AsyncFunctionArgumentIndex::Context + 1;
(void)params.claim(numAsyncContextParams);
// A container that produces argument values based on the given set of
// argument types (supplied as a next argument).
auto *argDecoder = params.claimNext();
// `swift.type**` that holds the argument types that correspond to values.
auto *argTypes = params.claimNext();
// UnsafeRawPointer that is used to store the result.
auto *resultBuffer = params.claimNext();
// UnsafeRawPointer that represents a list of substitutions
auto *substitutions = params.claimNext();
// UnsafeRawPointer that represents a list of witness tables
auto *witnessTables = params.claimNext();
// Integer that represented the number of witness tables
auto *numWitnessTables = params.claimNext();
// Reference to a `self` of the actor to be called.
auto *actorSelf = params.claimNext();
// Metadata that represents passed in the invocation decoder.
auto *decoderType = params.claimNext();
// Witness table for decoder conformance to DistributedTargetInvocationDecoder
auto *decoderProtocolWitness = params.claimNext();
// Preliminary: Setup async context for this accessor.
{
auto fpKind = FunctionPointerKind::defaultAsync();
auto asyncContextIdx =
Signature::forAsyncEntry(IGM, AccessorType, fpKind)
.getAsyncContextIndex();
auto entity = Target.getLinking();
emitAsyncFunctionEntry(IGF, AsyncLayout, entity, asyncContextIdx);
emitAsyncFunctionPointer(IGM, IGF.CurFn, entity, AsyncLayout.getSize());
}
auto *typedResultBuffer = IGF.Builder.CreateBitCast(
resultBuffer, IGM.getStoragePointerType(directResultTy));
if (targetConv.getNumIndirectSILResults()) {
// Since tuples are not allowed as valid result types (because they cannot
// conform to protocols), there could be only a single indirect result type
// associated with distributed method.
assert(targetConv.getNumIndirectSILResults() == 1);
arguments.add(typedResultBuffer);
}
// There is always at least one parameter associated with accessor - `self`
// of the distributed actor.
if (targetTy->getNumParameters() > 1) {
/// The argument decoder associated with the distributed actor
/// this accessor belong to.
ArgumentDecoderInfo decoder =
findArgumentDecoder(argDecoder, decoderType, decoderProtocolWitness);
// Step one is to load all of the data from argument buffer,
// so it could be forwarded to the distributed method.
decodeArguments(decoder, argTypes, arguments);
}
// Add all of the substitutions to the explosion
if (Target.isGeneric()) {
// swift.type **
llvm::Value *substitutionBuffer =
IGF.Builder.CreateBitCast(substitutions, IGM.TypeMetadataPtrPtrTy);
// Collect the generic arguments expected by the distributed thunk.
// We need this to determine the expected number of witness tables
// to load from the buffer provided by the caller.
llvm::SmallVector<llvm::Type *, 4> targetGenericArguments;
auto expandedSignature =
expandPolymorphicSignature(IGM, targetTy, targetGenericArguments);
assert(expandedSignature.numShapes == 0 &&
"Distributed actors don't support variadic generics");
// Generic arguments associated with the distributed thunk directly
// e.g. `distributed func echo<T, U>(...)`
for (unsigned index = 0; index < expandedSignature.numTypeMetadataPtrs; ++index) {
auto offset =
Size(index * IGM.DataLayout.getTypeAllocSize(IGM.TypeMetadataPtrTy));
llvm::Align alignment =
IGM.DataLayout.getABITypeAlign(IGM.TypeMetadataPtrTy);
auto substitution = IGF.emitAddressAtOffset(
substitutionBuffer, Offset(offset), IGM.TypeMetadataPtrTy,
Alignment(alignment.value()));
arguments.add(IGF.Builder.CreateLoad(substitution, "substitution"));
}
emitLoadOfWitnessTables(witnessTables, numWitnessTables,
expandedSignature.numWitnessTablePtrs, arguments);
}
// Step two, let's form and emit a call to the distributed method
// using computed argument explosion.
{
Explosion result;
llvm::Value *targetError = nullptr;
auto callee = Target.getCallee(actorSelf);
auto emission =
getCallEmission(IGF, callee.getSwiftContext(), std::move(callee));
emission->begin();
emission->setArgs(arguments, /*isOutlined=*/false,
Target.getWitnessMetadata(actorSelf));
// Load result of the thunk into the location provided by the caller.
// This would only generate code for direct results, if thunk has an
// indirect result (e.g. large struct) it result buffer would be passed
// as an argument.
{
Address resultAddr(typedResultBuffer, directResultTI.getStorageType(),
directResultTI.getBestKnownAlignment());
emission->emitToMemory(resultAddr, cast<LoadableTypeInfo>(directResultTI),
/*isOutlined=*/false);
}
// Both accessor and distributed method are always `async throws`
// so we need to load error value (if any) from the slot.
{
assert(targetTy->hasErrorResult());
Address calleeErrorSlot =
emission->getCalleeErrorSlot(getErrorType(), /*isCalleeAsync=*/true);
targetError = IGF.Builder.CreateLoad(calleeErrorSlot);
}
emission->end();
// Emit an async return that does allocation cleanup and propagates error
// (if any) back to the caller.
emitReturn(targetError);
}
}
FunctionPointer AccessorTarget::getPointerToTarget(llvm::Value *actorSelf) {
auto &IGM = IGF.IGM;
if (auto *thunk = Target.dyn_cast<SILFunction *>()) {
auto fpKind = classifyFunctionPointerKind(thunk);
auto signature = IGM.getSignature(Type, fpKind);
auto *fnPtr =
llvm::ConstantExpr::getBitCast(IGM.getAddrOfAsyncFunctionPointer(thunk),
signature.getType()->getPointerTo());
return FunctionPointer::forDirect(
FunctionPointer::Kind(Type), fnPtr,
IGM.getAddrOfSILFunction(thunk, NotForDefinition), signature);
}
auto *requirementDecl = Target.get<AbstractFunctionDecl *>();
auto *protocol = requirementDecl->getDeclContext()->getSelfProtocolDecl();
SILDeclRef requirementRef = SILDeclRef(requirementDecl).asDistributed();
if (!IGM.isResilient(protocol, ResilienceExpansion::Maximal)) {
auto *witness = getWitnessMetadata(actorSelf);
return emitWitnessMethodValue(IGF, witness->SelfWitnessTable,
requirementRef);
}
auto fnPtr = IGM.getAddrOfDispatchThunk(requirementRef, NotForDefinition);
auto sig = IGM.getSignature(Type);
return FunctionPointer::forDirect(Type, fnPtr,
/*secondaryValue=*/nullptr, sig, true);
}
llvm::Value *AccessorTarget::emitMetadataRef(llvm::Value *actorSelf) const {
auto &IGM = IGF.IGM;
if (!IGM.ObjCInterop) {
llvm::Value *slot =
IGF.Builder.CreateBitCast(actorSelf, IGM.TypeMetadataPtrPtrTy);
return IGF.Builder.CreateLoad(
Address(slot, IGM.TypeMetadataPtrTy, IGM.getPointerAlignment()));
}
return emitHeapMetadataRefForUnknownHeapObject(IGF, actorSelf);
}
Callee AccessorTarget::getCallee(llvm::Value *actorSelf) {
CalleeInfo info{Type, Type, SubstitutionMap()};
return {std::move(info), getPointerToTarget(actorSelf), actorSelf};
}
WitnessMetadata *AccessorTarget::getWitnessMetadata(llvm::Value *actorSelf) {
if (Target.is<SILFunction *>())
return nullptr;
if (!Witness) {
WitnessMetadata witness;
auto *requirement = Target.get<AbstractFunctionDecl *>();
auto *protocol = requirement->getDeclContext()->getSelfProtocolDecl();
assert(protocol);
witness.SelfMetadata = actorSelf;
witness.SelfWitnessTable =
lookupWitnessTable(IGF, emitMetadataRef(actorSelf), protocol);
Witness = witness;
}
return &(*Witness);
}
ArgumentDecoderInfo DistributedAccessor::findArgumentDecoder(
llvm::Value *decoder, llvm::Value *decoderTy, llvm::Value *witnessTable) {
auto &C = IGM.Context;
auto *thunk = cast<AbstractFunctionDecl>(Target.getDeclContext());
auto expansionContext = IGM.getMaximalTypeExpansionContext();
/// If the context was a function, unwrap it and look for the decode method
/// based off a concrete class; If we're not in a concrete class, we'll be
/// using a witness for the decoder so returning null is okey.
FuncDecl *decodeFn = getDistributedActorArgumentDecodingMethod(
thunk->getDeclContext()->getSelfNominalTypeDecl());
// If distributed actor is generic over actor system, we have to
// use witness to reference `decodeNextArgument`.
if (!decodeFn) {
auto decoderProtocol = C.getDistributedTargetInvocationDecoderDecl();
auto decodeNextArgRequirement =
decoderProtocol->getSingleRequirement(C.Id_decodeNextArgument);
assert(decodeNextArgRequirement);
SILDeclRef decodeNextArgumentRef(decodeNextArgRequirement);
llvm::Constant *fnPtr =
IGM.getAddrOfDispatchThunk(decodeNextArgumentRef, NotForDefinition);
auto fnType = IGM.getSILTypes().getConstantFunctionType(
IGM.getMaximalTypeExpansionContext(), decodeNextArgumentRef);
auto sig = IGM.getSignature(fnType);
auto fn = FunctionPointer::forDirect(fnType, fnPtr,
/*secondaryValue=*/nullptr, sig, true);
return {decoder, decoderTy, witnessTable,
fn, fnType, /*usesWitnessDispatch=*/true};
}
auto methodTy = IGM.getSILTypes().getConstantFunctionType(
expansionContext, SILDeclRef(decodeFn));
auto fpKind = FunctionPointerKind::defaultAsync();
auto signature = IGM.getSignature(methodTy, fpKind);
// If the decoder class is `final`, let's emit a direct reference.
auto *decoderDecl = decodeFn->getDeclContext()->getSelfNominalTypeDecl();
// If decoder is a class, need to load it first because generic parameter
// is passed indirectly. This is good for structs and enums because
// `decodeNextArgument` is a mutating method, but not for classes because
// in that case heap object is mutated directly.
bool usesDispatchThunk = false;
if (auto classDecl = dyn_cast<ClassDecl>(decoderDecl)) {
auto selfTy = methodTy->getSelfParameter().getSILStorageType(
IGM.getSILModule(), methodTy, expansionContext);
auto &classTI = IGM.getTypeInfo(selfTy).as<ClassTypeInfo>();
auto &classLayout = classTI.getClassLayout(IGM, selfTy,
/*forBackwardDeployment=*/false);
llvm::Value *typedDecoderPtr = IGF.Builder.CreateBitCast(
decoder, classLayout.getType()->getPointerTo()->getPointerTo());
Explosion instance;
classTI.loadAsTake(IGF,
{typedDecoderPtr, classTI.getStorageType(),
classTI.getBestKnownAlignment()},
instance);
decoder = instance.claimNext();
/// When using library evolution functions have another "dispatch thunk"
/// so we must use this instead of the decodeFn directly.
usesDispatchThunk =
getMethodDispatch(decodeFn) == swift::MethodDispatch::Class &&
classDecl->hasResilientMetadata();
}
FunctionPointer methodPtr;
if (usesDispatchThunk) {
auto fnPtr = IGM.getAddrOfDispatchThunk(SILDeclRef(decodeFn), NotForDefinition);
methodPtr = FunctionPointer::createUnsigned(
methodTy, fnPtr, signature, /*useSignature=*/true);
} else {
SILFunction *decodeSILFn = IGM.getSILModule().lookUpFunction(SILDeclRef(decodeFn));
auto fnPtr = IGM.getAddrOfSILFunction(decodeSILFn, NotForDefinition,
/*isDynamicallyReplaceable=*/false);
methodPtr = FunctionPointer::forDirect(
classifyFunctionPointerKind(decodeSILFn), fnPtr,
/*secondaryValue=*/nullptr, signature);
}
return {decoder, decoderTy, witnessTable,
methodPtr, methodTy, /*usesWitnessDispatch=*/false};
}
SILType DistributedAccessor::getResultType() const {
SILFunctionConventions conv(AccessorType, IGF.getSILModule());
return conv.getSILResultType(IGM.getMaximalTypeExpansionContext());
}
SILType DistributedAccessor::getErrorType() const {
SILFunctionConventions conv(AccessorType, IGF.getSILModule());
return conv.getSILErrorType(IGM.getMaximalTypeExpansionContext());
}
Callee ArgumentDecoderInfo::getCallee() const {
CalleeInfo info(MethodType, MethodType, SubstitutionMap());
return {std::move(info), MethodPtr, Decoder};
}
|