File: GenEnum.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (7823 lines) | stat: -rw-r--r-- 318,293 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
//===--- GenEnum.cpp - Swift IR Generation For 'enum' Types ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
//  This file implements IR generation for algebraic data types (ADTs,
//  or 'enum' types) in Swift.  This includes creating the IR type as
//  well as emitting the basic access operations.
//
//  An abstract enum value consists of a payload portion, sized to hold the
//  largest possible payload value, and zero or more tag bits, to select
//  between cases. The payload might be zero sized, if the enum consists
//  entirely of empty cases, or there might not be any tag bits, if the
//  lowering is able to pack all of them into the payload itself.
//
//  An abstract enum value can be thought of as supporting three primary
//  operations:
//  1) GetEnumTag: Getting the current case of an enum value.
//  2) ProjectEnumPayload: Destructively stripping tag bits from the enum
//     value, leaving behind the payload value, if any, at the beginning of
//     the old enum value.
//  3) InjectEnumCase: Given a payload value placed inside an uninitialized
//     enum value, inject tag bits for a specified case, producing a
//     fully-formed enum value.
//
//  Enum type lowering needs to derive implementations of the above for
//  an enum type. It does this by classifying the enum along two
//  orthogonal axes: the loadability of the enum value, and the payload
//  implementation strategy.
//
//  The first axis deals with special behavior of fixed-size loadable and
//  address-only enums. Fixed-size loadable enums are represented as
//  explosions of values, the address-only lowering uses more general
//  operations.
//
//  The second axis essentially deals with how the case discriminator, or
//  tag, is represented within an enum value. Payload and no-payload cases
//  are counted and the enum is classified into the following categories:
//
//  1) If the enum only has one case, it can be lowered as the type of the
//     case itself, and no tag bits are necessary.
//
//  2) If the enum only has no-payload cases, only tag bits are necessary,
//     with the cases mapping to integers, in AST order.
//
//  3) If the enum has a single payload case and one or more no-payload cases,
//     we attempt to map the no-payload cases to extra inhabitants of the
//     payload type. If enough extra inhabitants are available, no tag bits
//     are needed, otherwise more are added as necessary.
//
//     Extra inhabitant information can be obtained at runtime through the
//     value witness table, so there are no layout differences between a
//     generic enum type and a substituted type.
//
//     Since each extra inhabitant corresponds to a specific bit pattern
//     that is known to be invalid given the payload type, projection of
//     the payload value is a no-op.
//
//     For example, if the payload type is a single retainable pointer,
//     the first 4KB of memory addresses are known not to correspond to
//     valid memory, and so the enum can contain up to 4095 empty cases
//     in addition to the payload case before any additional storage is
//     required.
//
//  4) If the enum has multiple payload cases, the layout attempts to pack
//     the tag bits into the common spare bits of all of the payload cases.
//
//     Spare bit information is not available at runtime, so spare bits can
//     only be used if all payload types are fixed-size in all resilience
//     domains.
//
//     Since spare bits correspond to bits which are known to be zero for
//     all valid representations of the payload type, they must be stripped
//     out before the payload value can be manipulated. This means spare
//     bits cannot be used if the payload value is address-only, because
//     there is no way to strip the spare bits in that case without
//     modifying the value in-place.
//
//     For example, on a 64-bit platform, the least significant 3 bits of
//     a retainable pointer are always zero, so a multi-payload enum can
//     have up to 8 retainable pointer payload cases before any additional
//     storage is required.
//
//  Indirect enum cases are implemented by substituting in a SILBox type
//  for the payload, resulting in a fixed-size lowering for recursive
//  enums.
//
//  For all lowerings except ResilientEnumImplStrategy, the primary enum
//  operations are open-coded at usage sites. Resilient enums are accessed
//  by invoking the value witnesses for these operations.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "enum-layout"
#include "llvm/Support/Debug.h"

#include "GenEnum.h"

#include "swift/AST/Types.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/LazyResolver.h"
#include "swift/IRGen/Linking.h"
#include "swift/SIL/SILModule.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Support/Compiler.h"
#include "clang/CodeGen/SwiftCallingConv.h"

#include "BitPatternBuilder.h"
#include "GenDecl.h"
#include "GenMeta.h"
#include "GenProto.h"
#include "GenType.h"
#include "IRGenDebugInfo.h"
#include "IRGenMangler.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
#include "MetadataRequest.h"
#include "NonFixedTypeInfo.h"
#include "Outlining.h"
#include "ResilientTypeInfo.h"
#include "ScalarTypeInfo.h"
#include "StructLayout.h"
#include "SwitchBuilder.h"
#include "ClassTypeInfo.h"
#include "NativeConventionSchema.h"

using namespace swift;
using namespace irgen;

static llvm::Constant *emitEnumLayoutFlags(IRGenModule &IGM, bool isVWTMutable){
  // For now, we always use the Swift 5 algorithm.
  auto flags = EnumLayoutFlags::Swift5Algorithm;
  if (isVWTMutable) flags |= EnumLayoutFlags::IsVWTMutable;

  return IGM.getSize(Size(uintptr_t(flags)));
}

static IsABIAccessible_t
areElementsABIAccessible(ArrayRef<EnumImplStrategy::Element> elts) {
  for (auto &elt : elts) {
    if (!elt.ti->isABIAccessible())
      return IsNotABIAccessible;
  }
  return IsABIAccessible;
}

static APInt zextOrSelf(const APInt &i, unsigned width) {
  if (i.getBitWidth() < width)
    return i.zext(width);
  return i;
}

EnumImplStrategy::EnumImplStrategy(IRGenModule &IGM,
                                   TypeInfoKind tik,
                                   IsFixedSize_t alwaysFixedSize,
                                   IsTriviallyDestroyable_t triviallyDestroyable,
                                   IsCopyable_t copyable,
                                   IsBitwiseTakable_t bitwiseTakable,
                                   unsigned NumElements,
                                   std::vector<Element> &&eltsWithPayload,
                                   std::vector<Element> &&eltsWithNoPayload)
  : ElementsWithPayload(std::move(eltsWithPayload)),
    ElementsWithNoPayload(std::move(eltsWithNoPayload)),
    IGM(IGM), TIK(tik), AlwaysFixedSize(alwaysFixedSize),
    ElementsAreABIAccessible(areElementsABIAccessible(ElementsWithPayload)),
    TriviallyDestroyable(triviallyDestroyable), Copyable(copyable),
    BitwiseTakable(bitwiseTakable),
    NumElements(NumElements) {
}

void EnumImplStrategy::initializeFromParams(IRGenFunction &IGF,
                                            Explosion &params,
                                            Address dest, SILType T,
                                            bool isOutlined) const {
  if (TIK >= Loadable)
    return initialize(IGF, params, dest, isOutlined);
  Address src = TI->getAddressForPointer(params.claimNext());
  TI->initializeWithTake(IGF, dest, src, T, isOutlined);
}

bool EnumImplStrategy::isReflectable() const { return true; }

unsigned EnumImplStrategy::getPayloadSizeForMetadata() const {
  llvm_unreachable("don't need payload size for this enum kind");
}

LoadedRef EnumImplStrategy::
loadRefcountedPtr(IRGenFunction &IGF, SourceLoc loc, Address addr) const {
  IGF.IGM.error(loc, "Can only load from an address of an optional "
                "reference.");
  llvm::report_fatal_error("loadRefcountedPtr: Invalid SIL in IRGen");
}

const TypeInfo &EnumImplStrategy::getTypeInfoForPayloadCase(EnumElementDecl *theCase) const {
  auto payloadI = std::find_if(ElementsWithPayload.begin(),
                               ElementsWithPayload.end(),
   [&](const Element &e) { return e.decl == theCase; });
  assert (payloadI != ElementsWithPayload.end());
  return *(payloadI->ti);
}

bool EnumImplStrategy::isPayloadCase(EnumElementDecl *theCase) const {
  auto payloadI = std::find_if(ElementsWithPayload.begin(),
                               ElementsWithPayload.end(),
   [&](const Element &e) { return e.decl == theCase; });
  return (payloadI != ElementsWithPayload.end());
}

Address
EnumImplStrategy::projectDataForStore(IRGenFunction &IGF,
                                      EnumElementDecl *elt,
                                      Address enumAddr)
const {
  auto payloadI = std::find_if(ElementsWithPayload.begin(),
                               ElementsWithPayload.end(),
     [&](const Element &e) { return e.decl == elt; });

  // Empty payload addresses can be left undefined.
  if (payloadI == ElementsWithPayload.end()) {
    auto argTy = elt->getParentEnum()->mapTypeIntoContext(
      elt->getArgumentInterfaceType());
    return IGF.getTypeInfoForUnlowered(argTy)
      .getUndefAddress();
  }

  // Payloads are all placed at the beginning of the value.
  return IGF.Builder.CreateElementBitCast(enumAddr,
                                          payloadI->ti->getStorageType());
}

Address
EnumImplStrategy::destructiveProjectDataForLoad(IRGenFunction &IGF,
                                                SILType enumType,
                                                Address enumAddr,
                                                EnumElementDecl *Case)
const {
  auto payloadI = std::find_if(ElementsWithPayload.begin(),
                           ElementsWithPayload.end(),
                           [&](const Element &e) { return e.decl == Case; });

  // Empty payload addresses can be left undefined.
  if (payloadI == ElementsWithPayload.end()) {
    auto argTy = Case->getParentEnum()->mapTypeIntoContext(
      Case->getArgumentInterfaceType());
    return IGF.getTypeInfoForUnlowered(argTy)
      .getUndefAddress();
  }

  destructiveProjectDataForLoad(IGF, enumType, enumAddr);

  // Payloads are all placed at the beginning of the value.
  return IGF.Builder.CreateElementBitCast(enumAddr,
                                          payloadI->ti->getStorageType());
}

unsigned
EnumImplStrategy::getTagIndex(EnumElementDecl *Case) const {
  unsigned tagIndex = 0;
  for (auto &payload : ElementsWithPayload) {
    if (payload.decl == Case)
      return tagIndex;
    ++tagIndex;
  }
  for (auto &payload : ElementsWithNoPayload) {
    if (payload.decl == Case)
      return tagIndex;
    ++tagIndex;
  }
  llvm_unreachable("couldn't find case");
}

static void emitResilientTagIndex(IRGenModule &IGM,
                                  const EnumImplStrategy *strategy,
                                  EnumElementDecl *Case) {
  if (!Case->isAvailableDuringLowering())
    return;

  auto resilientIdx = strategy->getTagIndex(Case);
  auto *global = cast<llvm::GlobalVariable>(
    IGM.getAddrOfEnumCase(Case, ForDefinition).getAddress());
  global->setInitializer(llvm::ConstantInt::get(IGM.Int32Ty, resilientIdx));
}

void
EnumImplStrategy::emitResilientTagIndices(IRGenModule &IGM) const {
  for (auto &payload : ElementsWithPayload) {
    emitResilientTagIndex(IGM, this, payload.decl);
  }
  for (auto &noPayload : ElementsWithNoPayload) {
    emitResilientTagIndex(IGM, this, noPayload.decl);
  }
}

llvm::Value *
EnumImplStrategy::emitFixedGetEnumTag(IRGenFunction &IGF, SILType T,
                                      Address enumAddr,
                                      bool maskExtraTagBits) const {
  assert(TIK >= Fixed);
  return emitGetEnumTag(IGF, T, enumAddr, maskExtraTagBits);
}

llvm::Value *
EnumImplStrategy::emitOutlinedGetEnumTag(IRGenFunction &IGF, SILType T,
                                         Address enumAddr) const {
  assert(TIK >= Fixed);

  const TypeInfo &ti = IGF.getTypeInfo(T);
  llvm::SmallVector<llvm::Value *, 4> args;
  args.push_back(IGF.Builder.CreateElementBitCast(enumAddr, ti.getStorageType())
                            .getAddress());

  auto outlinedFn = [T, &IGF] () -> llvm::Constant* {
    IRGenMangler mangler;
    auto manglingBits = getTypeAndGenericSignatureForManglingOutlineFunction(T);
    auto funcName = mangler.mangleOutlinedEnumGetTag(manglingBits.first,
                                                     manglingBits.second);

    const TypeInfo &ti = IGF.getTypeInfo(T);
    auto ptrTy = ti.getStorageType()->getPointerTo();
    llvm::SmallVector<llvm::Type *, 4> paramTys;
    paramTys.push_back(ptrTy);

    return IGF.IGM.getOrCreateHelperFunction(funcName, IGF.IGM.Int32Ty, paramTys,
        [&](IRGenFunction &IGF) {
          Explosion params = IGF.collectParameters();
          Address enumAddr = ti.getAddressForPointer(params.claimNext());
          auto res =
            getEnumImplStrategy(IGF.IGM, T).emitFixedGetEnumTag(IGF, T,
                                                                enumAddr);
          IGF.Builder.CreateRet(res);
        },
        true /*setIsNoInline*/);
    }();

  llvm::CallInst *call = IGF.Builder.CreateCall(
      cast<llvm::Function>(outlinedFn)->getFunctionType(), outlinedFn, args);
  call->setCallingConv(IGF.IGM.DefaultCC);
  return call;
}

namespace {
  /// Implementation strategy for singleton enums, with zero or one cases.
  class SingletonEnumImplStrategy final : public EnumImplStrategy {
    bool needsPayloadSizeInMetadata() const override { return false; }
    
    const TypeInfo *getSingleton() const {
      return ElementsWithPayload.empty() ? nullptr : ElementsWithPayload[0].ti;
    }

    const FixedTypeInfo *getFixedSingleton() const {
      return cast_or_null<FixedTypeInfo>(getSingleton());
    }

    const LoadableTypeInfo *getLoadableSingleton() const {
      return cast_or_null<LoadableTypeInfo>(getSingleton());
    }

    Address getSingletonAddress(IRGenFunction &IGF, Address addr) const {
      return IGF.Builder.CreateElementBitCast(addr,
                                              getSingleton()->getStorageType());
    }

    SILType getSingletonType(IRGenModule &IGM, SILType T) const {
      assert(!ElementsWithPayload.empty());

      return T.getEnumElementType(ElementsWithPayload[0].decl,
                                  IGM.getSILModule(),
                                  IGM.getMaximalTypeExpansionContext());
    }

  public:
    SingletonEnumImplStrategy(IRGenModule &IGM,
                              TypeInfoKind tik,
                              IsFixedSize_t alwaysFixedSize,
                              IsTriviallyDestroyable_t triviallyDestroyable,
                              IsCopyable_t copyable,
                              IsBitwiseTakable_t bitwiseTakable,
                              unsigned NumElements,
                              std::vector<Element> &&WithPayload,
                              std::vector<Element> &&WithNoPayload)
      : EnumImplStrategy(IGM, tik, alwaysFixedSize, triviallyDestroyable,
                         copyable, bitwiseTakable, NumElements,
                         std::move(WithPayload),
                         std::move(WithNoPayload))
    {
      assert(NumElements <= 1);
      assert(ElementsWithPayload.size() <= 1);
    }

    TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
                                     SILType Type,
                                     EnumDecl *theEnum,
                                     llvm::StructType *enumTy) override;

    TypeLayoutEntry *
    buildTypeLayoutEntry(IRGenModule &IGM,
                         SILType T,
                         bool useStructLayouts) const override {
      if (ElementsWithPayload.empty())
        return IGM.typeLayoutCache.getEmptyEntry();
      if (!ElementsAreABIAccessible)
        return IGM.typeLayoutCache.getOrCreateResilientEntry(T);
      if (TIK >= Loadable && !useStructLayouts) {
        return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(getTypeInfo(),
                                                                 T);
      }

      unsigned emptyCases = 0;
      std::vector<TypeLayoutEntry *> nonEmptyCases;
      nonEmptyCases.push_back(
        getSingleton()->buildTypeLayoutEntry(IGM,
                                             getSingletonType(IGM, T),
                                             useStructLayouts));
      return IGM.typeLayoutCache.getOrCreateEnumEntry(emptyCases, nonEmptyCases,
                                                      T, getTypeInfo());
    }

    llvm::Value *emitGetEnumTag(IRGenFunction &IGF, SILType T, Address enumAddr,
                                bool maskExtraTagBits) const override {
      return llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0);
    }

    llvm::Value *
    emitValueCaseTest(IRGenFunction &IGF,
                      Explosion &value,
                      EnumElementDecl *Case) const override {
      (void)value.claim(getExplosionSize());
      return IGF.Builder.getInt1(true);
    }
    llvm::Value *
    emitIndirectCaseTest(IRGenFunction &IGF, SILType T,
                         Address enumAddr,
                         EnumElementDecl *Case,
                         bool) const override {
      return IGF.Builder.getInt1(true);
    }

    void emitSingletonSwitch(IRGenFunction &IGF,
                    ArrayRef<std::pair<EnumElementDecl*,
                                       llvm::BasicBlock*>> dests,
                    llvm::BasicBlock *defaultDest) const {
      // No dispatch necessary. Branch straight to the destination.
      assert(dests.size() <= 1 && "impossible switch table for singleton enum");
      llvm::BasicBlock *dest = dests.size() == 1
        ? dests[0].second : defaultDest;
      IGF.Builder.CreateBr(dest);
    }

    void emitValueSwitch(IRGenFunction &IGF,
                         Explosion &value,
                         ArrayRef<std::pair<EnumElementDecl*,
                                            llvm::BasicBlock*>> dests,
                         llvm::BasicBlock *defaultDest) const override {
      (void)value.claim(getExplosionSize());
      emitSingletonSwitch(IGF, dests, defaultDest);
    }

    void emitIndirectSwitch(IRGenFunction &IGF,
                            SILType T,
                            Address addr,
                            ArrayRef<std::pair<EnumElementDecl*,
                                               llvm::BasicBlock*>> dests,
                            llvm::BasicBlock *defaultDest,
                            bool) const override {
      emitSingletonSwitch(IGF, dests, defaultDest);
    }

    void emitValueProject(IRGenFunction &IGF,
                          Explosion &in,
                          EnumElementDecl *theCase,
                          Explosion &out) const override {
      // The projected value is the payload.
      if (getLoadableSingleton())
        getLoadableSingleton()->reexplode(in, out);
    }

    void emitValueInjection(IRGenModule &IGM,
                            IRBuilder &builder,
                            EnumElementDecl *elt,
                            Explosion &params,
                            Explosion &out) const override {
      // If the element carries no data, neither does the injection.
      // Otherwise, the result is identical.
      if (getLoadableSingleton())
        getLoadableSingleton()->reexplode(params, out);
    }

    bool emitPayloadDirectlyIntoConstant() const override { return true; }

    void destructiveProjectDataForLoad(IRGenFunction &IGF,
                                       SILType T,
                                       Address enumAddr) const override {
      // No tag, nothing to do.
    }

    void storeTag(IRGenFunction &IGF,
                  SILType T,
                  Address enumAddr,
                  EnumElementDecl *Case) const override {
      // No tag, nothing to do.
    }
    
    void emitStoreTag(IRGenFunction &IGF,
                      SILType T,
                      Address enumAddr,
                      llvm::Value *tag) const override {
      // No tag, nothing to do.
    }

    void getSchema(ExplosionSchema &schema) const override {
      if (!getSingleton()) return;
      // If the payload is loadable, forward its explosion schema.
      if (TIK >= Loadable)
        return getSingleton()->getSchema(schema);
      // Otherwise, use an indirect aggregate schema with our storage
      // type.
      schema.add(ExplosionSchema::Element::forAggregate(getStorageType(),
                                      getSingleton()->getBestKnownAlignment()));
    }

    void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
                          Size offset) const override {
      if (auto singleton = getLoadableSingleton())
        singleton->addToAggLowering(IGM, lowering, offset);
    }

    unsigned getExplosionSize() const override {
      if (!getLoadableSingleton()) return 0;
      return getLoadableSingleton()->getExplosionSize();
    }

    void loadAsCopy(IRGenFunction &IGF, Address addr,
                    Explosion &e) const override {
      if (!getLoadableSingleton()) return;
      getLoadableSingleton()->loadAsCopy(IGF, getSingletonAddress(IGF, addr),
                                         e);
    }

    void loadForSwitch(IRGenFunction &IGF, Address addr, Explosion &e) const {
      // Switching on a singleton does not require a value.
      return;
    }

    void loadAsTake(IRGenFunction &IGF, Address addr,
                    Explosion &e) const override {
      if (!getLoadableSingleton()) return;
      getLoadableSingleton()->loadAsTake(IGF, getSingletonAddress(IGF, addr),e);
    }

    void assign(IRGenFunction &IGF, Explosion &e, Address addr,
                bool isOutlined, SILType T) const override {
      if (!getLoadableSingleton()) return;
      getLoadableSingleton()->assign(IGF, e, getSingletonAddress(IGF, addr),
                                     isOutlined, getSingletonType(IGF.IGM, T));
    }

    void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
                        SILType T, bool isOutlined) const override {
      if (!getSingleton()) return;
      if (!ElementsAreABIAccessible) {
        emitAssignWithCopyCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        dest = getSingletonAddress(IGF, dest);
        src = getSingletonAddress(IGF, src);
        getSingleton()->assignWithCopy(
            IGF, dest, src, getSingletonType(IGF.IGM, T), isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsNotInitialization, IsNotTake);
      }
    }

    void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
                        SILType T, bool isOutlined) const override {
      if (!getSingleton()) return;
      if (!ElementsAreABIAccessible) {
        emitAssignWithTakeCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        dest = getSingletonAddress(IGF, dest);
        src = getSingletonAddress(IGF, src);
        getSingleton()->assignWithTake(
            IGF, dest, src, getSingletonType(IGF.IGM, T), isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsNotInitialization, IsTake);
      }
    }

    void initialize(IRGenFunction &IGF, Explosion &e, Address addr,
                    bool isOutlined) const override {
      if (!getLoadableSingleton()) return;
      getLoadableSingleton()->initialize(IGF, e, getSingletonAddress(IGF, addr),
                                         isOutlined);
    }

    void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      if (!getSingleton()) return;
      if (!ElementsAreABIAccessible) {
        emitInitializeWithCopyCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        dest = getSingletonAddress(IGF, dest);
        src = getSingletonAddress(IGF, src);
        getSingleton()->initializeWithCopy(
            IGF, dest, src, getSingletonType(IGF.IGM, T), isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsInitialization, IsNotTake);
      }
    }

    void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      if (!getSingleton()) return;
      if (!ElementsAreABIAccessible) {
        emitInitializeWithTakeCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        dest = getSingletonAddress(IGF, dest);
        src = getSingletonAddress(IGF, src);
        getSingleton()->initializeWithTake(
            IGF, dest, src, getSingletonType(IGF.IGM, T), isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsInitialization, IsTake);
      }
    }

    void collectMetadataForOutlining(OutliningMetadataCollector &collector,
                                     SILType T) const override {
      if (!getSingleton())
        return;
      getSingleton()->collectMetadataForOutlining(collector,
                                        getSingletonType(collector.IGF.IGM, T));
      collector.collectTypeMetadata(T);
    }

    void reexplode(Explosion &src, Explosion &dest)
    const override {
      if (getLoadableSingleton()) getLoadableSingleton()->reexplode(src, dest);
    }

    void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest,
              Atomicity atomicity) const override {
      if (getLoadableSingleton())
        getLoadableSingleton()->copy(IGF, src, dest, atomicity);
    }

    void consume(IRGenFunction &IGF, Explosion &src,
                 Atomicity atomicity,
                 SILType T) const override {
      if (tryEmitConsumeUsingDeinit(IGF, src, T)) {
        return;
      }

      if (getLoadableSingleton())
        getLoadableSingleton()->consume(IGF, src, atomicity,
                                        getSingletonType(IGF.IGM, T));
    }

    void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {
      if (getLoadableSingleton()) getLoadableSingleton()->fixLifetime(IGF, src);
    }

    void destroy(IRGenFunction &IGF, Address addr, SILType T,
                 bool isOutlined) const override {
      if (tryEmitDestroyUsingDeinit(IGF, addr, T)) {
        return;
      }
                 
      if (getSingleton() &&
          !getSingleton()->isTriviallyDestroyable(ResilienceExpansion::Maximal)) {
        if (!ElementsAreABIAccessible) {
          emitDestroyCall(IGF, T, addr);
        } else if (isOutlined || T.hasParameterizedExistential()) {
          getSingleton()->destroy(IGF, getSingletonAddress(IGF, addr),
                                  getSingletonType(IGF.IGM, T), isOutlined);
        } else {
          callOutlinedDestroy(IGF, addr, T);
        }
      }
    }

    void packIntoEnumPayload(IRGenModule &IGM,
                             IRBuilder &builder, EnumPayload &payload,
                             Explosion &in, unsigned offset) const override {
      if (getLoadableSingleton())
        return getLoadableSingleton()->packIntoEnumPayload(IGM, builder, payload,
                                                           in, offset);
    }

    void unpackFromEnumPayload(IRGenFunction &IGF,
                               const EnumPayload &payload,
                               Explosion &dest,
                               unsigned offset) const override {
      if (!getLoadableSingleton()) return;
      getLoadableSingleton()->unpackFromEnumPayload(IGF, payload, dest, offset);
    }

    void initializeMetadata(IRGenFunction &IGF,
                            llvm::Value *metadata,
                            bool isVWTMutable,
                            SILType T,
                        MetadataDependencyCollector *collector) const override {
      // Fixed-size enums don't need dynamic witness table initialization.
      if (TIK >= Fixed) return;

      assert(ElementsWithPayload.size() == 1 &&
             "empty singleton enum should not be dynamic!");

      auto payloadTy = T.getEnumElementType(
          ElementsWithPayload[0].decl, IGM.getSILModule(),
          IGM.getMaximalTypeExpansionContext());
      auto payloadLayout = emitTypeLayoutRef(IGF, payloadTy, collector);
      auto flags = emitEnumLayoutFlags(IGF.IGM, isVWTMutable);
      IGF.Builder.CreateCall(
          IGF.IGM.getInitEnumMetadataSingleCaseFunctionPointer(),
          {metadata, flags, payloadLayout});

      // Pre swift-5.1 runtimes were missing the initialization of the
      // the extraInhabitantCount field. Do it here instead.
      auto payloadRef = IGF.Builder.CreateBitOrPointerCast(
          payloadLayout, IGF.IGM.TypeLayoutTy->getPointerTo());
      auto payloadExtraInhabitantCount =
          IGF.Builder.CreateLoad(IGF.Builder.CreateStructGEP(
              Address(payloadRef, IGF.IGM.TypeLayoutTy, Alignment(1)), 3,
              Size(IGF.IGM.DataLayout.getTypeAllocSize(IGF.IGM.SizeTy) * 2 +
                   IGF.IGM.DataLayout.getTypeAllocSize(IGF.IGM.Int32Ty))));
      emitStoreOfExtraInhabitantCount(IGF, payloadExtraInhabitantCount,
                                      metadata);
    }

    void initializeMetadataWithLayoutString(
        IRGenFunction &IGF, llvm::Value *metadata, bool isVWTMutable, SILType T,
        MetadataDependencyCollector *collector) const override {
      if (TIK >= Fixed)
        return;

      assert(ElementsWithPayload.size() == 1 &&
             "empty singleton enum should not be dynamic!");

      auto payloadTy =
          T.getEnumElementType(ElementsWithPayload[0].decl, IGM.getSILModule(),
                               IGM.getMaximalTypeExpansionContext());

      auto request = DynamicMetadataRequest::getNonBlocking(
          MetadataState::LayoutComplete, collector);
      auto payloadMetadata =
          IGF.emitTypeMetadataRefForLayout(payloadTy, request);

      auto flags = emitEnumLayoutFlags(IGF.IGM, isVWTMutable);
      IGF.Builder.CreateCall(
          IGF.IGM
              .getInitEnumMetadataSingleCaseWithLayoutStringFunctionPointer(),
          {metadata, flags, payloadMetadata});

      // Pre swift-5.1 runtimes were missing the initialization of the
      // the extraInhabitantCount field. Do it here instead.
      auto payloadLayout = emitTypeLayoutRef(IGF, payloadTy, collector);
      auto payloadRef = IGF.Builder.CreateBitOrPointerCast(
          payloadLayout, IGF.IGM.TypeLayoutTy->getPointerTo());
      auto payloadExtraInhabitantCount =
          IGF.Builder.CreateLoad(IGF.Builder.CreateStructGEP(
              Address(payloadRef, IGF.IGM.TypeLayoutTy, Alignment(1)), 3,
              Size(IGF.IGM.DataLayout.getTypeAllocSize(IGF.IGM.SizeTy) * 2 +
                   IGF.IGM.DataLayout.getTypeAllocSize(IGF.IGM.Int32Ty))));
      emitStoreOfExtraInhabitantCount(IGF, payloadExtraInhabitantCount,
                                      metadata);
    }

    bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
      // FIXME: Hold off on registering extra inhabitants for dynamic enums
      // until initializeMetadata handles them.
      if (!getSingleton())
        return false;
      return getSingleton()->mayHaveExtraInhabitants(IGM);
    }

    llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
                                         Address src, SILType T,
                                         bool isOutlined)
    const override {
      if (!getSingleton()) {
        // Any empty value is a valid value.
        return llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1);
      }

      return getFixedSingleton()->getExtraInhabitantIndex(IGF,
                                             getSingletonAddress(IGF, src),
                                             getSingletonType(IGF.IGM, T),
                                             isOutlined);
    }

    void storeExtraInhabitant(IRGenFunction &IGF,
                              llvm::Value *index,
                              Address dest, SILType T,
                              bool isOutlined) const override {
      if (!getSingleton()) {
        // Nothing to store for empty singletons.
        return;
      }
      getFixedSingleton()->storeExtraInhabitant(IGF, index,
                                                getSingletonAddress(IGF, dest),
                                                getSingletonType(IGF.IGM, T),
                                                isOutlined);
    }

    llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
                                         llvm::Value *numEmptyCases,
                                         Address src, SILType T,
                                         bool isOutlined) const override {
      if (!getSingleton()) {
        return getFixedTypeEnumTagSinglePayload(IGF, cast<FixedTypeInfo>(*TI),
                                                numEmptyCases, src, T,
                                                isOutlined);
      }

      return getSingleton()->getEnumTagSinglePayload(IGF, numEmptyCases,
                                                getSingletonAddress(IGF, src),
                                                getSingletonType(IGF.IGM, T),
                                                isOutlined);
    }

    void storeEnumTagSinglePayload(IRGenFunction &IGF,
                                   llvm::Value *index,
                                   llvm::Value *numEmptyCases,
                                   Address src, SILType T,
                                   bool isOutlined) const override {
      if (!getSingleton()) {
        storeFixedTypeEnumTagSinglePayload(IGF, cast<FixedTypeInfo>(*TI),
                                           index, numEmptyCases, src, T,
                                           isOutlined);
        return;
      }

      getSingleton()->storeEnumTagSinglePayload(IGF, index, numEmptyCases,
                                                getSingletonAddress(IGF, src),
                                                getSingletonType(IGF.IGM, T),
                                                isOutlined);
    }

    unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
      assert(TIK >= Fixed);
      if (!getSingleton())
        return 0;
      return getFixedSingleton()->getFixedExtraInhabitantCount(IGM);
    }

    APInt
    getFixedExtraInhabitantValue(IRGenModule &IGM,
                                 unsigned bits,
                                 unsigned index) const override {
      assert(TIK >= Fixed);
      assert(getSingleton() && "empty singletons have no extra inhabitants");
      return getFixedSingleton()
        ->getFixedExtraInhabitantValue(IGM, bits, index);
    }
    
    APInt
    getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
      assert(TIK >= Fixed);
      assert(getSingleton() && "empty singletons have no extra inhabitants");
      return getFixedSingleton()->getFixedExtraInhabitantMask(IGM);
    }

    ClusteredBitVector getTagBitsForPayloads() const override {
      // No tag bits, there's only one payload.
      ClusteredBitVector result;
      if (getSingleton())
        result.appendClearBits(
                        getFixedSingleton()->getFixedSize().getValueInBits());
      return result;
    }

    ClusteredBitVector
    getBitPatternForNoPayloadElement(EnumElementDecl *theCase) const override {
      // There's only a no-payload element if the type is empty.
      return {};
    }

    ClusteredBitVector
    getBitMaskForNoPayloadElements() const override {
      // All bits are significant.
      return ClusteredBitVector::getConstant(
                     cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits(),
                     true);
    }

    bool isSingleRetainablePointer(ResilienceExpansion expansion,
                                   ReferenceCounting *rc) const override {
      auto singleton = getSingleton();
      if (!singleton)
        return false;
      return singleton->isSingleRetainablePointer(expansion, rc);
    }
    
    bool canValueWitnessExtraInhabitantsUpTo(IRGenModule &IGM,
                                             unsigned index) const override {
      auto singleton = getSingleton();
      if (!singleton)
        return false;
      return singleton->canValueWitnessExtraInhabitantsUpTo(IGM, index);
    }
  };

  /// Implementation strategy for no-payload enums, in other words, 'C-like'
  /// enums where none of the cases have data.
  class NoPayloadEnumImplStrategyBase
    : public SingleScalarTypeInfo<NoPayloadEnumImplStrategyBase,
                                  EnumImplStrategy>
  {
  protected:
    llvm::IntegerType *getDiscriminatorType() const {
      llvm::StructType *Struct = getStorageType();
      return cast<llvm::IntegerType>(Struct->getElementType(0));
    }

    /// Map the given element to the appropriate value in the
    /// discriminator type.
    llvm::ConstantInt *getDiscriminatorIdxConst(EnumElementDecl *target) const {
      int64_t index = getDiscriminatorIndex(target);
      return llvm::ConstantInt::get(getDiscriminatorType(), index);
    }
    

  public:
    NoPayloadEnumImplStrategyBase(IRGenModule &IGM,
                                  TypeInfoKind tik,
                                  IsFixedSize_t alwaysFixedSize,
                                  IsTriviallyDestroyable_t triviallyDestroyable,
                                  IsCopyable_t copyable,
                                  IsBitwiseTakable_t bitwiseTakable,
                                  unsigned NumElements,
                                  std::vector<Element> &&WithPayload,
                                  std::vector<Element> &&WithNoPayload)
      : SingleScalarTypeInfo(IGM, tik, alwaysFixedSize, triviallyDestroyable,
                             copyable, bitwiseTakable, NumElements,
                             std::move(WithPayload),
                             std::move(WithNoPayload))
    {
      assert(ElementsWithPayload.empty());
    }

    bool needsPayloadSizeInMetadata() const override { return false; }

    Size getFixedSize() const {
      return Size((getDiscriminatorType()->getBitWidth() + 7) / 8);
    }

    llvm::Value *emitGetEnumTag(IRGenFunction &IGF, SILType T, Address enumAddr,
                                bool maskExtraTagBits) const override {
      Explosion value;
      loadAsTake(IGF, enumAddr, value);

      return IGF.Builder.CreateZExtOrTrunc(value.claimNext(), IGF.IGM.Int32Ty);
    }

    llvm::Value *emitValueCaseTest(IRGenFunction &IGF,
                                   Explosion &value,
                                   EnumElementDecl *Case) const override {
      // True if the discriminator matches the specified element.
      llvm::Value *discriminator = value.claimNext();
      return IGF.Builder.CreateICmpEQ(discriminator,
                                      getDiscriminatorIdxConst(Case));
    }

    
    llvm::Value *emitIndirectCaseTest(IRGenFunction &IGF, SILType T,
                                      Address enumAddr,
                                      EnumElementDecl *Case,
                                      bool) const override {
      Explosion value;
      loadAsTake(IGF, enumAddr, value);
      return emitValueCaseTest(IGF, value, Case);
    }
    
    void emitValueSwitch(IRGenFunction &IGF,
                         Explosion &value,
                         ArrayRef<std::pair<EnumElementDecl*,
                                            llvm::BasicBlock*>> dests,
                         llvm::BasicBlock *defaultDest) const override {
      llvm::Value *discriminator = value.claimNext();

      // Create an unreachable block for the default if the original SIL
      // instruction had none.
      bool unreachableDefault = false;
      if (!defaultDest) {
        unreachableDefault = true;
        defaultDest = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
      }
      
      auto i = SwitchBuilder::create(IGF, discriminator,
                         SwitchDefaultDest(defaultDest,
                                     unreachableDefault ? IsUnreachable
                                                        : IsNotUnreachable),
                         dests.size());
      for (auto &dest : dests)
        i->addCase(getDiscriminatorIdxConst(dest.first), dest.second);

      if (unreachableDefault) {
        IGF.Builder.emitBlock(defaultDest);
        IGF.Builder.CreateUnreachable();
      }
    }

    void emitIndirectSwitch(IRGenFunction &IGF,
                            SILType T,
                            Address addr,
                            ArrayRef<std::pair<EnumElementDecl*,
                                               llvm::BasicBlock*>> dests,
                            llvm::BasicBlock *defaultDest,
                            bool) const override {
      Explosion value;
      loadAsTake(IGF, addr, value);
      emitValueSwitch(IGF, value, dests, defaultDest);
    }

    void emitValueProject(IRGenFunction &IGF,
                          Explosion &in,
                          EnumElementDecl *elt,
                          Explosion &out) const override {
      // All of the cases project an empty explosion.
      (void)in.claim(getExplosionSize());
    }

    void emitValueInjection(IRGenModule &IGM,
                            IRBuilder &builder,
                            EnumElementDecl *elt,
                            Explosion &params,
                            Explosion &out) const override {
      out.add(getDiscriminatorIdxConst(elt));
    }

    void destructiveProjectDataForLoad(IRGenFunction &IGF,
                                       SILType T,
                                       Address enumAddr) const override {
      llvm_unreachable("cannot project data for no-payload cases");
    }

    void storeTag(IRGenFunction &IGF,
                  SILType T,
                  Address enumAddr,
                  EnumElementDecl *Case)
    const override {
      llvm::Value *discriminator = getDiscriminatorIdxConst(Case);
      Address discriminatorAddr
        = IGF.Builder.CreateStructGEP(enumAddr, 0, Size(0));
      IGF.Builder.CreateStore(discriminator, discriminatorAddr);
    }
    
    void emitStoreTag(IRGenFunction &IGF,
                      SILType T,
                      Address enumAddr,
                      llvm::Value *tag) const override {
      // FIXME: We need to do a tag-to-discriminator mapping here, but really
      // the only case where this is not one-to-one is with C-compatible enums,
      // and those cannot be resilient anyway so it doesn't matter for now.
      // However, we will need to fix this if we want to use InjectEnumTag
      // value witnesses for write reflection.
      llvm::Value *discriminator
        = IGF.Builder.CreateIntCast(tag, getDiscriminatorType(), /*signed*/false);
      Address discriminatorAddr
        = IGF.Builder.CreateStructGEP(enumAddr, 0, Size(0));
      IGF.Builder.CreateStore(discriminator, discriminatorAddr);
    }

    void initializeMetadata(IRGenFunction &IGF,
                            llvm::Value *metadata,
                            bool isVWTMutable,
                            SILType T,
                        MetadataDependencyCollector *collector) const override {
      // No-payload enums are always fixed-size so never need dynamic value
      // witness table initialization.
    }

    void initializeMetadataWithLayoutString(
        IRGenFunction &IGF, llvm::Value *metadata, bool isVWTMutable, SILType T,
        MetadataDependencyCollector *collector) const override {
      // No-payload enums are always fixed-size so never need dynamic value
      // witness table initialization.
    }

    /// \group Required for SingleScalarTypeInfo

    llvm::Type *getScalarType() const {
      return getDiscriminatorType();
    }

    static Address projectScalar(IRGenFunction &IGF, Address addr) {
      return IGF.Builder.CreateStructGEP(addr, 0, Size(0));
    }

    void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
                          Size offset) const override {
      lowering.addOpaqueData(offset.asCharUnits(),
                             (offset + getFixedSize()).asCharUnits());
    }

    void emitScalarRetain(IRGenFunction &IGF, llvm::Value *value,
                          Atomicity atomicity) const {}
    void emitScalarRelease(IRGenFunction &IGF, llvm::Value *value,
                           Atomicity atomicity) const {}
    void emitScalarFixLifetime(IRGenFunction &IGF, llvm::Value *value) const {}

    void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      // No-payload enums are always POD, so we can always initialize by
      // primitive copy.
      llvm::Value *val = IGF.Builder.CreateLoad(src);
      IGF.Builder.CreateStore(val, dest);
    }

    void collectMetadataForOutlining(OutliningMetadataCollector &collector,
                                     SILType T) const override {}

    static constexpr IsTriviallyDestroyable_t IsScalarTriviallyDestroyable
      = IsTriviallyDestroyable;

    ClusteredBitVector getTagBitsForPayloads() const override {
      // No tag bits; no-payload enums always use fixed representations.
      return ClusteredBitVector::getConstant(
                    cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits(),
                    false);
    }

    ClusteredBitVector
    getBitPatternForNoPayloadElement(EnumElementDecl *theCase) const override {
      Size size = cast<FixedTypeInfo>(TI)->getFixedSize();
      auto val = getDiscriminatorIdxConst(theCase)->getValue();
      return ClusteredBitVector::fromAPInt(zextOrSelf(val, size.getValueInBits()));
    }

    ClusteredBitVector
    getBitMaskForNoPayloadElements() const override {
      // All bits are significant.
      return ClusteredBitVector::getConstant(
                       cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits(),
                       true);
    }
    
    APInt
    getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
      return APInt::getAllOnes(cast<FixedTypeInfo>(TI)->getFixedSize()
                                      .getValueInBits());
    }
  };

  /// Implementation strategy for native Swift no-payload enums.
  class NoPayloadEnumImplStrategy final
    : public NoPayloadEnumImplStrategyBase
  {
  public:
    NoPayloadEnumImplStrategy(IRGenModule &IGM,
                              TypeInfoKind tik,
                              IsFixedSize_t alwaysFixedSize,
                              IsTriviallyDestroyable_t triviallyDestroyable,
                              IsCopyable_t copyable,
                              IsBitwiseTakable_t bitwiseTakable,
                              unsigned NumElements,
                              std::vector<Element> &&WithPayload,
                              std::vector<Element> &&WithNoPayload)
      : NoPayloadEnumImplStrategyBase(IGM, tik, alwaysFixedSize,
                                      triviallyDestroyable, copyable,
                                      bitwiseTakable, NumElements,
                                      std::move(WithPayload),
                                      std::move(WithNoPayload))
    {
      assert(ElementsWithPayload.empty());
      assert(!ElementsWithNoPayload.empty());
    }

    TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
                                     SILType Type,
                                     EnumDecl *theEnum,
                                     llvm::StructType *enumTy) override;

    TypeLayoutEntry *
    buildTypeLayoutEntry(IRGenModule &IGM,
                         SILType T,
                         bool useStructLayouts) const override {
      if (!useStructLayouts) {
        return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(getTypeInfo(), T);
      }
      return IGM.typeLayoutCache.getOrCreateScalarEntry(getTypeInfo(), T,
                                            ScalarKind::TriviallyDestroyable);
    }


    // TODO: Support this function also for other enum implementation strategies.
    int64_t getDiscriminatorIndex(EnumElementDecl *elt) const override {
      // The elements are assigned discriminators in declaration order.
      return getTagIndex(elt);
    }

    // TODO: Support this function also for other enum implementation strategies.
    llvm::Value *emitExtractDiscriminator(IRGenFunction &IGF,
                                          Explosion &value) const override {
      return value.claimNext();
    }

    /// \group Extra inhabitants for no-payload enums.

    // No-payload enums have all values above their greatest discriminator
    // value that fit inside their storage size available as extra inhabitants.

    bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
      return getFixedExtraInhabitantCount(IGM) > 0;
    }

    unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
      unsigned bits = cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits();
      assert(bits < 32 && "freakishly huge no-payload enum");

      size_t shifted = static_cast<size_t>(static_cast<size_t>(1) << bits);
      size_t rawCount = shifted - ElementsWithNoPayload.size();
      return std::min(rawCount,
                      size_t(ValueWitnessFlags::MaxNumExtraInhabitants));
    }

    APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
                                       unsigned bits,
                                       unsigned index) const override {
      unsigned value = index + ElementsWithNoPayload.size();
      return APInt(bits, value);
    }

    llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
                                         Address src, SILType T,
                                         bool isOutlined)
    const override {
      auto &C = IGF.IGM.getLLVMContext();

      // Load the value.
      auto payloadTy = llvm::IntegerType::get(C,
                      cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits());
      src = IGF.Builder.CreateElementBitCast(src, payloadTy);
      llvm::Value *val = IGF.Builder.CreateLoad(src);

      // Convert to i32.
      val = IGF.Builder.CreateZExtOrTrunc(val, IGF.IGM.Int32Ty);

      // Subtract the number of cases.
      val = IGF.Builder.CreateSub(val,
              llvm::ConstantInt::get(IGF.IGM.Int32Ty, ElementsWithNoPayload.size()));

      // If signed less than zero, we have a valid value. Otherwise, we have
      // an extra inhabitant.
      auto valid
        = IGF.Builder.CreateICmpSLT(val,
                                    llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0));
      val = IGF.Builder.CreateSelect(valid,
                        llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1), val);

      return val;
    }

    void storeExtraInhabitant(IRGenFunction &IGF,
                              llvm::Value *index,
                              Address dest, SILType T,
                              bool isOutlined) const override {
      auto &C = IGF.IGM.getLLVMContext();
      auto payloadTy = llvm::IntegerType::get(C,
                      cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits());
      dest = IGF.Builder.CreateElementBitCast(dest, payloadTy);

      index = IGF.Builder.CreateZExtOrTrunc(index, payloadTy);
      index = IGF.Builder.CreateAdd(index,
                llvm::ConstantInt::get(payloadTy, ElementsWithNoPayload.size()));
      IGF.Builder.CreateStore(index, dest);
    }

    llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
                                         llvm::Value *numEmptyCases,
                                         Address src, SILType T,
                                         bool isOutlined) const override {
      return getFixedTypeEnumTagSinglePayload(IGF, cast<FixedTypeInfo>(*TI),
                                              numEmptyCases, src, T,
                                              isOutlined);
    }

    void storeEnumTagSinglePayload(IRGenFunction &IGF,
                                   llvm::Value *index,
                                   llvm::Value *numEmptyCases,
                                   Address src, SILType T,
                                   bool isOutlined) const override {
      storeFixedTypeEnumTagSinglePayload(IGF, cast<FixedTypeInfo>(*TI),
                                         index, numEmptyCases, src, T,
                                         isOutlined);
    }
  };

  /// Implementation strategy for C-compatible enums, where none of the cases
  /// have data but they all have fixed integer associated values.
  class CCompatibleEnumImplStrategy final
    : public NoPayloadEnumImplStrategyBase
  {
  protected:
    int64_t getDiscriminatorIndex(EnumElementDecl *target) const override {
      // The elements are assigned discriminators ABI-compatible with their
      // raw values from C. An invalid raw value is assigned the error index -1.
      auto intExpr =
          dyn_cast_or_null<IntegerLiteralExpr>(target->getRawValueExpr());
      if (!intExpr) {
        return -1;
      }
      auto intType = getDiscriminatorType();

      APInt intValue =
        BuiltinIntegerWidth::fixed(intType->getBitWidth())
          .parse(intExpr->getDigitsText(), /*radix*/ 0, intExpr->isNegative());

      return intValue.getZExtValue();
    }

  public:
    CCompatibleEnumImplStrategy(IRGenModule &IGM,
                                TypeInfoKind tik,
                                IsFixedSize_t alwaysFixedSize,
                                IsTriviallyDestroyable_t triviallyDestroyable,
                                IsCopyable_t copyable,
                                IsBitwiseTakable_t bitwiseTakable,
                                unsigned NumElements,
                                std::vector<Element> &&WithPayload,
                                std::vector<Element> &&WithNoPayload)
      : NoPayloadEnumImplStrategyBase(IGM, tik, alwaysFixedSize,
                                      triviallyDestroyable,
                                      copyable, bitwiseTakable,
                                      NumElements,
                                      std::move(WithPayload),
                                      std::move(WithNoPayload))
    {
      assert(ElementsWithPayload.empty());
    }

    TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
                                     SILType Type,
                                     EnumDecl *theEnum,
                                     llvm::StructType *enumTy) override;

    TypeLayoutEntry *
    buildTypeLayoutEntry(IRGenModule &IGM,
                         SILType T,
                         bool useStructLayouts) const override {
      if (!useStructLayouts) {
        return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(getTypeInfo(), T);
      }
      return IGM.typeLayoutCache.getOrCreateScalarEntry(getTypeInfo(), T,
                                            ScalarKind::TriviallyDestroyable);
    }

    /// \group Extra inhabitants for C-compatible enums.

    // C-compatible enums have scattered inhabitants. For now, expose no
    // extra inhabitants.

    bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
      return false;
    }

    unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
      return 0;
    }

    APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
                                       unsigned bits,
                                       unsigned index) const override {
      llvm_unreachable("no extra inhabitants");
    }

    llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
                                         Address src, SILType T,
                                         bool isOutlined) const override {
      llvm_unreachable("no extra inhabitants");
    }

    void storeExtraInhabitant(IRGenFunction &IGF,
                              llvm::Value *index,
                              Address dest, SILType T,
                              bool isOutlined) const override {
      llvm_unreachable("no extra inhabitants");
    }

    llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
                                         llvm::Value *numEmptyCases,
                                         Address src, SILType T,
                                         bool isOutlined) const override {
      return getFixedTypeEnumTagSinglePayload(IGF, cast<FixedTypeInfo>(*TI),
                                              numEmptyCases, src, T,
                                              isOutlined);
    }

    void storeEnumTagSinglePayload(IRGenFunction &IGF,
                                   llvm::Value *index,
                                   llvm::Value *numEmptyCases,
                                   Address src, SILType T,
                                   bool isOutlined) const override {
      storeFixedTypeEnumTagSinglePayload(IGF, cast<FixedTypeInfo>(*TI),
                                         index, numEmptyCases, src, T,
                                         isOutlined);
    }

    bool isReflectable() const override {
      // C enums have arbitrary values and we don't preserve the mapping
      // between the case and raw value at runtime, so don't mark it as
      // reflectable.
      return false;
    }
  };
  
  // Use the best fitting "normal" integer size for the enum. Though LLVM
  // theoretically supports integer types of arbitrary bit width, in practice,
  // types other than i1 or power-of-two-byte sizes like i8, i16, etc. inhibit
  // FastISel and expose backend bugs.
  static unsigned getIntegerBitSizeForTag(unsigned tagBits) {
    // i1 is used to represent bool in C so is fairly well supported.
    if (tagBits == 1)
      return 1;
    // Otherwise, round the physical size in bytes up to the next power of two.
    unsigned tagBytes = (tagBits + 7U)/8U;
    if (!llvm::isPowerOf2_32(tagBytes))
      tagBytes = llvm::NextPowerOf2(tagBytes);
    
    return Size(tagBytes).getValueInBits();
  }
  
  static std::pair<Size, llvm::IntegerType *>
  getIntegerTypeForTag(IRGenModule &IGM, unsigned tagBits) {
    auto typeBits = getIntegerBitSizeForTag(tagBits);
    auto typeSize = Size::forBits(typeBits);
    return {typeSize, llvm::IntegerType::get(IGM.getLLVMContext(), typeBits)};
  }

  /// Common base class for enums with one or more cases with data.
  class PayloadEnumImplStrategyBase : public EnumImplStrategy {
  protected:
    EnumPayloadSchema PayloadSchema;
    unsigned PayloadElementCount;
    llvm::IntegerType *ExtraTagTy = nullptr;

    // The number of payload bits.
    unsigned PayloadBitCount = 0;
    // The number of extra tag bits outside of the payload required to
    // discriminate enum cases.
    unsigned ExtraTagBitCount = ~0u;
    // The number of possible values for the extra tag bits that are used.
    // Log2(NumExtraTagValues - 1) + 1 <= ExtraTagBitCount
    unsigned NumExtraTagValues = ~0u;
    
    APInt getExtraTagBitConstant(uint64_t value) const {
      auto bitSize = getIntegerBitSizeForTag(ExtraTagBitCount);
      return APInt(bitSize, value);
    }

    void setTaggedEnumBody(IRGenModule &IGM,
                           llvm::StructType *bodyStruct,
                           unsigned payloadBits, unsigned extraTagBits) {
      // Represent the payload area as a byte array in the LLVM storage type,
      // so that we have full control of its alignment and load/store size.
      // Integer types in LLVM tend to have unexpected alignments or store
      // sizes.
      auto payloadArrayTy = llvm::ArrayType::get(IGM.Int8Ty,
                                                 (payloadBits+7U)/8U);

      SmallVector<llvm::Type*, 2> body;

      // Handle the case when the payload has no storage.
      // This may come up when a generic type with payload is instantiated on an
      // empty type.
      if (payloadBits > 0) {
        body.push_back(payloadArrayTy);
      }

      if (extraTagBits > 0) {
        Size extraTagSize;
        std::tie(extraTagSize, ExtraTagTy)
          = getIntegerTypeForTag(IGM, extraTagBits);
        
        auto extraTagArrayTy = llvm::ArrayType::get(IGM.Int8Ty,
                                                    extraTagSize.getValue());
        body.push_back(extraTagArrayTy);
      } else {
        ExtraTagTy = nullptr;
      }
      bodyStruct->setBody(body, /*isPacked*/true);
    }

  public:
    PayloadEnumImplStrategyBase(IRGenModule &IGM,
                                TypeInfoKind tik,
                                IsFixedSize_t alwaysFixedSize,
                                IsTriviallyDestroyable_t triviallyDestroyable,
                                IsCopyable_t copyable,
                                IsBitwiseTakable_t bitwiseTakable,
                                unsigned NumElements,
                                std::vector<Element> &&WithPayload,
                                std::vector<Element> &&WithNoPayload,
                                EnumPayloadSchema schema)
      : EnumImplStrategy(IGM, tik, alwaysFixedSize,
                         triviallyDestroyable, copyable, bitwiseTakable,
                         NumElements,
                         std::move(WithPayload),
                         std::move(WithNoPayload)),
                         PayloadSchema(schema),
                         PayloadElementCount(0)
    {
      assert(ElementsWithPayload.size() >= 1);
      if (PayloadSchema) {
        PayloadSchema.forEachType(IGM, [&](llvm::Type *t){
          ++PayloadElementCount;
          PayloadBitCount += IGM.DataLayout.getTypeSizeInBits(t);
        });
      } else {
        // The bit count is dynamic.
        PayloadBitCount = ~0u;
      }
    }

    void getSchema(ExplosionSchema &schema) const override {
      if (TIK < Loadable) {
        schema.add(ExplosionSchema::Element::forAggregate(getStorageType(),
                                                  TI->getBestKnownAlignment()));
        return;
      }
      
      PayloadSchema.forEachType(IGM, [&](llvm::Type *payloadTy) {
        schema.add(ExplosionSchema::Element::forScalar(payloadTy));
      });

      if (ExtraTagBitCount > 0)
        schema.add(ExplosionSchema::Element::forScalar(ExtraTagTy));
    }

    void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
                          Size offset) const override {

      Size runningOffset = offset;
      PayloadSchema.forEachType(IGM, [&](llvm::Type *payloadTy) {
        lowering.addTypedData(payloadTy, runningOffset.asCharUnits());
        runningOffset += Size(IGM.DataLayout.getTypeStoreSize(payloadTy));
      });

      // Add the extra tag bits.
      if (ExtraTagBitCount > 0) {
        auto tagStoreSize = IGM.DataLayout.getTypeStoreSize(ExtraTagTy);
        auto tagOffset = offset + getOffsetOfExtraTagBits();
        assert(tagOffset == runningOffset);
        lowering.addOpaqueData(tagOffset.asCharUnits(),
                               (tagOffset + Size(tagStoreSize)).asCharUnits());
      }
    }

    unsigned getExplosionSize() const override {
      return unsigned(ExtraTagBitCount > 0) + PayloadElementCount;
    }

    Address projectPayload(IRGenFunction &IGF, Address addr) const {
      // The payload is currently always at the address point.
      return addr;
    }

    Address projectExtraTagBits(IRGenFunction &IGF, Address addr) const {
      assert(ExtraTagBitCount > 0 && "does not have extra tag bits");

      if (PayloadElementCount == 0) {
        return IGF.Builder.CreateElementBitCast(addr, ExtraTagTy);
      }

      addr = IGF.Builder.CreateStructGEP(addr, 1, getOffsetOfExtraTagBits());
      return IGF.Builder.CreateElementBitCast(addr, ExtraTagTy);
    }

    Size getOffsetOfExtraTagBits() const {
      return Size(PayloadBitCount / 8U);
    }

    void loadForSwitch(IRGenFunction &IGF, Address addr, Explosion &e)
    const {
      assert(TIK >= Fixed);
      auto payload = EnumPayload::load(IGF, projectPayload(IGF, addr),
                                       PayloadSchema);
      payload.explode(IGF.IGM, e);
      if (ExtraTagBitCount > 0)
        e.add(IGF.Builder.CreateLoad(projectExtraTagBits(IGF, addr)));
    }

    void loadAsTake(IRGenFunction &IGF, Address addr, Explosion &e)
    const override {
      assert(TIK >= Loadable);
      loadForSwitch(IGF, addr, e);
    }

    void loadAsCopy(IRGenFunction &IGF, Address addr,
                    Explosion &e) const override {
      assert(TIK >= Loadable);
      Explosion tmp;
      loadAsTake(IGF, addr, tmp);
      copy(IGF, tmp, e, IGF.getDefaultAtomicity());
    }

    void assign(IRGenFunction &IGF, Explosion &e, Address addr,
                bool isOutlined, SILType T) const override {
      assert(TIK >= Loadable);
      Explosion old;
      if (!isTriviallyDestroyable(ResilienceExpansion::Maximal))
        loadAsTake(IGF, addr, old);
      initialize(IGF, e, addr, isOutlined);
      if (!isTriviallyDestroyable(ResilienceExpansion::Maximal))
        consume(IGF, old, IGF.getDefaultAtomicity(), T);
    }

    void initialize(IRGenFunction &IGF, Explosion &e, Address addr,
                    bool isOutlined) const override {
      assert(TIK >= Loadable);
      auto payload = EnumPayload::fromExplosion(IGF.IGM, e, PayloadSchema);
      payload.store(IGF, projectPayload(IGF, addr));
      if (ExtraTagBitCount > 0)
        IGF.Builder.CreateStore(e.claimNext(), projectExtraTagBits(IGF, addr));
    }

    void collectMetadataForOutlining(OutliningMetadataCollector &collector,
                                     SILType T) const override {
      assert(TIK >= Loadable);
    }

    void reexplode(Explosion &src, Explosion &dest)
    const override {
      assert(TIK >= Loadable);
      dest.add(src.claim(getExplosionSize()));
    }

  protected:
    /// Do a primitive copy of the enum from one address to another.
    void emitPrimitiveCopy(IRGenFunction &IGF, Address dest, Address src,
                           SILType T) const {
      // If the layout is fixed, the size will be a constant.
      // Otherwise, do a memcpy of the dynamic size of the type.
      IGF.Builder.CreateMemCpy(
          dest.getAddress(), llvm::MaybeAlign(dest.getAlignment().getValue()),
          src.getAddress(), llvm::MaybeAlign(src.getAlignment().getValue()),
          TI->getSize(IGF, T));
    }

    void emitPrimitiveStorePayloadAndExtraTag(IRGenFunction &IGF, Address dest,
                                              const EnumPayload &payload,
                                              llvm::Value *extraTag) const {
      payload.store(IGF, projectPayload(IGF, dest));
      if (ExtraTagBitCount > 0)
        IGF.Builder.CreateStore(extraTag, projectExtraTagBits(IGF, dest));
    }

    std::pair<EnumPayload, llvm::Value*>
    getPayloadAndExtraTagFromExplosion(IRGenFunction &IGF, Explosion &src)
    const {
      auto payload = EnumPayload::fromExplosion(IGF.IGM, src, PayloadSchema);
      llvm::Value *extraTag = ExtraTagBitCount > 0 ? src.claimNext() : nullptr;
      return {payload, extraTag};
    }
    std::pair<EnumPayload, llvm::Value *>
    getPayloadAndExtraTagFromExplosionOutlined(
        IRGenFunction &IGF, Explosion &src,
        OutliningMetadataCollector *collector) const {
      EnumPayload payload;
      unsigned claimSZ = src.size() - (collector ? collector->size() : 0);
      if (ExtraTagBitCount > 0) {
        --claimSZ;
      }
      for (unsigned i = 0; i < claimSZ; ++i) {
        payload.PayloadValues.push_back(src.claimNext());
      }
      llvm::Value *extraTag = ExtraTagBitCount > 0 ? src.claimNext() : nullptr;
      return {payload, extraTag};
    }

    std::pair<EnumPayload, llvm::Value *>
    emitPrimitiveLoadPayloadAndExtraTag(IRGenFunction &IGF, Address addr,
                                        bool maskExtraTagBits = false) const {
      llvm::Value *extraTag = nullptr;
      auto payload = EnumPayload::load(IGF, projectPayload(IGF, addr),
                                       PayloadSchema);
      if (ExtraTagBitCount > 0) {
        if (maskExtraTagBits) {
          auto projectedBits = projectExtraTagBits(IGF, addr);
          // LLVM assumes that loads of fractional byte sizes have been stored
          // with the same type, so all unused bits would be 0. Since we are
          // re-using spare bits for tag storage, that assumption is wrong here.
          // In CVW we have to mask the extra bits, which requires us to make
          // this cast here, otherwise LLVM would optimize away the bit mask.
          if (projectedBits.getElementType()->getIntegerBitWidth() < 8) {
            projectedBits = IGF.Builder.CreateElementBitCast(projectedBits, IGM.Int8Ty);
          }
          extraTag = IGF.Builder.CreateLoad(projectedBits);
          auto maskBits = (1 << ExtraTagBitCount) - 1;
          auto mask = llvm::ConstantInt::get(extraTag->getType(), maskBits);
          extraTag = IGF.Builder.CreateAnd(extraTag, mask);
        } else {
          extraTag = IGF.Builder.CreateLoad(projectExtraTagBits(IGF, addr));
        }
      }
      return {std::move(payload), extraTag};
    }

    void packIntoEnumPayload(IRGenModule &IGM,
                             IRBuilder &builder,
                             EnumPayload &outerPayload,
                             Explosion &src,
                             unsigned offset) const override {
      // Pack payload, if any.
      auto payload = EnumPayload::fromExplosion(IGM, src, PayloadSchema);
      payload.packIntoEnumPayload(IGM, builder, outerPayload, offset);

      // Pack tag bits, if any.
      if (ExtraTagBitCount > 0) {
        unsigned extraTagOffset = PayloadBitCount + offset;

        outerPayload.insertValue(IGM, builder, src.claimNext(), extraTagOffset);
      }
    }

    void unpackFromEnumPayload(IRGenFunction &IGF,
                               const EnumPayload &outerPayload,
                               Explosion &dest,
                               unsigned offset) const override {
      // Unpack our inner payload, if any.
      auto payload
        = EnumPayload::unpackFromEnumPayload(IGF, outerPayload, offset,
                                             PayloadSchema);
      
      payload.explode(IGF.IGM, dest);

      // Unpack our extra tag bits, if any.
      if (ExtraTagBitCount > 0) {
        unsigned extraTagOffset = PayloadBitCount + offset;

        dest.add(outerPayload.extractValue(IGF, ExtraTagTy, extraTagOffset));
      }
    }
  };

  static void computePayloadTypesAndTagType(
      IRGenModule &IGM, const TypeInfo &TI,
      SmallVector<llvm::Type *, 2> &PayloadTypesAndTagType) {
    for (auto &element : TI.getSchema()) {
      auto type = element.getScalarType();
      PayloadTypesAndTagType.push_back(type);
    }
  }

  static llvm::Function *createOutlineLLVMFunction(
      IRGenModule &IGM, std::string &name,
      ArrayRef<llvm::Type *> PayloadTypesAndTagType) {
    auto consumeTy = llvm::FunctionType::get(IGM.VoidTy, PayloadTypesAndTagType,
                                             /*isVarArg*/ false);
    auto func =
        llvm::Function::Create(consumeTy, llvm::GlobalValue::LinkOnceODRLinkage,
                               llvm::StringRef(name), IGM.getModule());
    ApplyIRLinkage(IRLinkage::InternalLinkOnceODR).to(func);
    func->setAttributes(IGM.constructInitialAttributes());
    func->setDoesNotThrow();
    func->setCallingConv(IGM.DefaultCC);
    func->addFnAttr(llvm::Attribute::NoInline);
    return func;
  }

  class SinglePayloadEnumImplStrategy final
    : public PayloadEnumImplStrategyBase
  {
    // The payload size is readily available from the payload metadata; no
    // need to cache it in the enum metadata.
    bool needsPayloadSizeInMetadata() const override {
      return false;
    }

    TypeLayoutEntry *
    buildTypeLayoutEntry(IRGenModule &IGM,
                         SILType T,
                         bool useStructLayouts) const override {
      if (!ElementsAreABIAccessible)
        return IGM.typeLayoutCache.getOrCreateResilientEntry(T);

      // TODO: Remove once single payload enums are fully supported
      // if (CopyDestroyKind == Normal)
      //   return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(getTypeInfo(),
      //                                                            T);

      unsigned emptyCases = ElementsWithNoPayload.size();
      std::vector<TypeLayoutEntry *> nonEmptyCases;
      nonEmptyCases.push_back(getPayloadTypeInfo().buildTypeLayoutEntry(
          IGM, getPayloadType(IGM, T), useStructLayouts));
      return IGM.typeLayoutCache.getOrCreateEnumEntry(emptyCases, nonEmptyCases,
                                                      T, getTypeInfo());
    }

    EnumElementDecl *getPayloadElement() const {
      return ElementsWithPayload[0].decl;
    }

    SILType getPayloadType(IRGenModule &IGM, SILType T) const {
      return T.getEnumElementType(ElementsWithPayload[0].decl,
                                  IGM.getSILModule(),
                                  IGM.getMaximalTypeExpansionContext());
    }

    const TypeInfo &getPayloadTypeInfo() const {
      return *ElementsWithPayload[0].ti;
    }
    const FixedTypeInfo &getFixedPayloadTypeInfo() const {
      return cast<FixedTypeInfo>(*ElementsWithPayload[0].ti);
    }
    const LoadableTypeInfo &getLoadablePayloadTypeInfo() const {
      return cast<LoadableTypeInfo>(*ElementsWithPayload[0].ti);
    }

    llvm::Value *emitPayloadMetadataForLayout(IRGenFunction &IGF,
                                     SILType T) const {
      return IGF.emitTypeMetadataRefForLayout(getPayloadType(IGF.IGM, T));
    }

    /// More efficient value semantics implementations for certain enum layouts.
    enum CopyDestroyStrategy {
      /// No special behavior.
      Normal,
      /// The payload is trivially destructible, so copying is bitwise (if
      /// allowed), and destruction is a noop.
      TriviallyDestroyable,
      /// The payload type is ABI-inaccessible, so we can't recurse.
      ABIInaccessible,
      /// The payload is a single reference-counted value, and we have
      /// a single no-payload case which uses the null extra inhabitant, so
      /// copy and destroy can pass through to retain and release entry
      /// points.
      NullableRefcounted,
      /// The payload's value witnesses can handle the extra inhabitants we use
      /// for no-payload tags, so we can forward all our calls to them.
      ForwardToPayload,
    };

    CopyDestroyStrategy CopyDestroyKind;
    ReferenceCounting Refcounting;

    unsigned NumExtraInhabitantTagValues = ~0U;

    SILType loweredType;
    mutable llvm::Function *copyEnumFunction = nullptr;
    mutable llvm::Function *consumeEnumFunction = nullptr;
    SmallVector<llvm::Type *, 2> PayloadTypesAndTagType;

    llvm::Function *
    emitCopyEnumFunction(IRGenModule &IGM, SILType theEnumType) const {
      IRGenMangler Mangler;
      auto manglingBits =
        getTypeAndGenericSignatureForManglingOutlineFunction(theEnumType);
      std::string name =
        Mangler.mangleOutlinedCopyFunction(manglingBits.first,
                                           manglingBits.second);
      auto func = createOutlineLLVMFunction(IGM, name, PayloadTypesAndTagType);

      IRGenFunction IGF(IGM, func);
      Explosion src = IGF.collectParameters();
      if (IGM.DebugInfo)
        IGM.DebugInfo->emitArtificialFunction(IGF, IGF.CurFn);

      EnumPayload payload;
      llvm::Value *extraTag;
      std::tie(payload, extraTag) =
          getPayloadAndExtraTagFromExplosionOutlined(IGF, src, nullptr);
      llvm::BasicBlock *endBB =
          testFixedEnumContainsPayload(IGF, payload, extraTag);

      if (PayloadBitCount > 0) {
        ConditionalDominanceScope condition(IGF);
        Explosion payloadValue;
        Explosion payloadCopy;
        auto &loadableTI = getLoadablePayloadTypeInfo();
        loadableTI.unpackFromEnumPayload(IGF, payload, payloadValue, 0);
        loadableTI.copy(IGF, payloadValue, payloadCopy, IGF.getDefaultAtomicity());
        (void)payloadCopy.claimAll(); // FIXME: repack if not bit-identical
      }

      IGF.Builder.CreateBr(endBB);
      IGF.Builder.emitBlock(endBB);

      IGF.Builder.CreateRetVoid();
      return func;
    }

    void emitCallToConsumeEnumFunction(IRGenFunction &IGF, Explosion &src,
                                       SILType theEnumType) const {
      OutliningMetadataCollector collector(theEnumType, IGF, LayoutIsNotNeeded,
                                           DeinitIsNeeded);
      IGF.getTypeInfo(theEnumType)
          .collectMetadataForOutlining(collector, theEnumType);
      collector.materialize();
      if (!consumeEnumFunction)
        consumeEnumFunction =
            emitConsumeEnumFunction(IGF.IGM, theEnumType, collector);
      Explosion tmp;
      fillExplosionForOutlinedCall(IGF, src, tmp, &collector);
      llvm::CallInst *call = IGF.Builder.CreateCallWithoutDbgLoc(
          consumeEnumFunction->getFunctionType(), consumeEnumFunction,
          tmp.claimAll());
      call->setCallingConv(IGM.DefaultCC);
    }

    llvm::Function *
    emitConsumeEnumFunction(IRGenModule &IGM, SILType theEnumType,
                            OutliningMetadataCollector &collector) const {
      IRGenMangler Mangler;
      auto manglingBits =
        getTypeAndGenericSignatureForManglingOutlineFunction(theEnumType);
      std::string name =
        Mangler.mangleOutlinedConsumeFunction(manglingBits.first,
                                              manglingBits.second);
      SmallVector<llvm::Type *, 2> params(PayloadTypesAndTagType);
      collector.addPolymorphicParameterTypes(params);
      auto func = createOutlineLLVMFunction(IGM, name, params);

      IRGenFunction IGF(IGM, func);
      Explosion src = IGF.collectParameters();
      if (IGM.DebugInfo)
        IGM.DebugInfo->emitArtificialFunction(IGF, IGF.CurFn);

      EnumPayload payload;
      llvm::Value *extraTag;
      std::tie(payload, extraTag) =
          getPayloadAndExtraTagFromExplosionOutlined(IGF, src, &collector);
      collector.bindPolymorphicParameters(IGF, src);
      llvm::BasicBlock *endBB =
          testFixedEnumContainsPayload(IGF, payload, extraTag);

      // If we did, consume it.
      if (PayloadBitCount > 0) {
        ConditionalDominanceScope condition(IGF);
        Explosion payloadValue;
        auto &loadableTI = getLoadablePayloadTypeInfo();
        loadableTI.unpackFromEnumPayload(IGF, payload, payloadValue, 0);
        loadableTI.consume(IGF, payloadValue, IGF.getDefaultAtomicity(),
                           getPayloadType(IGF.IGM, theEnumType));
      }

      IGF.Builder.CreateBr(endBB);
      IGF.Builder.emitBlock(endBB);

      IGF.Builder.CreateRetVoid();
      return func;
    }

    static EnumPayloadSchema getPreferredPayloadSchema(Element payloadElement) {
      // TODO: If the payload type info provides a preferred explosion schema,
      // use it. For now, just use a generic word-chunked schema.
      if (auto fixedTI = dyn_cast<FixedTypeInfo>(payloadElement.ti))
        return EnumPayloadSchema(fixedTI->getFixedSize().getValueInBits());
      return EnumPayloadSchema();
    }

  public:
    SinglePayloadEnumImplStrategy(IRGenModule &IGM,
                                  TypeInfoKind tik,
                                  IsFixedSize_t alwaysFixedSize,
                                  IsTriviallyDestroyable_t triviallyDestroyable,
                                  IsCopyable_t copyable,
                                  IsBitwiseTakable_t bitwiseTakable,
                                  unsigned NumElements,
                                  std::vector<Element> &&WithPayload,
                                  std::vector<Element> &&WithNoPayload)
      : PayloadEnumImplStrategyBase(IGM, tik, alwaysFixedSize,
                                    triviallyDestroyable, copyable,
                                    bitwiseTakable, NumElements,
                                    std::move(WithPayload),
                                    std::move(WithNoPayload),
                                getPreferredPayloadSchema(WithPayload.front())),
                                    CopyDestroyKind(Normal),
                                    Refcounting(ReferenceCounting::Native)
    {
      assert(ElementsWithPayload.size() == 1);

      // If the payload is TriviallyDestroyable, then we can use TriviallyDestroyable value semantics.
      auto &payloadTI = *ElementsWithPayload[0].ti;
      if (!payloadTI.isABIAccessible()) {
        CopyDestroyKind = ABIInaccessible;
      } else if (payloadTI.isTriviallyDestroyable(ResilienceExpansion::Maximal)) {
        CopyDestroyKind = TriviallyDestroyable;
      // If the payload is a single refcounted pointer and we have a single
      // empty case, then the layout will be a nullable pointer, and we can
      // pass enum values directly into swift_retain/swift_release as-is.
      } else if (tik >= TypeInfoKind::Loadable
          && payloadTI.isSingleRetainablePointer(ResilienceExpansion::Maximal,
                                                 &Refcounting)
          && ElementsWithNoPayload.size() == 1
          // FIXME: All single-retainable-pointer types should eventually have
          // extra inhabitants.
          && cast<FixedTypeInfo>(payloadTI)
            .getFixedExtraInhabitantCount(IGM) > 0) {
        CopyDestroyKind = NullableRefcounted;
      // If the payload's value witnesses can accept the extra inhabitants we
      // use, then we can forward to them instead of checking for empty tags.
      // TODO: Do this for all types, not just loadable types.
      } else if (tik >= TypeInfoKind::Loadable) {
        ReferenceCounting refCounting;
        (void)refCounting;
        // Ensure that asking `canValueWitnessExtraInhabitantsUpTo` doesn't
        // regress any places we were previously able to ask
        // `isSingleRetainablePointer`.
        assert(
          (!payloadTI.isSingleRetainablePointer(ResilienceExpansion::Maximal,
                                                &refCounting)
           || payloadTI.canValueWitnessExtraInhabitantsUpTo(IGM, 0))
          && "single-refcounted thing should be able to value-witness "
             "extra inhabitant zero");
        
        unsigned numTags = ElementsWithNoPayload.size();
        if (payloadTI.canValueWitnessExtraInhabitantsUpTo(IGM, numTags - 1) &&
            payloadTI.isCopyable(ResilienceExpansion::Maximal)) {
          CopyDestroyKind = ForwardToPayload;
        }
      }
    }

    /// Return the number of tag values represented with extra
    /// inhabitants in the payload.
    unsigned getNumExtraInhabitantTagValues() const {
      assert(NumExtraInhabitantTagValues != ~0U);
      return NumExtraInhabitantTagValues;
    }
    
    bool canValueWitnessExtraInhabitantsUpTo(IRGenModule &IGM,
                                             unsigned index) const override {
      return getPayloadTypeInfo().canValueWitnessExtraInhabitantsUpTo(IGM,
                                           index + NumExtraInhabitantTagValues);
    }

    /// Emit a call into the runtime to get the current enum payload tag.
    /// This returns a tag index in the range [0..NumElements-1].
    llvm::Value *emitGetEnumTag(IRGenFunction &IGF, SILType T, Address enumAddr,
                                bool maskExtraTagBits = false) const override {
      auto numEmptyCases =
          llvm::ConstantInt::get(IGF.IGM.Int32Ty, ElementsWithNoPayload.size());

      auto PayloadT = getPayloadType(IGF.IGM, T);

      auto opaqueAddr = Address(
          IGF.Builder.CreateBitCast(enumAddr.getAddress(), IGF.IGM.OpaquePtrTy),
          IGF.IGM.OpaqueTy, enumAddr.getAlignment());

      return emitGetEnumTagSinglePayloadCall(IGF, PayloadT, numEmptyCases,
                                             opaqueAddr);
    }

    llvm::Value *emitFixedGetEnumTag(IRGenFunction &IGF, SILType T,
                                     Address enumAddr,
                                     bool maskExtraTagBits) const override {
      assert(TIK >= Fixed);
      auto numEmptyCases =
          llvm::ConstantInt::get(IGF.IGM.Int32Ty, ElementsWithNoPayload.size());

      auto PayloadT = getPayloadType(IGF.IGM, T);

      auto &fixedTI = getFixedPayloadTypeInfo();
      auto addr = IGF.Builder.CreateBitCast(
          enumAddr.getAddress(), fixedTI.getStorageType()->getPointerTo());
      return fixedTI.getEnumTagSinglePayload(IGF, numEmptyCases,
                                             fixedTI.getAddressForPointer(addr),
                                             PayloadT, /*isOutlined*/ false);
    }

    /// The payload for a single-payload enum is always placed in front and
    /// will never have interleaved tag bits, so we can just bitcast the enum
    /// address to the payload type for either injection or projection of the
    /// enum.
    Address projectPayloadData(IRGenFunction &IGF, Address addr) const {
      return IGF.Builder.CreateElementBitCast(
          addr, getPayloadTypeInfo().getStorageType());
    }
    void destructiveProjectDataForLoad(IRGenFunction &IGF,
                                       SILType T,
                                       Address enumAddr) const override {
    }

    TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
                                     SILType Type,
                                     EnumDecl *theEnum,
                                      llvm::StructType *enumTy) override;
  private:
    TypeInfo *completeFixedLayout(TypeConverter &TC,
                                  SILType Type,
                                  EnumDecl *theEnum,
                                  llvm::StructType *enumTy);
    TypeInfo *completeDynamicLayout(TypeConverter &TC,
                                    SILType Type,
                                    EnumDecl *theEnum,
                                    llvm::StructType *enumTy);

  public:
    llvm::Value *
    emitIndirectCaseTest(IRGenFunction &IGF, SILType T,
                         Address enumAddr,
                         EnumElementDecl *Case,
                         bool noLoad) const override {
      if (TIK >= Fixed && !noLoad) {
        // Load the fixed-size representation and switch directly.
        Explosion value;
        loadForSwitch(IGF, enumAddr, value);
        return emitValueCaseTest(IGF, value, Case);
      }

      // Just fall back to emitting a switch.
      // FIXME: This could likely be implemented directly.
      auto &C = IGF.IGM.getLLVMContext();
      auto curBlock = IGF.Builder.GetInsertBlock();
      auto caseBlock = llvm::BasicBlock::Create(C);
      auto contBlock = llvm::BasicBlock::Create(C);
      emitIndirectSwitch(IGF, T, enumAddr, {{Case, caseBlock}}, contBlock,
                         noLoad);
      
      // Emit the case block.
      IGF.Builder.emitBlock(caseBlock);
      IGF.Builder.CreateBr(contBlock);

      // Emit the continuation block and generate a PHI to produce the value.
      IGF.Builder.emitBlock(contBlock);
      auto Phi = IGF.Builder.CreatePHI(IGF.IGM.Int1Ty, 2);
      Phi->addIncoming(IGF.Builder.getInt1(true), caseBlock);
      Phi->addIncoming(IGF.Builder.getInt1(false), curBlock);
      return Phi;
    }

    llvm::Value *
    emitValueCaseTest(IRGenFunction &IGF,
                      Explosion &value,
                      EnumElementDecl *Case) const override {
      // If we're testing for the payload element, we cannot directly check to
      // see whether it is present (in full generality) without doing a switch.
      // Try some easy cases, then bail back to the general case.
      if (Case == getPayloadElement()) {
        // If the Enum only contains two cases, test for the non-payload case
        // and invert the result.
        assert(ElementsWithPayload.size() == 1 && "Should have one payload");
        if (ElementsWithNoPayload.size() == 1) {
          auto *InvertedResult = emitValueCaseTest(IGF, value,
                                                 ElementsWithNoPayload[0].decl);
          return IGF.Builder.CreateNot(InvertedResult);
        }
        
        // Otherwise, just fall back to emitting a switch to decide.  Maybe LLVM
        // will be able to simplify it further.
        auto &C = IGF.IGM.getLLVMContext();
        auto caseBlock = llvm::BasicBlock::Create(C);
        auto contBlock = llvm::BasicBlock::Create(C);
        emitValueSwitch(IGF, value, {{Case, caseBlock}}, contBlock);
        
        // Emit the case block.
        IGF.Builder.emitBlock(caseBlock);
        IGF.Builder.CreateBr(contBlock);
        
        // Emit the continuation block and generate a PHI to produce the value.
        IGF.Builder.emitBlock(contBlock);
        auto Phi = IGF.Builder.CreatePHI(IGF.IGM.Int1Ty, 2);
        Phi->addIncoming(IGF.Builder.getInt1(true), caseBlock);
        for (auto I = llvm::pred_begin(contBlock),
             E = llvm::pred_end(contBlock); I != E; ++I)
          if (*I != caseBlock)
            Phi->addIncoming(IGF.Builder.getInt1(false), *I);
        return Phi;
      }

      assert(Case != getPayloadElement());

      // Destructure the value into its payload + tag bit components, each is
      // optional.
      auto payload = EnumPayload::fromExplosion(IGF.IGM, value, PayloadSchema);

      // If there are extra tag bits, test them first.
      llvm::Value *tagBits = nullptr;
      if (ExtraTagBitCount > 0)
        tagBits = value.claimNext();


      // Non-payload cases use extra inhabitants, if any, or are discriminated
      // by setting the tag bits.
      APInt payloadTag, extraTag;
      std::tie(payloadTag, extraTag) = getNoPayloadCaseValue(Case);

      auto &ti = getFixedPayloadTypeInfo();
      
      llvm::Value *payloadResult = nullptr;
      // We can omit the payload check if this is the only case represented with
      // the particular extra tag bit pattern set.
      //
      // TODO: This logic covers the most common case, when there's exactly one
      // more no-payload case than extra inhabitants in the payload. This could
      // be slightly generalized to cases where there's multiple tag bits and
      // exactly one no-payload case in the highest used tag value.
      unsigned extraInhabitantCount = getFixedExtraInhabitantCount(IGF.IGM);
      if (!tagBits ||
          ElementsWithNoPayload.size() != extraInhabitantCount + 1) {
        payloadResult = payload.emitCompare(
            IGF,
            extraInhabitantCount == 0 ? APInt::getAllOnes(PayloadBitCount)
                                      : ti.getFixedExtraInhabitantMask(IGF.IGM),
            payloadTag);
      }

      // If any tag bits are present, they must match.
      llvm::Value *tagResult = nullptr;
      if (tagBits) {
        if (ExtraTagBitCount == 1) {
          if (extraTag == 1)
            tagResult = tagBits;
          else
            tagResult = IGF.Builder.CreateNot(tagBits);
        } else {
          tagResult = IGF.Builder.CreateICmpEQ(tagBits,
                    llvm::ConstantInt::get(IGF.IGM.getLLVMContext(), extraTag));
        }
      }
      
      if (tagResult && payloadResult)
        return IGF.Builder.CreateAnd(tagResult, payloadResult);
      if (tagResult)
        return tagResult;
      assert(payloadResult && "No tag or payload?");
      return payloadResult;
    }

    
    void emitValueSwitch(IRGenFunction &IGF,
                         Explosion &value,
                         ArrayRef<std::pair<EnumElementDecl*,
                                            llvm::BasicBlock*>> dests,
                         llvm::BasicBlock *defaultDest) const override {
      auto &C = IGF.IGM.getLLVMContext();

      // Create a map of the destination blocks for quicker lookup.
      llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
                                                                  dests.end());
      // Create an unreachable branch for unreachable switch defaults.
      auto *unreachableBB = llvm::BasicBlock::Create(C);

      // If there was no default branch in SIL, use the unreachable branch as
      // the default.
      if (!defaultDest)
        defaultDest = unreachableBB;

      auto blockForCase = [&](EnumElementDecl *theCase) -> llvm::BasicBlock* {
        auto found = destMap.find(theCase);
        if (found == destMap.end())
          return defaultDest;
        else
          return found->second;
      };

      auto payload = EnumPayload::fromExplosion(IGF.IGM, value, PayloadSchema);
      llvm::BasicBlock *payloadDest = blockForCase(getPayloadElement());
      unsigned extraInhabitantCount = getNumExtraInhabitantTagValues();

      auto elements = ElementsWithNoPayload;
      auto elti = elements.begin(), eltEnd = elements.end();

      // Advance the enum element iterator.
      auto nextCase = [&]() -> EnumElementDecl* {
        assert(elti != eltEnd);
        Element elt = *elti;
        ++elti;
        return elt.decl;
      };
      
      // If there are extra tag bits, switch over them first.
      SmallVector<llvm::BasicBlock*, 2> tagBitBlocks;
      if (ExtraTagBitCount > 0) {
        llvm::Value *tagBits = value.claimNext();
        assert(NumExtraTagValues > 1
               && "should have more than two tag values if there are extra "
                  "tag bits!");

        llvm::BasicBlock *zeroDest;
        // If we have extra inhabitants, we need to check for them in the
        // zero-tag case. Otherwise, we switch directly to the payload case.
        if (extraInhabitantCount > 0)
          zeroDest = llvm::BasicBlock::Create(C);
        else
          zeroDest = payloadDest;

        // If there are only two interesting cases, do a cond_br instead of
        // a switch.
        if (ExtraTagBitCount == 1) {
          tagBitBlocks.push_back(zeroDest);
          llvm::BasicBlock *oneDest;
          
          // If there's only one no-payload case, we can jump to it directly.
          if (ElementsWithNoPayload.size() == 1) {
            oneDest = blockForCase(nextCase());
          } else {
            oneDest = llvm::BasicBlock::Create(C);
            tagBitBlocks.push_back(oneDest);
          }
          IGF.Builder.CreateCondBr(tagBits, oneDest, zeroDest);
        } else {
          auto swi = SwitchBuilder::create(IGF, tagBits,
                           SwitchDefaultDest(unreachableBB, IsUnreachable),
                           NumExtraTagValues);

          // If we have extra inhabitants, we need to check for them in the
          // zero-tag case. Otherwise, we switch directly to the payload case.
          tagBitBlocks.push_back(zeroDest);
          swi->addCase(llvm::ConstantInt::get(C, getExtraTagBitConstant(0)),
                       zeroDest);
          
          for (unsigned i = 1; i < NumExtraTagValues; ++i) {
            // If there's only one no-payload case, or the payload is empty,
            // we can jump directly to cases without more branching.
            llvm::BasicBlock *bb;
            
            if (ElementsWithNoPayload.size() == 1
                || PayloadBitCount == 0) {
              bb = blockForCase(nextCase());
            } else {
              bb = llvm::BasicBlock::Create(C);
              tagBitBlocks.push_back(bb);
            }
            swi->addCase(llvm::ConstantInt::get(C, getExtraTagBitConstant(i)),
                         bb);
          }
        }

        // Continue by emitting the extra inhabitant dispatch, if any.
        if (extraInhabitantCount > 0)
          IGF.Builder.emitBlock(tagBitBlocks[0]);
      }

      // If there are no extra tag bits, or they're set to zero, then we either
      // have a payload, or an empty case represented using an extra inhabitant.
      // Check the extra inhabitant cases if we have any.
      auto &fpTypeInfo = getFixedPayloadTypeInfo();
      if (extraInhabitantCount > 0) {
        // Switch over the extra inhabitant patterns we used.
        APInt mask = fpTypeInfo.getFixedExtraInhabitantMask(IGF.IGM);
        
        SmallVector<std::pair<APInt, llvm::BasicBlock *>, 4> cases;
        for (auto i = 0U; i < extraInhabitantCount && elti != eltEnd; ++i) {
          cases.push_back({
            fpTypeInfo.getFixedExtraInhabitantValue(IGF.IGM, PayloadBitCount,i),
            blockForCase(nextCase())
          });
        }
        
        payload.emitSwitch(IGF, mask, cases,
                           SwitchDefaultDest(payloadDest, IsNotUnreachable));
      }

      // We should have handled the payload case either in extra inhabitant
      // or in extra tag dispatch by now.
      assert(IGF.Builder.hasPostTerminatorIP() &&
             "did not handle payload case");

      // Handle the cases covered by each tag bit value.
      // If there was only one no-payload case, or the payload is empty, we
      // already branched in the first switch.
      if (PayloadBitCount > 0 && ElementsWithNoPayload.size() > 1) {
        unsigned casesPerTag = PayloadBitCount >= 32
          ? UINT_MAX : 1U << PayloadBitCount;
        for (unsigned i = 1, e = tagBitBlocks.size(); i < e; ++i) {
          assert(elti != eltEnd &&
                 "ran out of cases before running out of extra tags?");
          IGF.Builder.emitBlock(tagBitBlocks[i]);
          
          SmallVector<std::pair<APInt, llvm::BasicBlock *>, 4> cases;
          for (unsigned tag = 0; tag < casesPerTag && elti != eltEnd; ++tag) {
            cases.push_back({APInt(PayloadBitCount, tag),
                             blockForCase(nextCase())});
          }
          
          // FIXME: Provide a mask to only match the bits in the payload
          // whose extra inhabitants differ.
          payload.emitSwitch(IGF, APInt::getAllOnes(PayloadBitCount),
                             cases,
                             SwitchDefaultDest(unreachableBB, IsUnreachable));
        }
      }
      
      assert(elti == eltEnd && "did not branch to all cases?!");

      // Delete the unreachable default block if we didn't use it, or emit it
      // if we did.
      if (unreachableBB->use_empty()) {
        delete unreachableBB;
      } else {
        IGF.Builder.emitBlock(unreachableBB);
        IGF.Builder.CreateUnreachable();
      }
    }

    void emitDynamicSwitch(IRGenFunction &IGF,
                           SILType T,
                           Address addr,
                           ArrayRef<std::pair<EnumElementDecl*,
                                              llvm::BasicBlock*>> dests,
                           llvm::BasicBlock *defaultDest) const {
      // Create a map of the destination blocks for quicker lookup.
      llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
                                                                 dests.end());

      // If there was no default branch in SIL, use an unreachable branch as
      // the default.
      llvm::BasicBlock *unreachableBB = nullptr;
      if (!defaultDest) {
        unreachableBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
        defaultDest = unreachableBB;
      }

      // Ask the runtime to find the case index.
      auto caseIndex = TIK >= Fixed ?
        emitOutlinedGetEnumTag(IGF, T, addr) :
        emitGetEnumTag(IGF, T, addr);

      // Switch on the index.
      auto swi = SwitchBuilder::create(IGF, caseIndex,
                         SwitchDefaultDest(defaultDest,
                                           unreachableBB ? IsUnreachable
                                                         : IsNotUnreachable),
                         dests.size());

      auto emitCase = [&](Element elt) {
        auto tagVal =
            llvm::ConstantInt::get(IGF.IGM.Int32Ty, getTagIndex(elt.decl));
        auto found = destMap.find(elt.decl);
        if (found != destMap.end())
          swi->addCase(tagVal, found->second);
      };

      for (auto &elt : ElementsWithPayload)
        emitCase(elt);

      for (auto &elt : ElementsWithNoPayload)
        emitCase(elt);

      // Emit the unreachable block, if any.
      if (unreachableBB) {
        IGF.Builder.emitBlock(unreachableBB);
        IGF.Builder.CreateUnreachable();
      }
    }

    void emitIndirectSwitch(IRGenFunction &IGF,
                            SILType T,
                            Address addr,
                            ArrayRef<std::pair<EnumElementDecl*,
                                               llvm::BasicBlock*>> dests,
                            llvm::BasicBlock *defaultDest,
                            bool noLoad) const override {
      if (TIK >= Fixed && !noLoad) {
        // Load the fixed-size representation and switch directly.
        Explosion value;
        loadForSwitch(IGF, addr, value);
        return emitValueSwitch(IGF, value, dests, defaultDest);
      }

      // Use the runtime to dynamically switch.
      emitDynamicSwitch(IGF, T, addr, dests, defaultDest);
    }

    void emitValueProject(IRGenFunction &IGF,
                          Explosion &inEnum,
                          EnumElementDecl *theCase,
                          Explosion &out) const override {
      // Only the payload case has anything to project. The other cases are
      // empty.
      if (theCase != getPayloadElement()) {
        (void)inEnum.claim(getExplosionSize());
        return;
      }

      auto payload = EnumPayload::fromExplosion(IGF.IGM, inEnum, PayloadSchema);
      getLoadablePayloadTypeInfo()
        .unpackFromEnumPayload(IGF, payload, out, 0);
      if (ExtraTagBitCount > 0)
        inEnum.claimNext();
    }

  private:
    // Get the payload and extra tag (if any) parts of the discriminator for
    // a no-data case.
    std::pair<APInt, APInt>
    getNoPayloadCaseValue(EnumElementDecl *elt) const {
      assert(elt != getPayloadElement());

      unsigned payloadSize
        = getFixedPayloadTypeInfo().getFixedSize().getValueInBits();

      // Non-payload cases use extra inhabitants, if any, or are discriminated
      // by setting the tag bits.
      // Use the index from ElementsWithNoPayload.
      unsigned tagIndex = getTagIndex(elt) - 1;
      unsigned numExtraInhabitants = getNumExtraInhabitantTagValues();
      APInt payload;
      unsigned extraTagValue;
      if (tagIndex < numExtraInhabitants) {
        payload = getFixedPayloadTypeInfo().getFixedExtraInhabitantValue(
                                               IGM, payloadSize, tagIndex);
        extraTagValue = 0;
      } else {
        tagIndex -= numExtraInhabitants;

        // Factor the extra tag value from the payload value.
        unsigned payloadValue;
        if (payloadSize >= 32) {
          payloadValue = tagIndex;
          extraTagValue = 1U;
        } else {
          payloadValue = tagIndex & ((1U << payloadSize) - 1U);
          extraTagValue = (tagIndex >> payloadSize) + 1U;
        }

        if (payloadSize > 0)
          payload = APInt(payloadSize, payloadValue);
      }

      APInt extraTag;
      if (ExtraTagBitCount > 0) {
        extraTag = getExtraTagBitConstant(extraTagValue);
      } else {
        assert(extraTagValue == 0 &&
               "non-zero extra tag value with no tag bits");
      }
      return {payload, extraTag};
    }

  public:
    void emitValueInjection(IRGenModule &IGM,
                            IRBuilder &builder,
                            EnumElementDecl *elt,
                            Explosion &params,
                            Explosion &out) const override {
      // The payload case gets its native representation. If there are extra
      // tag bits, set them to zero.
      if (elt == getPayloadElement()) {
        auto payload = EnumPayload::zero(IGM, PayloadSchema);
        auto &loadablePayloadTI = getLoadablePayloadTypeInfo();
        loadablePayloadTI.packIntoEnumPayload(IGM, builder, payload, params, 0);
        payload.explode(IGM, out);
        if (ExtraTagBitCount > 0)
          out.add(getZeroExtraTagConstant(IGM));
        return;
      }

      // Non-payload cases use extra inhabitants, if any, or are discriminated
      // by setting the tag bits.
      APInt payloadPattern, extraTag;
      std::tie(payloadPattern, extraTag) = getNoPayloadCaseValue(elt);
      auto payload = EnumPayload::fromBitPattern(IGM, payloadPattern,
                                                 PayloadSchema);
      payload.explode(IGM, out);
      if (ExtraTagBitCount > 0) {
        out.add(llvm::ConstantInt::get(IGM.getLLVMContext(), extraTag));
      }
    }

  private:
    /// Emits the test(s) that determine whether the fixed-size enum contains a
    /// payload or an empty case. Emits the basic block for the "true" case and
    /// returns the unemitted basic block for the "false" case.
    llvm::BasicBlock *
    testFixedEnumContainsPayload(IRGenFunction &IGF,
                                 const EnumPayload &payload,
                                 llvm::Value *extraBits) const {
      auto *nonzeroBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
      // We only need to apply the payload operation if the enum contains a
      // value of the payload case.

      // If we have extra tag bits, they will be zero if we contain a payload.
      if (ExtraTagBitCount > 0) {
        assert(extraBits);
        llvm::Value *isNonzero;
        if (ExtraTagBitCount == 1) {
          isNonzero = extraBits;
        } else {
          llvm::Value *zero = llvm::ConstantInt::get(extraBits->getType(), 0);
          isNonzero = IGF.Builder.CreateICmp(llvm::CmpInst::ICMP_NE,
                                         extraBits, zero);
        }

        auto *zeroBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
        IGF.Builder.CreateCondBr(isNonzero, nonzeroBB, zeroBB);

        IGF.Builder.emitBlock(zeroBB);
      }

      // If we used extra inhabitants to represent empty case discriminators,
      // weed them out.
      unsigned numExtraInhabitants = getNumExtraInhabitantTagValues();
      if (numExtraInhabitants > 0) {
        unsigned bitWidth =
          getFixedPayloadTypeInfo().getFixedSize().getValueInBits();

        auto *payloadBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
        
        SmallVector<std::pair<APInt, llvm::BasicBlock*>, 4> cases;
        
        auto elements = getPayloadElement()->getParentEnum()->getAllElements();
        unsigned inhabitant = 0;
        for (auto i = elements.begin(), end = elements.end();
             i != end && inhabitant < numExtraInhabitants;
             ++i, ++inhabitant) {
          auto xi = getFixedPayloadTypeInfo()
            .getFixedExtraInhabitantValue(IGF.IGM, bitWidth, inhabitant);
          cases.push_back({xi, nonzeroBB});
        }
        
        auto mask
          = getFixedPayloadTypeInfo().getFixedExtraInhabitantMask(IGF.IGM);
        payload.emitSwitch(IGF, mask, cases,
                           SwitchDefaultDest(payloadBB, IsNotUnreachable));
        IGF.Builder.emitBlock(payloadBB);
      }

      return nonzeroBB;
    }

    /// Emits the test(s) that determine whether the enum contains a payload
    /// or an empty case. For a fixed-size enum, this does a primitive load
    /// of the representation and calls down to testFixedEnumContainsPayload.
    /// For a dynamic enum, this queries the value witness table of the payload
    /// type. Emits the basic block for the "true" case and
    /// returns the unemitted basic block for the "false" case.
    llvm::BasicBlock *
    testEnumContainsPayload(IRGenFunction &IGF,
                            Address addr,
                            SILType T) const {
      auto &C = IGF.IGM.getLLVMContext();

      if (TIK >= Fixed) {
        EnumPayload payload;
        llvm::Value *extraTag;
        std::tie(payload, extraTag)
          = emitPrimitiveLoadPayloadAndExtraTag(IGF, addr);
        return testFixedEnumContainsPayload(IGF, payload, extraTag);
      }

      auto *payloadBB = llvm::BasicBlock::Create(C);
      auto *noPayloadBB = llvm::BasicBlock::Create(C);

      // Ask the runtime what case we have.
      llvm::Value *which = emitGetEnumTag(IGF, T, addr);

      // If it's 0 then we have the payload.
      llvm::Value *hasPayload = IGF.Builder.CreateICmpEQ(
          which, llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0));
      IGF.Builder.CreateCondBr(hasPayload, payloadBB, noPayloadBB);

      IGF.Builder.emitBlock(payloadBB);
      return noPayloadBB;
    }

    llvm::Type *getRefcountedPtrType(IRGenModule &IGM) const {
      switch (CopyDestroyKind) {
      case NullableRefcounted:
        return IGM.getReferenceType(Refcounting);
      case ForwardToPayload:
      case TriviallyDestroyable:
      case Normal:
      case ABIInaccessible:
        llvm_unreachable("not a refcounted payload");
      }

      llvm_unreachable("Not a valid CopyDestroyStrategy");
    }

    void retainRefcountedPayload(IRGenFunction &IGF,
                                 llvm::Value *ptr) const {
      switch (CopyDestroyKind) {
      case NullableRefcounted: {
        if (Refcounting == ReferenceCounting::Custom) {
          Explosion e;
          e.add(ptr);
          getPayloadTypeInfo().as<ClassTypeInfo>().strongCustomRetain(
              IGF, e, /*needsNullCheck*/ true);
          return;
        }

        IGF.emitStrongRetain(ptr, Refcounting, IGF.getDefaultAtomicity());
        return;
      }
      case ForwardToPayload:
      case TriviallyDestroyable:
      case Normal:
      case ABIInaccessible:
        llvm_unreachable("not a refcounted payload");
      }
    }

    void fixLifetimeOfRefcountedPayload(IRGenFunction &IGF,
                                        llvm::Value *ptr) const {
      switch (CopyDestroyKind) {
      case NullableRefcounted:
        IGF.emitFixLifetime(ptr);
        return;
      case ForwardToPayload:
      case TriviallyDestroyable:
      case Normal:
      case ABIInaccessible:
        llvm_unreachable("not a refcounted payload");
      }
    }

    void releaseRefcountedPayload(IRGenFunction &IGF,
                                  llvm::Value *ptr) const {
      switch (CopyDestroyKind) {
      case NullableRefcounted: {
        if (Refcounting == ReferenceCounting::Custom) {
          Explosion e;
          e.add(ptr);
          getPayloadTypeInfo().as<ClassTypeInfo>().strongCustomRelease(
              IGF, e, /*needsNullCheck*/ true);
          return;
        }

        IGF.emitStrongRelease(ptr, Refcounting, IGF.getDefaultAtomicity());
        return;
      }
      case ForwardToPayload:
      case TriviallyDestroyable:
      case Normal:
      case ABIInaccessible:
        llvm_unreachable("not a refcounted payload");
      }
    }

    void
    fillExplosionForOutlinedCall(IRGenFunction &IGF, Explosion &src,
                                 Explosion &out,
                                 OutliningMetadataCollector *collector) const {
      assert(out.empty() && "Out explosion must be empty!");
      EnumPayload payload;
      llvm::Value *extraTag;
      std::tie(payload, extraTag) =
          getPayloadAndExtraTagFromExplosion(IGF, src);
      payload.explode(IGM, out);
      if (extraTag)
        out.add(extraTag);

      if (!collector)
        return;
      llvm::SmallVector<llvm::Value *, 4> args;
      collector->addPolymorphicArguments(args);
      for (auto *arg : args) {
        out.add(arg);
      }
    }

    void unpackIntoPayloadExplosion(IRGenFunction &IGF,
                                    Explosion &asEnumIn,
                                    Explosion &asPayloadOut) const {
      auto &payloadTI = getLoadablePayloadTypeInfo();
      // Unpack as an instance of the payload type and use its copy operation.
      auto srcBits = EnumPayload::fromExplosion(IGF.IGM, asEnumIn,
                                                PayloadSchema);
      payloadTI.unpackFromEnumPayload(IGF, srcBits, asPayloadOut, 0);
    }
    
    void packFromPayloadExplosion(IRGenFunction &IGF,
                                  Explosion &asPayloadIn,
                                  Explosion &asEnumOut) const {
      auto &payloadTI = getLoadablePayloadTypeInfo();
      auto payload = EnumPayload::zero(IGF.IGM, PayloadSchema);
      payloadTI.packIntoEnumPayload(IGF.IGM, IGF.Builder, payload, asPayloadIn, 0);
      payload.explode(IGF.IGM, asEnumOut);
    }

  public:
    void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest,
              Atomicity atomicity) const override {
      assert(TIK >= Loadable);

      switch (CopyDestroyKind) {
      case TriviallyDestroyable:
        reexplode(src, dest);
        return;

      case ABIInaccessible:
        llvm_unreachable("ABI-inaccessible type cannot be loadable");

      case Normal: {
        if (loweredType.hasLocalArchetype()) {
          EnumPayload payload;
          llvm::Value *extraTag;
          std::tie(payload, extraTag) =
              getPayloadAndExtraTagFromExplosion(IGF, src);
          llvm::BasicBlock *endBB =
              testFixedEnumContainsPayload(IGF, payload, extraTag);

          if (PayloadBitCount > 0) {
            ConditionalDominanceScope condition(IGF);
            Explosion payloadValue;
            Explosion payloadCopy;
            auto &loadableTI = getLoadablePayloadTypeInfo();
            loadableTI.unpackFromEnumPayload(IGF, payload, payloadValue, 0);
            loadableTI.copy(IGF, payloadValue, payloadCopy,
                            IGF.getDefaultAtomicity());
            (void)payloadCopy.claimAll();
          }
          IGF.Builder.CreateBr(endBB);
          IGF.Builder.emitBlock(endBB);
          return;
        }

        if (!copyEnumFunction)
          copyEnumFunction = emitCopyEnumFunction(IGM, loweredType);
        Explosion tmp;
        fillExplosionForOutlinedCall(IGF, src, tmp, nullptr);
        llvm::CallInst *call = IGF.Builder.CreateCallWithoutDbgLoc(
            copyEnumFunction->getFunctionType(), copyEnumFunction,
            tmp.getAll());
        call->setCallingConv(IGM.DefaultCC);
        // Copy to the new explosion.
        dest.add(tmp.claimAll());
        return;
      }

      case NullableRefcounted: {
        // Bitcast to swift.refcounted*, and retain the pointer.
        llvm::Value *val = src.claimNext();
        llvm::Value *ptr = IGF.Builder.CreateBitOrPointerCast(
            val, getRefcountedPtrType(IGM));
        retainRefcountedPayload(IGF, ptr);
        dest.add(val);
        return;
      }

      case ForwardToPayload: {
        auto &payloadTI = getLoadablePayloadTypeInfo();
        Explosion srcAsPayload, destAsPayload;
        unpackIntoPayloadExplosion(IGF, src, srcAsPayload);
        payloadTI.copy(IGF, srcAsPayload, destAsPayload, atomicity);
        packFromPayloadExplosion(IGF, destAsPayload, dest);
        return;
      }
      }
    }

    void consume(IRGenFunction &IGF, Explosion &src,
                 Atomicity atomicity, SILType T) const override {
      if (tryEmitConsumeUsingDeinit(IGF, src, T)) {
        return;
      }
      assert(TIK >= Loadable);

      switch (CopyDestroyKind) {
      case TriviallyDestroyable:
        (void)src.claim(getExplosionSize());
        return;

      case ABIInaccessible:
        llvm_unreachable("ABI-inaccessible type cannot be loadable");

      case Normal: {
        if (loweredType.hasLocalArchetype()) {
          EnumPayload payload;
          llvm::Value *extraTag;
          std::tie(payload, extraTag) =
              getPayloadAndExtraTagFromExplosion(IGF, src);
          llvm::BasicBlock *endBB =
              testFixedEnumContainsPayload(IGF, payload, extraTag);

          // If we did, consume it.
          if (PayloadBitCount > 0) {
            ConditionalDominanceScope condition(IGF);
            Explosion payloadValue;
            auto &loadableTI = getLoadablePayloadTypeInfo();
            loadableTI.unpackFromEnumPayload(IGF, payload, payloadValue, 0);
            loadableTI.consume(IGF, payloadValue, IGF.getDefaultAtomicity(),
                               getPayloadType(IGF.IGM, T));
          }

          IGF.Builder.CreateBr(endBB);
          IGF.Builder.emitBlock(endBB);
          return;
        }
        emitCallToConsumeEnumFunction(IGF, src, T);
        return;
      }

      case NullableRefcounted: {
        // Bitcast to swift.refcounted*, and hand to swift_release.
        llvm::Value *val = src.claimNext();
        llvm::Value *ptr = IGF.Builder.CreateBitOrPointerCast(
            val, getRefcountedPtrType(IGM));
        releaseRefcountedPayload(IGF, ptr);
        return;
      }

      case ForwardToPayload: {
        auto &payloadTI = getLoadablePayloadTypeInfo();
        // Unpack as an instance of the payload type and use its consume
        // operation.
        Explosion srcAsPayload;
        unpackIntoPayloadExplosion(IGF, src, srcAsPayload);
        payloadTI.consume(IGF, srcAsPayload, atomicity,
                          getPayloadType(IGF.IGM, T));
        return;
      }
      }
    }

    void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {
      assert(TIK >= Loadable);

      switch (CopyDestroyKind) {
      case TriviallyDestroyable:
        (void)src.claim(getExplosionSize());
        return;

      case ABIInaccessible:
        llvm_unreachable("ABI-inaccessible type cannot be loadable");

      case Normal: {
        // Check that we have a payload.
        EnumPayload payload; llvm::Value *extraTag;
        std::tie(payload, extraTag)
          = getPayloadAndExtraTagFromExplosion(IGF, src);

        llvm::BasicBlock *endBB
          = testFixedEnumContainsPayload(IGF, payload, extraTag);

        // If we did, consume it.
        if (PayloadBitCount > 0) {
          ConditionalDominanceScope condition(IGF);
          Explosion payloadValue;
          auto &loadableTI = getLoadablePayloadTypeInfo();
          loadableTI.unpackFromEnumPayload(IGF, payload, payloadValue, 0);
          loadableTI.fixLifetime(IGF, payloadValue);
        }

        IGF.Builder.CreateBr(endBB);
        IGF.Builder.emitBlock(endBB);
        return;
      }

      case NullableRefcounted: {
        // Bitcast to swift.refcounted*, and hand to swift_release.
        llvm::Value *val = src.claimNext();
        llvm::Value *ptr = IGF.Builder.CreateIntToPtr(val,
                                                getRefcountedPtrType(IGM));
        fixLifetimeOfRefcountedPayload(IGF, ptr);
        return;
      }

      case ForwardToPayload: {
        auto &payloadTI = getLoadablePayloadTypeInfo();
        // Unpack as an instance of the payload type and use its fixLifetime
        // operation.
        Explosion srcAsPayload;
        unpackIntoPayloadExplosion(IGF, src, srcAsPayload);
        payloadTI.fixLifetime(IGF, srcAsPayload);
        return;
      }
      }

    }

    void destroy(IRGenFunction &IGF, Address addr, SILType T,
                 bool isOutlined) const override {
      if (tryEmitDestroyUsingDeinit(IGF, addr, T)) {
        return;
      }

      if (CopyDestroyKind == TriviallyDestroyable) {
        return;
      }
      if (!ElementsAreABIAccessible) {
        return emitDestroyCall(IGF, T, addr);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        switch (CopyDestroyKind) {
        case TriviallyDestroyable:
          return;

        case ABIInaccessible:
          llvm_unreachable("should already have been handled");

        case Normal: {
          // Check that there is a payload at the address.
          llvm::BasicBlock *endBB = testEnumContainsPayload(IGF, addr, T);

          ConditionalDominanceScope condition(IGF);

          // If there is, project and destroy it.
          Address payloadAddr = projectPayloadData(IGF, addr);
          getPayloadTypeInfo().destroy(IGF, payloadAddr,
                                       getPayloadType(IGM, T),
                                       true /*isOutlined*/);

          IGF.Builder.CreateBr(endBB);
          IGF.Builder.emitBlock(endBB);
          return;
        }

        case NullableRefcounted: {
          // Apply the payload's operation.
          addr =
              IGF.Builder.CreateElementBitCast(addr, getRefcountedPtrType(IGM));
          llvm::Value *ptr = IGF.Builder.CreateLoad(addr);
          releaseRefcountedPayload(IGF, ptr);
          return;
        }

        case ForwardToPayload: {
          auto &payloadTI = getPayloadTypeInfo();
          // Apply the payload's operation.
          addr = IGF.Builder.CreateElementBitCast(addr,
                                                  payloadTI.getStorageType());
          payloadTI.destroy(IGF, addr, getPayloadType(IGF.IGM, T), isOutlined);
          return;
        }
        }
      } else {
        callOutlinedDestroy(IGF, addr, T);
        return;
      }
    }

    LoadedRef loadRefcountedPtr(IRGenFunction &IGF, SourceLoc loc,
                                   Address addr) const override {
      // There is no need to bitcast from the enum address. Loading from the
      // reference type emits a bitcast to the proper reference type first.
      return getLoadablePayloadTypeInfo().loadRefcountedPtr(IGF, loc, addr);
    }
  private:
    llvm::ConstantInt *getZeroExtraTagConstant(IRGenModule &IGM) const {
      assert(TIK >= Fixed && "not fixed layout");
      assert(ExtraTagBitCount > 0 && "no extra tag bits?!");
      return llvm::ConstantInt::get(IGM.getLLVMContext(),
                                    getExtraTagBitConstant(0));
    }

    /// Initialize the extra tag bits, if any, to zero to indicate a payload.
    void emitInitializeExtraTagBitsForPayload(IRGenFunction &IGF,
                                              Address dest,
                                              SILType T) const {
      if (TIK >= Fixed) {
        // We statically know whether we have extra tag bits.
        // Store zero directly to the fixed-layout extra tag field.
        if (ExtraTagBitCount > 0) {
          auto *zeroTag = getZeroExtraTagConstant(IGM);
          IGF.Builder.CreateStore(zeroTag, projectExtraTagBits(IGF, dest));
        }
        return;
      }
      llvm::Value *opaqueAddr =
          IGF.Builder.CreateBitCast(dest.getAddress(), IGM.OpaquePtrTy);

      auto PayloadT = getPayloadType(IGM, T);
      auto Addr = Address(opaqueAddr, IGM.OpaqueTy, dest.getAlignment());
      auto *whichCase = llvm::ConstantInt::get(IGM.Int32Ty, 0);
      auto *numEmptyCases =
          llvm::ConstantInt::get(IGM.Int32Ty, ElementsWithNoPayload.size());
      emitStoreEnumTagSinglePayloadCall(IGF, PayloadT, whichCase, numEmptyCases,
                                        Addr);
    }

    /// Emit a reassignment sequence from an enum at one address to another.
    void emitIndirectAssign(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, IsTake_t isTake, bool isOutlined) const {
      auto &C = IGM.getLLVMContext();
      auto PayloadT = getPayloadType(IGM, T);

      switch (CopyDestroyKind) {
      case TriviallyDestroyable:
        return emitPrimitiveCopy(IGF, dest, src, T);

      case ABIInaccessible:
        llvm_unreachable("shouldn't get here");

      case Normal: {
        llvm::BasicBlock *endBB = llvm::BasicBlock::Create(C);

        Address destData = projectPayloadData(IGF, dest);
        Address srcData = projectPayloadData(IGF, src);
        // See whether the current value at the destination has a payload.

        llvm::BasicBlock *noDestPayloadBB
          = testEnumContainsPayload(IGF, dest, T);

        {
          ConditionalDominanceScope destCondition(IGF);

          // Here, the destination has a payload. Now see if the source also
          // has one.
          llvm::BasicBlock *destNoSrcPayloadBB
            = testEnumContainsPayload(IGF, src, T);

          {
            ConditionalDominanceScope destSrcCondition(IGF);

            // Here, both source and destination have payloads. Do the
            // reassignment of the payload in-place.
            getPayloadTypeInfo().assign(IGF, destData, srcData, isTake,
                                        PayloadT, isOutlined);
            IGF.Builder.CreateBr(endBB);
          }

          // If the destination has a payload but the source doesn't, we can
          // destroy the payload and primitive-store the new no-payload value.
          IGF.Builder.emitBlock(destNoSrcPayloadBB);
          {
            ConditionalDominanceScope destNoSrcCondition(IGF);
            getPayloadTypeInfo().destroy(IGF, destData, PayloadT,
                                         false /*outline calling outline*/);
            emitPrimitiveCopy(IGF, dest, src, T);
            IGF.Builder.CreateBr(endBB);
          }
        }

        // Now, if the destination has no payload, check if the source has one.
        IGF.Builder.emitBlock(noDestPayloadBB);
        {
          ConditionalDominanceScope noDestCondition(IGF);
          llvm::BasicBlock *noDestNoSrcPayloadBB
            = testEnumContainsPayload(IGF, src, T);

          {
            ConditionalDominanceScope noDestSrcCondition(IGF);

            // Here, the source has a payload but the destination doesn't.
            // We can copy-initialize the source over the destination, then
            // primitive-store the zero extra tag (if any).

            getPayloadTypeInfo().initialize(IGF, destData, srcData, isTake,
                                            PayloadT, isOutlined);
            emitInitializeExtraTagBitsForPayload(IGF, dest, T);
            IGF.Builder.CreateBr(endBB);
          }

          // If neither destination nor source have payloads, we can just
          // primitive-store the new empty-case value.
          IGF.Builder.emitBlock(noDestNoSrcPayloadBB);
          {
            ConditionalDominanceScope noDestNoSrcCondition(IGF);
            emitPrimitiveCopy(IGF, dest, src, T);
            IGF.Builder.CreateBr(endBB);
          }
        }

        IGF.Builder.emitBlock(endBB);
        return;
      }

      case NullableRefcounted: {
        // Do the assignment as for a refcounted pointer.
        auto refCountedTy = getRefcountedPtrType(IGM);
        Address destAddr = IGF.Builder.CreateElementBitCast(dest, refCountedTy);
        Address srcAddr = IGF.Builder.CreateElementBitCast(src, refCountedTy);
        // Load the old pointer at the destination.
        llvm::Value *oldPtr = IGF.Builder.CreateLoad(destAddr);
        // Store the new pointer.
        llvm::Value *srcPtr = IGF.Builder.CreateLoad(srcAddr);
        if (!isTake)
          retainRefcountedPayload(IGF, srcPtr);
        IGF.Builder.CreateStore(srcPtr, destAddr);
        // Release the old value.
        releaseRefcountedPayload(IGF, oldPtr);
        return;
      }

      case ForwardToPayload: {
        auto &payloadTI = getPayloadTypeInfo();
        // Apply the payload's operation.
        dest =
            IGF.Builder.CreateElementBitCast(dest, payloadTI.getStorageType());
        src = IGF.Builder.CreateElementBitCast(src, payloadTI.getStorageType());
        payloadTI.assign(IGF, dest, src, isTake,
                         getPayloadType(IGF.IGM, T), isOutlined);
        return;
      }
      }

    }

    /// Emit an initialization sequence, initializing an enum at one address
    /// with another at a different address.
    void emitIndirectInitialize(IRGenFunction &IGF, Address dest, Address src,
                                SILType T, IsTake_t isTake,
                                bool isOutlined) const {
      auto &C = IGM.getLLVMContext();

      switch (CopyDestroyKind) {
      case TriviallyDestroyable:
        return emitPrimitiveCopy(IGF, dest, src, T);

      case ABIInaccessible:
        llvm_unreachable("shouldn't get here");

      case Normal: {
        llvm::BasicBlock *endBB = llvm::BasicBlock::Create(C);

        Address destData = projectPayloadData(IGF, dest);
        Address srcData = projectPayloadData(IGF, src);

        // See whether the source value has a payload.
        llvm::BasicBlock *noSrcPayloadBB
          = testEnumContainsPayload(IGF, src, T);

        {
          ConditionalDominanceScope condition(IGF);

          // Here, the source value has a payload. Initialize the destination
          // with it, and set the extra tag if any to zero.
          getPayloadTypeInfo().initialize(IGF, destData, srcData, isTake,
                                          getPayloadType(IGM, T),
                                          isOutlined);
          emitInitializeExtraTagBitsForPayload(IGF, dest, T);
          IGF.Builder.CreateBr(endBB);
        }

        // If the source value has no payload, we can primitive-store the
        // empty-case value.
        IGF.Builder.emitBlock(noSrcPayloadBB);
        {
          ConditionalDominanceScope condition(IGF);
          emitPrimitiveCopy(IGF, dest, src, T);
          IGF.Builder.CreateBr(endBB);        
        }

        IGF.Builder.emitBlock(endBB);
        return;
      }

      case NullableRefcounted: {
        auto refCountedTy = getRefcountedPtrType(IGM);

        // Do the initialization as for a refcounted pointer.
        Address destAddr = IGF.Builder.CreateElementBitCast(dest, refCountedTy);
        Address srcAddr = IGF.Builder.CreateElementBitCast(src, refCountedTy);

        llvm::Value *srcPtr = IGF.Builder.CreateLoad(srcAddr);
        if (!isTake)
          retainRefcountedPayload(IGF, srcPtr);
        IGF.Builder.CreateStore(srcPtr, destAddr);
        return;
      }

      case ForwardToPayload: {
        auto &payloadTI = getPayloadTypeInfo();
        // Apply the payload's operation.
        dest =
            IGF.Builder.CreateElementBitCast(dest, payloadTI.getStorageType());
        src = IGF.Builder.CreateElementBitCast(src, payloadTI.getStorageType());
        payloadTI.initialize(IGF, dest, src, isTake,
                             getPayloadType(IGF.IGM, T), isOutlined);
        return;
      }
      }
    }

  public:
    void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
                        SILType T, bool isOutlined) const override {
      if (!ElementsAreABIAccessible) {
        emitAssignWithCopyCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        emitIndirectAssign(IGF, dest, src, T, IsNotTake, isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsNotInitialization, IsNotTake);
      }
    }

    void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
                        SILType T, bool isOutlined) const override {
      if (!ElementsAreABIAccessible) {
        emitAssignWithTakeCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        emitIndirectAssign(IGF, dest, src, T, IsTake, isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsNotInitialization, IsTake);
      }
    }

    void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      if (!ElementsAreABIAccessible) {
        emitInitializeWithCopyCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        emitIndirectInitialize(IGF, dest, src, T, IsNotTake, isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsInitialization, IsNotTake);
      }
    }

    void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      if (!ElementsAreABIAccessible) {
        emitInitializeWithTakeCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        emitIndirectInitialize(IGF, dest, src, T, IsTake, isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsInitialization, IsTake);
      }
    }

    void collectMetadataForOutlining(OutliningMetadataCollector &collector,
                                     SILType T) const override {
      if (CopyDestroyKind == Normal) {
        auto payloadT = getPayloadType(IGM, T);
        getPayloadTypeInfo().collectMetadataForOutlining(collector, payloadT);
      }
      collector.collectTypeMetadata(T);
    }

    void storeTag(IRGenFunction &IGF,
                  SILType T,
                  Address enumAddr,
                  EnumElementDecl *Case) const override {
      if (TIK < Fixed) {
        // If the enum isn't fixed-layout, get the runtime to do this for us.
        llvm::Value *caseIndex;
        if (Case == getPayloadElement()) {
          caseIndex = llvm::ConstantInt::get(IGM.Int32Ty, 0);
        } else {
          auto found = std::find_if(ElementsWithNoPayload.begin(),
                                    ElementsWithNoPayload.end(),
                                    [&](Element a) { return a.decl == Case; });
          assert(found != ElementsWithNoPayload.end() &&
                 "case not in enum?!");
          unsigned caseIndexVal = found - ElementsWithNoPayload.begin() + 1;
          caseIndex = llvm::ConstantInt::get(IGM.Int32Ty, caseIndexVal);
        }

        llvm::Value *numEmptyCases = llvm::ConstantInt::get(IGM.Int32Ty,
                                                  ElementsWithNoPayload.size());

        llvm::Value *opaqueAddr
          = IGF.Builder.CreateBitCast(enumAddr.getAddress(),
                                      IGM.OpaquePtrTy);
        auto PayloadT = getPayloadType(IGM, T);
        auto Addr = Address(opaqueAddr, IGM.OpaqueTy, enumAddr.getAlignment());
        emitStoreEnumTagSinglePayloadCall(IGF, PayloadT, caseIndex,
                                          numEmptyCases, Addr);
        return;
      }

      if (Case == getPayloadElement()) {
        // The data occupies the entire payload. If we have extra tag bits,
        // zero them out.
        if (ExtraTagBitCount > 0)
          IGF.Builder.CreateStore(getZeroExtraTagConstant(IGM),
                                  projectExtraTagBits(IGF, enumAddr));
        return;
      }

      // Store the discriminator for the no-payload case.
      APInt payloadValue, extraTag;
      std::tie(payloadValue, extraTag) = getNoPayloadCaseValue(Case);
      auto &C = IGM.getLLVMContext();
      auto payload = EnumPayload::fromBitPattern(IGM, payloadValue,
                                                 PayloadSchema);
      payload.store(IGF, projectPayload(IGF, enumAddr));
      if (ExtraTagBitCount > 0)
        IGF.Builder.CreateStore(llvm::ConstantInt::get(C, extraTag),
                                projectExtraTagBits(IGF, enumAddr));
    }

    /// Constructs an enum value using a tag index in the range
    /// [0..NumElements-1].
    void emitStoreTag(IRGenFunction &IGF, SILType T, Address enumAddr,
                      llvm::Value *tag) const override {
      auto PayloadT = getPayloadType(IGM, T);
      llvm::Value *opaqueAddr
        = IGF.Builder.CreateBitCast(enumAddr.getAddress(),
                                      IGM.OpaquePtrTy);

      llvm::Value *numEmptyCases = llvm::ConstantInt::get(IGM.Int32Ty,
                                                ElementsWithNoPayload.size());
      auto Addr = Address(opaqueAddr, IGM.OpaqueTy, enumAddr.getAlignment());
      emitStoreEnumTagSinglePayloadCall(IGF, PayloadT, tag, numEmptyCases,
                                        Addr);
    }

    void initializeMetadata(IRGenFunction &IGF,
                            llvm::Value *metadata,
                            bool isVWTMutable,
                            SILType T,
                        MetadataDependencyCollector *collector) const override {
      // Fixed-size enums don't need dynamic witness table initialization.
      if (TIK >= Fixed) return;

      // Ask the runtime to do our layout using the payload metadata and number
      // of empty cases.
      auto payloadTy =
          T.getEnumElementType(ElementsWithPayload[0].decl, IGM.getSILModule(),
                               IGM.getMaximalTypeExpansionContext());
      auto payloadLayout = emitTypeLayoutRef(IGF, payloadTy, collector);
      auto emptyCasesVal = llvm::ConstantInt::get(IGM.Int32Ty,
                                                  ElementsWithNoPayload.size());
      auto flags = emitEnumLayoutFlags(IGM, isVWTMutable);
      IGF.Builder.CreateCall(
          IGM.getInitEnumMetadataSinglePayloadFunctionPointer(),
          {metadata, flags, payloadLayout, emptyCasesVal});
    }

    void initializeMetadataWithLayoutString(
        IRGenFunction &IGF, llvm::Value *metadata, bool isVWTMutable, SILType T,
        MetadataDependencyCollector *collector) const override {
      // Fixed-size enums don't need dynamic witness table initialization.
      if (TIK >= Fixed)
        return;

      // Ask the runtime to do our layout using the payload metadata and number
      // of empty cases.
      auto payloadTy =
          T.getEnumElementType(ElementsWithPayload[0].decl, IGM.getSILModule(),
                               IGM.getMaximalTypeExpansionContext());

      auto request = DynamicMetadataRequest::getNonBlocking(
          MetadataState::LayoutComplete, collector);
      auto payloadLayout = IGF.emitTypeMetadataRefForLayout(payloadTy, request);
      auto emptyCasesVal =
          llvm::ConstantInt::get(IGM.Int32Ty, ElementsWithNoPayload.size());
      auto flags = emitEnumLayoutFlags(IGM, isVWTMutable);
      IGF.Builder.CreateCall(
          IGM.getInitEnumMetadataSinglePayloadWithLayoutStringFunctionPointer(),
          {metadata, flags, payloadLayout, emptyCasesVal});
    }

    /// \group Extra inhabitants

    // Extra inhabitants from the payload that we didn't use for our empty cases
    // are available to outer enums.
    // FIXME: If we spilled extra tag bits, we could offer spare bits from the
    // tag.

    bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
      if (TIK >= Fixed)
        return getFixedExtraInhabitantCount(IGM) > 0;

      return getPayloadTypeInfo().mayHaveExtraInhabitants(IGM);
    }

    unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
      return getFixedPayloadTypeInfo().getFixedExtraInhabitantCount(IGM)
               - getNumExtraInhabitantTagValues();
    }

    APInt
    getFixedExtraInhabitantValue(IRGenModule &IGM,
                                 unsigned bits,
                                 unsigned index) const override {
      return getFixedPayloadTypeInfo()
        .getFixedExtraInhabitantValue(IGM, bits,
                                      index + getNumExtraInhabitantTagValues());
    }

    llvm::Value *
    getExtraInhabitantIndex(IRGenFunction &IGF,
                            Address src, SILType T,
                            bool isOutlined) const override {
      auto payload = projectPayloadData(IGF, src);
      llvm::Value *index
        = getFixedPayloadTypeInfo().getExtraInhabitantIndex(IGF, payload,
                                                   getPayloadType(IGF.IGM, T),
                                                   isOutlined);

      return adjustPayloadExtraInhabitantIndex(IGF, index);
    }

    /// Given an extra inhabitant index for the payload type, adjust it to
    /// be an appropriate extra inhabitant index for the enum type.
    llvm::Value *adjustPayloadExtraInhabitantIndex(IRGenFunction &IGF,
                                                   llvm::Value *index) const {
      // Offset the payload extra inhabitant index by the number of inhabitants
      // we used. If less than zero, it's a valid value of the enum type.
      index = IGF.Builder.CreateSub(index,
         llvm::ConstantInt::get(IGM.Int32Ty, ElementsWithNoPayload.size()));
      auto valid = IGF.Builder.CreateICmpSLT(index,
                                   llvm::ConstantInt::get(IGM.Int32Ty, 0));
      index = IGF.Builder.CreateSelect(valid,
                              llvm::ConstantInt::getSigned(IGM.Int32Ty, -1),
                              index);
      return index;
    }

    void storeExtraInhabitant(IRGenFunction &IGF,
                              llvm::Value *index,
                              Address dest, SILType T,
                              bool isOutlined) const override {
      index = adjustExtraInhabitantIndexForPayload(IGF, index);
      auto payload = projectPayloadData(IGF, dest);
      getFixedPayloadTypeInfo().storeExtraInhabitant(IGF, index, payload,
                                                getPayloadType(IGF.IGM, T),
                                                isOutlined);
    }

    /// Given an extra inhabitant index, adjust it to be an appropriate
    /// extra inhabitant index for the payload type.
    llvm::Value *adjustExtraInhabitantIndexForPayload(IRGenFunction &IGF,
                                                      llvm::Value *index) const{
      // Skip the extra inhabitants this enum uses.
      index = IGF.Builder.CreateAdd(index,
        llvm::ConstantInt::get(IGF.IGM.Int32Ty, ElementsWithNoPayload.size()));
      return index;
    }

    llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
                                         llvm::Value *numEmptyCases,
                                         Address addr, SILType T,
                                         bool isOutlined) const override {
      if (TIK >= Fixed) {
        return getFixedTypeEnumTagSinglePayload(IGF, cast<FixedTypeInfo>(*TI),
                                                numEmptyCases, addr, T,
                                                isOutlined);
      }

      // If we're not emitting an outlined copy, just call the value witness.
      if (!isOutlined) {
        return emitGetEnumTagSinglePayloadCall(IGF, T, numEmptyCases, addr);
      }

      // Otherwise, fall back on a generic implementation.
      // TODO: consider inlining some of this so that we don't have to
      // bounce into the runtime when e.g. dynamically working with
      // double-optionals.
      return emitGetEnumTagSinglePayloadGenericCall(IGF, T, *TI, numEmptyCases,
                                                    addr,
          [this, T](IRGenFunction &IGF, Address addr,
                    llvm::Value *numXI) -> llvm::Value* {
        auto payloadType = getPayloadType(IGF.IGM, T);
        auto payloadAddr = projectPayloadData(IGF, addr);

        // For the case count, we just use the XI count from the payload type.
        auto payloadNumExtraCases = numXI;

        llvm::Value *tag
          = getPayloadTypeInfo().getEnumTagSinglePayload(IGF,
                                                         payloadNumExtraCases,
                                                         payloadAddr,
                                                         payloadType,
                                                         /*outlined*/ false);

        // We need to adjust that for the number of cases we're using
        // in this enum.
        return adjustPayloadExtraInhabitantTag(IGF, tag);
      });
    }

    /// Given an extra inhabitant tag for the payload type, adjust it to
    /// be an appropriate extra inhabitant tag for the enum type.
    llvm::Value *adjustPayloadExtraInhabitantTag(IRGenFunction &IGF,
                                                 llvm::Value *tag) const {
      auto numExtraCases = IGF.IGM.getInt32(ElementsWithNoPayload.size());

      // Adjust the tag.
      llvm::Value *adjustedTag = IGF.Builder.CreateSub(tag, numExtraCases);

      // If tag <= numExtraCases, then this is a valid value of the enum type,
      // and the proper tag to return is 0.
      auto isEnumValue = IGF.Builder.CreateICmpULE(tag, numExtraCases);
      adjustedTag = IGF.Builder.CreateSelect(isEnumValue,
                                             IGF.IGM.getInt32(0),
                                             adjustedTag);
      return adjustedTag;
    }

    void storeEnumTagSinglePayload(IRGenFunction &IGF,
                                   llvm::Value *tag,
                                   llvm::Value *numEmptyCases,
                                   Address dest, SILType T,
                                   bool isOutlined) const override {
      if (TIK >= Fixed) {
        storeFixedTypeEnumTagSinglePayload(IGF, cast<FixedTypeInfo>(*TI),
                                           tag, numEmptyCases, dest, T,
                                           isOutlined);
        return;
      }

      // If we're not emitting an outlined copy, just call the value witness.
      if (!isOutlined) {
        emitStoreEnumTagSinglePayloadCall(IGF, T, tag, numEmptyCases, dest);
        return;
      }

      // Otherwise, fall back on a generic implementation.
      // TODO: consider inlining some of this so that we don't have to
      // bounce into the runtime when e.g. dynamically working with
      // double-optionals.
      emitStoreEnumTagSinglePayloadGenericCall(IGF, T, *TI, tag,
                                               numEmptyCases, dest,
          [this, T](IRGenFunction &IGF, Address dest, llvm::Value *tag,
                    llvm::Value *payloadNumXI) {
        auto payloadType = getPayloadType(IGF.IGM, T);
        auto payloadDest = projectPayloadData(IGF, dest);
        auto payloadTag = adjustExtraInhabitantTagForPayload(IGF, tag,
                                                             /*nonzero*/false);

        getPayloadTypeInfo().storeEnumTagSinglePayload(IGF, payloadTag,
                                                       payloadNumXI,
                                                       payloadDest,
                                                       payloadType,
                                                       /*outlined*/ false);
      });
    }

    /// Given an extra inhabitant tag for the payload type, which is known
    /// not to be 0, adjust it to be an appropriate extra inhabitant tag
    /// for the enum type.
    llvm::Value *adjustExtraInhabitantTagForPayload(IRGenFunction &IGF,
                                                    llvm::Value *tag,
                                                    bool isKnownNonZero) const {
      auto numExtraCases = IGF.IGM.getInt32(ElementsWithNoPayload.size());

      // Adjust the tag.
      llvm::Value *adjustedTag = IGF.Builder.CreateAdd(tag, numExtraCases);

      // Preserve the zero tag so that we don't pass down a meaningless XI
      // value that the payload will waste time installing before we
      // immediately overwrite it.
      if (!isKnownNonZero) {
        // If tag <= numExtraCases, then this is a valid value of the enum type,
        // and the proper tag to return is 0.
        auto isEnumValue = IGF.Builder.CreateIsNull(tag);
        adjustedTag = IGF.Builder.CreateSelect(isEnumValue,
                                               IGF.IGM.getInt32(0),
                                               adjustedTag);
      }
      return adjustedTag;
    }

    APInt
    getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
      auto &payloadTI = getFixedPayloadTypeInfo();
      unsigned totalSize
        = cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits();
      if (payloadTI.isKnownEmpty(ResilienceExpansion::Maximal))
        return APInt::getAllOnes(totalSize);
      auto baseMask =
        getFixedPayloadTypeInfo().getFixedExtraInhabitantMask(IGM);
      auto mask = BitPatternBuilder(IGM.Triple.isLittleEndian());
      mask.append(baseMask);
      mask.padWithSetBitsTo(totalSize);
      return mask.build().value();
    }

    ClusteredBitVector
    getBitPatternForNoPayloadElement(EnumElementDecl *theCase) const override {
      APInt payloadPart, extraPart;
      std::tie(payloadPart, extraPart) = getNoPayloadCaseValue(theCase);
      auto value = BitPatternBuilder(IGM.Triple.isLittleEndian());
      if (PayloadBitCount > 0)
        value.append(payloadPart);

      Size size = cast<FixedTypeInfo>(TI)->getFixedSize();
      if (ExtraTagBitCount > 0) {
        auto paddedWidth = size.getValueInBits() - PayloadBitCount;
        value.append(zextOrSelf(extraPart, paddedWidth));
      }
      return value.build();
    }

    ClusteredBitVector
    getBitMaskForNoPayloadElements() const override {
      // Use the extra inhabitants mask from the payload.
      auto &payloadTI = getFixedPayloadTypeInfo();

      Size size = cast<FixedTypeInfo>(TI)->getFixedSize();
      auto mask = BitPatternBuilder(IGM.Triple.isLittleEndian());
      if (Size payloadSize = payloadTI.getFixedSize()) {
        auto payloadMask = APInt::getZero(payloadSize.getValueInBits());
        if (getNumExtraInhabitantTagValues() > 0)
          payloadMask |= payloadTI.getFixedExtraInhabitantMask(IGM);
        if (ExtraTagBitCount > 0)
          payloadMask |= 0xffffffffULL;
        mask.append(std::move(payloadMask));
      }
      if (ExtraTagBitCount > 0) {
        mask.padWithSetBitsTo(size.getValueInBits());
      }
      return mask.build();
    }

    ClusteredBitVector getTagBitsForPayloads() const override {
      // We only have tag bits if we spilled extra bits.
      auto tagBits = BitPatternBuilder(IGM.Triple.isLittleEndian());
      Size payloadSize = getFixedPayloadTypeInfo().getFixedSize();
      tagBits.appendClearBits(payloadSize.getValueInBits());

      Size totalSize = cast<FixedTypeInfo>(TI)->getFixedSize();
      if (ExtraTagBitCount) {
        Size extraTagSize = totalSize - payloadSize;
        tagBits.append(APInt(extraTagSize.getValueInBits(),
                             (1U << ExtraTagBitCount) - 1));
      } else {
        assert(payloadSize == totalSize);
      }
      return tagBits.build();
    }
  };

  class MultiPayloadEnumImplStrategy final
    : public PayloadEnumImplStrategyBase
  {
    // The spare bits shared by all payloads, if any.
    // Invariant: The size of the bit vector is the size of the payload in bits,
    // rounded up to a byte boundary.
    SpareBitVector CommonSpareBits;

    // The common spare bits actually used for a tag in the payload area.
    SpareBitVector PayloadTagBits;

    // The number of tag values used for no-payload cases.
    unsigned NumEmptyElementTags = ~0u;

    // The payload size in bytes. This might need to be written to metadata
    // if it depends on resilient types.
    unsigned PayloadSize;

    /// More efficient value semantics implementations for certain enum layouts.
    enum CopyDestroyStrategy {
      /// No special behavior.
      Normal,
      /// The payloads are all trivially destructible, so copying is bitwise
      /// (if allowed), and destruction is a noop.
      TriviallyDestroyable,
      /// One or more of the payloads is ABI-inaccessible, so we cannot recurse.
      ABIInaccessible,
      /// The payloads are all bitwise-takable, but have no other special
      /// shared layout.
      BitwiseTakable,
      /// The payloads are all reference-counted values, and there is at
      /// most one no-payload case with the tagged-zero representation. Copy
      /// and destroy can just mask out the tag bits and pass the result to
      /// retain and release entry points.
      /// This implies BitwiseTakable.
      TaggedRefcounted,
    };

    CopyDestroyStrategy CopyDestroyKind;
    ReferenceCounting Refcounting;
    bool AllowFixedLayoutOptimizations;

    SILType loweredType;
    mutable llvm::Function *copyEnumFunction = nullptr;
    mutable llvm::Function *consumeEnumFunction = nullptr;
    SmallVector<llvm::Type *, 2> PayloadTypesAndTagType;

    TypeLayoutEntry *
    buildTypeLayoutEntry(IRGenModule &IGM,
                         SILType T,
                         bool useStructLayouts) const override {
      if (!ElementsAreABIAccessible)
        return IGM.typeLayoutCache.getOrCreateResilientEntry(T);

      if (!useStructLayouts && AllowFixedLayoutOptimizations && TIK >= Loadable) {
        // The type layout entry code does not handle spare bits atm.
        return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(getTypeInfo(),
                                                                 T);
      }

      unsigned emptyCases = ElementsWithNoPayload.size();
      std::vector<TypeLayoutEntry*> nonEmptyCases;
      for (auto &elt : ElementsWithPayload) {
        auto eltPayloadType = T.getEnumElementType(
            elt.decl, IGM.getSILModule(), IGM.getMaximalTypeExpansionContext());

        nonEmptyCases.push_back(
            elt.ti->buildTypeLayoutEntry(IGM, eltPayloadType, useStructLayouts));
      }
      return IGM.typeLayoutCache.getOrCreateEnumEntry(emptyCases, nonEmptyCases,
                                                      T, getTypeInfo());
    }

    llvm::Function *emitCopyEnumFunction(IRGenModule &IGM, SILType type) const {
      IRGenMangler Mangler;
      auto manglingBits =
        getTypeAndGenericSignatureForManglingOutlineFunction(type);
      std::string name =
        Mangler.mangleOutlinedCopyFunction(manglingBits.first,
                                           manglingBits.second);
      auto func = createOutlineLLVMFunction(IGM, name, PayloadTypesAndTagType);

      IRGenFunction IGF(IGM, func);
      Explosion src = IGF.collectParameters();
      if (IGM.DebugInfo)
        IGM.DebugInfo->emitArtificialFunction(IGF, IGF.CurFn);
      auto parts = destructureAndTagLoadableEnumFromOutlined(IGF, src, nullptr);

      forNontrivialPayloads(IGF, parts.tag, [&](unsigned tagIndex,
                                                EnumImplStrategy::Element elt) {
        auto &lti = cast<LoadableTypeInfo>(*elt.ti);
        Explosion value;
        projectPayloadValue(IGF, parts.payload, tagIndex, lti, value);

        Explosion tmp;
        lti.copy(IGF, value, tmp, IGF.getDefaultAtomicity());
        (void)tmp.claimAll(); // FIXME: repack if not bit-identical
      });

      IGF.Builder.CreateRetVoid();
      return func;
    }

    llvm::Function *
    emitConsumeEnumFunction(IRGenModule &IGM, SILType type,
                            OutliningMetadataCollector &collector) const {
      IRGenMangler Mangler;
      auto manglingBits =
        getTypeAndGenericSignatureForManglingOutlineFunction(type);
      std::string name =
        Mangler.mangleOutlinedConsumeFunction(manglingBits.first,
                                              manglingBits.second);
      SmallVector<llvm::Type *, 2> params(PayloadTypesAndTagType);
      collector.addPolymorphicParameterTypes(params);
      auto func = createOutlineLLVMFunction(IGM, name, params);

      IRGenFunction IGF(IGM, func);
      if (IGM.DebugInfo)
        IGM.DebugInfo->emitArtificialFunction(IGF, IGF.CurFn);
      Explosion src = IGF.collectParameters();
      auto parts =
          destructureAndTagLoadableEnumFromOutlined(IGF, src, &collector);
      collector.bindPolymorphicParameters(IGF, src);

      forNontrivialPayloads(IGF, parts.tag, [&](unsigned tagIndex,
                                                EnumImplStrategy::Element elt) {
        auto &lti = cast<LoadableTypeInfo>(*elt.ti);
        Explosion value;
        projectPayloadValue(IGF, parts.payload, tagIndex, lti, value);

        lti.consume(IGF, value, IGF.getDefaultAtomicity(),
                    type.getEnumElementType(elt.decl,
                                          IGM.getSILTypes(),
                                          IGM.getMaximalTypeExpansionContext()));
      });

      IGF.Builder.CreateRetVoid();
      return func;
    }

    static EnumPayloadSchema getPayloadSchema(ArrayRef<Element> payloads) {
      // TODO: We might be able to form a nicer schema if the payload elements
      // share a schema. For now just use a generic schema.
      unsigned maxBitSize = 0;
      for (auto payload : payloads) {
        auto fixedTI = dyn_cast<FixedTypeInfo>(payload.ti);
        if (!fixedTI)
          return EnumPayloadSchema();
        maxBitSize = std::max(maxBitSize,
                            unsigned(fixedTI->getFixedSize().getValueInBits()));
      }
      return EnumPayloadSchema(maxBitSize);
    }

  public:
    MultiPayloadEnumImplStrategy(IRGenModule &IGM,
                                 TypeInfoKind tik,
                                 IsFixedSize_t alwaysFixedSize,
                                 bool allowFixedLayoutOptimizations,
                                 IsTriviallyDestroyable_t triviallyDestroyable,
                                 IsCopyable_t copyable,
                                 IsBitwiseTakable_t bitwiseTakable,
                                 unsigned NumElements,
                                 std::vector<Element> &&WithPayload,
                                 std::vector<Element> &&WithNoPayload)
      : PayloadEnumImplStrategyBase(IGM, tik, alwaysFixedSize,
                                    triviallyDestroyable, copyable,
                                    bitwiseTakable, NumElements,
                                    std::move(WithPayload),
                                    std::move(WithNoPayload),
                                    getPayloadSchema(WithPayload)),
        CopyDestroyKind(Normal),
        AllowFixedLayoutOptimizations(allowFixedLayoutOptimizations)
    {
      assert(ElementsWithPayload.size() > 1);

      // Check the payloads to see if we can take advantage of common layout to
      // optimize our value semantics.
      bool allSingleRefcount = true;
      bool haveRefcounting = false;
      for (auto &elt : ElementsWithPayload) {
        // refcounting is only set in the else branches
        ReferenceCounting refcounting;
        if (!elt.ti->isSingleRetainablePointer(ResilienceExpansion::Maximal,
                                               &refcounting)) {
          allSingleRefcount = false;
        } else if (haveRefcounting) {
          // Only support a single style of reference counting for now.
          // swift_unknowRetain does not support the heap buffer of indirect
          // enums. And I am not convinced that unknowRetain supports
          // bridgedObjectRetain.
          if (refcounting != Refcounting)
            allSingleRefcount = false;
        } else {
          Refcounting = refcounting;
          haveRefcounting = true;
        }
      }

      if (!ElementsAreABIAccessible) {
        CopyDestroyKind = ABIInaccessible;
      } else if (this->EnumImplStrategy::TriviallyDestroyable ==
                   IsTriviallyDestroyable) {
        assert(!allSingleRefcount && "TriviallyDestroyable *and* refcounted?!");
        CopyDestroyKind = TriviallyDestroyable;
      // FIXME: Memory corruption issues arise when enabling this for mixed
      // Swift/ObjC enums.
      } else if (allSingleRefcount
                 && ElementsWithNoPayload.size() <= 1) {
        CopyDestroyKind = TaggedRefcounted;
      } else if (this->EnumImplStrategy::BitwiseTakable == IsBitwiseTakableAndBorrowable
                 && Copyable == IsCopyable) {
        CopyDestroyKind = BitwiseTakable;
      }
    }

    bool needsPayloadSizeInMetadata() const override {
      // For dynamic multi-payload enums, it would be expensive to recalculate
      // the payload area size from all of the cases, so cache it in the
      // metadata. For fixed-layout cases this isn't necessary (except for
      // reflection, but it's OK if reflection is a little slow).
      //
      // Note that even if from within our module the enum has a fixed layout,
      // we might need the payload size if from another module the enum has
      // a dynamic size, which can happen if the enum contains a resilient
      // payload.
      return !AllowFixedLayoutOptimizations;
    }

    unsigned getPayloadSizeForMetadata() const override {
      assert(TIK >= Fixed);
      return PayloadSize;
    }

    TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
                                     SILType Type,
                                     EnumDecl *theEnum,
                                     llvm::StructType *enumTy) override;

  private:
    TypeInfo *completeFixedLayout(TypeConverter &TC,
                                  SILType Type,
                                  EnumDecl *theEnum,
                                  llvm::StructType *enumTy);
    TypeInfo *completeDynamicLayout(TypeConverter &TC,
                                    SILType Type,
                                    EnumDecl *theEnum,
                                    llvm::StructType *enumTy);

    unsigned getNumCaseBits() const {
      return CommonSpareBits.size() - CommonSpareBits.count();
    }

    /// The number of empty cases representable by each tag value.
    /// Equal to the size of the payload minus the spare bits used for tags.
    unsigned getNumCasesPerTag() const {
      unsigned numCaseBits = getNumCaseBits();
      return numCaseBits >= 32
        ? 0x80000000 : 1 << numCaseBits;
    }

    /// Extract the payload-discriminating tag from a payload and optional
    /// extra tag value.
    llvm::Value *extractPayloadTag(IRGenFunction &IGF,
                                   const EnumPayload &payload,
                                   llvm::Value *extraTagBits) const {
      unsigned numSpareBits = PayloadTagBits.count();
      llvm::Value *tag = nullptr;
      unsigned numTagBits
        = getIntegerBitSizeForTag(numSpareBits + ExtraTagBitCount);

      // Get the tag bits from spare bits, if any.
      if (numSpareBits > 0) {
        tag = payload.emitGatherSpareBits(IGF, PayloadTagBits, 0, numTagBits);
      }

      // Get the extra tag bits, if any.
      if (ExtraTagBitCount > 0) {
        assert(extraTagBits);
        if (!tag) {
          return extraTagBits;
        } else {
          extraTagBits = IGF.Builder.CreateZExt(extraTagBits, tag->getType());
          extraTagBits = IGF.Builder.CreateShl(extraTagBits, numSpareBits);
          return IGF.Builder.CreateOr(tag, extraTagBits);
        }
      }
      assert(!extraTagBits);
      return tag;
    }

    llvm::Type *getRefcountedPtrType(IRGenModule &IGM) const {
      switch (CopyDestroyKind) {
      case TaggedRefcounted:
        return IGM.getReferenceType(Refcounting);
      case TriviallyDestroyable:
      case BitwiseTakable:
      case Normal:
      case ABIInaccessible:
        llvm_unreachable("not a refcounted payload");
      }

      llvm_unreachable("Not a valid CopyDestroyStrategy.");
    }

    void retainRefcountedPayload(IRGenFunction &IGF,
                                 llvm::Value *ptr) const {
      switch (CopyDestroyKind) {
      case TaggedRefcounted:
        IGF.emitStrongRetain(ptr, Refcounting, IGF.getDefaultAtomicity());
        return;
      case TriviallyDestroyable:
      case BitwiseTakable:
      case Normal:
      case ABIInaccessible:
        llvm_unreachable("not a refcounted payload");
      }
    }

    void fixLifetimeOfRefcountedPayload(IRGenFunction &IGF,
                                        llvm::Value *ptr) const {
      switch (CopyDestroyKind) {
      case TaggedRefcounted:
        IGF.emitFixLifetime(ptr);
        return;
      case TriviallyDestroyable:
      case BitwiseTakable:
      case Normal:
      case ABIInaccessible:
        llvm_unreachable("not a refcounted payload");
      }
    }

    void releaseRefcountedPayload(IRGenFunction &IGF,
                                  llvm::Value *ptr) const {
      switch (CopyDestroyKind) {
      case TaggedRefcounted:
        IGF.emitStrongRelease(ptr, Refcounting, IGF.getDefaultAtomicity());
        return;
      case TriviallyDestroyable:
      case BitwiseTakable:
      case Normal:
      case ABIInaccessible:
        llvm_unreachable("not a refcounted payload");
      }
    }

    /// Pack tag into spare bits and tagIndex into payload bits.
    APInt getEmptyCasePayload(IRGenModule &IGM,
                              unsigned tag,
                              unsigned tagIndex) const {
      // The payload may be empty.
      if (CommonSpareBits.empty())
        return APInt();
      
      APInt v = scatterBits(PayloadTagBits.asAPInt(), tag);
      v |= scatterBits(~CommonSpareBits.asAPInt(), tagIndex);
      return v;
    }

    /// Pack tag into spare bits and tagIndex into payload bits.
    EnumPayload getEmptyCasePayload(IRGenFunction &IGF,
                                    llvm::Value *tag,
                                    llvm::Value *tagIndex) const {
      auto result = EnumPayload::zero(IGF.IGM, PayloadSchema);
      if (!CommonSpareBits.empty())
        result.emitScatterBits(IGF.IGM, IGF.Builder, ~CommonSpareBits.asAPInt(), tagIndex);
      if (!PayloadTagBits.empty())
        result.emitScatterBits(IGF.IGM, IGF.Builder, PayloadTagBits.asAPInt(), tag);
      return result;
    }

    struct DestructuredLoadableEnum {
      EnumPayload payload;
      llvm::Value *extraTagBits;
    };
    DestructuredLoadableEnum
    destructureLoadableEnum(IRGenFunction &IGF, Explosion &src) const {
      auto payload = EnumPayload::fromExplosion(IGM, src, PayloadSchema);
      llvm::Value *extraTagBits
        = ExtraTagBitCount > 0 ? src.claimNext() : nullptr;
      
      return {payload, extraTagBits};
    }
    
    struct DestructuredAndTaggedLoadableEnum {
      EnumPayload payload;
      llvm::Value *extraTagBits, *tag;
    };
    DestructuredAndTaggedLoadableEnum
    destructureAndTagLoadableEnum(IRGenFunction &IGF, Explosion &src) const {
      auto destructured = destructureLoadableEnum(IGF, src);
      
      llvm::Value *tag = extractPayloadTag(IGF, destructured.payload,
                                           destructured.extraTagBits);

      return {destructured.payload, destructured.extraTagBits, tag};
    }
    DestructuredAndTaggedLoadableEnum destructureAndTagLoadableEnumFromOutlined(
        IRGenFunction &IGF, Explosion &src,
        OutliningMetadataCollector *collector) const {
      EnumPayload payload;
      unsigned claimSZ = src.size() - (collector ? collector->size() : 0);
      if (ExtraTagBitCount > 0) {
        --claimSZ;
      }
      for (unsigned i = 0; i < claimSZ; ++i) {
        payload.PayloadValues.push_back(src.claimNext());
      }
      llvm::Value *extraTagBits =
          ExtraTagBitCount > 0 ? src.claimNext() : nullptr;
      llvm::Value *tag = extractPayloadTag(IGF, payload, extraTagBits);
      return {payload, extraTagBits, tag};
    }

    /// Returns a tag index in the range [0..NumElements-1].
    llvm::Value *
    loadDynamicTag(IRGenFunction &IGF, Address addr, SILType T) const {
      addr = IGF.Builder.CreateElementBitCast(addr, IGM.OpaqueTy);
      auto metadata = IGF.emitTypeMetadataRef(T.getASTType());
      auto call = IGF.Builder.CreateCall(
          IGM.getGetEnumCaseMultiPayloadFunctionPointer(),
          {addr.getAddress(), metadata});
      call->setDoesNotThrow();
      call->setOnlyReadsMemory();

      return call;
    }

    /// Returns a tag index in the range [0..ElementsWithPayload-1]
    /// if the current case is a payload case, otherwise returns
    /// an undefined value.
    llvm::Value *
    loadPayloadTag(IRGenFunction &IGF, Address addr, SILType T) const {
      if (TIK >= Fixed) {
        // Load the fixed-size representation and derive the tags.
        EnumPayload payload; llvm::Value *extraTagBits;
        std::tie(payload, extraTagBits)
          = emitPrimitiveLoadPayloadAndExtraTag(IGF, addr);
        return extractPayloadTag(IGF, payload, extraTagBits);
      }
      
      // Otherwise, ask the runtime to extract the dynamically-placed tag.
      return loadDynamicTag(IGF, addr, T);
    }

  public:

    /// Returns a tag index in the range [0..NumElements-1].
    llvm::Value *emitGetEnumTag(IRGenFunction &IGF, SILType T, Address addr,
                                bool maskExtraTagBits) const override {
      unsigned numPayloadCases = ElementsWithPayload.size();
      llvm::Constant *payloadCases =
          llvm::ConstantInt::get(IGM.Int32Ty, numPayloadCases);

      if (TIK < Fixed) {
        // Ask the runtime to extract the dynamically-placed tag.
        return loadDynamicTag(IGF, addr, T);
      }

      // For fixed-size enums, the currently inhabited case is a function of
      // both the payload tag and the payload value.
      //
      // Low-numbered payload tags correspond to payload cases. No-payload
      // cases are represented with the remaining payload tags.

      // Load the fixed-size representation and derive the tags.
      EnumPayload payload; llvm::Value *extraTagBits;
      std::tie(payload, extraTagBits) =
          emitPrimitiveLoadPayloadAndExtraTag(IGF, addr, maskExtraTagBits);

      // Load the payload tag.
      llvm::Value *tagValue = extractPayloadTag(IGF, payload, extraTagBits);
      tagValue = IGF.Builder.CreateZExtOrTrunc(tagValue, IGM.Int32Ty);

      // If we don't have any no-payload cases, we are done -- the payload tag
      // alone is enough to distinguish between all cases.
      if (ElementsWithNoPayload.empty())
        return tagValue;

      // To distinguish between non-payload cases, load the payload value and
      // strip off the spare bits.
      auto OccupiedBits = CommonSpareBits;
      OccupiedBits.flipAll();

      // Load the payload value, to distinguish no-payload cases.
      llvm::Value *payloadValue = payload.emitGatherSpareBits(
          IGF, OccupiedBits, 0, 32);

      llvm::Value *currentCase;

      unsigned numCaseBits = getNumCaseBits();
      if (numCaseBits >= 32 ||
          getNumCasesPerTag() >= ElementsWithNoPayload.size()) {
        // All no-payload cases have the same payload tag, so we can just use
        // the payload value to distinguish between them.
        //
        // The payload value is a tag index in the range
        // [0..ElementsWithNoPayload], so we are done.
        currentCase = payloadValue;
      } else {
        // The no-payload cases are distributed between multiple payload tags;
        // combine the payload tag with the payload value.

        // First, subtract number of payload cases from the payload tag to get
        // the most significant bits of the current case.
        currentCase = IGF.Builder.CreateSub(tagValue, payloadCases);

        // Shift the most significant bits of the tag value into place.
        llvm::Constant *numCaseBitsVal =
            llvm::ConstantInt::get(IGM.Int32Ty, numCaseBits);
        currentCase = IGF.Builder.CreateShl(currentCase, numCaseBitsVal);

        // Add the payload value to the shifted payload tag.
        //
        // The result is a tag index in the range [0..ElementsWithNoPayload],
        // so we are done.
        currentCase = IGF.Builder.CreateOr(currentCase, payloadValue);
      }
      // Now, we have the index of a no-payload case. Add the number of payload
      // cases back, to get an index of a case.
      currentCase = IGF.Builder.CreateAdd(currentCase, payloadCases);

      // Test if this is a payload or no-payload case.
      llvm::Value *match = IGF.Builder.CreateICmpUGE(tagValue, payloadCases);

      // Return one of the two values we computed based on the above.
      return IGF.Builder.CreateSelect(match, currentCase, tagValue);
    }

    llvm::Value *
    emitIndirectCaseTest(IRGenFunction &IGF, SILType T,
                         Address enumAddr,
                         EnumElementDecl *Case,
                         bool noLoad) const override {
      if (TIK >= Fixed && !noLoad) {
        // Load the fixed-size representation and switch directly.
        Explosion value;
        loadForSwitch(IGF, enumAddr, value);
        return emitValueCaseTest(IGF, value, Case);
      }
      
      // Use the runtime to dynamically switch.
      auto tag = TIK >= Fixed ?
        emitOutlinedGetEnumTag(IGF, T, enumAddr) :
        loadDynamicTag(IGF, enumAddr, T);
      unsigned tagIndex = getTagIndex(Case);
      llvm::Value *expectedTag
        = llvm::ConstantInt::get(IGM.Int32Ty, tagIndex);
      return IGF.Builder.CreateICmpEQ(tag, expectedTag);
    }
    
    llvm::Value *
    emitValueCaseTest(IRGenFunction &IGF, Explosion &value,
                      EnumElementDecl *Case) const override {
      auto &C = IGM.getLLVMContext();
      auto parts = destructureAndTagLoadableEnum(IGF, value);
      unsigned numTagBits
        = cast<llvm::IntegerType>(parts.tag->getType())->getBitWidth();

      // Cases with payloads are numbered consecutively, and only required
      // testing the tag. Scan until we find the right one.
      unsigned tagIndex = 0;
      for (auto &payloadCasePair : ElementsWithPayload) {
        if (payloadCasePair.decl == Case) {
          llvm::Value *caseValue
            = llvm::ConstantInt::get(C, APInt(numTagBits,tagIndex));
          return IGF.Builder.CreateICmpEQ(parts.tag, caseValue);
        }
        ++tagIndex;
      }
      // Elements without payloads are numbered after the payload elts.
      // Multiple empty elements are packed into the payload for each tag
      // value.
      unsigned casesPerTag = getNumCasesPerTag();

      auto elti = ElementsWithNoPayload.begin(),
      eltEnd = ElementsWithNoPayload.end();

      llvm::Value *tagValue = nullptr;
      APInt payloadValue;
      for (unsigned i = 0; i < NumEmptyElementTags; ++i) {
        assert(elti != eltEnd &&
               "ran out of cases before running out of extra tags?");

        // Look through the cases for this tag.
        for (unsigned idx = 0; idx < casesPerTag && elti != eltEnd; ++idx) {
          if (elti->decl == Case) {
            tagValue = llvm::ConstantInt::get(C, APInt(numTagBits,tagIndex));
            payloadValue = getEmptyCasePayload(IGM, tagIndex, idx);
            goto found_empty_case;
          }
          ++elti;
        }
        ++tagIndex;
      }

      llvm_unreachable("Didn't find case decl");
      
    found_empty_case:
      llvm::Value *match = IGF.Builder.CreateICmpEQ(parts.tag, tagValue);
      if (!CommonSpareBits.empty()) {
        auto payloadMatch = parts.payload
          .emitCompare(IGF, APInt::getAllOnes(CommonSpareBits.size()),
                       payloadValue);
        match = IGF.Builder.CreateAnd(match, payloadMatch);
      }
      return match;
    }

    void emitValueSwitch(IRGenFunction &IGF,
                         Explosion &value,
                         ArrayRef<std::pair<EnumElementDecl*,
                                            llvm::BasicBlock*>> dests,
                         llvm::BasicBlock *defaultDest) const override {
      auto &C = IGM.getLLVMContext();

      // Create a map of the destination blocks for quicker lookup.
      llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
                                                                 dests.end());

      // Create an unreachable branch for unreachable switch defaults.
      auto *unreachableBB = llvm::BasicBlock::Create(C);

      // If there was no default branch in SIL, use the unreachable branch as
      // the default.
      if (!defaultDest)
        defaultDest = unreachableBB;
      
      auto isUnreachable =
        defaultDest == unreachableBB ? IsUnreachable : IsNotUnreachable;

      auto parts = destructureAndTagLoadableEnum(IGF, value);

      // Figure out how many branches we have for the tag switch.
      // We have one for each payload case we're switching to.
      unsigned numPayloadBranches = std::count_if(ElementsWithPayload.begin(),
                                                  ElementsWithPayload.end(),
        [&](const Element &e) -> bool {
          return destMap.find(e.decl) != destMap.end();
        });
      // We have one for each group of empty tags corresponding to a tag value
      // for which we have a case corresponding to at least one member of the
      // group.
      unsigned numEmptyBranches = 0;
      unsigned noPayloadI = 0;
      unsigned casesPerTag = getNumCasesPerTag();
      while (noPayloadI < ElementsWithNoPayload.size()) {
        for (unsigned i = 0;
             i < casesPerTag && noPayloadI < ElementsWithNoPayload.size();
             ++i, ++noPayloadI) {
          if (destMap.find(ElementsWithNoPayload[noPayloadI].decl)
              != destMap.end()) {
            ++numEmptyBranches;
            noPayloadI += casesPerTag - i;
            goto nextTag;
          }
        }
      nextTag:;
      }

      // Extract and switch on the tag bits.
      unsigned numTagBits
        = cast<llvm::IntegerType>(parts.tag->getType())->getBitWidth();
      auto tagSwitch = SwitchBuilder::create(IGF, parts.tag,
                                 SwitchDefaultDest(defaultDest, isUnreachable),
                                 numPayloadBranches + numEmptyBranches);

      // Switch over the tag bits for payload cases.
      unsigned tagIndex = 0;
      for (auto &payloadCasePair : ElementsWithPayload) {
        EnumElementDecl *payloadCase = payloadCasePair.decl;
        auto found = destMap.find(payloadCase);
        if (found != destMap.end())
          tagSwitch->addCase(llvm::ConstantInt::get(C,APInt(numTagBits,tagIndex)),
                             found->second);
        ++tagIndex;
      }

      // Switch over the no-payload cases.
      auto elti = ElementsWithNoPayload.begin(),
           eltEnd = ElementsWithNoPayload.end();

      for (unsigned i = 0; i < NumEmptyElementTags; ++i) {
        assert(elti != eltEnd &&
               "ran out of cases before running out of extra tags?");
        
        auto tagVal = llvm::ConstantInt::get(C, APInt(numTagBits, tagIndex));
        
        // If the payload is empty, there's only one case per tag.
        if (CommonSpareBits.empty()) {
          auto found = destMap.find(elti->decl);
          if (found != destMap.end())
            tagSwitch->addCase(tagVal, found->second);
        
          ++elti;
          ++tagIndex;
          continue;
        }
        
        SmallVector<std::pair<APInt, llvm::BasicBlock *>, 4> cases;
        
        // Switch over the cases for this tag.
        for (unsigned idx = 0; idx < casesPerTag && elti != eltEnd; ++idx) {
          auto val = getEmptyCasePayload(IGM, tagIndex, idx);
          auto found = destMap.find(elti->decl);
          if (found != destMap.end())
            cases.push_back({val, found->second});
          ++elti;
        }
        
        if (!cases.empty()) {
          auto *tagBB = llvm::BasicBlock::Create(C);
          tagSwitch->addCase(tagVal, tagBB);
          
          IGF.Builder.emitBlock(tagBB);

          parts.payload.emitSwitch(IGF, APInt::getAllOnes(PayloadBitCount),
                                 cases,
                                 SwitchDefaultDest(defaultDest, isUnreachable));
        }

        ++tagIndex;
      }

      // Delete the unreachable default block if we didn't use it, or emit it
      // if we did.
      if (unreachableBB->use_empty()) {
        delete unreachableBB;
      } else {
        IGF.Builder.emitBlock(unreachableBB);
        IGF.Builder.CreateUnreachable();
      }
    }
    
  private:
    void emitDynamicSwitch(IRGenFunction &IGF,
                           SILType T,
                           Address addr,
                           ArrayRef<std::pair<EnumElementDecl*,
                                              llvm::BasicBlock*>> dests,
                           llvm::BasicBlock *defaultDest) const {
      // Ask the runtime to derive the tag index.
      auto tag = TIK >= Fixed ?
        emitOutlinedGetEnumTag(IGF, T, addr) :
        loadDynamicTag(IGF, addr, T);
      
      // Switch on the tag value.
      
      // Create a map of the destination blocks for quicker lookup.
      llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
                                                                 dests.end());

      // Create an unreachable branch for unreachable switch defaults.
      auto &C = IGM.getLLVMContext();
      auto *unreachableBB = llvm::BasicBlock::Create(C);

      // If there was no default branch in SIL, use the unreachable branch as
      // the default.
      if (!defaultDest)
        defaultDest = unreachableBB;

      auto tagSwitch = SwitchBuilder::create(IGF, tag,
         SwitchDefaultDest(defaultDest,
               defaultDest == unreachableBB ? IsUnreachable : IsNotUnreachable),
         dests.size());

      auto emitCase = [&](Element elt) {
        auto tagVal =
            llvm::ConstantInt::get(IGM.Int32Ty, getTagIndex(elt.decl));
        auto found = destMap.find(elt.decl);
        if (found != destMap.end())
          tagSwitch->addCase(tagVal, found->second);
      };

      for (auto &elt : ElementsWithPayload)
        emitCase(elt);
      
      for (auto &elt : ElementsWithNoPayload)
        emitCase(elt);

      // Delete the unreachable default block if we didn't use it, or emit it
      // if we did.
      if (unreachableBB->use_empty()) {
        delete unreachableBB;
      } else {
        IGF.Builder.emitBlock(unreachableBB);
        IGF.Builder.CreateUnreachable();
      }
    }
  
  public:
    void emitIndirectSwitch(IRGenFunction &IGF,
                            SILType T,
                            Address addr,
                            ArrayRef<std::pair<EnumElementDecl*,
                                               llvm::BasicBlock*>> dests,
                            llvm::BasicBlock *defaultDest,
                            bool noLoad) const override {
      if (TIK >= Fixed && !noLoad) {
        // Load the fixed-size representation and switch directly.
        Explosion value;
        loadForSwitch(IGF, addr, value);
        return emitValueSwitch(IGF, value, dests, defaultDest);
      }

      // Use the runtime to dynamically switch.
      return emitDynamicSwitch(IGF, T, addr, dests, defaultDest);
    }

  private:
    void projectPayloadValue(IRGenFunction &IGF,
                             EnumPayload payload,
                             unsigned payloadTag,
                             const LoadableTypeInfo &payloadTI,
                             Explosion &out) const {
      // If the payload is empty, so is the explosion.
      if (CommonSpareBits.empty())
        return;
      
      // If we have spare bits, we have to mask out any set tag bits packed
      // there.
      if (PayloadTagBits.any()) {
        unsigned spareBitCount = PayloadTagBits.count();
        if (spareBitCount < 32)
          payloadTag &= (1U << spareBitCount) - 1U;
        if (payloadTag != 0) {
          APInt mask = ~PayloadTagBits.asAPInt();
          payload.emitApplyAndMask(IGF, mask);
        }
      }

      // Unpack the payload.
      payloadTI.unpackFromEnumPayload(IGF, payload, out, 0);
    }

  public:
    void emitValueProject(IRGenFunction &IGF,
                          Explosion &inValue,
                          EnumElementDecl *theCase,
                          Explosion &out) const override {
      auto foundPayload = std::find_if(ElementsWithPayload.begin(),
                                       ElementsWithPayload.end(),
             [&](const Element &e) { return e.decl == theCase; });

      // Non-payload cases project to an empty explosion.
      if (foundPayload == ElementsWithPayload.end()) {
        (void)inValue.claim(getExplosionSize());
        return;
      }

      auto parts = destructureLoadableEnum(IGF, inValue);

      // Unpack the payload.
      projectPayloadValue(IGF, parts.payload,
                          foundPayload - ElementsWithPayload.begin(),
                     cast<LoadableTypeInfo>(*foundPayload->ti), out);
    }

    void packIntoEnumPayload(IRGenModule &IGM,
                             IRBuilder &builder,
                             EnumPayload &outerPayload,
                             Explosion &src,
                             unsigned offset) const override {
      auto innerPayload = EnumPayload::fromExplosion(IGM, src,
                                                     PayloadSchema);
      // Pack the payload, if any.
      innerPayload.packIntoEnumPayload(IGM, builder, outerPayload, offset);
      // Pack the extra bits, if any.
      if (ExtraTagBitCount > 0)
        outerPayload.insertValue(IGM, builder, src.claimNext(),
                                 CommonSpareBits.size() + offset);
    }

    void unpackFromEnumPayload(IRGenFunction &IGF,
                               const EnumPayload &outerPayload,
                               Explosion &dest,
                               unsigned offset) const override {
      // Unpack the payload.
      auto inner
        = EnumPayload::unpackFromEnumPayload(IGF, outerPayload, offset,
                                             PayloadSchema);
      inner.explode(IGM, dest);
      // Unpack the extra bits, if any.
      if (ExtraTagBitCount > 0)
        dest.add(outerPayload.extractValue(IGF, ExtraTagTy,
                                           CommonSpareBits.size() + offset));
    }

  private:
    void emitPayloadInjection(IRBuilder &builder,
                              const FixedTypeInfo &payloadTI,
                              Explosion &params, Explosion &out,
                              unsigned tag) const {
      // Pack the payload.
      auto &loadablePayloadTI = cast<LoadableTypeInfo>(payloadTI); // FIXME
      
      auto payload = EnumPayload::zero(IGM, PayloadSchema);
      loadablePayloadTI.packIntoEnumPayload(IGM, builder, payload, params, 0);

      // If we have spare bits, pack tag bits into them.
      unsigned numSpareBits = PayloadTagBits.count();
      if (numSpareBits > 0) {
        APInt tagMaskVal = scatterBits(PayloadTagBits.asAPInt(), tag);
        payload.emitApplyOrMask(IGM, builder, tagMaskVal);
      }

      payload.explode(IGM, out);

      // If we have extra tag bits, pack the remaining tag bits into them.
      if (ExtraTagBitCount > 0) {
        tag >>= numSpareBits;
        auto extra = llvm::ConstantInt::get(IGM.getLLVMContext(),
                                            getExtraTagBitConstant(tag));
        out.add(extra);
      }
    }

    std::pair<APInt, APInt>
    getNoPayloadCaseValue(unsigned index) const {
      // Figure out the tag and payload for the empty case.
      unsigned numCaseBits = getNumCaseBits();
      unsigned tag, tagIndex;
      if (numCaseBits >= 32 ||
          getNumCasesPerTag() >= ElementsWithNoPayload.size()) {
        // All no-payload cases have the same payload tag, so we can just use
        // the payload value to distinguish between no-payload cases.
        tag = ElementsWithPayload.size();
        tagIndex = index;
      } else {
        // The no-payload cases are distributed between multiple payload tags;
        // combine the payload tag with the payload value.
        tag = (index >> numCaseBits) + ElementsWithPayload.size();
        tagIndex = index & ((1 << numCaseBits) - 1);
      }

      APInt payload;
      APInt extraTag;
      unsigned numSpareBits = CommonSpareBits.count();
      if (numSpareBits > 0) {
        // If we have spare bits, pack the tag into the spare bits and
        // the tagIndex into the payload.
        payload = getEmptyCasePayload(IGM, tag, tagIndex);
      } else if (!CommonSpareBits.empty()) {
        // Otherwise the payload is just the index.
        payload = APInt(CommonSpareBits.size(), tagIndex);
      }

      // If the tag bits do not fit in the spare bits, the remaining tag bits
      // are the extra tag bits.
      if (ExtraTagBitCount > 0)
        extraTag = getExtraTagBitConstant(tag >> numSpareBits);

      return {payload, extraTag};
    }

    std::pair<EnumPayload, llvm::Value *>
    getNoPayloadCaseValue(IRGenFunction &IGF, llvm::Value *index) const {
      // Split the case index into two pieces, the tag and tag index.
      unsigned numCaseBits = getNumCaseBits();

      llvm::Value *tag;
      llvm::Value *tagIndex;
      if (numCaseBits >= 32 ||
          getNumCasesPerTag() >= ElementsWithNoPayload.size()) {
        // All no-payload cases have the same payload tag, so we can just use
        // the payload value to distinguish between no-payload cases.
        tag = llvm::ConstantInt::get(IGM.Int32Ty, ElementsWithPayload.size());
        tagIndex = index;
      } else {
        // The no-payload cases are distributed between multiple payload tags.
        tag = IGF.Builder.CreateAdd(
            IGF.Builder.CreateLShr(index,
                              llvm::ConstantInt::get(IGM.Int32Ty, numCaseBits)),
            llvm::ConstantInt::get(IGM.Int32Ty, ElementsWithPayload.size()));
        tagIndex = IGF.Builder.CreateAnd(index,
            llvm::ConstantInt::get(IGM.Int32Ty, ((1 << numCaseBits) - 1)));
      }

      EnumPayload payload;
      llvm::Value *extraTag;
      unsigned numSpareBits = CommonSpareBits.count();
      if (numSpareBits > 0) {
        // If we have spare bits, pack the tag into the spare bits and
        // the tagIndex into the payload.
        payload = getEmptyCasePayload(IGF, tag, tagIndex);
      } else if (!CommonSpareBits.empty()) {
        // Otherwise the payload is just the index.
        auto mask = APInt::getLowBitsSet(CommonSpareBits.size(),
                                         std::min(32U, numCaseBits));
        payload = EnumPayload::zero(IGM, PayloadSchema);
        payload.emitScatterBits(IGF.IGM, IGF.Builder, mask, tagIndex);
      }

      // If the tag bits do not fit in the spare bits, the remaining tag bits
      // are the extra tag bits.
      if (ExtraTagBitCount > 0) {
        extraTag = tag;
        if (numSpareBits > 0)
          extraTag = IGF.Builder.CreateLShr(tag,
                             llvm::ConstantInt::get(IGM.Int32Ty, numSpareBits));
      }
      return {payload, extraTag};
    }

    void emitNoPayloadInjection(Explosion &out, unsigned index) const {
      APInt payloadVal, extraTag;
      std::tie(payloadVal, extraTag) = getNoPayloadCaseValue(index);
      
      auto payload = EnumPayload::fromBitPattern(IGM, payloadVal,
                                                 PayloadSchema);
      payload.explode(IGM, out);
      if (ExtraTagBitCount > 0) {
        out.add(llvm::ConstantInt::get(IGM.getLLVMContext(), extraTag));
      }
    }

    void forNontrivialPayloads(IRGenFunction &IGF, llvm::Value *tag,
               llvm::function_ref<void(unsigned, EnumImplStrategy::Element)> f)
    const {
      auto *endBB = llvm::BasicBlock::Create(IGM.getLLVMContext());

      unsigned numNontrivialPayloads
        = std::count_if(ElementsWithPayload.begin(), ElementsWithPayload.end(),
                     [](Element e) -> bool {
                       return !e.ti->isTriviallyDestroyable(ResilienceExpansion::Maximal);
                     });

      bool anyTrivial = !ElementsWithNoPayload.empty()
        || numNontrivialPayloads != ElementsWithPayload.size();
      
      auto swi = SwitchBuilder::create(IGF, tag,
        SwitchDefaultDest(endBB, anyTrivial ? IsNotUnreachable : IsUnreachable),
        numNontrivialPayloads);
      auto *tagTy = cast<llvm::IntegerType>(tag->getType());

      // Handle nontrivial tags.
      unsigned tagIndex = 0;
      for (auto &payloadCasePair : ElementsWithPayload) {
        auto &payloadTI = *payloadCasePair.ti;

        // Trivial payloads don't need any work.
        if (payloadTI.isTriviallyDestroyable(ResilienceExpansion::Maximal)) {
          ++tagIndex;
          continue;
        }

        // Unpack and handle nontrivial payloads.
        auto *caseBB = llvm::BasicBlock::Create(IGM.getLLVMContext());
        swi->addCase(llvm::ConstantInt::get(tagTy, tagIndex), caseBB);

        ConditionalDominanceScope condition(IGF);

        IGF.Builder.emitBlock(caseBB);
        f(tagIndex, payloadCasePair);
        IGF.Builder.CreateBr(endBB);

        ++tagIndex;
      }

      IGF.Builder.emitBlock(endBB);
    }

    void maskTagBitsFromPayload(IRGenFunction &IGF,
                                EnumPayload &payload) const {
      if (PayloadTagBits.none())
        return;

      APInt mask = ~PayloadTagBits.asAPInt();
      payload.emitApplyAndMask(IGF, mask);
    }

    void
    fillExplosionForOutlinedCall(IRGenFunction &IGF, Explosion &src,
                                 Explosion &out,
                                 OutliningMetadataCollector *collector) const {
      assert(out.empty() && "Out explosion must be empty!");
      auto parts = destructureAndTagLoadableEnum(IGF, src);
      parts.payload.explode(IGM, out);
      if (parts.extraTagBits)
        out.add(parts.extraTagBits);

      if (!collector)
        return;
      llvm::SmallVector<llvm::Value *, 4> args;
      collector->addPolymorphicArguments(args);
      for (auto *arg : args) {
        out.add(arg);
      }
    }

  public:
    void emitValueInjection(IRGenModule &IGM,
                            IRBuilder &builder,
                            EnumElementDecl *elt,
                            Explosion &params,
                            Explosion &out) const override {
      // See whether this is a payload or empty case we're emitting.
      auto payloadI = std::find_if(ElementsWithPayload.begin(),
                                   ElementsWithPayload.end(),
                               [&](const Element &e) { return e.decl == elt; });
      if (payloadI != ElementsWithPayload.end())
        return emitPayloadInjection(builder, cast<FixedTypeInfo>(*payloadI->ti),
                                    params, out,
                                    payloadI - ElementsWithPayload.begin());

      auto emptyI = std::find_if(ElementsWithNoPayload.begin(),
                                 ElementsWithNoPayload.end(),
                               [&](const Element &e) { return e.decl == elt; });
      assert(emptyI != ElementsWithNoPayload.end() && "case not in enum");
      emitNoPayloadInjection(out, emptyI - ElementsWithNoPayload.begin());
    }

    void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest,
              Atomicity atomicity) const override {
      assert(TIK >= Loadable);

      switch (CopyDestroyKind) {
      case TriviallyDestroyable:
        reexplode(src, dest);
        return;

      case ABIInaccessible:
        llvm_unreachable("ABI-accessible type cannot be loadable");

      case BitwiseTakable:
      case Normal: {
        if (loweredType.hasLocalArchetype()) {
          auto parts = destructureAndTagLoadableEnum(IGF, src);

          forNontrivialPayloads(
              IGF, parts.tag,
              [&](unsigned tagIndex, EnumImplStrategy::Element elt) {
                auto &lti = cast<LoadableTypeInfo>(*elt.ti);
                Explosion value;
                projectPayloadValue(IGF, parts.payload, tagIndex, lti, value);

                Explosion tmp;
                lti.copy(IGF, value, tmp, IGF.getDefaultAtomicity());
                (void)tmp.claimAll(); // FIXME: repack if not bit-identical
              });
          return;
        }
        if (!copyEnumFunction)
          copyEnumFunction = emitCopyEnumFunction(IGM, loweredType);
        Explosion tmp;
        fillExplosionForOutlinedCall(IGF, src, tmp, nullptr);
        llvm::CallInst *call = IGF.Builder.CreateCallWithoutDbgLoc(
            copyEnumFunction->getFunctionType(), copyEnumFunction,
            tmp.getAll());
        call->setCallingConv(IGM.DefaultCC);
        dest.add(tmp.claimAll());
        return;
      }
      case TaggedRefcounted: {
        auto parts = destructureLoadableEnum(IGF, src);

        // Hold onto the original payload, so we can pass it on as the copy.
        auto origPayload = parts.payload;

        // Mask the tag bits out of the payload, if any.
        maskTagBitsFromPayload(IGF, parts.payload);

        // Retain the pointer.
        auto ptr =
            parts.payload.extractValue(IGF, getRefcountedPtrType(IGM), 0);
        retainRefcountedPayload(IGF, ptr);

        origPayload.explode(IGM, dest);
        if (parts.extraTagBits)
          dest.add(parts.extraTagBits);
        return;
      }
      }
    }

    void consume(IRGenFunction &IGF, Explosion &src,
                 Atomicity atomicity, SILType T) const override {
      if (tryEmitConsumeUsingDeinit(IGF, src, T)) {
        return;
      }
      assert(TIK >= Loadable);
      switch (CopyDestroyKind) {
      case TriviallyDestroyable:
        (void)src.claim(getExplosionSize());
        return;

      case ABIInaccessible:
        llvm_unreachable("ABI-accessible type cannot be loadable");

      case BitwiseTakable:
      case Normal: {
        if (loweredType.hasLocalArchetype()) {
          auto parts = destructureAndTagLoadableEnum(IGF, src);

          forNontrivialPayloads(
              IGF, parts.tag,
              [&](unsigned tagIndex, EnumImplStrategy::Element elt) {
                auto &lti = cast<LoadableTypeInfo>(*elt.ti);
                Explosion value;
                projectPayloadValue(IGF, parts.payload, tagIndex, lti, value);

                lti.consume(IGF, value, IGF.getDefaultAtomicity(),
                            T.getEnumElementType(elt.decl,
                                    IGF.IGM.getSILTypes(),
                                    IGF.IGM.getMaximalTypeExpansionContext()));
              });
          return;
        }
        OutliningMetadataCollector collector(T, IGF, LayoutIsNotNeeded,
                                             DeinitIsNeeded);
        IGF.getTypeInfo(T).collectMetadataForOutlining(collector, T);
        collector.materialize();
        if (!consumeEnumFunction)
          consumeEnumFunction = emitConsumeEnumFunction(IGM, T, collector);
        Explosion tmp;
        fillExplosionForOutlinedCall(IGF, src, tmp, &collector);
        llvm::CallInst *call = IGF.Builder.CreateCallWithoutDbgLoc(
            consumeEnumFunction->getFunctionType(), consumeEnumFunction,
            tmp.claimAll());
        call->setCallingConv(IGM.DefaultCC);
        return;
      }
      case TaggedRefcounted: {
        auto parts = destructureLoadableEnum(IGF, src);
        // Mask the tag bits out of the payload, if any.
        maskTagBitsFromPayload(IGF, parts.payload);

        // Release the pointer.
        auto ptr =
            parts.payload.extractValue(IGF, getRefcountedPtrType(IGM), 0);
        releaseRefcountedPayload(IGF, ptr);
        return;
      }
      }
    }

    void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {
      assert(TIK >= Loadable);

      switch (CopyDestroyKind) {
      case TriviallyDestroyable:
        (void)src.claim(getExplosionSize());
        return;

      case ABIInaccessible:
        llvm_unreachable("ABI-accessible type cannot be loadable");

      case BitwiseTakable:
      case Normal: {
        auto parts = destructureAndTagLoadableEnum(IGF, src);

        forNontrivialPayloads(IGF, parts.tag,
          [&](unsigned tagIndex, EnumImplStrategy::Element elt) {
            auto &lti = cast<LoadableTypeInfo>(*elt.ti);
            Explosion value;
            projectPayloadValue(IGF, parts.payload, tagIndex, lti, value);

            lti.fixLifetime(IGF, value);
          });
        return;
      }

      case TaggedRefcounted: {
        auto parts = destructureLoadableEnum(IGF, src);
        // Mask the tag bits out of the payload, if any.
        maskTagBitsFromPayload(IGF, parts.payload);
        
        // Fix the pointer.
        auto ptr = parts.payload.extractValue(IGF,
                                          getRefcountedPtrType(IGM), 0);
        fixLifetimeOfRefcountedPayload(IGF, ptr);
        return;
      }
      }
    }

  private:
    /// Emit a reassignment sequence from an enum at one address to another.
    void emitIndirectAssign(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, IsTake_t isTake, bool isOutlined) const {
      auto &C = IGM.getLLVMContext();

      switch (CopyDestroyKind) {
      case TriviallyDestroyable:
        return emitPrimitiveCopy(IGF, dest, src, T);

      case ABIInaccessible:
        llvm_unreachable("shouldn't get here");

      case BitwiseTakable:
      case TaggedRefcounted:
      case Normal: {
        // If the enum is loadable, it's better to do this directly using
        // values, so we don't need to RMW tag bits in place.
        if (TI->isLoadable()) {
          Explosion tmpSrc, tmpOld;
          if (isTake)
            loadAsTake(IGF, src, tmpSrc);
          else
            loadAsCopy(IGF, src, tmpSrc);

          loadAsTake(IGF, dest, tmpOld);
          initialize(IGF, tmpSrc, dest, isOutlined);
          consume(IGF, tmpOld, IGF.getDefaultAtomicity(), T);
          return;
        }

        auto *endBB = llvm::BasicBlock::Create(C);

        // Check whether the source and destination alias.
        llvm::Value *alias = IGF.Builder.CreateICmpEQ(dest.getAddress(),
                                                      src.getAddress());
        auto *noAliasBB = llvm::BasicBlock::Create(C);
        IGF.Builder.CreateCondBr(alias, endBB, noAliasBB);
        IGF.Builder.emitBlock(noAliasBB);
        ConditionalDominanceScope condition(IGF);

        // Destroy the old value.
        destroy(IGF, dest, T, false /*outline calling outline*/);

        // Reinitialize with the new value.
        emitIndirectInitialize(IGF, dest, src, T, isTake, isOutlined);

        IGF.Builder.CreateBr(endBB);
        IGF.Builder.emitBlock(endBB);
        return;
      }
      }
    }

    void emitIndirectInitialize(IRGenFunction &IGF, Address dest, Address src,
                                SILType T, IsTake_t isTake,
                                bool isOutlined) const {
      auto &C = IGM.getLLVMContext();

      switch (CopyDestroyKind) {
      case TriviallyDestroyable:
        return emitPrimitiveCopy(IGF, dest, src, T);

      case ABIInaccessible:
        llvm_unreachable("shouldn't get here");

      case BitwiseTakable:
      case TaggedRefcounted:
        // Takes can be done by primitive copy in these case.
        if (isTake)
          return emitPrimitiveCopy(IGF, dest, src, T);
        LLVM_FALLTHROUGH;
        
      case Normal: {
        // If the enum is loadable, do this directly using values, since we
        // have to strip spare bits from the payload.
        if (TI->isLoadable()) {
          Explosion tmpSrc;
          if (isTake)
            loadAsTake(IGF, src, tmpSrc);
          else
            loadAsCopy(IGF, src, tmpSrc);
          initialize(IGF, tmpSrc, dest, isOutlined);
          return;
        }

        // If the enum is address-only, we better not have any spare bits,
        // otherwise we have no way of copying the original payload without
        // destructively modifying it in place.
        assert(PayloadTagBits.none() &&
               "address-only multi-payload enum layout cannot use spare bits");

        /// True if the type is trivially copyable or takable by this operation.
        auto isTrivial = [&](const TypeInfo &ti) -> bool {
          return ti.isTriviallyDestroyable(ResilienceExpansion::Maximal)
              || (isTake && ti.isBitwiseTakable(ResilienceExpansion::Maximal));
        };
        
        llvm::Value *tag = loadPayloadTag(IGF, src, T);

        auto *endBB = llvm::BasicBlock::Create(C);

        /// Switch out nontrivial payloads.
        auto *trivialBB = llvm::BasicBlock::Create(C);
        
        unsigned numNontrivialPayloads
          = std::count_if(ElementsWithPayload.begin(),
                          ElementsWithPayload.end(),
                          [&](Element e) -> bool {
                            return !isTrivial(*e.ti);
                          });
        bool anyTrivial = !ElementsWithNoPayload.empty()
          || numNontrivialPayloads != ElementsWithPayload.size();
        
        auto swi = SwitchBuilder::create(IGF, tag,
          SwitchDefaultDest(trivialBB, anyTrivial ? IsNotUnreachable
                                                  : IsUnreachable),
          numNontrivialPayloads);
        auto *tagTy = cast<llvm::IntegerType>(tag->getType());

        unsigned tagIndex = 0;
        for (auto &payloadCasePair : ElementsWithPayload) {
          SILType PayloadT =
              T.getEnumElementType(payloadCasePair.decl, IGF.getSILModule(),
                                   IGF.IGM.getMaximalTypeExpansionContext());
          auto &payloadTI = *payloadCasePair.ti;
          // Trivial and, in the case of a take, bitwise-takable payloads,
          // can all share the default path.
          if (isTrivial(payloadTI)) {
            ++tagIndex;
            continue;
          }

          // For nontrivial payloads, we need to copy/take the payload using its
          // value semantics.
          auto *caseBB = llvm::BasicBlock::Create(C);
          swi->addCase(llvm::ConstantInt::get(tagTy, tagIndex), caseBB);
          IGF.Builder.emitBlock(caseBB);

          ConditionalDominanceScope condition(IGF);

          // Do the take/copy of the payload.
          Address srcData =
              IGF.Builder.CreateElementBitCast(src, payloadTI.getStorageType());
          Address destData = IGF.Builder.CreateElementBitCast(
              dest, payloadTI.getStorageType());

          if (isTake)
            payloadTI.initializeWithTake(IGF, destData, srcData, PayloadT,
                                         isOutlined);
          else
            payloadTI.initializeWithCopy(IGF, destData, srcData, PayloadT,
                                         isOutlined);

          // Plant spare bit tag bits, if any, into the new value.
          llvm::Value *tag = llvm::ConstantInt::get(IGM.Int32Ty, tagIndex);
          if (TIK < Fixed)
            storeDynamicTag(IGF, dest, tag, T);
          else
            storePayloadTag(IGF, dest, tagIndex, T);

          IGF.Builder.CreateBr(endBB);

          ++tagIndex;
        }

        // For trivial payloads (including no-payload cases), we can just
        // primitive-copy to the destination.
        if (anyTrivial) {
          IGF.Builder.emitBlock(trivialBB);
          ConditionalDominanceScope condition(IGF);
          emitPrimitiveCopy(IGF, dest, src, T);
          IGF.Builder.CreateBr(endBB);
        } else {
          // If there are no trivial cases to handle, this is unreachable.
          if (trivialBB->use_empty()) {
            delete trivialBB;
          } else {
            IGF.Builder.emitBlock(trivialBB);
            IGF.Builder.CreateUnreachable();
          }
        }

        IGF.Builder.emitBlock(endBB);
      }
      }
    }

  public:
    void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
                        SILType T, bool isOutlined) const override {
      if (!ElementsAreABIAccessible) {
        emitAssignWithCopyCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        emitIndirectAssign(IGF, dest, src, T, IsNotTake, isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsNotInitialization, IsNotTake);
      }
    }

    void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
                        SILType T, bool isOutlined) const override {
      if (!ElementsAreABIAccessible) {
        emitAssignWithTakeCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        emitIndirectAssign(IGF, dest, src, T, IsTake, isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsNotInitialization, IsTake);
      }
    }

    void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      if (!ElementsAreABIAccessible) {
        emitInitializeWithCopyCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        emitIndirectInitialize(IGF, dest, src, T, IsNotTake, isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsInitialization, IsNotTake);
      }
    }

    void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      if (!ElementsAreABIAccessible) {
        emitInitializeWithTakeCall(IGF, T, dest, src);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        emitIndirectInitialize(IGF, dest, src, T, IsTake, isOutlined);
      } else {
        callOutlinedCopy(IGF, dest, src, T, IsInitialization, IsTake);
      }
    }

    void collectMetadataForOutlining(OutliningMetadataCollector &collector,
                                     SILType T) const override {
      if (CopyDestroyKind != Normal) {
        return;
      }

      for (auto &payloadCasePair : ElementsWithPayload) {
        SILType payloadT = T.getEnumElementType(
            payloadCasePair.decl, collector.IGF.getSILModule(),
            collector.IGF.IGM.getMaximalTypeExpansionContext());
        auto &payloadTI = *payloadCasePair.ti;
        payloadTI.collectMetadataForOutlining(collector, payloadT);
      }
      collector.collectTypeMetadata(T);
    }

    void destroy(IRGenFunction &IGF, Address addr, SILType T,
                 bool isOutlined) const override {
      if (tryEmitDestroyUsingDeinit(IGF, addr, T)) {
        return;
      }

      if (CopyDestroyKind == TriviallyDestroyable) {
        return;
      }
      if (!ElementsAreABIAccessible) {
        emitDestroyCall(IGF, T, addr);
      } else if (isOutlined || T.hasParameterizedExistential()) {
        switch (CopyDestroyKind) {
        case TriviallyDestroyable:
          return;

        case ABIInaccessible:
          llvm_unreachable("shouldn't get here");

        case BitwiseTakable:
        case Normal:
        case TaggedRefcounted: {
          // If loadable, it's better to do this directly to the value than
          // in place, so we don't need to RMW out the tag bits in memory.
          if (TI->isLoadable()) {
            Explosion tmp;
            loadAsTake(IGF, addr, tmp);
            consume(IGF, tmp, IGF.getDefaultAtomicity(), T);
            return;
          }

          auto tag = loadPayloadTag(IGF, addr, T);

          forNontrivialPayloads(
              IGF, tag, [&](unsigned tagIndex, EnumImplStrategy::Element elt) {
                // Clear tag bits out of the payload area, if any.
                destructiveProjectDataForLoad(IGF, T, addr);
                // Destroy the data.
                Address dataAddr = IGF.Builder.CreateElementBitCast(
                    addr, elt.ti->getStorageType());
                SILType payloadT = T.getEnumElementType(
                    elt.decl, IGF.getSILModule(),
                    IGF.IGM.getMaximalTypeExpansionContext());
                elt.ti->destroy(IGF, dataAddr, payloadT, true /*isOutlined*/);
              });
          return;
        }
        }
      } else {
        callOutlinedDestroy(IGF, addr, T);
      }
    }

  private:
    void storePayloadTag(IRGenFunction &IGF, Address enumAddr,
                         unsigned index, SILType T) const {
      // If the tag has spare bits, we need to mask them into the
      // payload area.
      unsigned numSpareBits = PayloadTagBits.count();
      if (numSpareBits > 0) {
        unsigned spareTagBits = numSpareBits >= 32
          ? index : index & ((1U << numSpareBits) - 1U);

        // Mask the spare bits into the payload area.
        Address payloadAddr = projectPayload(IGF, enumAddr);
        auto payload = EnumPayload::load(IGF, payloadAddr, PayloadSchema);
        
        // We need to mask not only the payload tag bits, but all spare bits,
        // because the other spare bits may be used to tag a single-payload
        // enum containing this enum as a payload. Single payload layout
        // unfortunately assumes that tagging the payload case is a no-op.
        auto spareBitMask = ~CommonSpareBits.asAPInt();
        APInt tagBitMask = scatterBits(PayloadTagBits.asAPInt(), spareTagBits);

        payload.emitApplyAndMask(IGF, spareBitMask);
        payload.emitApplyOrMask(IGM, IGF.Builder, tagBitMask);
        payload.store(IGF, payloadAddr);
      }

      // Initialize the extra tag bits, if we have them.
      if (ExtraTagBitCount > 0) {
        unsigned extraTagBits = index >> numSpareBits;
        auto *extraTagValue = llvm::ConstantInt::get(IGM.getLLVMContext(),
                                          getExtraTagBitConstant(extraTagBits));
        IGF.Builder.CreateStore(extraTagValue,
                                projectExtraTagBits(IGF, enumAddr));
      }
    }

    void storePayloadTag(IRGenFunction &IGF, Address enumAddr,
                         llvm::Value *tag, SILType T) const {
      unsigned numSpareBits = PayloadTagBits.count();
      if (numSpareBits > 0) {
        llvm::Value *spareTagBits;
        if (numSpareBits >= 32)
          spareTagBits = tag;
        else {
          spareTagBits = IGF.Builder.CreateAnd(tag,
                           llvm::ConstantInt::get(IGM.Int32Ty,
                                                  ((1U << numSpareBits) - 1U)));
        }

        // Load the payload area.
        Address payloadAddr = projectPayload(IGF, enumAddr);
        auto payload = EnumPayload::load(IGF, payloadAddr, PayloadSchema);

        // Mask off the spare bits.
        // We need to mask not only the payload tag bits, but all spare bits,
        // because the other spare bits may be used to tag a single-payload
        // enum containing this enum as a payload. Single payload layout
        // unfortunately assumes that tagging the payload case is a no-op.
        auto spareBitMask = ~CommonSpareBits.asAPInt();
        payload.emitApplyAndMask(IGF, spareBitMask);

        // Store the tag into the spare bits.
        payload.emitScatterBits(IGF.IGM, IGF.Builder, PayloadTagBits.asAPInt(), spareTagBits);

        // Store the payload back.
        payload.store(IGF, payloadAddr);
      }

      // Initialize the extra tag bits, if we have them.
      if (ExtraTagBitCount > 0) {
        auto *extraTagValue = tag;
        if (numSpareBits > 0) {
          auto *shiftCount = llvm::ConstantInt::get(IGM.Int32Ty,
                                                    numSpareBits);
          extraTagValue = IGF.Builder.CreateLShr(tag, shiftCount);
        }
        extraTagValue = IGF.Builder.CreateIntCast(extraTagValue,
                                                  ExtraTagTy, false);
        IGF.Builder.CreateStore(extraTagValue,
                                projectExtraTagBits(IGF, enumAddr));
      }
    }

    void storeNoPayloadTag(IRGenFunction &IGF, Address enumAddr,
                           unsigned index, SILType T) const {
      // We can just primitive-store the representation for the empty case.
      APInt payloadValue, extraTag;
      std::tie(payloadValue, extraTag) = getNoPayloadCaseValue(index);
      
      auto payload = EnumPayload::fromBitPattern(IGM, payloadValue,
                                                 PayloadSchema);
      payload.store(IGF, projectPayload(IGF, enumAddr));

      // Initialize the extra tag bits, if we have them.
      if (ExtraTagBitCount > 0) {
        IGF.Builder.CreateStore(
                    llvm::ConstantInt::get(IGM.getLLVMContext(), extraTag),
                    projectExtraTagBits(IGF, enumAddr));
      }
    }

    void storeNoPayloadTag(IRGenFunction &IGF, Address enumAddr,
                           llvm::Value *tag, SILType T) const {
      // We can just primitive-store the representation for the empty case.
      EnumPayload payloadValue;
      llvm::Value *extraTag;
      std::tie(payloadValue, extraTag) = getNoPayloadCaseValue(IGF, tag);
      payloadValue.store(IGF, projectPayload(IGF, enumAddr));

      // Initialize the extra tag bits, if we have them.
      if (ExtraTagBitCount > 0) {
        extraTag = IGF.Builder.CreateIntCast(extraTag, ExtraTagTy,
                                             /*isSigned=*/false);
        IGF.Builder.CreateStore(extraTag, projectExtraTagBits(IGF, enumAddr));
      }
    }

    void storeDynamicTag(IRGenFunction &IGF, Address enumAddr,
                         llvm::Value *tag, SILType T) const {
      assert(TIK < Fixed);

      // Invoke the runtime to store the tag.
      enumAddr = IGF.Builder.CreateElementBitCast(enumAddr, IGM.OpaqueTy);
      auto metadata = IGF.emitTypeMetadataRef(T.getASTType());

      auto call = IGF.Builder.CreateCall(
          IGM.getStoreEnumTagMultiPayloadFunctionPointer(),
          {enumAddr.getAddress(), metadata, tag});
      call->setDoesNotThrow();
    }

  public:

    void storeTag(IRGenFunction &IGF,
                  SILType T,
                  Address enumAddr,
                  EnumElementDecl *Case) const override {
      unsigned index = getTagIndex(Case);

      // Use the runtime to initialize dynamic cases.
      if (TIK < Fixed) {
        auto tag = llvm::ConstantInt::get(IGM.Int32Ty, index);
        return storeDynamicTag(IGF, enumAddr, tag, T);
      }
      
      // See whether this is a payload or empty case we're emitting.
      unsigned numPayloadCases = ElementsWithPayload.size();
      if (index < numPayloadCases)
        return storePayloadTag(IGF, enumAddr, index, T);
      return storeNoPayloadTag(IGF, enumAddr, index - numPayloadCases, T);
    }

    void emitStoreTag(IRGenFunction &IGF,
                      SILType T,
                      Address enumAddr,
                      llvm::Value *tag) const override {
      llvm::Value *numPayloadCases =
          llvm::ConstantInt::get(IGM.Int32Ty,
                                 ElementsWithPayload.size());

      // Use the runtime to initialize dynamic cases.
      if (TIK < Fixed) {
        return storeDynamicTag(IGF, enumAddr, tag, T);
      }

      // If there are no empty cases, don't need a conditional.
      if (ElementsWithNoPayload.empty()) {
        storePayloadTag(IGF, enumAddr, tag, T);
        return;
      }

      auto &C = IGM.getLLVMContext();
      auto noPayloadBB = llvm::BasicBlock::Create(C);
      auto payloadBB = llvm::BasicBlock::Create(C);
      auto endBB = llvm::BasicBlock::Create(C);

      llvm::Value *cond = IGF.Builder.CreateICmpUGE(tag, numPayloadCases);
      IGF.Builder.CreateCondBr(cond, noPayloadBB, payloadBB);

      IGF.Builder.emitBlock(noPayloadBB);
      {
        ConditionalDominanceScope condition(IGF);
        storeNoPayloadTag(IGF, enumAddr,
                          IGF.Builder.CreateSub(tag, numPayloadCases), T);
        IGF.Builder.CreateBr(endBB);
      }

      IGF.Builder.emitBlock(payloadBB);
      {
        ConditionalDominanceScope condition(IGF);

        storePayloadTag(IGF, enumAddr, tag, T);
        IGF.Builder.CreateBr(endBB);
      }

      IGF.Builder.emitBlock(endBB);
    }

    /// Clear any tag bits stored in the payload area of the given address.
    void destructiveProjectDataForLoad(IRGenFunction &IGF,
                                       SILType T,
                                       Address enumAddr) const override {
      // If the case has non-zero tag bits stored in spare bits, we need to
      // mask them out before the data can be read.
      unsigned numSpareBits = PayloadTagBits.count();
      if (numSpareBits > 0) {
        Address payloadAddr = projectPayload(IGF, enumAddr);
        auto payload = EnumPayload::load(IGF, payloadAddr, PayloadSchema);
        auto spareBitMask = ~PayloadTagBits.asAPInt();
        payload.emitApplyAndMask(IGF, spareBitMask);
        payload.store(IGF, payloadAddr);
      }
    }

    llvm::Value *emitPayloadLayoutArray(IRGenFunction &IGF, SILType T,
                                 MetadataDependencyCollector *collector) const {
      auto numPayloads = ElementsWithPayload.size();
      auto metadataBufferTy = llvm::ArrayType::get(IGM.Int8PtrPtrTy,
                                                   numPayloads);
      auto metadataBuffer = IGF.createAlloca(metadataBufferTy,
                                             IGM.getPointerAlignment(),
                                             "payload_types");
      llvm::Value *firstAddr = nullptr;
      for (unsigned i = 0; i < numPayloads; ++i) {
        auto &elt = ElementsWithPayload[i];
        Address eltAddr = IGF.Builder.CreateStructGEP(metadataBuffer, i,
                                                  IGM.getPointerSize() * i);
        if (i == 0) firstAddr = eltAddr.getAddress();

        auto payloadTy =
            T.getEnumElementType(elt.decl, IGF.getSILModule(),
                                 IGF.IGM.getMaximalTypeExpansionContext());

        auto metadata = emitTypeLayoutRef(IGF, payloadTy, collector);
        
        IGF.Builder.CreateStore(metadata, eltAddr);
      }
      assert(firstAddr && "Expected firstAddr to be assigned to");

      return firstAddr;
    }

    llvm::Value *emitPayloadMetadataArray(IRGenFunction &IGF, SILType T,
                                 MetadataDependencyCollector *collector) const {
      auto numPayloads = ElementsWithPayload.size();
      auto metadataBufferTy = llvm::ArrayType::get(IGM.TypeMetadataPtrTy,
                                                   numPayloads);
      auto metadataBuffer = IGF.createAlloca(metadataBufferTy,
                                             IGM.getPointerAlignment(),
                                             "payload_types");
      llvm::Value *firstAddr = nullptr;
      for (unsigned i = 0; i < numPayloads; ++i) {
        auto &elt = ElementsWithPayload[i];
        Address eltAddr = IGF.Builder.CreateStructGEP(metadataBuffer, i,
                                                  IGM.getPointerSize() * i);
        if (i == 0) firstAddr = eltAddr.getAddress();

        auto payloadTy =
            T.getEnumElementType(elt.decl, IGF.getSILModule(),
                                 IGF.IGM.getMaximalTypeExpansionContext());

        auto request = DynamicMetadataRequest::getNonBlocking(
          MetadataState::LayoutComplete, collector);
        auto metadata = IGF.emitTypeMetadataRefForLayout(payloadTy, request);

        IGF.Builder.CreateStore(metadata, eltAddr);
      }
      assert(firstAddr && "Expected firstAddr to be assigned to");

      return firstAddr;
    }

    void initializeMetadata(IRGenFunction &IGF,
                            llvm::Value *metadata,
                            bool isVWTMutable,
                            SILType T,
                        MetadataDependencyCollector *collector) const override {
      // Fixed-size enums don't need dynamic metadata initialization.
      if (TIK >= Fixed) return;
      
      // Ask the runtime to set up the metadata record for a dynamic enum.
      auto payloadLayoutArray = emitPayloadLayoutArray(IGF, T, collector);
      auto numPayloadsVal = llvm::ConstantInt::get(IGM.SizeTy,
                                                   ElementsWithPayload.size());

      auto flags = emitEnumLayoutFlags(IGM, isVWTMutable);
      IGF.Builder.CreateCall(
          IGM.getInitEnumMetadataMultiPayloadFunctionPointer(),
          {metadata, flags, numPayloadsVal, payloadLayoutArray});
    }

    void initializeMetadataWithLayoutString(
        IRGenFunction &IGF, llvm::Value *metadata, bool isVWTMutable, SILType T,
        MetadataDependencyCollector *collector) const override {
      // Fixed-size enums don't need dynamic metadata initialization.
      if (TIK >= Fixed) return;

      // Ask the runtime to set up the metadata record for a dynamic enum.
      auto payloadLayoutArray = emitPayloadMetadataArray(IGF, T, collector);
      auto numPayloadsVal = llvm::ConstantInt::get(IGM.SizeTy,
                                                   ElementsWithPayload.size());

      auto flags = emitEnumLayoutFlags(IGM, isVWTMutable);
      IGF.Builder.CreateCall(
          IGM.getInitEnumMetadataMultiPayloadWithLayoutStringFunctionPointer(),
          {metadata, flags, numPayloadsVal, payloadLayoutArray});
    }

    /// \group Extra inhabitants

    // If we didn't use all of the available tag bit representations, offer
    // the remaining ones as extra inhabitants.

    bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
      if (TIK >= Fixed)
        return getFixedExtraInhabitantCount(IGM) > 0;
      return true;
    }
    
    /// Rounds the extra tag bit count up to the next byte size.
    unsigned getExtraTagBitCountForExtraInhabitants() const {
      if (!ExtraTagTy)
        return 0;
      return (ExtraTagTy->getBitWidth() + 7) & ~7;
    }
    
    Address projectExtraTagBitsForExtraInhabitants(IRGenFunction &IGF,
                                                   Address base) const {
      auto addr = projectExtraTagBits(IGF, base);
      if (ExtraTagTy->getBitWidth() != getExtraTagBitCountForExtraInhabitants()) {
        addr = IGF.Builder.CreateElementBitCast(
            addr,
            llvm::IntegerType::get(IGM.getLLVMContext(),
                                   getExtraTagBitCountForExtraInhabitants()));
      }
      return addr;
    }
    
    // If there are common spare bits we didn't use for tags, rotate the
    // extra inhabitant values so that the used tag bits are at the bottom.
    // This will cleanly separate the used tag values from the extra inhabitants
    // so we can discriminate them with one comparison. The tag favors high
    // bits, whereas extra inhabitants count down from -1 using all bits
    // (capping out at up to 32 spare bits, in which case the lowest 32
    // bits are used).
    std::pair<unsigned, unsigned> getRotationAmountsForExtraInhabitants() const{
      assert([&]{
        auto maskedBits = PayloadTagBits;
        maskedBits &= CommonSpareBits;
        return maskedBits == PayloadTagBits;
      }());

      unsigned commonSpareBitsCount = CommonSpareBits.count();
      unsigned payloadTagBitsCount = PayloadTagBits.count();
      if (commonSpareBitsCount == payloadTagBitsCount
          || commonSpareBitsCount - payloadTagBitsCount >= 32) {
        return std::make_pair(0, 0);
      }
      unsigned shlAmount = commonSpareBitsCount - payloadTagBitsCount;
      unsigned shrAmount = std::min(commonSpareBitsCount, 32u) - shlAmount;
      return {shlAmount, shrAmount};
    }

    llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
                                         Address src,
                                         SILType T,
                                         bool isOutlined) const override {
      assert(TIK >= Fixed);
      return getExtraInhabitantIndexImpl(IGF, src, T, isOutlined,
                                         getFixedExtraInhabitantCount(IGF.IGM));
    }

    llvm::Value *getExtraInhabitantIndexImpl(IRGenFunction &IGF,
                                             Address src, SILType T,
                                             bool isOutlined,
                                             unsigned xiCount) const {
      llvm::Value *tag;
      if (CommonSpareBits.count()) {
        auto payload = EnumPayload::load(IGF, projectPayload(IGF, src),
                                         PayloadSchema);
        tag = payload.emitGatherSpareBits(IGF, CommonSpareBits, 0, 32);
        
        // If there are common spare bits we didn't use for tags, rotate the
        // tag value so that the used tag bits are at the bottom. This will
        // cleanly separate the used tag values from the extra inhabitants so
        // we can discriminate them with one comparison. The tag favors high
        // bits, whereas extra inhabitants count down from -1 using all bits
        // (capping out at up to 32 spare bits, in which case the lowest 32
        // bits are used).
        //
        // Note that since this is the inverse operation--we're taking the bits
        // out of a payload and mapping them back to an extra inhabitant index--
        // the `shr` and `shl` amounts are intentionally swapped here.
        unsigned shrAmount, shlAmount;
        std::tie(shrAmount, shlAmount) = getRotationAmountsForExtraInhabitants();
        if (shrAmount != 0) {
          assert(getExtraTagBitCountForExtraInhabitants() == 0);
          auto tagLo = IGF.Builder.CreateLShr(tag, shrAmount);
          auto tagHi = IGF.Builder.CreateShl(tag, shlAmount);
          tag = IGF.Builder.CreateOr(tagLo, tagHi);
          if (CommonSpareBits.count() < 32) {
            auto mask = llvm::ConstantInt::get(IGM.Int32Ty,
                                          (1u << CommonSpareBits.count()) - 1u);
            tag = IGF.Builder.CreateAnd(tag, mask);
          }
        }
        
        if (getExtraTagBitCountForExtraInhabitants()) {
          auto extraTagAddr = projectExtraTagBitsForExtraInhabitants(IGF, src);
          auto extraTag = IGF.Builder.CreateLoad(extraTagAddr);
          auto extraTagBits =
            IGF.Builder.CreateZExtOrTrunc(extraTag, IGM.Int32Ty);
          extraTagBits =
            IGF.Builder.CreateShl(extraTagBits, CommonSpareBits.count());
          tag = IGF.Builder.CreateOr(tag, extraTagBits);
        }
      } else {
        auto extraTagAddr = projectExtraTagBitsForExtraInhabitants(IGF, src);
        auto extraTag = IGF.Builder.CreateLoad(extraTagAddr);
        tag = IGF.Builder.CreateZExtOrTrunc(extraTag, IGM.Int32Ty);
      }
      
      // Check whether it really is an extra inhabitant.
      auto tagBits = CommonSpareBits.count() + getExtraTagBitCountForExtraInhabitants();
      auto maxTag = tagBits >= 32 ? ~0u : (1 << tagBits) - 1;
      auto index = IGF.Builder.CreateSub(
                               llvm::ConstantInt::get(IGM.Int32Ty, maxTag),
                               tag);
      auto isExtraInhabitant = IGF.Builder.CreateICmpULT(index,
                              llvm::ConstantInt::get(IGF.IGM.Int32Ty, xiCount));
      return IGF.Builder.CreateSelect(isExtraInhabitant,
                            index, llvm::ConstantInt::get(IGM.Int32Ty, -1));
    }

    void storeExtraInhabitant(IRGenFunction &IGF,
                              llvm::Value *index,
                              Address dest,
                              SILType T,
                              bool isOutlined) const override {
      assert(TIK >= Fixed);

      auto indexValue = IGF.Builder.CreateNot(index);
      
      // If there are common spare bits we didn't use for tags, rotate the
      // tag value so that the used tag bits are at the bottom. This will
      // cleanly separate the used tag values from the extra inhabitants so
      // we can discriminate them with one comparison. The tag favors high
      // bits, whereas extra inhabitants count down from -1 using all bits
      // (capping out at up to 32 spare bits, in which case the lowest 32
      // bits are used).
      unsigned shlAmount, shrAmount;
      std::tie(shlAmount, shrAmount) = getRotationAmountsForExtraInhabitants();

      if (shlAmount != 0) {
        assert(getExtraTagBitCountForExtraInhabitants() == 0);
        if (CommonSpareBits.count() < 32) {
          auto mask = llvm::ConstantInt::get(IGM.Int32Ty,
                                         (1u << CommonSpareBits.count()) - 1u);
          indexValue = IGF.Builder.CreateAnd(indexValue, mask);
        }
        auto indexValueHi = IGF.Builder.CreateShl(indexValue, shlAmount);
        auto indexValueLo = IGF.Builder.CreateLShr(indexValue, shrAmount);
        indexValue = IGF.Builder.CreateOr(indexValueHi, indexValueLo);
      }
      
      if (CommonSpareBits.count()) {
        // Factor the index value into parts to scatter into the payload and
        // to store in the extra tag bits, if any.
        auto payload = EnumPayload::zero(IGM, PayloadSchema);
        payload.emitScatterBits(IGF.IGM, IGF.Builder, CommonSpareBits.asAPInt(), indexValue);
        payload.store(IGF, projectPayload(IGF, dest));
        if (getExtraTagBitCountForExtraInhabitants() > 0) {
          auto tagBits = IGF.Builder.CreateLShr(indexValue,
              llvm::ConstantInt::get(IGM.Int32Ty, CommonSpareBits.count()));
          auto tagAddr = projectExtraTagBitsForExtraInhabitants(IGF, dest);
          tagBits =
              IGF.Builder.CreateZExtOrTrunc(tagBits, tagAddr.getElementType());
          IGF.Builder.CreateStore(tagBits, tagAddr);
        }
      } else {
        // Only need to store the tag value.
        auto tagAddr = projectExtraTagBitsForExtraInhabitants(IGF, dest);
        indexValue =
            IGF.Builder.CreateZExtOrTrunc(indexValue, tagAddr.getElementType());
        IGF.Builder.CreateStore(indexValue, tagAddr);
      }
    }

    llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
                                         llvm::Value *numEmptyCases,
                                         Address src, SILType T,
                                         bool isOutlined) const override {
      if (TIK < Fixed) {
        // For dynamic layouts, the runtime provides a value witness to do this.
        return emitGetEnumTagSinglePayloadCall(IGF, T, numEmptyCases, src);
      }

      return getFixedTypeEnumTagSinglePayload(IGF, cast<FixedTypeInfo>(*TI),
                                              numEmptyCases, src, T,
                                              isOutlined);
    }

    void storeEnumTagSinglePayload(IRGenFunction &IGF,
                                   llvm::Value *index,
                                   llvm::Value *numEmptyCases,
                                   Address src, SILType T,
                                   bool isOutlined) const override {
      if (TIK < Fixed) {
        // For dynamic layouts, the runtime provides a value witness to do this.
        emitStoreEnumTagSinglePayloadCall(IGF, T, index, numEmptyCases, src);
        return;
      }

      storeFixedTypeEnumTagSinglePayload(IGF, cast<FixedTypeInfo>(*TI),
                                         index, numEmptyCases, src, T,
                                         isOutlined);
    }
    
    APInt
    getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
      // The extra inhabitant goes into the tag bits.
      auto tagBits = CommonSpareBits.asAPInt();
      auto fixedTI = cast<FixedTypeInfo>(TI);
      if (getExtraTagBitCountForExtraInhabitants() > 0) {
        auto mask = BitPatternBuilder(IGM.Triple.isLittleEndian());
        mask.append(CommonSpareBits);
        mask.padWithSetBitsTo(fixedTI->getFixedSize().getValueInBits());
        tagBits = mask.build().value();
      }
      return tagBits;
    }
    
    unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
      unsigned totalTagBits = CommonSpareBits.count() + getExtraTagBitCountForExtraInhabitants();
      if (totalTagBits >= 32)
        return ValueWitnessFlags::MaxNumExtraInhabitants;
      unsigned totalTags = 1u << totalTagBits;
      unsigned rawCount =
        totalTags - ElementsWithPayload.size() - NumEmptyElementTags;
      return std::min(rawCount,
                      unsigned(ValueWitnessFlags::MaxNumExtraInhabitants));
    }

    APInt
    getFixedExtraInhabitantValue(IRGenModule &IGM,
                                 unsigned bits,
                                 unsigned index) const override {
      // Count down from all-ones since a small negative number constant is
      // likely to be easier to reify.
      auto mask = ~index;
      
      // If there are common spare bits we didn't use for tags, rotate the
      // tag value so that the used tag bits are at the bottom. This will
      // cleanly separate the used tag values from the extra inhabitants so
      // we can discriminate them with one comparison. The tag favors high
      // bits, whereas extra inhabitants count down from -1 using all bits
      // (capping out at up to 32 spare bits, in which case the lowest 32
      // bits are used).
      unsigned shlAmount, shrAmount;
      std::tie(shlAmount, shrAmount) = getRotationAmountsForExtraInhabitants();
      
      if (shlAmount != 0) {
        assert(getExtraTagBitCountForExtraInhabitants() == 0);
        if (CommonSpareBits.count() < 32) {
          mask &= (1u << CommonSpareBits.count()) - 1;
        }
        mask = (mask >> shrAmount) | (mask << shlAmount);
      }
      
      auto extraTagMask = getExtraTagBitCountForExtraInhabitants() >= 32
        ? ~0u : (1 << getExtraTagBitCountForExtraInhabitants()) - 1;

      auto value = BitPatternBuilder(IGM.Triple.isLittleEndian());
      if (auto payloadBitCount = CommonSpareBits.count()) {
        auto payloadTagMask = payloadBitCount >= 32
          ? ~0u : (1 << payloadBitCount) - 1;
        auto payloadPart = mask & payloadTagMask;
        auto payloadBits = scatterBits(CommonSpareBits.asAPInt(),
                                       payloadPart);
        value.append(payloadBits);
        if (getExtraTagBitCountForExtraInhabitants() > 0) {
          value.append(APInt(bits - CommonSpareBits.size(),
                             (mask >> payloadBitCount) & extraTagMask));
        }
      } else {
        value.appendClearBits(CommonSpareBits.size());
        value.append(APInt(bits - CommonSpareBits.size(), mask & extraTagMask));
      }
      return value.build().value();
    }

    ClusteredBitVector
    getBitPatternForNoPayloadElement(EnumElementDecl *theCase) const override {
      assert(TIK >= Fixed);

      auto emptyI = std::find_if(ElementsWithNoPayload.begin(),
                                 ElementsWithNoPayload.end(),
                           [&](const Element &e) { return e.decl == theCase; });
      assert(emptyI != ElementsWithNoPayload.end() && "case not in enum");

      unsigned index = emptyI - ElementsWithNoPayload.begin();

      APInt payloadPart, extraPart;
      std::tie(payloadPart, extraPart) = getNoPayloadCaseValue(index);
      auto value = BitPatternBuilder(IGM.Triple.isLittleEndian());
      if (PayloadBitCount > 0)
        value.append(payloadPart);

      Size size = cast<FixedTypeInfo>(TI)->getFixedSize();
      if (ExtraTagBitCount > 0) {
        auto paddedWidth = size.getValueInBits() - PayloadBitCount;
        auto extraPadded = zextOrSelf(extraPart, paddedWidth);
        value.append(std::move(extraPadded));
      }
      return value.build();
    }

    ClusteredBitVector
    getBitMaskForNoPayloadElements() const override {
      assert(TIK >= Fixed);

      // All bits are significant.
      // TODO: They don't have to be.
      return ClusteredBitVector::getConstant(
                       cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits(),
                       true);
    }

    ClusteredBitVector getTagBitsForPayloads() const override {
      assert(TIK >= Fixed);
      Size size = cast<FixedTypeInfo>(TI)->getFixedSize();

      if (ExtraTagBitCount == 0) {
        assert(PayloadTagBits.size() == size.getValueInBits());
        return PayloadTagBits;
      }

      // Build a mask containing the tag bits for the payload and those
      // spilled into the extra tag.
      auto tagBits = BitPatternBuilder(IGM.Triple.isLittleEndian());
      tagBits.append(PayloadTagBits);

      // Set tag bits in extra tag to 1.
      unsigned extraTagSize = size.getValueInBits() - PayloadTagBits.size();
      tagBits.append(APInt(extraTagSize, (1U << ExtraTagBitCount) - 1U));
      return tagBits.build();
    }

    std::optional<SpareBitsMaskInfo> calculateSpareBitsMask() const override {
      SpareBitVector spareBits;
      for (auto enumCase : getElementsWithPayload()) {
        if (auto fixedTI = llvm::dyn_cast<FixedTypeInfo>(enumCase.ti))
          fixedTI->applyFixedSpareBitsMask(IGM, spareBits);
        else
          return {};
      }
      // Trim leading/trailing zero bytes, then pad to a multiple of 32 bits
      llvm::APInt bits = spareBits.asAPInt();
      uint32_t byteOffset = bits.countTrailingZeros() / 8;
      bits.lshrInPlace(byteOffset * 8); // Trim zero bytes from bottom end

      auto bitsInMask = bits.getActiveBits(); // Ignore high-order zero bits
      uint32_t bytesInMask = (bitsInMask + 7) / 8;
      auto wordsInMask = (bytesInMask + 3) / 4;
      bits = bits.zextOrTrunc(wordsInMask * 32);

      // Never write an MPE descriptor bigger than 16k
      // The runtime will fall back on its own internal
      // spare bits calculation for this (very rare) case.
      if (bytesInMask > 16384) {
        return {};
      }

      return {{bits, byteOffset, bytesInMask}};
    }
  };

  class ResilientEnumImplStrategy final
    : public EnumImplStrategy
  {
  public:
    ResilientEnumImplStrategy(IRGenModule &IGM,
                              IsCopyable_t copyable,
                              unsigned NumElements,
                              std::vector<Element> &&WithPayload,
                              std::vector<Element> &&WithNoPayload)
      : EnumImplStrategy(IGM, Opaque, IsFixedSize,
                         IsNotTriviallyDestroyable, copyable,
                         IsNotBitwiseTakable,
                         NumElements,
                         std::move(WithPayload),
                         std::move(WithNoPayload))
    { }

    llvm::Value *loadResilientTagIndex(IRGenFunction &IGF,
                                       EnumElementDecl *Case) const {
      auto address = IGM.getAddrOfEnumCase(Case, NotForDefinition);
      return IGF.Builder.CreateLoad(address);
    }

    TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
                                     SILType Type,
                                     EnumDecl *theEnum,
                                     llvm::StructType *enumTy) override;

    void destructiveProjectDataForLoad(IRGenFunction &IGF,
                                       SILType T,
                                       Address enumAddr) const override {
      emitDestructiveProjectEnumDataCall(IGF, T, enumAddr);
    }

    TypeLayoutEntry *
    buildTypeLayoutEntry(IRGenModule &IGM,
                         SILType T,
                         bool useStructLayouts) const override {
      return IGM.typeLayoutCache.getOrCreateResilientEntry(T);
    }

    void storeTag(IRGenFunction &IGF,
                  SILType T,
                  Address enumAddr,
                  EnumElementDecl *Case) const override {
      emitDestructiveInjectEnumTagCall(IGF, T, loadResilientTagIndex(IGF, Case),
                                       enumAddr);
    }

    llvm::Value *testResilientTag(IRGenFunction &IGF, llvm::Value *tag,
                                  EnumElementDecl *Case) const {
      auto &C = IGM.getLLVMContext();

      // If the enum case is weakly linked check the address of the case
      // first.
      llvm::BasicBlock *conditionalBlock = nullptr;
      llvm::BasicBlock *afterConditionalBlock = nullptr;
      llvm::BasicBlock *beforeNullPtrCheck = nullptr;
      if (Case->isWeakImported(IGM.getSwiftModule())) {
        beforeNullPtrCheck = IGF.Builder.GetInsertBlock();
        auto address = IGM.getAddrOfEnumCase(Case, NotForDefinition);
        conditionalBlock = llvm::BasicBlock::Create(C);
        afterConditionalBlock = llvm::BasicBlock::Create(C);
        auto *addressVal =
            IGF.Builder.CreatePtrToInt(address.getAddress(), IGM.IntPtrTy);
        auto isNullPtr = IGF.Builder.CreateICmpEQ(
            addressVal, llvm::ConstantInt::get(IGM.IntPtrTy, 0));
        IGF.Builder.CreateCondBr(isNullPtr, afterConditionalBlock,
                                 conditionalBlock);
      }
      if (conditionalBlock)
        IGF.Builder.emitBlock(conditionalBlock);

      // Check the tag.
      auto tagVal = loadResilientTagIndex(IGF, Case);
      auto matchesTag = IGF.Builder.CreateICmpEQ(tag, tagVal);
      if (conditionalBlock) {
        IGF.Builder.CreateBr(afterConditionalBlock);
        IGF.Builder.emitBlock(afterConditionalBlock);
        auto phi = IGF.Builder.CreatePHI(IGM.Int1Ty, 2);
        phi->addIncoming(IGF.Builder.getInt1(false), beforeNullPtrCheck);
        phi->addIncoming(matchesTag, conditionalBlock);
        matchesTag = phi;
      }
      return matchesTag;
    }

    llvm::Value *
    emitIndirectCaseTest(IRGenFunction &IGF, SILType T,
                         Address enumAddr,
                         EnumElementDecl *Case,
                         bool) const override {
      llvm::Value *tag = emitGetEnumTagCall(IGF, T, enumAddr);
      return testResilientTag(IGF, tag, Case);
    }

    void emitIndirectSwitch(IRGenFunction &IGF,
                            SILType T,
                            Address enumAddr,
                            ArrayRef<std::pair<EnumElementDecl*,
                                               llvm::BasicBlock*>> dests,
                            llvm::BasicBlock *defaultDest,
                            bool) const override {
      // Switch on the tag value.
      llvm::Value *tag = emitGetEnumTagCall(IGF, T, enumAddr);

      // Create a map of the destination blocks for quicker lookup.
      llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
                                                                 dests.end());

      // Create an unreachable branch for unreachable switch defaults.
      auto &C = IGM.getLLVMContext();
      auto *unreachableBB = llvm::BasicBlock::Create(C);

      // If there was no default branch in SIL, use the unreachable branch as
      // the default.
      if (!defaultDest)
        defaultDest = unreachableBB;

      llvm::BasicBlock *continuationBB = nullptr;

      unsigned numCasesEmitted = 0;

      auto emitCase = [&](Element elt) {
        auto found = destMap.find(elt.decl);
        if (found != destMap.end()) {
          if (continuationBB)
            IGF.Builder.emitBlock(continuationBB);

          // Check the tag.
          auto matchesTag = testResilientTag(IGF, tag, elt.decl);

          // If we are not the last block create a continuation block.
          if (++numCasesEmitted < dests.size())
            continuationBB = llvm::BasicBlock::Create(C);
          // Otherwise, our continuation is the default destination.
          else
            continuationBB = defaultDest;
          IGF.Builder.CreateCondBr(matchesTag, found->second, continuationBB);
        }
      };

      for (auto &elt : ElementsWithPayload)
        emitCase(elt);

      for (auto &elt : ElementsWithNoPayload)
        emitCase(elt);

      // If we have not emitted any cases jump to the default destination.
      if (numCasesEmitted == 0) {
        IGF.Builder.CreateBr(defaultDest);
      }

      // Delete the unreachable default block if we didn't use it, or emit it
      // if we did.
      if (unreachableBB->use_empty()) {
        delete unreachableBB;
      } else {
        IGF.Builder.emitBlock(unreachableBB);
        IGF.Builder.CreateUnreachable();
      }
    }

    void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
                        SILType T, bool isOutlined) const override {
      emitAssignWithCopyCall(IGF, T,
                             dest, src);
    }

    void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
                        SILType T, bool isOutlined) const override {
      emitAssignWithTakeCall(IGF, T,
                             dest, src);
    }

    void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      emitInitializeWithCopyCall(IGF, T,
                                 dest, src);
    }

    void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      emitInitializeWithTakeCall(IGF, T,
                                 dest, src);
    }

    void collectMetadataForOutlining(OutliningMetadataCollector &collector,
                                     SILType T) const override {
      collector.collectTypeMetadata(T);
    }

    void destroy(IRGenFunction &IGF, Address addr, SILType T,
                 bool isOutlined) const override {
      emitDestroyCall(IGF, T, addr);
    }

    void getSchema(ExplosionSchema &schema) const override {
      schema.add(ExplosionSchema::Element::forAggregate(getStorageType(),
                                                  TI->getBestKnownAlignment()));
    }

    // \group Operations for loadable enums

    void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
                          Size offset) const override {
      llvm_unreachable("resilient enums are never loadable");
    }
    
    ClusteredBitVector
    getTagBitsForPayloads() const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    ClusteredBitVector
    getBitPatternForNoPayloadElement(EnumElementDecl *theCase)
    const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    ClusteredBitVector
    getBitMaskForNoPayloadElements() const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void initializeFromParams(IRGenFunction &IGF, Explosion &params,
                              Address dest, SILType T,
                              bool isOutlined) const override {
      llvm_unreachable("resilient enums are always indirect");
    }
  
    void emitValueInjection(IRGenModule &IGM,
                            IRBuilder &builder,
                            EnumElementDecl *elt,
                            Explosion &params,
                            Explosion &out) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    llvm::Value *
    emitValueCaseTest(IRGenFunction &IGF, Explosion &value,
                      EnumElementDecl *Case) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void emitValueSwitch(IRGenFunction &IGF,
                         Explosion &value,
                         ArrayRef<std::pair<EnumElementDecl*,
                                            llvm::BasicBlock*>> dests,
                         llvm::BasicBlock *defaultDest) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void emitValueProject(IRGenFunction &IGF,
                          Explosion &inValue,
                          EnumElementDecl *theCase,
                          Explosion &out) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    unsigned getExplosionSize() const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void loadAsCopy(IRGenFunction &IGF, Address addr,
                    Explosion &e) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void loadAsTake(IRGenFunction &IGF, Address addr,
                            Explosion &e) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void assign(IRGenFunction &IGF, Explosion &e, Address addr,
                bool isOutlined, SILType T) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void initialize(IRGenFunction &IGF, Explosion &e, Address addr,
                    bool isOutlined) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void reexplode(Explosion &src,
                           Explosion &dest) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest,
              Atomicity atomicity) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void consume(IRGenFunction &IGF, Explosion &src,
                 Atomicity atomicity, SILType T) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void packIntoEnumPayload(IRGenModule &IGM,
                             IRBuilder &builder,
                             EnumPayload &outerPayload,
                             Explosion &src,
                             unsigned offset) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    void unpackFromEnumPayload(IRGenFunction &IGF,
                               const EnumPayload &outerPayload,
                               Explosion &dest,
                               unsigned offset) const override {
      llvm_unreachable("resilient enums are always indirect");
    }

    /// \group Operations for emitting type metadata

    llvm::Value *emitGetEnumTag(IRGenFunction &IGF, SILType T, Address addr,
                                bool maskExtraTagBits) const override {
      llvm_unreachable("resilient enums cannot be defined");
    }

    void emitStoreTag(IRGenFunction &IGF,
                      SILType T,
                      Address enumAddr,
                      llvm::Value *tag) const override {
      llvm_unreachable("resilient enums cannot be defined");
    }
    
    bool needsPayloadSizeInMetadata() const override {
      return false;
    }

    void initializeMetadata(IRGenFunction &IGF,
                            llvm::Value *metadata,
                            bool isVWTMutable,
                            SILType T,
                        MetadataDependencyCollector *collector) const override {
      llvm_unreachable("resilient enums cannot be defined");
    }

    void initializeMetadataWithLayoutString(
        IRGenFunction &IGF, llvm::Value *metadata, bool isVWTMutable, SILType T,
        MetadataDependencyCollector *collector) const override {
      llvm_unreachable("resilient enums cannot be defined");
    }

    /// \group Extra inhabitants

    bool mayHaveExtraInhabitants(IRGenModule &) const override {
      return true;
    }

    llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
                                         Address src,
                                         SILType T,
                                         bool isOutlined) const override {
      llvm_unreachable("resilient enums are never fixed-layout types");
    }

    void storeExtraInhabitant(IRGenFunction &IGF,
                              llvm::Value *index,
                              Address dest,
                              SILType T,
                              bool isOutlined) const override {
      llvm_unreachable("resilient enums are never fixed-layout types");
    }

    llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
                                         llvm::Value *numEmptyCases,
                                         Address src, SILType T,
                                         bool isOutlined) const override {
      return emitGetEnumTagSinglePayloadCall(IGF, T, numEmptyCases, src);
    }

    void storeEnumTagSinglePayload(IRGenFunction &IGF,
                                   llvm::Value *index,
                                   llvm::Value *numEmptyCases,
                                   Address src, SILType T,
                                   bool isOutlined) const override {
      emitStoreEnumTagSinglePayloadCall(IGF, T, index, numEmptyCases, src);
    }

    APInt
    getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
      llvm_unreachable("resilient enum is not fixed size");
    }
    
    unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
      llvm_unreachable("resilient enum is not fixed size");
    }

    APInt
    getFixedExtraInhabitantValue(IRGenModule &IGM,
                                 unsigned bits,
                                 unsigned index) const override {
      llvm_unreachable("resilient enum is not fixed size");
    }
  };
} // end anonymous namespace

std::unique_ptr<EnumImplStrategy>
EnumImplStrategy::get(TypeConverter &TC, SILType type, EnumDecl *theEnum) {
  unsigned numElements = 0;
  TypeInfoKind tik = Loadable;
  IsFixedSize_t alwaysFixedSize = IsFixedSize;
  auto triviallyDestroyable = theEnum->getValueTypeDestructor()
    ? IsNotTriviallyDestroyable : IsTriviallyDestroyable;
  auto copyable = !theEnum->canBeCopyable()
    ? IsNotCopyable : IsCopyable;
  auto bitwiseTakable = IsBitwiseTakableAndBorrowable; // FIXME: will there be check here?
  bool allowFixedLayoutOptimizations = true;
  std::vector<Element> elementsWithPayload;
  std::vector<Element> elementsWithNoPayload;

  // Note that the enum has a payload of the given type, so that the various
  // flags can be updated.
  auto notePayloadType = [&](const TypeInfo &payloadTI) {
    triviallyDestroyable = triviallyDestroyable &
      payloadTI.isTriviallyDestroyable(ResilienceExpansion::Maximal);
    copyable = copyable & payloadTI.isCopyable(ResilienceExpansion::Maximal);
    bitwiseTakable = bitwiseTakable &
      payloadTI.getBitwiseTakable(ResilienceExpansion::Maximal);
  };

  if (TC.IGM.isResilient(theEnum, ResilienceExpansion::Minimal))
    alwaysFixedSize = IsNotFixedSize;

  // Resilient enums are manipulated as opaque values, except we still
  // make the following assumptions:
  // 1) The indirect-ness of cases won't change
  // 2) Payload types won't change in a non-resilient way
  bool isResilient = TC.IGM.isResilient(theEnum, ResilienceExpansion::Maximal);
  
  // The most general resilience scope where the enum type is visible.
  // Case numbering must not depend on any information that is not static
  // in this resilience scope.
  ResilienceExpansion accessScope =
      TC.IGM.getResilienceExpansionForAccess(theEnum);

  // The most general resilience scope where the enum's layout is known.
  // Fixed-size optimizations can be applied if all payload types are
  // fixed-size from this resilience scope.
  ResilienceExpansion layoutScope =
      TC.IGM.getResilienceExpansionForLayout(theEnum);

  for (auto elt : theEnum->getAllElements()) {
    ++numElements;

    if (!elt->hasAssociatedValues()) {
      elementsWithNoPayload.push_back({elt, nullptr, nullptr});
      continue;
    }

    // For the purposes of memory layout, treat unavailable cases as if they do
    // not have a payload.
    if (!elt->isAvailableDuringLowering()) {
      elementsWithNoPayload.push_back({elt, nullptr, nullptr});
      continue;
    }

    // If the payload is indirect, we can use the NativeObject type metadata
    // without recurring. The box won't affect loadability or fixed-ness.
    if (elt->isIndirect() || theEnum->isIndirect()) {
      auto *nativeTI = &TC.getNativeObjectTypeInfo();
      notePayloadType(*nativeTI);
      // FIXME: indirect noncopyable elements might need to check copyable
      // on the element type as well.
      elementsWithPayload.push_back({elt, nativeTI, nativeTI});
      continue;
    }
    
    // Compute whether this gives us an apparent payload or dynamic layout.
    // Note that we do *not* apply substitutions from a bound generic instance
    // yet. We want all instances of a generic enum to share an implementation
    // strategy. If the abstract layout of the enum is dependent on generic
    // parameters, then we additionally need to constrain any layout
    // optimizations we perform to things that are reproducible by the runtime.
    Type origArgType = elt->getArgumentInterfaceType();
    origArgType = theEnum->mapTypeIntoContext(origArgType);

    auto origArgLoweredTy = TC.IGM.getLoweredType(origArgType);
    auto *origArgTI = &TC.getCompleteTypeInfo(origArgLoweredTy.getASTType());

    // If the unsubstituted argument contains a generic parameter type, or
    // is not fixed-size in all resilience domains that have knowledge of
    // this enum's layout, we need to constrain our layout optimizations to
    // what the runtime can reproduce.
    if (!isResilient &&
        !origArgTI->isFixedSize(layoutScope))
      allowFixedLayoutOptimizations = false;

    // If the payload is empty, turn the case into a no-payload case, but
    // only if case numbering remains unchanged from all resilience domains
    // that can see the enum.
    if (origArgTI->isKnownEmpty(accessScope) &&
        origArgTI->isTriviallyDestroyable(ResilienceExpansion::Maximal)) {
      notePayloadType(*origArgTI);
      elementsWithNoPayload.push_back({elt, nullptr, nullptr});
    } else {
      // *Now* apply the substitutions and get the type info for the instance's
      // payload type, since we know this case carries an apparent payload in
      // the generic case.
      SILType fieldTy = type.getEnumElementType(
          elt, TC.IGM.getSILModule(), TC.IGM.getMaximalTypeExpansionContext());
      auto *substArgTI = &TC.IGM.getTypeInfo(fieldTy);

      notePayloadType(*substArgTI);
      elementsWithPayload.push_back({elt, substArgTI, origArgTI});

      if (!isResilient) {
        if (!substArgTI->isFixedSize(ResilienceExpansion::Maximal))
          tik = Opaque;
        else if (!substArgTI->isLoadable() && tik > Fixed)
          tik = Fixed;

        // If the substituted argument contains a type that is not fixed-size
        // in all resilience domains that have knowledge of this enum's layout,
        // we need to constrain our layout optimizations to what the runtime
        // can reproduce.
        if (!substArgTI->isFixedSize(layoutScope)) {
          alwaysFixedSize = IsNotFixedSize;
          assert(!allowFixedLayoutOptimizations);
        }
      }
    }
  }

  assert(numElements == elementsWithPayload.size()
           + elementsWithNoPayload.size()
         && "not all elements accounted for");

  if (isResilient) {
    return std::unique_ptr<EnumImplStrategy>(
            new ResilientEnumImplStrategy(TC.IGM, copyable,
                                         numElements,
                                         std::move(elementsWithPayload),
                                         std::move(elementsWithNoPayload)));
  }

  // namespace-like enums must be imported as empty decls.
  if (theEnum->hasClangNode() && numElements == 0 && !theEnum->isObjC()) {
    return std::unique_ptr<EnumImplStrategy>(new SingletonEnumImplStrategy(
        TC.IGM, tik, alwaysFixedSize, triviallyDestroyable, copyable,
        bitwiseTakable, numElements,
        std::move(elementsWithPayload), std::move(elementsWithNoPayload)));
  }

  // Enums imported from Clang or marked with @objc use C-compatible layout.
  if (theEnum->hasClangNode() || theEnum->isObjC()) {
    assert(elementsWithPayload.empty() && "C enum with payload?!");
    assert(alwaysFixedSize == IsFixedSize && "C enum with resilient payload?!");
    return std::unique_ptr<EnumImplStrategy>(
           new CCompatibleEnumImplStrategy(TC.IGM, tik, alwaysFixedSize,
                                           triviallyDestroyable, copyable,
                                           bitwiseTakable, numElements,
                                           std::move(elementsWithPayload),
                                           std::move(elementsWithNoPayload)));
  }

  if (numElements <= 1)
    return std::unique_ptr<EnumImplStrategy>(
          new SingletonEnumImplStrategy(TC.IGM, tik, alwaysFixedSize,
                                        triviallyDestroyable, copyable,
                                        bitwiseTakable, numElements,
                                        std::move(elementsWithPayload),
                                        std::move(elementsWithNoPayload)));
  if (elementsWithPayload.size() > 1)
    return std::unique_ptr<EnumImplStrategy>(
           new MultiPayloadEnumImplStrategy(TC.IGM, tik, alwaysFixedSize,
                                            allowFixedLayoutOptimizations,
                                            triviallyDestroyable, copyable,
                                            bitwiseTakable, numElements,
                                            std::move(elementsWithPayload),
                                            std::move(elementsWithNoPayload)));
  if (elementsWithPayload.size() == 1)
    return std::unique_ptr<EnumImplStrategy>(
           new SinglePayloadEnumImplStrategy(TC.IGM, tik, alwaysFixedSize,
                                             triviallyDestroyable, copyable,
                                             bitwiseTakable, numElements,
                                             std::move(elementsWithPayload),
                                             std::move(elementsWithNoPayload)));

  return std::unique_ptr<EnumImplStrategy>(
         new NoPayloadEnumImplStrategy(TC.IGM, tik, alwaysFixedSize,
                                       triviallyDestroyable, copyable,
                                       bitwiseTakable, numElements,
                                       std::move(elementsWithPayload),
                                       std::move(elementsWithNoPayload)));
}

namespace {
  /// Common base template for enum type infos.
  template<typename BaseTypeInfo>
  class EnumTypeInfoBase : public BaseTypeInfo {
  public:
    EnumImplStrategy &Strategy;

    template<typename...AA>
    EnumTypeInfoBase(EnumImplStrategy &strategy, AA &&...args)
      : BaseTypeInfo(std::forward<AA>(args)...), Strategy(strategy) {}

    ~EnumTypeInfoBase() override {
      delete &Strategy;
    }

    llvm::StructType *getStorageType() const {
      return cast<llvm::StructType>(TypeInfo::getStorageType());
    }

    /// \group Methods delegated to the EnumImplStrategy

    void getSchema(ExplosionSchema &s) const override {
      return Strategy.getSchema(s);
    }
    void destroy(IRGenFunction &IGF, Address addr, SILType T,
                 bool isOutlined) const override {
      return Strategy.destroy(IGF, addr, T, isOutlined);
    }
    void initializeFromParams(IRGenFunction &IGF, Explosion &params,
                              Address dest, SILType T,
                              bool isOutlined) const override {
      return Strategy.initializeFromParams(IGF, params, dest, T, isOutlined);
    }
    void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      return Strategy.initializeWithCopy(IGF, dest, src, T, isOutlined);
    }
    void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      return Strategy.initializeWithTake(IGF, dest, src, T, isOutlined);
    }
    void collectMetadataForOutlining(OutliningMetadataCollector &collector,
                                     SILType T) const override {
      return Strategy.collectMetadataForOutlining(collector, T);
    }
    void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
                        SILType T, bool isOutlined) const override {
      return Strategy.assignWithCopy(IGF, dest, src, T, isOutlined);
    }
    void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
                        SILType T, bool isOutlined) const override {
      return Strategy.assignWithTake(IGF, dest, src, T, isOutlined);
    }
    bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
      return Strategy.mayHaveExtraInhabitants(IGM);
    }
    llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
                                         llvm::Value *numEmptyCases,
                                         Address enumAddr,
                                         SILType T,
                                         bool isOutlined) const override {
      return Strategy.getEnumTagSinglePayload(IGF, numEmptyCases, enumAddr, T,
                                              isOutlined);
    }
    void storeEnumTagSinglePayload(IRGenFunction &IGF,
                                   llvm::Value *whichCase,
                                   llvm::Value *numEmptyCases,
                                   Address enumAddr,
                                   SILType T,
                                   bool isOutlined) const override {
      return Strategy.storeEnumTagSinglePayload(IGF, whichCase, numEmptyCases,
                                                enumAddr, T, isOutlined);
    }
    bool isSingleRetainablePointer(ResilienceExpansion expansion,
                                   ReferenceCounting *rc) const override {
      return Strategy.isSingleRetainablePointer(expansion, rc);
    }
    TypeLayoutEntry
    *buildTypeLayoutEntry(IRGenModule &IGM,
                          SILType ty,
                          bool useStructLayouts) const override {
      return Strategy.buildTypeLayoutEntry(IGM, ty, useStructLayouts);
    }
    bool canValueWitnessExtraInhabitantsUpTo(IRGenModule &IGM,
                                             unsigned index) const override {
      return Strategy.canValueWitnessExtraInhabitantsUpTo(IGM, index);
    }
  };

  template <class Base>
  class FixedEnumTypeInfoBase : public EnumTypeInfoBase<Base> {
  protected:
    using EnumTypeInfoBase<Base>::EnumTypeInfoBase;

  public:
    using EnumTypeInfoBase<Base>::Strategy;

    /// \group Methods delegated to the EnumImplStrategy

    unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
      return Strategy.getFixedExtraInhabitantCount(IGM);
    }

    APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
                                       unsigned bits,
                                       unsigned index)
    const override {
      return Strategy.getFixedExtraInhabitantValue(IGM, bits, index);
    }
    
    APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
      return Strategy.getFixedExtraInhabitantMask(IGM);
    }

    llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
                                         Address src,
                                         SILType T,
                                         bool isOutlined) const override {
      return Strategy.getExtraInhabitantIndex(IGF, src, T, isOutlined);
    }
    void storeExtraInhabitant(IRGenFunction &IGF,
                              llvm::Value *index,
                              Address dest,
                              SILType T,
                              bool isOutlined) const override {
      return Strategy.storeExtraInhabitant(IGF, index, dest, T, isOutlined);
    }
  };

  /// TypeInfo for fixed-layout but address-only enum types.
  class FixedEnumTypeInfo : public FixedEnumTypeInfoBase<FixedTypeInfo> {
  public:
    FixedEnumTypeInfo(EnumImplStrategy &strategy,
                      llvm::StructType *T, Size S, SpareBitVector SB,
                      Alignment A,
                      IsTriviallyDestroyable_t isTriviallyDestroyable,
                      IsBitwiseTakable_t isBT,
                      IsCopyable_t copyable,
                      IsFixedSize_t alwaysFixedSize)
      : FixedEnumTypeInfoBase(strategy, T, S, std::move(SB), A,
                              isTriviallyDestroyable, isBT, copyable,
                              alwaysFixedSize) {}
  };

  /// TypeInfo for loadable enum types.
  class LoadableEnumTypeInfo : public FixedEnumTypeInfoBase<LoadableTypeInfo> {
  public:
    // FIXME: Derive spare bits from element layout.
    LoadableEnumTypeInfo(EnumImplStrategy &strategy,
                         llvm::StructType *T, Size S, SpareBitVector SB,
                         Alignment A,
                         IsTriviallyDestroyable_t isTriviallyDestroyable,
                         IsCopyable_t copyable,
                         IsFixedSize_t alwaysFixedSize)
      : FixedEnumTypeInfoBase(strategy, T, S, std::move(SB), A,
                              isTriviallyDestroyable, copyable,
                              alwaysFixedSize) {}

    void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
                          Size offset) const override {
      Strategy.addToAggLowering(IGM, lowering, offset);
    }

    unsigned getExplosionSize() const override {
      return Strategy.getExplosionSize();
    }
    void loadAsCopy(IRGenFunction &IGF, Address addr,
                    Explosion &e) const override {
      return Strategy.loadAsCopy(IGF, addr, e);
    }
    void loadAsTake(IRGenFunction &IGF, Address addr,
                    Explosion &e) const override {
      return Strategy.loadAsTake(IGF, addr, e);
    }
    void assign(IRGenFunction &IGF, Explosion &e, Address addr,
                bool isOutlined, SILType T) const override {
      return Strategy.assign(IGF, e, addr, isOutlined, T);
    }
    void initialize(IRGenFunction &IGF, Explosion &e, Address addr,
                    bool isOutlined) const override {
      return Strategy.initialize(IGF, e, addr, isOutlined);
    }
    void reexplode( Explosion &src,
                   Explosion &dest) const override {
      return Strategy.reexplode(src, dest);
    }
    void copy(IRGenFunction &IGF, Explosion &src,
              Explosion &dest, Atomicity atomicity) const override {
      return Strategy.copy(IGF, src, dest, atomicity);
    }
    void consume(IRGenFunction &IGF, Explosion &src,
                 Atomicity atomicity, SILType T) const override {
      return Strategy.consume(IGF, src, atomicity, T);
    }
    void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {
      return Strategy.fixLifetime(IGF, src);
    }
    void packIntoEnumPayload(IRGenModule &IGM,
                             IRBuilder &builder,
                             EnumPayload &payload,
                             Explosion &in,
                             unsigned offset) const override {
      return Strategy.packIntoEnumPayload(IGM, builder, payload, in, offset);
    }
    void unpackFromEnumPayload(IRGenFunction &IGF,
                               const EnumPayload &payload,
                               Explosion &dest,
                               unsigned offset) const override {
      return Strategy.unpackFromEnumPayload(IGF, payload, dest, offset);
    }
    LoadedRef loadRefcountedPtr(IRGenFunction &IGF,
                                SourceLoc loc, Address addr) const override {
      return LoadedRef(Strategy.loadRefcountedPtr(IGF, loc, addr), false);
    }
  };

  /// TypeInfo for dynamically-sized enum types.
  class NonFixedEnumTypeInfo
    : public EnumTypeInfoBase<WitnessSizedTypeInfo<NonFixedEnumTypeInfo>>
  {
  public:
    NonFixedEnumTypeInfo(EnumImplStrategy &strategy,
                         llvm::Type *irTy,
                         Alignment align,
                         IsTriviallyDestroyable_t pod,
                         IsBitwiseTakable_t bt,
                         IsCopyable_t copy,
                         IsABIAccessible_t abiAccessible)
      : EnumTypeInfoBase(strategy, irTy, align, pod, bt, copy, abiAccessible) {}
  };

  /// TypeInfo for dynamically-sized enum types.
  class ResilientEnumTypeInfo
    : public EnumTypeInfoBase<ResilientTypeInfo<ResilientEnumTypeInfo>>
  {
  public:
    ResilientEnumTypeInfo(EnumImplStrategy &strategy,
                          llvm::Type *irTy,
                          IsCopyable_t copyable,
                          IsABIAccessible_t abiAccessible)
      : EnumTypeInfoBase(strategy, irTy, copyable, abiAccessible) {}
  };
} // end anonymous namespace

const EnumImplStrategy &
irgen::getEnumImplStrategy(IRGenModule &IGM, SILType ty) {
  assert(ty.getEnumOrBoundGenericEnum() && "not an enum");
  auto *ti = &IGM.getTypeInfo(ty);
  if (auto *loadableTI = dyn_cast<LoadableTypeInfo>(ti))
    return loadableTI->as<LoadableEnumTypeInfo>().Strategy;
  if (auto *fti = dyn_cast<FixedTypeInfo>(ti))
    return fti->as<FixedEnumTypeInfo>().Strategy;
  return ti->as<NonFixedEnumTypeInfo>().Strategy;
}

const EnumImplStrategy &
irgen::getEnumImplStrategy(IRGenModule &IGM, CanType ty) {
  return getEnumImplStrategy(IGM, IGM.getLoweredType(ty));
}

TypeInfo *
EnumImplStrategy::getFixedEnumTypeInfo(llvm::StructType *T, Size S,
                                       SpareBitVector SB,
                                       Alignment A,
                                       IsTriviallyDestroyable_t isTriviallyDestroyable,
                                       IsBitwiseTakable_t isBT,
                                       IsCopyable_t isCopyable) {
  TypeInfo *mutableTI;
  switch (TIK) {
  case Opaque:
    llvm_unreachable("not valid");
  case Fixed:
    mutableTI = new FixedEnumTypeInfo(*this, T, S, std::move(SB), A,
                                      isTriviallyDestroyable,
                                      isBT,
                                      isCopyable,
                                      AlwaysFixedSize);
    break;
  case Loadable:
    assert(isBT == IsBitwiseTakableAndBorrowable
           && "loadable enum not bitwise takable?!");
    mutableTI = new LoadableEnumTypeInfo(*this, T, S, std::move(SB), A,
                                         isTriviallyDestroyable,
                                         isCopyable,
                                         AlwaysFixedSize);
    break;
  }
  TI = mutableTI;
  return mutableTI;
}

TypeInfo *
SingletonEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
                                                  SILType Type,
                                                  EnumDecl *theEnum,
                                                  llvm::StructType *enumTy) {
  if (ElementsWithPayload.empty()) {
    enumTy->setBody(ArrayRef<llvm::Type*>{}, /*isPacked*/ true);
    Alignment alignment(1);
    applyLayoutAttributes(TC.IGM, theEnum, /*fixed*/true, alignment);
    return registerEnumTypeInfo(new LoadableEnumTypeInfo(*this, enumTy,
                 Size(0), {},
                 alignment,
                 TriviallyDestroyable,
                 Copyable,
                 AlwaysFixedSize));
  } else {
    const TypeInfo &eltTI = *getSingleton();

    // Use the singleton element's storage type if fixed-size.
    if (eltTI.isFixedSize()) {
      llvm::Type *body[] = { eltTI.getStorageType() };
      enumTy->setBody(body, /*isPacked*/ true);
    } else {
      enumTy->setBody(ArrayRef<llvm::Type*>{}, /*isPacked*/ true);
    }

    if (TIK <= Opaque) {
      auto alignment = eltTI.getBestKnownAlignment();
      applyLayoutAttributes(TC.IGM, theEnum, /*fixed*/false, alignment);
      auto enumAccessible = IsABIAccessible_t(TC.IGM.isTypeABIAccessible(Type));
      return registerEnumTypeInfo(new NonFixedEnumTypeInfo(*this, enumTy,
             alignment,
             TriviallyDestroyable,
             BitwiseTakable,
             Copyable,
             enumAccessible));
    } else {
      auto &fixedEltTI = cast<FixedTypeInfo>(eltTI);
      auto alignment = fixedEltTI.getFixedAlignment();
      applyLayoutAttributes(TC.IGM, theEnum, /*fixed*/true, alignment);

      return getFixedEnumTypeInfo(enumTy,
        fixedEltTI.getFixedSize(),
        fixedEltTI.getSpareBits(),
        alignment,
        TriviallyDestroyable,
        BitwiseTakable,
        Copyable);
    }
  }
}

TypeInfo *
NoPayloadEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
                                                  SILType Type,
                                                  EnumDecl *theEnum,
                                                  llvm::StructType *enumTy) {
  // Since there are no payloads, we need just enough bits to hold a
  // discriminator.
  unsigned usedTagBits = llvm::Log2_32(ElementsWithNoPayload.size() - 1) + 1;

  Size tagSize;
  llvm::IntegerType *tagTy;
  std::tie(tagSize, tagTy) = getIntegerTypeForTag(IGM, usedTagBits);
  
  llvm::Type *body[] = { tagTy };
  enumTy->setBody(body, /*isPacked*/true);

  // Unused tag bits in the physical size can be used as spare bits.
  // TODO: We can use all values greater than the largest discriminator as
  // extra inhabitants, not just those made available by spare bits.
  auto spareBits = SpareBitVector::fromAPInt(
      APInt::getBitsSetFrom(tagSize.getValueInBits(), usedTagBits));

  Alignment alignment(tagSize.getValue());
  applyLayoutAttributes(TC.IGM, theEnum, /*fixed*/true, alignment);

  return registerEnumTypeInfo(new LoadableEnumTypeInfo(*this,
                              enumTy, tagSize, std::move(spareBits),
                              alignment,
                              TriviallyDestroyable,
                              Copyable,
                              AlwaysFixedSize));
}

TypeInfo *
CCompatibleEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
                                                    SILType Type,
                                                    EnumDecl *theEnum,
                                                    llvm::StructType *enumTy){
  // The type should have come from Clang or be @objc,
  // and should have a raw type.
  assert((theEnum->hasClangNode() || theEnum->isObjC())
         && "c-compatible enum didn't come from clang!");
  assert(theEnum->hasRawType()
         && "c-compatible enum doesn't have raw type!");
  assert(!theEnum->getDeclaredTypeInContext()->is<BoundGenericType>()
         && "c-compatible enum is generic!");

  // The raw type should be a C integer type, which should have a single
  // scalar representation as a Swift struct. We'll use that same
  // representation type for the enum so that it's ABI-compatible.
  auto &rawTI = TC.getCompleteTypeInfo(
                                   theEnum->getRawType()->getCanonicalType());
  auto &rawFixedTI = cast<FixedTypeInfo>(rawTI);
  assert(TriviallyDestroyable == IsTriviallyDestroyable
         && "c-compatible raw type isn't POD?!");
  assert(Copyable == IsCopyable
         && "c-compatible raw type isn't copyable?!");
  ExplosionSchema rawSchema = rawTI.getSchema();
  assert(rawSchema.size() == 1
         && "c-compatible raw type has non-single-scalar representation?!");
  assert(rawSchema.begin()[0].isScalar()
         && "c-compatible raw type has non-single-scalar representation?!");
  llvm::Type *tagTy = rawSchema.begin()[0].getScalarType();

  llvm::Type *body[] = { tagTy };
  enumTy->setBody(body, /*isPacked*/ false);

  auto alignment = rawFixedTI.getFixedAlignment();
  applyLayoutAttributes(TC.IGM, theEnum, /*fixed*/true, alignment);

  assert(!TC.IGM.isResilient(theEnum, ResilienceExpansion::Minimal) &&
         "C-compatible enums cannot be resilient");

  return registerEnumTypeInfo(new LoadableEnumTypeInfo(*this, enumTy,
                                               rawFixedTI.getFixedSize(),
                                               rawFixedTI.getSpareBits(),
                                               alignment,
                                               IsTriviallyDestroyable,
                                               IsCopyable,
                                               IsFixedSize));
}

TypeInfo *SinglePayloadEnumImplStrategy::completeFixedLayout(
                                    TypeConverter &TC,
                                    SILType Type,
                                    EnumDecl *theEnum,
                                    llvm::StructType *enumTy) {
  // See whether the payload case's type has extra inhabitants.
  unsigned fixedExtraInhabitants = 0;
  unsigned numTags = ElementsWithNoPayload.size();

  auto &payloadTI = getFixedPayloadTypeInfo();
  fixedExtraInhabitants = payloadTI.getFixedExtraInhabitantCount(TC.IGM);

  // Determine how many tag bits we need. Given N extra inhabitants, we
  // represent the first N tags using those inhabitants. For additional tags,
  // we use discriminator bit(s) to inhabit the full bit size of the payload.
  NumExtraInhabitantTagValues = std::min(numTags, fixedExtraInhabitants);

  unsigned tagsWithoutInhabitants = numTags - NumExtraInhabitantTagValues;
  if (tagsWithoutInhabitants == 0) {
    ExtraTagBitCount = 0;
    NumExtraTagValues = 0;
  // If the payload size is greater than 32 bits, the calculation would
  // overflow, but one tag bit should suffice. if you have more than 2^32
  // enum discriminators you have other problems.
  } else if (payloadTI.getFixedSize().getValue() >= 4) {
    ExtraTagBitCount = 1;
    NumExtraTagValues = 2;
  } else {
    unsigned tagsPerTagBitValue =
      1 << payloadTI.getFixedSize().getValueInBits();
    NumExtraTagValues
      = (tagsWithoutInhabitants+(tagsPerTagBitValue-1))/tagsPerTagBitValue+1;
    ExtraTagBitCount = llvm::Log2_32(NumExtraTagValues-1) + 1;
  }

  // Create the body type.
  setTaggedEnumBody(TC.IGM, enumTy,
                    payloadTI.getFixedSize().getValueInBits(),
                    ExtraTagBitCount);

  // The enum has the alignment of the payload. The size includes the added
  // tag bits.
  auto sizeWithTag = payloadTI.getFixedSize().getValue();
  unsigned extraTagByteCount = (ExtraTagBitCount+7U)/8U;
  sizeWithTag += extraTagByteCount;

  // FIXME: We don't have enough semantic understanding of extra inhabitant
  // sets to be able to reason about how many spare bits from the payload type
  // we can forward. If we spilled tag bits, however, we can offer the unused
  // bits we have in that byte.
  auto spareBits = BitPatternBuilder(IGM.Triple.isLittleEndian());
  if (auto size = payloadTI.getFixedSize().getValueInBits()) {
    spareBits.appendClearBits(size);
  }
  if (ExtraTagBitCount > 0) {
    auto paddedSize = extraTagByteCount * 8;
    spareBits.append(APInt::getBitsSetFrom(paddedSize, ExtraTagBitCount));
  }
  auto alignment = payloadTI.getFixedAlignment();
  applyLayoutAttributes(TC.IGM, theEnum, /*fixed*/true, alignment);

  auto deinit = theEnum->getValueTypeDestructor()
    ? IsNotTriviallyDestroyable : IsTriviallyDestroyable;
  auto copyable = !theEnum->canBeCopyable()
    ? IsNotCopyable : IsCopyable;
  getFixedEnumTypeInfo(
      enumTy, Size(sizeWithTag), spareBits.build(), alignment,
      deinit & payloadTI.isTriviallyDestroyable(ResilienceExpansion::Maximal),
      payloadTI.getBitwiseTakable(ResilienceExpansion::Maximal),
      copyable);
  if (TIK >= Loadable && CopyDestroyKind == Normal) {
    computePayloadTypesAndTagType(TC.IGM, *TI, PayloadTypesAndTagType);
    loweredType = Type;
  }

  return const_cast<TypeInfo *>(TI);
}

TypeInfo *SinglePayloadEnumImplStrategy::completeDynamicLayout(
                                                TypeConverter &TC,
                                                SILType Type,
                                                EnumDecl *theEnum,
                                                llvm::StructType *enumTy) {
  // The body is runtime-dependent, so we can't put anything useful here
  // statically.
  enumTy->setBody(ArrayRef<llvm::Type*>{}, /*isPacked*/true);

  // Layout has to be done when the value witness table is instantiated,
  // during initializeMetadata.
  auto &payloadTI = getPayloadTypeInfo();
  auto alignment = payloadTI.getBestKnownAlignment();
  
  applyLayoutAttributes(TC.IGM, theEnum, /*fixed*/false, alignment);
  
  auto enumAccessible = IsABIAccessible_t(TC.IGM.isTypeABIAccessible(Type));

  auto deinit = theEnum->getValueTypeDestructor()
    ? IsNotTriviallyDestroyable : IsTriviallyDestroyable;
  auto copyable = !theEnum->canBeCopyable()
    ? IsNotCopyable : IsCopyable;
  return registerEnumTypeInfo(new NonFixedEnumTypeInfo(*this, enumTy,
         alignment,
         deinit & payloadTI.isTriviallyDestroyable(ResilienceExpansion::Maximal),
         payloadTI.getBitwiseTakable(ResilienceExpansion::Maximal),
         copyable,
         enumAccessible));
}

TypeInfo *
SinglePayloadEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
                                                      SILType type,
                                                      EnumDecl *theEnum,
                                                      llvm::StructType *enumTy) {
  if (TIK >= Fixed)
    return completeFixedLayout(TC, type, theEnum, enumTy);
  return completeDynamicLayout(TC, type, theEnum, enumTy);
}

TypeInfo *
MultiPayloadEnumImplStrategy::completeFixedLayout(TypeConverter &TC,
                                                  SILType Type,
                                                  EnumDecl *theEnum,
                                                  llvm::StructType *enumTy) {
  // We need tags for each of the payload types, which we may be able to form
  // using spare bits, plus a minimal number of tags with which we can
  // represent the empty cases.
  unsigned numPayloadTags = ElementsWithPayload.size();
  unsigned numEmptyElements = ElementsWithNoPayload.size();

  // See if the payload types have any spare bits in common.
  // At the end of the loop CommonSpareBits.size() will be the size (in bits)
  // of the largest payload.
  CommonSpareBits = {};
  Alignment worstAlignment(1);
  auto isCopyable = !theEnum->canBeCopyable()
    ? IsNotCopyable : IsCopyable;
  auto isTriviallyDestroyable = theEnum->getValueTypeDestructor()
    ? IsNotTriviallyDestroyable : IsTriviallyDestroyable;
  IsBitwiseTakable_t isBT = IsBitwiseTakableAndBorrowable;
  PayloadSize = 0;
  for (auto &elt : ElementsWithPayload) {
    auto &fixedPayloadTI = cast<FixedTypeInfo>(*elt.ti);
    if (fixedPayloadTI.getFixedAlignment() > worstAlignment)
      worstAlignment = fixedPayloadTI.getFixedAlignment();
    if (!fixedPayloadTI.isTriviallyDestroyable(ResilienceExpansion::Maximal))
      isTriviallyDestroyable = IsNotTriviallyDestroyable;
    isBT &= fixedPayloadTI.getBitwiseTakable(ResilienceExpansion::Maximal);

    unsigned payloadBytes = fixedPayloadTI.getFixedSize().getValue();
    unsigned payloadBits = fixedPayloadTI.getFixedSize().getValueInBits();

    if (payloadBytes > PayloadSize)
      PayloadSize = payloadBytes;

    // See what spare bits from the payload we can use for layout optimization.

    // The runtime currently does not track spare bits, so we can't use them
    // if the type is layout-dependent. (Even when the runtime does, it will
    // likely only track a subset of the spare bits.)
    if (!AllowFixedLayoutOptimizations || TIK < Loadable) {
      if (CommonSpareBits.size() < payloadBits) {
        // All bits are zero so we don't have to worry about endianness.
        assert(CommonSpareBits.none());
        CommonSpareBits.extendWithClearBits(payloadBits);
      }
      continue;
    }

    // Otherwise, all unsubstituted payload types are fixed-size and
    // we have no constraints on what spare bits we can use.

    // We might still have a dependently typed payload though, namely a
    // class-bound archetype. These do not have any spare bits because
    // they can contain Obj-C tagged pointers. To handle this case
    // correctly, we get spare bits from the unsubstituted type.
    auto &fixedOrigTI = cast<FixedTypeInfo>(*elt.origTI);
    fixedOrigTI.applyFixedSpareBitsMask(IGM, CommonSpareBits);
  }

  unsigned commonSpareBitCount = CommonSpareBits.count();
  unsigned usedBitCount = CommonSpareBits.size() - commonSpareBitCount;

  // Determine how many tags we need to accommodate the empty cases, if any.
  if (ElementsWithNoPayload.empty()) {
    NumEmptyElementTags = 0;
  } else {
    // We can store tags for the empty elements using the inhabited bits with
    // their own tag(s).
    if (usedBitCount >= 32) {
      NumEmptyElementTags = 1;
    } else {
      unsigned emptyElementsPerTag = 1 << usedBitCount;
      NumEmptyElementTags
        = (numEmptyElements + (emptyElementsPerTag-1))/emptyElementsPerTag;
    }
  }

  unsigned numTags = numPayloadTags + NumEmptyElementTags;
  unsigned numTagBits = llvm::Log2_32(numTags-1) + 1;
  ExtraTagBitCount = numTagBits <= commonSpareBitCount
    ? 0 : numTagBits - commonSpareBitCount;
  NumExtraTagValues =
      (commonSpareBitCount < 32) ? numTags >> commonSpareBitCount : 0;

  // Create the type. We need enough bits to store the largest payload plus
  // extra tag bits we need.
  setTaggedEnumBody(TC.IGM, enumTy,
                    CommonSpareBits.size(),
                    ExtraTagBitCount);

  // The enum has the worst alignment of its payloads. The size includes the
  // added tag bits.
  auto sizeWithTag = (CommonSpareBits.size() + 7U)/8U;
  unsigned extraTagByteCount = (ExtraTagBitCount+7U)/8U;
  sizeWithTag += extraTagByteCount;

  SpareBitVector spareBits;

  // Determine the bits we're going to use for the tag.
  assert(PayloadTagBits.empty());

  // The easiest case is if we're going to use all of the available
  // payload tag bits (plus potentially some extra bits), because we
  // can just straight-up use CommonSpareBits as that bitset.
  if (numTagBits >= commonSpareBitCount) {
    PayloadTagBits = CommonSpareBits;

    auto builder = BitPatternBuilder(IGM.Triple.isLittleEndian());
    // We're using all of the common spare bits as tag bits, so none
    // of them are spare; nor are the extra tag bits.
    builder.appendClearBits(CommonSpareBits.size());

    // The remaining bits in the extra tag bytes are spare.
    if (ExtraTagBitCount) {
      builder.append(APInt::getBitsSetFrom(extraTagByteCount * 8,
                                           ExtraTagBitCount));
    }

    // Set the spare bit mask.
    spareBits = builder.build();

  // Otherwise, we need to construct a new bitset that doesn't
  // include the bits we aren't using.
  } else {
    assert(ExtraTagBitCount == 0
           && "spilled extra tag bits with spare bits available?!");
    PayloadTagBits =
      ClusteredBitVector::getConstant(CommonSpareBits.size(), false);

    // Start the spare bit set using all the common spare bits.
    spareBits = CommonSpareBits;

    // Mark the bits we'll use as occupied in both bitsets.
    // We take bits starting from the most significant.
    unsigned remainingTagBits = numTagBits;
    for (unsigned bit = CommonSpareBits.size() - 1; true; --bit) {
      if (!CommonSpareBits[bit]) {
        assert(bit > 0 && "ran out of spare bits?!");
        continue;
      }

      // Use this bit as a payload tag bit.
      PayloadTagBits.setBit(bit);

      // A bit used as a payload tag bit is not a spare bit.
      spareBits.clearBit(bit);

      if (--remainingTagBits == 0) break;
      assert(bit > 0 && "ran out of spare bits?!");
    }
    assert(PayloadTagBits.count() == numTagBits);
  }
  
  applyLayoutAttributes(TC.IGM, theEnum, /*fixed*/ true, worstAlignment);

  getFixedEnumTypeInfo(enumTy, Size(sizeWithTag), std::move(spareBits),
                       worstAlignment, isTriviallyDestroyable, isBT,
                       isCopyable);
  if (TIK >= Loadable &&
      (CopyDestroyKind == Normal || CopyDestroyKind == BitwiseTakable)) {
    computePayloadTypesAndTagType(TC.IGM, *TI, PayloadTypesAndTagType);
    loweredType = Type;
  }

  return const_cast<TypeInfo *>(TI);
}


TypeInfo *MultiPayloadEnumImplStrategy::completeDynamicLayout(
                                                TypeConverter &TC,
                                                SILType Type,
                                                EnumDecl *theEnum,
                                                llvm::StructType *enumTy) {
  // The body is runtime-dependent, so we can't put anything useful here
  // statically.
  enumTy->setBody(ArrayRef<llvm::Type*>{}, /*isPacked*/true);

  // Layout has to be done when the value witness table is instantiated,
  // during initializeMetadata. We can at least glean the best available
  // static information from the payloads.
  Alignment alignment(1);
  auto td = theEnum->getValueTypeDestructor()
    ? IsNotTriviallyDestroyable : IsTriviallyDestroyable;
  auto bt = IsBitwiseTakableAndBorrowable;
  for (auto &element : ElementsWithPayload) {
    auto &payloadTI = *element.ti;
    alignment = std::max(alignment, payloadTI.getBestKnownAlignment());
    td &= payloadTI.isTriviallyDestroyable(ResilienceExpansion::Maximal);
    bt &= payloadTI.getBitwiseTakable(ResilienceExpansion::Maximal);
  }
  
  applyLayoutAttributes(TC.IGM, theEnum, /*fixed*/false, alignment);

  auto enumAccessible = IsABIAccessible_t(TC.IGM.isTypeABIAccessible(Type));
  
  auto cp = !theEnum->canBeCopyable()
    ? IsNotCopyable : IsCopyable;
  return registerEnumTypeInfo(new NonFixedEnumTypeInfo(*this, enumTy,
                                                       alignment, td, bt, cp,
                                                       enumAccessible));
}

TypeInfo *
MultiPayloadEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
                                                     SILType Type,
                                                     EnumDecl *theEnum,
                                                     llvm::StructType *enumTy) {
  if (TIK >= Fixed)
    return completeFixedLayout(TC, Type, theEnum, enumTy);
  
  return completeDynamicLayout(TC, Type, theEnum, enumTy);
}

TypeInfo *
ResilientEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
                                                  SILType Type,
                                                  EnumDecl *theEnum,
                                                  llvm::StructType *enumTy) {
  auto cp = !theEnum->canBeCopyable()
    ? IsNotCopyable : IsCopyable;
  auto abiAccessible = IsABIAccessible_t(TC.IGM.isTypeABIAccessible(Type));
  auto *bitwiseCopyableProtocol =
      IGM.getSwiftModule()->getASTContext().getProtocol(
          KnownProtocolKind::BitwiseCopyable);
  if (bitwiseCopyableProtocol &&
      IGM.getSwiftModule()->checkConformance(Type.getASTType(),
                                             bitwiseCopyableProtocol)) {
    return BitwiseCopyableTypeInfo::create(enumTy, abiAccessible);
  }
  return registerEnumTypeInfo(
                       new ResilientEnumTypeInfo(*this, enumTy, cp,
                                                 abiAccessible));
}

const TypeInfo *TypeConverter::convertEnumType(TypeBase *key, CanType type,
                                               EnumDecl *theEnum) {
  llvm::StructType *storageType;

  // Resilient enum types lower down to the same opaque type.
  if (IGM.isResilient(theEnum, ResilienceExpansion::Maximal))
    storageType = cast<llvm::StructType>(IGM.OpaqueTy);
  else
    storageType = IGM.createNominalType(type);

  // Create a forward declaration.
  addForwardDecl(key);
  
  SILType loweredTy = SILType::getPrimitiveAddressType(type);

  // Determine the implementation strategy.
  auto strategy = EnumImplStrategy::get(*this, loweredTy, theEnum).release();

  // Create the TI.  The TI will delete the strategy in its destructor.
  auto *ti =
    strategy->completeEnumTypeLayout(*this, loweredTy, theEnum, storageType);

  // Assert that the layout query functions for fixed-layout enums work, for
  // LLDB's sake.
#ifndef NDEBUG

  // ... but not if we're building a legacy layout, in which case we only know
  // the extra inhabitant *count* and not the actual extra inhabitant values, so
  // we simply crash if we go do this.
  if (LoweringMode == Mode::Legacy)
    return ti;

  auto displayBitMask = [&](const SpareBitVector &v) {
    for (unsigned i = v.size(); i-- > 0;) {
      llvm::dbgs() << (v[i] ? '1' : '0');
      if (i % 8 == 0 && i != 0)
        llvm::dbgs() << '_';
    }
    llvm::dbgs() << '\n';
  };

  if (auto fixedTI = dyn_cast<FixedTypeInfo>(ti)) {
    LLVM_DEBUG(llvm::dbgs() << "Layout for enum ";
               type->print(llvm::dbgs());
               llvm::dbgs() << ":\n";);

    SpareBitVector spareBits;
    fixedTI->applyFixedSpareBitsMask(IGM, spareBits);

    auto bitMask = strategy->getBitMaskForNoPayloadElements();
    assert(bitMask.size() == fixedTI->getFixedSize().getValueInBits());
    LLVM_DEBUG(llvm::dbgs() << "  no-payload mask:\t";
               displayBitMask(bitMask));
    LLVM_DEBUG(llvm::dbgs() << "  spare bits mask:\t";
               displayBitMask(spareBits));

    for (auto &elt : strategy->getElementsWithNoPayload()) {
      auto bitPattern = strategy->getBitPatternForNoPayloadElement(elt.decl);
      assert(bitPattern.size() == fixedTI->getFixedSize().getValueInBits());
      LLVM_DEBUG(llvm::dbgs() << "  no-payload case "
                              << elt.decl->getBaseIdentifier().str()
                              << ":\t";
            displayBitMask(bitPattern));

      auto maskedBitPattern = bitPattern;
      maskedBitPattern &= spareBits;
      assert(maskedBitPattern.none() && "no-payload case occupies spare bits?!");
    }
    auto tagBits = strategy->getTagBitsForPayloads();
    assert(tagBits.count() >= 32
            || static_cast<size_t>(static_cast<size_t>(1) << tagBits.count())
               >= strategy->getElementsWithPayload().size());
    LLVM_DEBUG(llvm::dbgs() << "  payload tag bits:\t";
               displayBitMask(tagBits));

    tagBits &= spareBits;
    assert(tagBits.none() && "tag bits overlap spare bits?!");
  }
#endif
  return ti;
}

void IRGenModule::emitEnumDecl(EnumDecl *theEnum) {
  if (!IRGen.hasLazyMetadata(theEnum) &&
      !theEnum->getASTContext().LangOpts.hasFeature(Feature::Embedded)) {
    emitEnumMetadata(*this, theEnum);
    emitFieldDescriptor(theEnum);
  }

  emitNestedTypeDecls(theEnum->getMembers());

  if (!isResilient(theEnum, ResilienceExpansion::Minimal))
    return;

  // Emit resilient tag indices.
  auto &strategy = getEnumImplStrategy(
      *this,
      theEnum->DeclContext::getDeclaredTypeInContext()->getCanonicalType());
  strategy.emitResilientTagIndices(*this);
}

void irgen::emitSwitchAddressOnlyEnumDispatch(IRGenFunction &IGF,
                                  SILType enumTy,
                                  Address enumAddr,
                                  ArrayRef<std::pair<EnumElementDecl *,
                                                     llvm::BasicBlock *>> dests,
                                  llvm::BasicBlock *defaultDest) {
  auto &strategy = getEnumImplStrategy(IGF.IGM, enumTy);
  const auto &TI = IGF.IGM.getTypeInfo(enumTy);
  strategy.emitIndirectSwitch(IGF, enumTy,
                              enumAddr, dests, defaultDest,
                              shouldOutlineEnumValueOperation(TI, IGF.IGM)
                              /* noLoad */);
}

void irgen::emitInjectLoadableEnum(IRGenFunction &IGF, SILType enumTy,
                                    EnumElementDecl *theCase,
                                    Explosion &data,
                                    Explosion &out) {
  getEnumImplStrategy(IGF.IGM, enumTy)
    .emitValueInjection(IGF.IGM, IGF.Builder, theCase, data, out);
}

void irgen::emitProjectLoadableEnum(IRGenFunction &IGF, SILType enumTy,
                                     Explosion &inEnumValue,
                                     EnumElementDecl *theCase,
                                     Explosion &out) {
  getEnumImplStrategy(IGF.IGM, enumTy)
    .emitValueProject(IGF, inEnumValue, theCase, out);
}

Address irgen::emitProjectEnumAddressForStore(IRGenFunction &IGF,
                                               SILType enumTy,
                                               Address enumAddr,
                                               EnumElementDecl *theCase) {
  return getEnumImplStrategy(IGF.IGM, enumTy)
    .projectDataForStore(IGF, theCase, enumAddr);
}

static llvm::CallInst *emitCallToOutlinedDestructiveProjectDataForLoad(
  IRGenFunction &IGF, Address addr, SILType T, const TypeInfo &ti,
  EnumElementDecl *theCase, unsigned caseIdx) {

  llvm::SmallVector<llvm::Value *, 4> args;
  args.push_back(IGF.Builder.CreateElementBitCast(addr, ti.getStorageType())
                            .getAddress());

  auto outlinedFn =
    IGF.IGM.getOrCreateOutlinedDestructiveProjectDataForLoad(T, ti, theCase,
                                                             caseIdx);

  llvm::CallInst *call = IGF.Builder.CreateCall(
      cast<llvm::Function>(outlinedFn)->getFunctionType(), outlinedFn, args);
  call->setCallingConv(IGF.IGM.DefaultCC);
  return call;
}

llvm::Constant *IRGenModule::getOrCreateOutlinedDestructiveProjectDataForLoad(
                              SILType T, const TypeInfo &ti,
                              EnumElementDecl *theCase,
                              unsigned caseIdx) {
  IRGenMangler mangler;
  auto manglingBits = getTypeAndGenericSignatureForManglingOutlineFunction(T);
  auto funcName =
    mangler.mangleOutlinedEnumProjectDataForLoadFunction(manglingBits.first,
                                                         manglingBits.second,
                                                         caseIdx);

  auto ptrTy = ti.getStorageType()->getPointerTo();
  llvm::SmallVector<llvm::Type *, 4> paramTys;
  paramTys.push_back(ptrTy);

  return getOrCreateHelperFunction(funcName, PtrTy, paramTys,
      [&](IRGenFunction &IGF) {
        Explosion params = IGF.collectParameters();
        Address enumAddr = ti.getAddressForPointer(params.claimNext());
        Address res = getEnumImplStrategy(IGF.IGM, T)
           .destructiveProjectDataForLoad(IGF, T, enumAddr, theCase);
        IGF.Builder.CreateRet(res.getAddress());
      },
      true /*setIsNoInline*/);
}

bool irgen::shouldOutlineEnumValueOperation(const TypeInfo &TI,
                                            IRGenModule &IGM) {
  if (!isa<LoadableTypeInfo>(TI))
    return false;
  auto &nativeSchemaOrigParam = TI.nativeParameterValueSchema(IGM);
  return nativeSchemaOrigParam.size() > 15;
}

Address irgen::emitDestructiveProjectEnumAddressForLoad(IRGenFunction &IGF,
                                                   SILType enumTy,
                                                   Address enumAddr,
                                                   EnumElementDecl *theCase) {
  const TypeInfo &TI = IGF.getTypeInfo(enumTy);
  if (isa<LoadableTypeInfo>(TI)) {
    auto &strategy = getEnumImplStrategy(IGF.IGM, enumTy);
      if (shouldOutlineEnumValueOperation(TI, IGF.IGM) &&
        strategy.getElementsWithPayload().size() > 1 &&
        strategy.isPayloadCase(theCase)) {
      unsigned caseIdx = strategy.getTagIndex(theCase);
      auto res =
        emitCallToOutlinedDestructiveProjectDataForLoad(IGF, enumAddr,
                                                        enumTy, TI,
                                                        theCase, caseIdx);
      auto &payloadTI = strategy.getTypeInfoForPayloadCase(theCase);
      return payloadTI.getAddressForPointer(res);
    }
  }

  return getEnumImplStrategy(IGF.IGM, enumTy)
    .destructiveProjectDataForLoad(IGF, enumTy, enumAddr, theCase);
}

static void emitCallToOutlinedEnumTagStore(IRGenFunction &IGF,
                                    Address addr, SILType T,
                                    const TypeInfo &ti,
                                    EnumElementDecl *theCase,
                                    unsigned caseIdx) {
  llvm::SmallVector<llvm::Value *, 4> args;
  args.push_back(IGF.Builder.CreateElementBitCast(addr, ti.getStorageType())
                            .getAddress());

  auto outlinedFn = IGF.IGM.getOrCreateOutlinedEnumTagStoreFunction(T, ti,
                                                                    theCase,
                                                                    caseIdx);

  llvm::CallInst *call = IGF.Builder.CreateCall(
      cast<llvm::Function>(outlinedFn)->getFunctionType(), outlinedFn, args);
  call->setCallingConv(IGF.IGM.DefaultCC);
}

llvm::Constant *IRGenModule::getOrCreateOutlinedEnumTagStoreFunction(
                              SILType T, const TypeInfo &ti,
                              EnumElementDecl *theCase,
                              unsigned caseIdx) {
  IRGenMangler mangler;
  auto manglingBits = getTypeAndGenericSignatureForManglingOutlineFunction(T);
  auto funcName = mangler.mangleOutlinedEnumTagStoreFunction(manglingBits.first,
                                                             manglingBits.second,
                                                             caseIdx);

  auto ptrTy = ti.getStorageType()->getPointerTo();
  llvm::SmallVector<llvm::Type *, 4> paramTys;
  paramTys.push_back(ptrTy);

  return getOrCreateHelperFunction(funcName, VoidTy, paramTys,
      [&](IRGenFunction &IGF) {
        Explosion params = IGF.collectParameters();
        Address enumAddr = ti.getAddressForPointer(params.claimNext());
        getEnumImplStrategy(IGF.IGM, T).storeTag(IGF, T, enumAddr, theCase);
        IGF.Builder.CreateRetVoid();
      },
      true /*setIsNoInline*/);
}

void irgen::emitStoreEnumTagToAddress(IRGenFunction &IGF,
                                       SILType enumTy,
                                       Address enumAddr,
                                       EnumElementDecl *theCase) {
  const TypeInfo &TI = IGF.getTypeInfo(enumTy);
  unsigned caseIdx = getEnumImplStrategy(IGF.IGM, enumTy).getTagIndex(theCase);
  if (isa<LoadableTypeInfo>(TI) &&
      shouldOutlineEnumValueOperation(TI, IGF.IGM)) {
    emitCallToOutlinedEnumTagStore(IGF, enumAddr, enumTy, TI, theCase, caseIdx);
    return;
  }
  getEnumImplStrategy(IGF.IGM, enumTy)
    .storeTag(IGF, enumTy, enumAddr, theCase);
}

/// Extract the rightmost run of contiguous set bits from the
/// provided integer or zero if there are no set bits in the
/// provided integer. For example:
///
///   rightmostMask(0x0f0f_0f0f) = 0x0000_000f
///   rightmostMask(0xf0f0_f0f0) = 0x0000_00f0
///   rightmostMask(0xffff_ff10) = 0x0000_0010
///   rightmostMask(0xffff_ff80) = 0xffff_ff80
///   rightmostMask(0x0000_0000) = 0x0000_0000
///
static inline llvm::APInt rightmostMask(const llvm::APInt& mask) {
  if (mask.isShiftedMask()) {
    return mask;
  }
  // This formula is derived from the formula to "turn off the
  // rightmost contiguous string of 1's" in Chapter 2-1 of
  // Hacker's Delight (Second Edition) by Henry S. Warren and
  // attributed to Luther Woodrum.
  llvm::APInt result = -mask;
  result &= mask; // isolate rightmost set bit
  result += mask; // clear rightmost contiguous set bits
  result &= mask; // mask out carry bit leftover from add
  result ^= mask; // extract desired bits
  return result;
}

/// Pack masked bits into the low bits of an integer value.
/// Equivalent to a parallel bit extract instruction (PEXT),
/// although we don't currently emit PEXT directly.
llvm::Value *irgen::emitGatherBits(IRGenFunction &IGF,
                                   llvm::APInt mask,
                                   llvm::Value *source,
                                   unsigned resultLowBit,
                                   unsigned resultBitWidth) {
  auto &B = IGF.Builder;
  auto &C = IGF.IGM.getLLVMContext();
  assert(mask.getBitWidth() == source->getType()->getIntegerBitWidth()
    && "source and mask must have same width");

  // The source and mask need to be at least as wide as the result so
  // that bits can be shifted into the correct position.
  auto destTy = llvm::IntegerType::get(C, resultBitWidth);
  if (mask.getBitWidth() < resultBitWidth) {
    source = B.CreateZExt(source, destTy);
    mask = mask.zext(resultBitWidth);
  }

  // Shift each set of contiguous set bits into position and
  // accumulate them into the result.
  int64_t usedBits = resultLowBit;
  llvm::Value *result = nullptr;
  while (mask != 0) {
    // Isolate the rightmost run of contiguous set bits.
    // Example: 0b0011_01101_1100 -> 0b0000_0001_1100
    llvm::APInt partMask = rightmostMask(mask);

    // Update the bits we need to mask next.
    mask ^= partMask;

    // Shift the selected bits into position.
    llvm::Value *part = source;
    int64_t offset = int64_t(partMask.countTrailingZeros()) - usedBits;
    if (offset > 0) {
      uint64_t shift = uint64_t(offset);
      part = B.CreateLShr(part, shift);
      partMask.lshrInPlace(shift);
    } else if (offset < 0) {
      uint64_t shift = uint64_t(-offset);
      part = B.CreateShl(part, shift);
      partMask <<= shift;
    }

    // Truncate the output to the result size.
    if (partMask.getBitWidth() > resultBitWidth) {
      partMask = partMask.trunc(resultBitWidth);
      part = B.CreateTrunc(part, destTy);
    }

    // Mask out selected bits.
    part = B.CreateAnd(part, partMask);

    // Accumulate the result.
    result = result ? B.CreateOr(result, part) : part;

    // Update the offset and remaining mask.
    usedBits += partMask.popcount();
  }
  return result;
}

/// Unpack bits from the low bits of an integer value and
/// move them to the bit positions indicated by the mask.
/// Equivalent to a parallel bit deposit instruction (PDEP),
/// although we don't currently emit PDEP directly.
llvm::Value *irgen::emitScatterBits(IRGenModule &IGM,
                                    IRBuilder &builder,
                                    llvm::APInt mask,
                                    llvm::Value *source,
                                    unsigned packedLowBit) {
  auto &DL = IGM.DataLayout;
  auto &C = IGM.getLLVMContext();

  // Expand or contract the packed bits to the destination type.
  auto bitSize = mask.getBitWidth();
  auto sourceTy = dyn_cast<llvm::IntegerType>(source->getType());
  if (!sourceTy) {
    auto numBits = DL.getTypeSizeInBits(source->getType());
    sourceTy = llvm::IntegerType::get(C, numBits);
    source = builder.CreateBitOrPointerCast(source, sourceTy);
  }
  assert(packedLowBit < sourceTy->getBitWidth() &&
      "packedLowBit out of range");

  auto destTy = llvm::IntegerType::get(C, bitSize);
  auto usedBits = int64_t(packedLowBit);
  if (usedBits > 0 && sourceTy->getBitWidth() > bitSize) {
    // Need to shift before truncation if the packed value is wider
    // than the mask.
    source = builder.CreateLShr(source, uint64_t(usedBits));
    usedBits = 0;
  }
  if (sourceTy->getBitWidth() != bitSize) {
    source = builder.CreateZExtOrTrunc(source, destTy);
  }

  // No need to AND with the mask if the whole source can just be
  // shifted into place.
  // TODO: could do more to avoid inserting unnecessary ANDs. For
  // example we could take into account the packedLowBit.
  auto unknownBits = std::min(sourceTy->getBitWidth(), bitSize);
  bool needMask = !(mask.isShiftedMask() &&
                    mask.popcount() >= unknownBits);

  // Shift each set of contiguous set bits into position and
  // accumulate them into the result.
  llvm::Value *result = nullptr;
  while (mask != 0) {
    // Isolate the rightmost run of contiguous set bits.
    // Example: 0b0011_01101_1100 -> 0b0000_0001_1100
    llvm::APInt partMask = rightmostMask(mask);

    // Update the bits we need to mask next.
    mask ^= partMask;

    // Shift the selected bits into position.
    llvm::Value *part = source;
    int64_t offset = int64_t(partMask.countTrailingZeros()) - usedBits;
    if (offset > 0) {
      part = builder.CreateShl(part, uint64_t(offset));
    } else if (offset < 0) {
      part = builder.CreateLShr(part, uint64_t(-offset));
    }

    // Mask out selected bits.
    if (needMask) {
      part = builder.CreateAnd(part, partMask);
    }

    // Accumulate the result.
    result = result ? builder.CreateOr(result, part) : part;

    // Update the offset and remaining mask.
    usedBits += partMask.popcount();
  }
  return result;
}

/// Pack masked bits into the low bits of an integer value.
llvm::APInt irgen::gatherBits(const llvm::APInt &mask,
                              const llvm::APInt &value) {
  assert(mask.getBitWidth() == value.getBitWidth());
  llvm::APInt result = llvm::APInt(mask.popcount(), 0);
  unsigned j = 0;
  for (unsigned i = 0; i < mask.getBitWidth(); ++i) {
    if (!mask[i]) {
      continue;
    }
    if (value[i]) {
      result.setBit(j);
    }
    ++j;
  }
  return result;
}

/// Unpack bits from the low bits of an integer value and
/// move them to the bit positions indicated by the mask.
llvm::APInt irgen::scatterBits(const llvm::APInt &mask, unsigned value) {
  llvm::APInt result(mask.getBitWidth(), 0);
  for (unsigned i = 0; i < mask.getBitWidth() && value != 0; ++i) {
    if (!mask[i]) {
      continue;
    }
    if (value & 1) {
      result.setBit(i);
    }
    value >>= 1;
  }
  return result;
}

static void setAlignmentBits(SpareBitVector &v, Alignment align) {
  auto value = align.getValue() >> 1;
  for (unsigned i = 0; value; ++i, value >>= 1) {
    v.setBit(i);
  }
}

const SpareBitVector &
IRGenModule::getHeapObjectSpareBits() const {
  if (!HeapPointerSpareBits) {
    // Start with the spare bit mask for all pointers.
    HeapPointerSpareBits = TargetInfo.PointerSpareBits;

    // Low bits are made available by heap object alignment.
    setAlignmentBits(*HeapPointerSpareBits, TargetInfo.HeapObjectAlignment);
  }
  return *HeapPointerSpareBits;
}

const SpareBitVector &
IRGenModule::getFunctionPointerSpareBits() const {
  return TargetInfo.FunctionPointerSpareBits;
}