1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
|
//===--- GenFunc.cpp - Swift IR Generation for Function Types -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for function types in Swift. This
// includes creating the IR type as well as capturing variables and
// performing calls.
//
// Swift supports three representations of functions:
//
// - thin, which are just a function pointer;
//
// - thick, which are a pair of a function pointer and
// an optional ref-counted opaque context pointer; and
//
// - block, which match the Apple blocks extension: a ref-counted
// pointer to a mostly-opaque structure with the function pointer
// stored at a fixed offset.
//
// The order of function parameters is as follows:
//
// - indirect return pointer
// - block context parameter, if applicable
// - expanded formal parameter types
// - implicit generic parameters
// - thick context parameter, if applicable
// - error result out-parameter, if applicable
// - witness_method generic parameters, if applicable
//
// The context and error parameters are last because they are
// optional: we'd like to be able to turn a thin function into a
// thick function, or a non-throwing function into a throwing one,
// without adding a thunk. A thick context parameter is required
// (but can be passed undef) if an error result is required.
//
// The additional generic parameters for witness methods follow the
// same logic: we'd like to be able to use non-generic method
// implementations directly as protocol witnesses if the rest of the
// ABI matches up.
//
// Note that some of this business with context parameters and error
// results is just IR formalism; on most of our targets, both of
// these are passed in registers. This is also why passing them
// as the final argument isn't bad for performance.
//
// For now, function pointer types are always stored as opaque
// pointers in LLVM IR; using a well-typed function type is
// very challenging because of issues with recursive type expansion,
// which can potentially introduce infinite types. For example:
// struct A {
// var fn: (A) -> ()
// }
// Our CC lowering expands the fields of A into the argument list
// of A.fn, which is necessarily infinite. Attempting to use better
// types when not in a situation like this would just make the
// compiler complacent, leading to a long tail of undiscovered
// crashes. So instead we always store as i8* and require the
// bitcast whenever we change representations.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/Decl.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/Module.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/Types.h"
#include "swift/IRGen/Linking.h"
#include "clang/AST/ASTContext.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Module.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Debug.h"
#include "BitPatternBuilder.h"
#include "Callee.h"
#include "ConstantBuilder.h"
#include "EnumPayload.h"
#include "Explosion.h"
#include "FixedTypeInfo.h"
#include "GenCall.h"
#include "GenClass.h"
#include "GenFunc.h"
#include "GenHeap.h"
#include "GenMeta.h"
#include "GenObjC.h"
#include "GenPointerAuth.h"
#include "GenPoly.h"
#include "GenProto.h"
#include "GenType.h"
#include "HeapTypeInfo.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "IndirectTypeInfo.h"
#include "ScalarPairTypeInfo.h"
#include "Signature.h"
#include "IRGenMangler.h"
using namespace swift;
using namespace irgen;
namespace {
/// Information about the IR-level signature of a function type.
class FuncSignatureInfo {
protected:
/// The SIL function type being represented.
const CanSILFunctionType FormalType;
mutable Signature TheSignature;
mutable Signature TheCXXConstructorSignature;
public:
FuncSignatureInfo(CanSILFunctionType formalType)
: FormalType(formalType) {}
Signature
getCXXConstructorSignature(const clang::CXXConstructorDecl *cxxCtorDecl,
IRGenModule &IGM) const;
Signature getSignature(IRGenModule &IGM) const;
};
class ObjCFuncSignatureInfo : public FuncSignatureInfo {
private:
mutable Signature TheDirectSignature;
public:
ObjCFuncSignatureInfo(CanSILFunctionType formalType)
: FuncSignatureInfo(formalType) {}
Signature getDirectSignature(IRGenModule &IGM) const;
};
/// The @thin function type-info class.
template <class Derived>
class ThinFuncTypeInfoImpl :
public PODSingleScalarTypeInfo<Derived, LoadableTypeInfo> {
protected:
const Derived &asDerived() const {
return static_cast<const Derived &>(*this);
}
ThinFuncTypeInfoImpl(CanSILFunctionType formalType, llvm::Type *storageType,
Size size, Alignment align,
const SpareBitVector &spareBits)
: PODSingleScalarTypeInfo<Derived, LoadableTypeInfo>(storageType, size, spareBits, align)
{
}
public:
TypeLayoutEntry *buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
if (!useStructLayouts) {
return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(asDerived(), T);
}
return IGM.typeLayoutCache.getOrCreateScalarEntry(asDerived(), T,
ScalarKind::TriviallyDestroyable);
}
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return true;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return PointerInfo::forFunction(IGM).getExtraInhabitantCount(IGM);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return PointerInfo::forFunction(IGM)
.getFixedExtraInhabitantValue(IGM, bits, index, 0);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
SILType T, bool isOutlined)
const override {
return PointerInfo::forFunction(IGF.IGM)
.getExtraInhabitantIndex(IGF, src);
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T, bool isOutlined)
const override {
return PointerInfo::forFunction(IGF.IGM)
.storeExtraInhabitant(IGF, index, dest);
}
};
/// The @thin function type-info class.
class ThinFuncTypeInfo : public ThinFuncTypeInfoImpl<ThinFuncTypeInfo>,
public FuncSignatureInfo {
public:
ThinFuncTypeInfo(CanSILFunctionType formalType, llvm::Type *storageType,
Size size, Alignment align,
const SpareBitVector &spareBits) :
ThinFuncTypeInfoImpl(formalType, storageType, size, align, spareBits),
FuncSignatureInfo(formalType) {}
static const ThinFuncTypeInfo *create(CanSILFunctionType formalType,
llvm::Type *storageType,
Size size, Alignment align,
const SpareBitVector &spareBits) {
return new ThinFuncTypeInfo(formalType, storageType, size, align,
spareBits);
}
void initialize(IRGenFunction &IGF, Explosion &src, Address addr,
bool isOutlined) const override {
auto *fn = src.claimNext();
Explosion tmp;
tmp.add(fn);
PODSingleScalarTypeInfo<ThinFuncTypeInfo,LoadableTypeInfo>::initialize(IGF, tmp, addr, isOutlined);
}
};
/// The (objc_method) function type-info class.
class ObjCFuncTypeInfo : public ThinFuncTypeInfoImpl<ThinFuncTypeInfo>,
public ObjCFuncSignatureInfo {
public:
ObjCFuncTypeInfo(CanSILFunctionType formalType, llvm::Type *storageType,
Size size, Alignment align,
const SpareBitVector &spareBits) :
ThinFuncTypeInfoImpl(formalType, storageType, size, align, spareBits),
ObjCFuncSignatureInfo(formalType) {}
static const ObjCFuncTypeInfo *create(CanSILFunctionType formalType,
llvm::Type *storageType,
Size size, Alignment align,
const SpareBitVector &spareBits) {
return new ObjCFuncTypeInfo(formalType, storageType, size, align,
spareBits);
}
};
/// The @thick function type-info class.
class FuncTypeInfo :
public ScalarPairTypeInfo<FuncTypeInfo, ReferenceTypeInfo>,
public FuncSignatureInfo {
protected:
FuncTypeInfo(CanSILFunctionType formalType, llvm::StructType *storageType,
Size size, Alignment align, SpareBitVector &&spareBits,
IsTriviallyDestroyable_t pod)
: ScalarPairTypeInfo(storageType, size, std::move(spareBits), align, pod),
FuncSignatureInfo(formalType)
{
}
public:
static const FuncTypeInfo *create(CanSILFunctionType formalType,
llvm::StructType *storageType,
Size size, Alignment align,
SpareBitVector &&spareBits,
IsTriviallyDestroyable_t pod) {
return new FuncTypeInfo(formalType, storageType, size, align,
std::move(spareBits), pod);
}
// Function types do not satisfy allowsOwnership.
#define REF_STORAGE(Name, name, ...) \
const TypeInfo * \
create##Name##StorageType(TypeConverter &TC, \
bool isOptional) const override { \
llvm_unreachable("[" #name "] function type"); \
}
#include "swift/AST/ReferenceStorage.def"
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
if (!useStructLayouts) {
return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
} else if (isTriviallyDestroyable(ResilienceExpansion::Maximal)) {
return IGM.typeLayoutCache.getOrCreateScalarEntry(*this, T,
ScalarKind::TriviallyDestroyable);
} else {
return IGM.typeLayoutCache.getOrCreateScalarEntry(
*this, T, ScalarKind::ThickFunc);
}
}
static Size getFirstElementSize(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static StringRef getFirstElementLabel() {
return ".fn";
}
static bool isFirstElementTrivial() {
return true;
}
void emitRetainFirstElement(
IRGenFunction &IGF, llvm::Value *fn,
std::optional<Atomicity> atomicity = std::nullopt) const {}
void emitReleaseFirstElement(
IRGenFunction &IGF, llvm::Value *fn,
std::optional<Atomicity> atomicity = std::nullopt) const {}
void emitAssignFirstElement(IRGenFunction &IGF, llvm::Value *fn,
Address fnAddr) const {
IGF.Builder.CreateStore(fn, fnAddr);
}
static Size getSecondElementOffset(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static Size getSecondElementSize(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static StringRef getSecondElementLabel() {
return ".data";
}
bool isSecondElementTrivial() const {
return isTriviallyDestroyable(ResilienceExpansion::Maximal);
}
void emitRetainSecondElement(
IRGenFunction &IGF, llvm::Value *data,
std::optional<Atomicity> atomicity = std::nullopt) const {
if (!isTriviallyDestroyable(ResilienceExpansion::Maximal)) {
if (!atomicity) atomicity = IGF.getDefaultAtomicity();
IGF.emitNativeStrongRetain(data, *atomicity);
}
}
void emitReleaseSecondElement(
IRGenFunction &IGF, llvm::Value *data,
std::optional<Atomicity> atomicity = std::nullopt) const {
if (!isTriviallyDestroyable(ResilienceExpansion::Maximal)) {
if (!atomicity) atomicity = IGF.getDefaultAtomicity();
IGF.emitNativeStrongRelease(data, *atomicity);
}
}
void emitAssignSecondElement(IRGenFunction &IGF, llvm::Value *context,
Address dataAddr) const {
if (isTriviallyDestroyable(ResilienceExpansion::Maximal))
IGF.Builder.CreateStore(context, dataAddr);
else
IGF.emitNativeStrongAssign(context, dataAddr);
}
Address projectFunction(IRGenFunction &IGF, Address address) const {
return projectFirstElement(IGF, address);
}
Address projectData(IRGenFunction &IGF, Address address) const {
return IGF.Builder.CreateStructGEP(address, 1, IGF.IGM.getPointerSize(),
address->getName() + ".data");
}
void strongRetain(IRGenFunction &IGF, Explosion &e,
Atomicity atomicity) const override {
e.claimNext();
emitRetainSecondElement(IGF, e.claimNext(), atomicity);
}
void strongRelease(IRGenFunction &IGF, Explosion &e,
Atomicity atomicity) const override {
e.claimNext();
emitReleaseSecondElement(IGF, e.claimNext(), atomicity);
}
#define NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
void name##LoadStrong(IRGenFunction &IGF, Address src, \
Explosion &out, bool isOptional) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void name##TakeStrong(IRGenFunction &IGF, Address src, \
Explosion &out, bool isOptional) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void name##Init(IRGenFunction &IGF, Explosion &in, \
Address dest, bool isOptional) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void name##Assign(IRGenFunction &IGF, Explosion &in, \
Address dest, bool isOptional) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
}
#define ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
void strongRetain##Name(IRGenFunction &IGF, Explosion &e, \
Atomicity atomicity) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void strongRetain##Name##Release(IRGenFunction &IGF, \
Explosion &e, \
Atomicity atomicity) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void name##Retain(IRGenFunction &IGF, Explosion &e, \
Atomicity atomicity) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void name##Release(IRGenFunction &IGF, Explosion &e, \
Atomicity atomicity) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
}
#define SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, name, "...") \
ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, name, "...")
#include "swift/AST/ReferenceStorage.def"
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return true;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return PointerInfo::forFunction(IGM)
.getExtraInhabitantCount(IGM);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return PointerInfo::forFunction(IGM)
.getFixedExtraInhabitantValue(IGM, bits, index, 0);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
SILType T, bool isOutlined)
const override {
return PointerInfo::forFunction(IGF.IGM)
.getExtraInhabitantIndex(IGF, projectFunction(IGF, src));
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T, bool isOutlined)
const override {
return PointerInfo::forFunction(IGF.IGM)
.storeExtraInhabitant(IGF, index, projectFunction(IGF, dest));
}
APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
// Only the function pointer value is used for extra inhabitants.
auto pointerSize = IGM.getPointerSize();
auto mask = BitPatternBuilder(IGM.Triple.isLittleEndian());
mask.appendSetBits(pointerSize.getValueInBits());
mask.appendClearBits(pointerSize.getValueInBits());
return mask.build().value();
}
};
/// The type-info class for ObjC blocks, which are represented by an ObjC
/// heap pointer.
class BlockTypeInfo : public HeapTypeInfo<BlockTypeInfo>,
public FuncSignatureInfo
{
public:
BlockTypeInfo(CanSILFunctionType ty,
llvm::PointerType *storageType,
Size size, SpareBitVector spareBits, Alignment align)
: HeapTypeInfo(ReferenceCounting::Block, storageType, size, spareBits,
align),
FuncSignatureInfo(ty) {}
ReferenceCounting getReferenceCounting() const {
return ReferenceCounting::Block;
}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
if (!useStructLayouts) {
return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
}
return IGM.typeLayoutCache.getOrCreateScalarEntry(
*this, T, ScalarKind::BlockReference);
}
};
/// The type info class for the on-stack representation of an ObjC block.
///
/// TODO: May not be fixed-layout if we capture generics.
class BlockStorageTypeInfo final
: public IndirectTypeInfo<BlockStorageTypeInfo, FixedTypeInfo>
{
Size CaptureOffset;
public:
BlockStorageTypeInfo(llvm::Type *type, Size size, Alignment align,
SpareBitVector &&spareBits,
IsTriviallyDestroyable_t pod, IsBitwiseTakable_t bt, Size captureOffset)
: IndirectTypeInfo(type, size, std::move(spareBits), align, pod, bt,
IsCopyable,
IsFixedSize),
CaptureOffset(captureOffset)
{}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
if (!useStructLayouts) {
return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
}
return IGM.typeLayoutCache.getOrCreateScalarEntry(
*this, T, ScalarKind::BlockStorage);
}
// The lowered type should be an LLVM struct comprising the block header
// (IGM.ObjCBlockStructTy) as its first element and the capture as its
// second.
Address projectBlockHeader(IRGenFunction &IGF, Address storage) const {
return IGF.Builder.CreateStructGEP(storage, 0, Size(0));
}
Address projectCapture(IRGenFunction &IGF, Address storage) const {
return IGF.Builder.CreateStructGEP(storage, 1, CaptureOffset);
}
// TODO
// The frontend will currently never emit copy_addr or destroy_addr for
// block storage.
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
IGF.unimplemented(SourceLoc(), "copying @block_storage");
}
void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
IGF.unimplemented(SourceLoc(), "copying @block_storage");
}
void destroy(IRGenFunction &IGF, Address addr, SILType T,
bool isOutlined) const override {
IGF.unimplemented(SourceLoc(), "destroying @block_storage");
}
};
} // end anonymous namespace
const TypeInfo *TypeConverter::convertBlockStorageType(SILBlockStorageType *T) {
// The block storage consists of the block header (ObjCBlockStructTy)
// followed by the lowered type of the capture.
auto &capture = IGM.getTypeInfoForLowered(T->getCaptureType());
// TODO: Support dynamic-sized captures.
const auto *fixedCapture = dyn_cast<FixedTypeInfo>(&capture);
llvm::Type *fixedCaptureTy;
// The block header is pointer aligned. The capture may be worse aligned.
Alignment align = IGM.getPointerAlignment();
Size captureOffset(
IGM.DataLayout.getStructLayout(IGM.ObjCBlockStructTy)->getSizeInBytes());
auto spareBits = BitPatternBuilder(IGM.Triple.isLittleEndian());
spareBits.appendClearBits(captureOffset.getValueInBits());
Size size = captureOffset;
IsTriviallyDestroyable_t pod = IsNotTriviallyDestroyable;
IsBitwiseTakable_t bt = IsNotBitwiseTakable;
if (!fixedCapture) {
IGM.unimplemented(SourceLoc(), "dynamic @block_storage capture");
fixedCaptureTy = llvm::StructType::get(IGM.getLLVMContext(), {});
} else {
fixedCaptureTy = cast<FixedTypeInfo>(capture).getStorageType();
align = std::max(align, fixedCapture->getFixedAlignment());
captureOffset = captureOffset.roundUpToAlignment(align);
spareBits.padWithSetBitsTo(captureOffset.getValueInBits());
spareBits.append(fixedCapture->getSpareBits());
size = captureOffset + fixedCapture->getFixedSize();
pod = fixedCapture->isTriviallyDestroyable(ResilienceExpansion::Maximal);
bt = fixedCapture->getBitwiseTakable(ResilienceExpansion::Maximal);
}
llvm::Type *storageElts[] = {
IGM.ObjCBlockStructTy,
fixedCaptureTy,
};
auto storageTy = llvm::StructType::get(IGM.getLLVMContext(), storageElts,
/*packed*/ false);
return new BlockStorageTypeInfo(storageTy, size, align, spareBits.build(),
pod, bt, captureOffset);
}
Address irgen::projectBlockStorageCapture(IRGenFunction &IGF,
Address storageAddr,
CanSILBlockStorageType storageTy) {
auto &tl = IGF.getTypeInfoForLowered(storageTy).as<BlockStorageTypeInfo>();
return tl.projectCapture(IGF, storageAddr);
}
const TypeInfo *TypeConverter::convertFunctionType(SILFunctionType *T) {
// Handle `@differentiable` functions.
switch (T->getDifferentiabilityKind()) {
// TODO: Ban `Normal` and `Forward` cases.
case DifferentiabilityKind::Normal:
case DifferentiabilityKind::Reverse:
case DifferentiabilityKind::Forward:
return convertNormalDifferentiableFunctionType(T);
case DifferentiabilityKind::Linear:
return convertLinearDifferentiableFunctionType(T);
case DifferentiabilityKind::NonDifferentiable:
break;
}
switch (T->getRepresentation()) {
case SILFunctionType::Representation::Block:
return new BlockTypeInfo(CanSILFunctionType(T),
IGM.ObjCBlockPtrTy,
IGM.getPointerSize(),
IGM.getHeapObjectSpareBits(),
IGM.getPointerAlignment());
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::CXXMethod:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Closure:
case SILFunctionType::Representation::KeyPathAccessorGetter:
case SILFunctionType::Representation::KeyPathAccessorSetter:
case SILFunctionType::Representation::KeyPathAccessorEquals:
case SILFunctionType::Representation::KeyPathAccessorHash:
return ThinFuncTypeInfo::create(CanSILFunctionType(T),
IGM.FunctionPtrTy,
IGM.getPointerSize(),
IGM.getPointerAlignment(),
IGM.getFunctionPointerSpareBits());
case SILFunctionType::Representation::ObjCMethod:
return ObjCFuncTypeInfo::create(CanSILFunctionType(T),
IGM.FunctionPtrTy,
IGM.getPointerSize(),
IGM.getPointerAlignment(),
IGM.getFunctionPointerSpareBits());
case SILFunctionType::Representation::Thick: {
SpareBitVector spareBits;
spareBits.append(IGM.getFunctionPointerSpareBits());
// Although the context pointer of a closure (at least, an escaping one)
// is a refcounted pointer, we'd like to reserve the right to pack small
// contexts into the pointer value, so let's not take any spare bits from
// it.
spareBits.appendClearBits(IGM.getPointerSize().getValueInBits());
if (T->isNoEscape()) {
// @noescape thick functions are trivial types.
return FuncTypeInfo::create(
CanSILFunctionType(T), IGM.NoEscapeFunctionPairTy,
IGM.getPointerSize() * 2, IGM.getPointerAlignment(),
std::move(spareBits), IsTriviallyDestroyable);
}
return FuncTypeInfo::create(
CanSILFunctionType(T), IGM.FunctionPairTy, IGM.getPointerSize() * 2,
IGM.getPointerAlignment(), std::move(spareBits), IsNotTriviallyDestroyable);
}
}
llvm_unreachable("bad function type representation");
}
Signature FuncSignatureInfo::getSignature(IRGenModule &IGM) const {
// If it's already been filled in, we're done.
if (TheSignature.isValid())
return TheSignature;
// Update the cache and return.
TheSignature = Signature::getUncached(IGM, FormalType,
FunctionPointerKind(FormalType));
assert(TheSignature.isValid());
return TheSignature;
}
Signature FuncSignatureInfo::getCXXConstructorSignature(
const clang::CXXConstructorDecl *cxxCtorDecl, IRGenModule &IGM) const {
// If it's already been filled in, we're done.
if (TheCXXConstructorSignature.isValid())
return TheCXXConstructorSignature;
// Update the cache and return.
TheCXXConstructorSignature =
Signature::getUncached(IGM, FormalType, FunctionPointerKind(FormalType),
/*forStaticCall*/ false, cxxCtorDecl);
assert(TheCXXConstructorSignature.isValid());
return TheCXXConstructorSignature;
}
Signature ObjCFuncSignatureInfo::getDirectSignature(IRGenModule &IGM) const {
// If it's already been filled in, we're done.
if (TheDirectSignature.isValid())
return TheDirectSignature;
// Update the cache and return.
TheDirectSignature = Signature::getUncached(IGM, FormalType,
FunctionPointerKind(FormalType),
/*forStaticCall*/ true);
assert(TheDirectSignature.isValid());
return TheDirectSignature;
}
static const FuncSignatureInfo &
getFuncSignatureInfoForLowered(IRGenModule &IGM, CanSILFunctionType type) {
auto &ti = IGM.getTypeInfoForLowered(type);
switch (type->getRepresentation()) {
case SILFunctionType::Representation::Block:
return ti.as<BlockTypeInfo>();
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::CXXMethod:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::Closure:
case SILFunctionType::Representation::KeyPathAccessorGetter:
case SILFunctionType::Representation::KeyPathAccessorSetter:
case SILFunctionType::Representation::KeyPathAccessorEquals:
case SILFunctionType::Representation::KeyPathAccessorHash:
return ti.as<ThinFuncTypeInfo>();
case SILFunctionType::Representation::ObjCMethod:
return static_cast<const FuncSignatureInfo &>(ti.as<ObjCFuncTypeInfo>());
case SILFunctionType::Representation::Thick:
return ti.as<FuncTypeInfo>();
}
llvm_unreachable("bad function type representation");
}
Signature
IRGenModule::getSignature(CanSILFunctionType type,
const clang::CXXConstructorDecl *cxxCtorDecl) {
return getSignature(type, FunctionPointerKind(type), /*forStaticCall*/ false,
cxxCtorDecl);
}
Signature
IRGenModule::getSignature(CanSILFunctionType type, FunctionPointerKind kind,
bool forStaticCall,
const clang::CXXConstructorDecl *cxxCtorDecl) {
// Don't bother caching if we're working with a special kind.
if (kind.isSpecial())
return Signature::getUncached(*this, type, kind);
auto &sigInfo = getFuncSignatureInfoForLowered(*this, type);
if (forStaticCall &&
type->getRepresentation() == SILFunctionType::Representation::ObjCMethod) {
auto &objcSigInfo = static_cast<const ObjCFuncSignatureInfo &>(sigInfo);
return objcSigInfo.getDirectSignature(*this);
}
if (cxxCtorDecl)
return sigInfo.getCXXConstructorSignature(cxxCtorDecl, *this);
return sigInfo.getSignature(*this);
}
llvm::FunctionType *
IRGenModule::getFunctionType(CanSILFunctionType type,
llvm::AttributeList &attrs,
ForeignFunctionInfo *foreignInfo) {
auto &sigInfo = getFuncSignatureInfoForLowered(*this, type);
Signature sig = sigInfo.getSignature(*this);
attrs = sig.getAttributes();
if (foreignInfo) *foreignInfo = sig.getForeignInfo();
return sig.getType();
}
ForeignFunctionInfo
IRGenModule::getForeignFunctionInfo(CanSILFunctionType type) {
if (type->getLanguage() == SILFunctionLanguage::Swift)
return ForeignFunctionInfo();
auto &sigInfo = getFuncSignatureInfoForLowered(*this, type);
return sigInfo.getSignature(*this).getForeignInfo();
}
static void emitApplyArgument(IRGenFunction &IGF,
CanSILFunctionType origFnTy,
SILParameterInfo origParam,
CanSILFunctionType substFnTy,
SILParameterInfo substParam,
Explosion &in,
Explosion &out) {
auto silConv = IGF.IGM.silConv;
auto context = IGF.IGM.getMaximalTypeExpansionContext();
bool isSubstituted =
(silConv.getSILType(substParam, substFnTy, context)
!= silConv.getSILType(origParam, origFnTy, context));
// For indirect arguments, we just need to pass a pointer.
if (silConv.isSILIndirect(origParam)) {
// This address is of the substituted type.
auto addr = in.claimNext();
// If a substitution is in play, just bitcast the address.
if (isSubstituted) {
auto origType = IGF.IGM.getStoragePointerType(
silConv.getSILType(origParam, origFnTy, context));
addr = IGF.Builder.CreateBitCast(addr, origType);
}
out.add(addr);
return;
}
assert(!silConv.isSILIndirect(origParam)
&& "Unexpected opaque apply parameter.");
// Otherwise, it's an explosion, which we may need to translate,
// both in terms of explosion level and substitution levels.
// Handle the last unsubstituted case.
if (!isSubstituted) {
auto &substArgTI = cast<LoadableTypeInfo>(
IGF.getTypeInfo(silConv.getSILType(substParam, substFnTy, context)));
substArgTI.reexplode(in, out);
return;
}
reemitAsUnsubstituted(IGF, silConv.getSILType(origParam, origFnTy, context),
silConv.getSILType(substParam, substFnTy, context), in,
out);
}
CanType irgen::getArgumentLoweringType(CanType type, SILParameterInfo paramInfo,
bool isNoEscape) {
switch (paramInfo.getConvention()) {
// Capture value parameters by value, consuming them.
case ParameterConvention::Direct_Owned:
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed:
return type;
// Capture pack parameters by value (a pointer).
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
return type;
// Capture indirect parameters if the closure is not [onstack]. [onstack]
// closures don't take ownership of their arguments so we just capture the
// address.
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Guaranteed:
if (isNoEscape)
return CanInOutType::get(type);
else
return type;
// Capture inout parameters by pointer.
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
return CanInOutType::get(type);
}
llvm_unreachable("unhandled convention");
}
static Size getOffsetOfOpaqueIsolationField(IRGenModule &IGM,
const LoadableTypeInfo &isolationTI) {
auto offset = IGM.RefCountedStructSize;
return offset.roundUpToAlignment(isolationTI.getFixedAlignment());
}
/// Load the stored isolation of an @isolated(any) function type, which
/// is assumed to be at a known offset within a closure object.
void irgen::emitExtractFunctionIsolation(IRGenFunction &IGF,
llvm::Value *fnContext,
Explosion &result) {
auto isolationTy = SILType::getOpaqueIsolationType(IGF.IGM.Context);
auto &isolationTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(isolationTy));
Address baseAddr = Address(fnContext, IGF.IGM.RefCountedStructTy,
IGF.IGM.getPointerAlignment());
baseAddr = IGF.Builder.CreateElementBitCast(baseAddr, IGF.IGM.Int8Ty);
auto offset = getOffsetOfOpaqueIsolationField(IGF.IGM, isolationTI);
Address fieldAddr = IGF.Builder.CreateConstByteArrayGEP(baseAddr, offset);
fieldAddr =
IGF.Builder.CreateElementBitCast(fieldAddr, isolationTI.getStorageType());
// Really a borrow
isolationTI.loadAsTake(IGF, fieldAddr, result);
}
static bool isABIIgnoredParameterWithoutStorage(IRGenModule &IGM,
IRGenFunction &IGF,
CanSILFunctionType substType,
unsigned paramIdx) {
auto param = substType->getParameters()[paramIdx];
if (param.isFormalIndirect())
return false;
SILType argType = IGM.silConv.getSILType(
param, substType, IGM.getMaximalTypeExpansionContext());
auto &ti = IGF.getTypeInfoForLowered(argType.getASTType());
// Empty values don't matter.
return ti.getSchema().empty();
}
/// Find the parameter index for the one (assuming there was only one) partially
/// applied argument ignoring empty types that are not passed as part of the
/// ABI.
static unsigned findSinglePartiallyAppliedParameterIndexIgnoringEmptyTypes(
IRGenFunction &IGF, CanSILFunctionType substType,
CanSILFunctionType outType) {
auto substParameters = substType->getParameters();
auto outParameters = outType->getParameters();
unsigned firstNonEmpty = -1U;
for (unsigned paramIdx = outParameters.size() ; paramIdx != substParameters.size(); ++paramIdx) {
bool isEmpty =
isABIIgnoredParameterWithoutStorage(IGF.IGM, IGF, substType, paramIdx);
assert((isEmpty || firstNonEmpty == -1U) && "Expect at most one partially "
"applied that is passed as an "
"ABI argument");
if (!isEmpty)
firstNonEmpty = paramIdx;
}
assert(firstNonEmpty != -1U);
return firstNonEmpty;
}
namespace {
class PartialApplicationForwarderEmission {
protected:
IRGenModule &IGM;
IRGenFunction &subIGF;
llvm::Function *fwd;
const std::optional<FunctionPointer> &staticFnPtr;
bool calleeHasContext;
const Signature &origSig;
CanSILFunctionType origType;
CanSILFunctionType substType;
CanSILFunctionType outType;
SubstitutionMap subs;
HeapLayout const *layout;
const ArrayRef<ParameterConvention> conventions;
SILFunctionConventions origConv;
SILFunctionConventions outConv;
Explosion origParams;
// Create a new explosion for potentially reabstracted parameters.
Explosion args;
Address resultValueAddr;
PartialApplicationForwarderEmission(
IRGenModule &IGM, IRGenFunction &subIGF, llvm::Function *fwd,
const std::optional<FunctionPointer> &staticFnPtr, bool calleeHasContext,
const Signature &origSig, CanSILFunctionType origType,
CanSILFunctionType substType, CanSILFunctionType outType,
SubstitutionMap subs, HeapLayout const *layout,
ArrayRef<ParameterConvention> conventions)
: IGM(IGM), subIGF(subIGF), fwd(fwd), staticFnPtr(staticFnPtr),
calleeHasContext(calleeHasContext), origSig(origSig),
origType(origType), substType(substType), outType(outType), subs(subs),
conventions(conventions), origConv(origType, IGM.getSILModule()),
outConv(outType, IGM.getSILModule()),
origParams(subIGF.collectParameters()) {}
public:
virtual void begin(){};
virtual void gatherArgumentsFromApply() = 0;
virtual void mapAsyncParameters(FunctionPointer fnPtr) {}
virtual void recordAsyncParametersInsertionPoint(){};
void gatherArgumentsFromApply(bool isAsync) {
// Lower the forwarded arguments in the original function's generic context.
GenericContextScope scope(IGM, origType->getInvocationGenericSignature());
SILFunctionConventions origConv(origType, IGM.getSILModule());
auto &outResultTI = IGM.getTypeInfo(
outConv.getSILResultType(IGM.getMaximalTypeExpansionContext()));
auto &nativeResultSchema = outResultTI.nativeReturnValueSchema(IGM);
auto &origResultTI = IGM.getTypeInfo(
origConv.getSILResultType(IGM.getMaximalTypeExpansionContext()));
auto &origNativeSchema = origResultTI.nativeReturnValueSchema(IGM);
// Forward the indirect return values. We might have to reabstract the
// return value.
bool useSRet = !isAsync;
if (nativeResultSchema.requiresIndirect()) {
assert(origNativeSchema.requiresIndirect());
auto resultAddr = origParams.claimNext();
resultAddr = subIGF.Builder.CreateBitCast(
resultAddr, IGM.getStoragePointerType(origConv.getSILResultType(
IGM.getMaximalTypeExpansionContext())));
args.add(resultAddr);
useSRet = false;
} else if (origNativeSchema.requiresIndirect()) {
assert(!nativeResultSchema.requiresIndirect());
auto stackAddr = outResultTI.allocateStack(
subIGF,
outConv.getSILResultType(IGM.getMaximalTypeExpansionContext()),
"return.temp");
resultValueAddr = stackAddr.getAddress();
auto resultAddr = subIGF.Builder.CreateElementBitCast(
resultValueAddr, IGM.getStorageType(origConv.getSILResultType(
IGM.getMaximalTypeExpansionContext())));
args.add(resultAddr.getAddress());
useSRet = false;
} else if (!origNativeSchema.empty()) {
useSRet = false;
}
useSRet = useSRet && origConv.getNumIndirectSILResults() == 1;
for (auto resultType : origConv.getIndirectSILResultTypes(
IGM.getMaximalTypeExpansionContext())) {
auto addr = origParams.claimNext();
addr = subIGF.Builder.CreateBitCast(
addr, IGM.getStoragePointerType(resultType));
auto useOpaque =
useSRet && !isa<FixedTypeInfo>(IGM.getTypeInfo(resultType));
if (useOpaque)
addr = subIGF.Builder.CreateBitCast(addr, IGM.OpaquePtrTy);
args.add(addr);
useSRet = false;
}
if (isAsync)
recordAsyncParametersInsertionPoint();
// Reemit the parameters as unsubstituted.
for (unsigned i = 0; i < outType->getParameters().size(); ++i) {
auto origParamInfo = origType->getParameters()[i];
auto &ti = IGM.getTypeInfoForLowered(origParamInfo.getArgumentType(
IGM.getSILModule(), origType, IGM.getMaximalTypeExpansionContext()));
auto schema = ti.getSchema();
auto origParamSILType = IGM.silConv.getSILType(
origParamInfo, origType, IGM.getMaximalTypeExpansionContext());
// Forward the address of indirect value params.
auto &nativeSchemaOrigParam = ti.nativeParameterValueSchema(IGM);
bool isIndirectParam = origConv.isSILIndirect(origParamInfo);
if (!isIndirectParam && nativeSchemaOrigParam.requiresIndirect()) {
auto addr = origParams.claimNext();
if (addr->getType() != ti.getStorageType()->getPointerTo())
addr = subIGF.Builder.CreateBitCast(addr,
ti.getStorageType()->getPointerTo());
args.add(addr);
continue;
}
auto outTypeParamInfo = outType->getParameters()[i];
// Indirect parameters need no mapping through the native calling
// convention.
if (isIndirectParam) {
emitApplyArgument(subIGF,
origType,
origParamInfo,
outType,
outTypeParamInfo,
origParams, args);
continue;
}
// Map from the native calling convention into the explosion schema.
auto outTypeParamSILType = IGM.silConv.getSILType(
origParamInfo, origType, IGM.getMaximalTypeExpansionContext());
auto &nativeSchemaOutTypeParam =
IGM.getTypeInfo(outTypeParamSILType).nativeParameterValueSchema(IGM);
Explosion nativeParam;
origParams.transferInto(nativeParam, nativeSchemaOutTypeParam.size());
bindPolymorphicParameter(subIGF, origType, substType, nativeParam, i);
Explosion nonNativeParam = nativeSchemaOutTypeParam.mapFromNative(
subIGF.IGM, subIGF, nativeParam, outTypeParamSILType);
assert(nativeParam.empty());
// Emit unsubstituted argument for call.
Explosion nonNativeApplyArg;
emitApplyArgument(subIGF,
origType, origParamInfo,
outType, outTypeParamInfo,
nonNativeParam,
nonNativeApplyArg);
assert(nonNativeParam.empty());
// Map back from the explosion scheme to the native calling convention for
// the call.
Explosion nativeApplyArg = nativeSchemaOrigParam.mapIntoNative(
subIGF.IGM, subIGF, nonNativeApplyArg, origParamSILType, false);
assert(nonNativeApplyArg.empty());
nativeApplyArg.transferInto(args, nativeApplyArg.size());
}
}
unsigned getCurrentArgumentIndex() { return args.size(); }
bool transformArgumentToNative(SILParameterInfo origParamInfo, Explosion &in,
Explosion &out) {
return addNativeArgument(subIGF, in, origType, origParamInfo, out, false);
}
void addArgument(Explosion &explosion) {
args.add(explosion.claimAll());
}
void addArgument(llvm::Value *argValue) { args.add(argValue); }
void addArgument(Explosion &explosion, unsigned index) {
addArgument(explosion);
}
void addArgument(llvm::Value *argValue, unsigned index) {
addArgument(argValue);
}
SILParameterInfo getParameterInfo(unsigned index) {
return substType->getParameters()[index];
}
llvm::Value *getContext() { return origParams.claimNext(); }
virtual llvm::Value *getDynamicFunctionPointer() = 0;
virtual llvm::Value *getDynamicFunctionContext() = 0;
virtual void addDynamicFunctionContext(Explosion &explosion) = 0;
virtual void addDynamicFunctionPointer(Explosion &explosion) = 0;
void addSelf(Explosion &explosion) { addArgument(explosion); }
void addWitnessSelfMetadata(llvm::Value *value) {
addArgument(value);
}
void addWitnessSelfWitnessTable(llvm::Value *value) {
addArgument(value);
}
virtual void forwardErrorResult() = 0;
bool originalParametersConsumed() { return origParams.empty(); }
void addPolymorphicArguments(Explosion polyArgs) {
polyArgs.transferInto(args, polyArgs.size());
}
virtual llvm::CallInst *createCall(FunctionPointer &fnPtr) = 0;
virtual void createReturn(llvm::CallInst *call) = 0;
virtual void end(){};
virtual ~PartialApplicationForwarderEmission() {}
};
class SyncPartialApplicationForwarderEmission
: public PartialApplicationForwarderEmission {
using super = PartialApplicationForwarderEmission;
public:
SyncPartialApplicationForwarderEmission(
IRGenModule &IGM, IRGenFunction &subIGF, llvm::Function *fwd,
const std::optional<FunctionPointer> &staticFnPtr, bool calleeHasContext,
const Signature &origSig, CanSILFunctionType origType,
CanSILFunctionType substType, CanSILFunctionType outType,
SubstitutionMap subs, HeapLayout const *layout,
ArrayRef<ParameterConvention> conventions)
: PartialApplicationForwarderEmission(
IGM, subIGF, fwd, staticFnPtr, calleeHasContext, origSig, origType,
substType, outType, subs, layout, conventions) {}
void begin() override { super::begin(); }
void gatherArgumentsFromApply() override {
super::gatherArgumentsFromApply(false);
}
llvm::Value *getDynamicFunctionPointer() override { return args.takeLast(); }
llvm::Value *getDynamicFunctionContext() override { return args.takeLast(); }
void addDynamicFunctionContext(Explosion &explosion) override {
addArgument(explosion);
}
void addDynamicFunctionPointer(Explosion &explosion) override {
addArgument(explosion);
}
void forwardErrorResult() override {
llvm::Value *errorResultPtr = origParams.claimNext();
args.add(errorResultPtr);
if (origConv.isTypedError()) {
auto *typedErrorResultPtr = origParams.claimNext();
args.add(typedErrorResultPtr);
}
}
llvm::CallInst *createCall(FunctionPointer &fnPtr) override {
return subIGF.Builder.CreateCall(fnPtr, args.claimAll());
}
void createReturn(llvm::CallInst *call) override {
// Reabstract the result value as substituted.
SILFunctionConventions origConv(origType, IGM.getSILModule());
auto &outResultTI = IGM.getTypeInfo(
outConv.getSILResultType(IGM.getMaximalTypeExpansionContext()));
auto &nativeResultSchema = outResultTI.nativeReturnValueSchema(IGM);
if (call->getType()->isVoidTy()) {
if (!resultValueAddr.isValid())
subIGF.Builder.CreateRetVoid();
else {
// Okay, we have called a function that expects an indirect return type
// but the partially applied return type is direct.
assert(!nativeResultSchema.requiresIndirect());
Explosion loadedResult;
cast<LoadableTypeInfo>(outResultTI)
.loadAsTake(subIGF, resultValueAddr, loadedResult);
Explosion nativeResult = nativeResultSchema.mapIntoNative(
IGM, subIGF, loadedResult,
outConv.getSILResultType(IGM.getMaximalTypeExpansionContext()),
false);
outResultTI.deallocateStack(
subIGF, resultValueAddr,
outConv.getSILResultType(IGM.getMaximalTypeExpansionContext()));
if (nativeResult.size() == 1)
subIGF.Builder.CreateRet(nativeResult.claimNext());
else {
llvm::Value *nativeAgg =
llvm::UndefValue::get(nativeResultSchema.getExpandedType(IGM));
for (unsigned i = 0, e = nativeResult.size(); i != e; ++i) {
auto *elt = nativeResult.claimNext();
nativeAgg = subIGF.Builder.CreateInsertValue(nativeAgg, elt, i);
}
subIGF.Builder.CreateRet(nativeAgg);
}
}
} else {
llvm::Value *callResult = call;
// If the result type is dependent on a type parameter we might have to
// cast to the result type - it could be substituted.
if (origConv.getSILResultType(IGM.getMaximalTypeExpansionContext())
.hasTypeParameter()) {
auto ResType = fwd->getReturnType();
if (ResType != callResult->getType())
callResult =
subIGF.coerceValue(callResult, ResType, subIGF.IGM.DataLayout);
}
subIGF.Builder.CreateRet(callResult);
}
}
void end() override { super::end(); }
};
class AsyncPartialApplicationForwarderEmission
: public PartialApplicationForwarderEmission {
using super = PartialApplicationForwarderEmission;
AsyncContextLayout layout;
llvm::Value *calleeFunction;
llvm::Value *currentResumeFn;
Size contextSize;
Address context;
Address calleeContextBuffer;
unsigned currentArgumentIndex;
struct Self {
enum class Kind {
Method,
WitnessMethod,
};
Kind kind;
llvm::Value *value;
};
std::optional<Self> self = std::nullopt;
unsigned asyncParametersInsertionIndex = 0;
void saveValue(ElementLayout layout, Explosion &explosion) {
Address addr = layout.project(subIGF, context, /*offsets*/ std::nullopt);
auto &ti = cast<LoadableTypeInfo>(layout.getType());
ti.initialize(subIGF, explosion, addr, /*isOutlined*/ false);
}
public:
AsyncPartialApplicationForwarderEmission(
IRGenModule &IGM, IRGenFunction &subIGF, llvm::Function *fwd,
const std::optional<FunctionPointer> &staticFnPtr, bool calleeHasContext,
const Signature &origSig, CanSILFunctionType origType,
CanSILFunctionType substType, CanSILFunctionType outType,
SubstitutionMap subs, HeapLayout const *layout,
ArrayRef<ParameterConvention> conventions)
: PartialApplicationForwarderEmission(
IGM, subIGF, fwd, staticFnPtr, calleeHasContext, origSig, origType,
substType, outType, subs, layout, conventions),
layout(getAsyncContextLayout(subIGF.IGM, origType, substType, subs)),
currentArgumentIndex(outType->getNumParameters()) {}
void begin() override { super::begin(); }
void recordAsyncParametersInsertionPoint() override {
// Ignore the original context.
(void)origParams.claimNext();
asyncParametersInsertionIndex = args.size();
}
void mapAsyncParameters(FunctionPointer fnPtr) override {
llvm::Value *dynamicContextSize32;
std::tie(calleeFunction, dynamicContextSize32) = getAsyncFunctionAndSize(
subIGF, origType->getRepresentation(), fnPtr, nullptr,
std::make_pair(true, true));
auto *dynamicContextSize =
subIGF.Builder.CreateZExt(dynamicContextSize32, subIGF.IGM.SizeTy);
calleeContextBuffer =
emitAllocAsyncContext(subIGF, dynamicContextSize);
context = layout.emitCastTo(subIGF, calleeContextBuffer.getAddress());
auto calleeContext =
layout.emitCastTo(subIGF, calleeContextBuffer.getAddress());
args.insert(asyncParametersInsertionIndex,
subIGF.Builder.CreateBitOrPointerCast(
calleeContextBuffer.getAddress(), IGM.SwiftContextPtrTy));
// Set caller info into the context.
{ // caller context
Explosion explosion;
auto fieldLayout = layout.getParentLayout();
auto *context = subIGF.getAsyncContext();
if (auto schema =
subIGF.IGM.getOptions().PointerAuth.AsyncContextParent) {
Address fieldAddr = fieldLayout.project(subIGF, calleeContext,
/*offsets*/ std::nullopt);
auto authInfo = PointerAuthInfo::emit(
subIGF, schema, fieldAddr.getAddress(), PointerAuthEntity());
context = emitPointerAuthSign(subIGF, context, authInfo);
}
explosion.add(context);
saveValue(fieldLayout, explosion);
}
{ // Return to caller function.
auto fieldLayout = layout.getResumeParentLayout();
currentResumeFn = subIGF.Builder.CreateIntrinsicCall(
llvm::Intrinsic::coro_async_resume, {});
auto fnVal = currentResumeFn;
// Sign the pointer.
if (auto schema = subIGF.IGM.getOptions().PointerAuth.AsyncContextResume) {
Address fieldAddr = fieldLayout.project(subIGF, calleeContext,
/*offsets*/ std::nullopt);
auto authInfo = PointerAuthInfo::emit(
subIGF, schema, fieldAddr.getAddress(), PointerAuthEntity());
fnVal = emitPointerAuthSign(subIGF, fnVal, authInfo);
}
fnVal = subIGF.Builder.CreateBitCast(
fnVal, subIGF.IGM.TaskContinuationFunctionPtrTy);
Explosion explosion;
explosion.add(fnVal);
saveValue(fieldLayout, explosion);
}
}
void gatherArgumentsFromApply() override {
super::gatherArgumentsFromApply(true);
}
llvm::Value *getDynamicFunctionPointer() override { return args.takeLast(); }
llvm::Value *getDynamicFunctionContext() override {
return args.takeLast();
}
void addDynamicFunctionContext(Explosion &explosion) override {
addArgument(explosion);
}
void addDynamicFunctionPointer(Explosion &explosion) override {
addArgument(explosion);
}
void forwardErrorResult() override {
// The error result pointer is already in the appropriate position but the
// type error address is not.
if (origConv.isTypedError()) {
auto *typedErrorResultPtr = origParams.claimNext();
args.add(typedErrorResultPtr);
}
}
llvm::CallInst *createCall(FunctionPointer &fnPtr) override {
PointerAuthInfo newAuthInfo =
fnPtr.getAuthInfo().getCorrespondingCodeAuthInfo();
auto newFnPtr = FunctionPointer::createSigned(
FunctionPointer::Kind::Function, fnPtr.getPointer(subIGF), newAuthInfo,
Signature::forAsyncAwait(subIGF.IGM, origType,
FunctionPointerKind::defaultAsync()));
auto &Builder = subIGF.Builder;
auto argValues = args.claimAll();
// Setup the suspend point.
SmallVector<llvm::Value *, 8> arguments;
auto signature = newFnPtr.getSignature();
auto asyncContextIndex = signature.getAsyncContextIndex();
auto paramAttributeFlags =
asyncContextIndex |
(signature.getAsyncResumeFunctionSwiftSelfIndex() << 8);
// Index of swiftasync context | ((index of swiftself) << 8).
arguments.push_back(
IGM.getInt32(paramAttributeFlags));
arguments.push_back(currentResumeFn);
auto resumeProjFn = subIGF.getOrCreateResumePrjFn();
arguments.push_back(
Builder.CreateBitOrPointerCast(resumeProjFn, IGM.Int8PtrTy));
auto dispatchFn = subIGF.createAsyncDispatchFn(
getFunctionPointerForDispatchCall(IGM, newFnPtr), argValues);
arguments.push_back(
Builder.CreateBitOrPointerCast(dispatchFn, IGM.Int8PtrTy));
arguments.push_back(
Builder.CreateBitOrPointerCast(newFnPtr.getRawPointer(), IGM.Int8PtrTy));
if (auto authInfo = newFnPtr.getAuthInfo()) {
arguments.push_back(newFnPtr.getAuthInfo().getDiscriminator());
}
for (auto arg : argValues)
arguments.push_back(arg);
auto resultTy =
cast<llvm::StructType>(signature.getType()->getReturnType());
return subIGF.emitSuspendAsyncCall(asyncContextIndex, resultTy, arguments);
}
void createReturn(llvm::CallInst *call) override {
emitDeallocAsyncContext(subIGF, calleeContextBuffer);
forwardAsyncCallResult(subIGF, origType, layout, call);
}
void end() override {
assert(context.isValid());
super::end();
}
};
std::unique_ptr<PartialApplicationForwarderEmission>
getPartialApplicationForwarderEmission(
IRGenModule &IGM, IRGenFunction &subIGF, llvm::Function *fwd,
const std::optional<FunctionPointer> &staticFnPtr, bool calleeHasContext,
const Signature &origSig, CanSILFunctionType origType,
CanSILFunctionType substType, CanSILFunctionType outType,
SubstitutionMap subs, HeapLayout const *layout,
ArrayRef<ParameterConvention> conventions) {
if (origType->isAsync()) {
return std::make_unique<AsyncPartialApplicationForwarderEmission>(
IGM, subIGF, fwd, staticFnPtr, calleeHasContext, origSig, origType,
substType, outType, subs, layout, conventions);
} else {
return std::make_unique<SyncPartialApplicationForwarderEmission>(
IGM, subIGF, fwd, staticFnPtr, calleeHasContext, origSig, origType,
substType, outType, subs, layout, conventions);
}
}
} // end anonymous namespace
/// Emit the forwarding stub function for a partial application.
///
/// If 'layout' is null, there is a single captured value of
/// Swift-refcountable type that is being used directly as the
/// context object.
static llvm::Value *emitPartialApplicationForwarder(
IRGenModule &IGM, const std::optional<FunctionPointer> &staticFnPtr,
bool calleeHasContext, const Signature &origSig,
CanSILFunctionType origType, CanSILFunctionType substType,
CanSILFunctionType outType, SubstitutionMap subs, HeapLayout const *layout,
ArrayRef<ParameterConvention> conventions) {
auto outSig = IGM.getSignature(outType);
llvm::AttributeList outAttrs = outSig.getAttributes();
llvm::FunctionType *fwdTy = outSig.getType();
SILFunctionConventions outConv(outType, IGM.getSILModule());
std::optional<AsyncContextLayout> asyncLayout;
StringRef FnName;
if (staticFnPtr)
FnName = staticFnPtr->getName(IGM);
IRGenMangler Mangler;
std::string thunkName = Mangler.manglePartialApplyForwarder(FnName);
// FIXME: Maybe cache the thunk by function and closure types?.
llvm::Function *fwd =
llvm::Function::Create(fwdTy, llvm::Function::InternalLinkage,
llvm::StringRef(thunkName), &IGM.Module);
llvm::Value *asyncFunctionPtr = nullptr;
fwd->setCallingConv(outSig.getCallingConv());
fwd->setAttributes(outAttrs);
// Merge initial attributes with outAttrs.
llvm::AttrBuilder b(IGM.getLLVMContext());
IGM.constructInitialFnAttributes(b);
fwd->addFnAttrs(b);
IRGenFunction subIGF(IGM, fwd);
if (origType->isAsync()) {
auto fpKind = FunctionPointerKind::defaultAsync();
auto asyncContextIdx =
Signature::forAsyncEntry(IGM, outType, fpKind)
.getAsyncContextIndex();
asyncLayout.emplace(irgen::getAsyncContextLayout(
IGM, origType, substType, subs));
//auto *calleeAFP = staticFnPtr->getDirectPointer();
LinkEntity entity = LinkEntity::forPartialApplyForwarder(fwd);
assert(!asyncFunctionPtr &&
"already had an async function pointer to the forwarder?!");
emitAsyncFunctionEntry(subIGF, *asyncLayout, entity, asyncContextIdx);
asyncFunctionPtr =
emitAsyncFunctionPointer(IGM, fwd, entity, asyncLayout->getSize());
// TODO: if calleeAFP is definition:
#if 0
subIGF.Builder.CreateIntrinsicCall(
llvm::Intrinsic::coro_async_size_replace,
{subIGF.Builder.CreateBitCast(asyncFunctionPtr, IGM.Int8PtrTy),
subIGF.Builder.CreateBitCast(calleeAFP, IGM.Int8PtrTy)});
#endif
}
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(subIGF, fwd);
auto emission = getPartialApplicationForwarderEmission(
IGM, subIGF, fwd, staticFnPtr, calleeHasContext, origSig, origType,
substType, outType, subs, layout, conventions);
emission->begin();
emission->gatherArgumentsFromApply();
struct AddressToDeallocate {
SILType Type;
const TypeInfo &TI;
StackAddress Addr;
};
SmallVector<AddressToDeallocate, 4> addressesToDeallocate;
bool dependsOnContextLifetime = false;
bool consumesContext;
bool needsAllocas = false;
switch (outType->getCalleeConvention()) {
case ParameterConvention::Direct_Owned:
consumesContext = true;
break;
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed:
consumesContext = false;
break;
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
llvm_unreachable("indirect or pack callables not supported");
}
// Lower the captured arguments in the original function's generic context.
GenericContextScope scope(IGM, origType->getInvocationGenericSignature());
// This is where the context parameter appears.
llvm::Value *rawData = nullptr;
Address data;
if (!layout) {
rawData = emission->getContext();
} else if (!layout->isKnownEmpty()) {
rawData = emission->getContext();
data = layout->emitCastTo(subIGF, rawData);
// Restore type metadata bindings, if we have them.
if (layout->hasBindings()) {
auto bindingLayout = layout->getElement(layout->getBindingsIndex());
// The bindings should be fixed-layout inside the object, so we can
// pass None here. If they weren't, we'd have a chicken-egg problem.
auto bindingsAddr =
bindingLayout.project(subIGF, data, /*offsets*/ std::nullopt);
layout->getBindings().restore(subIGF, bindingsAddr,
MetadataState::Complete);
}
// There's still a placeholder to claim if the target type is thick
// or there's an error result.
} else if (outType->getRepresentation()==SILFunctionTypeRepresentation::Thick
|| outType->hasErrorResult()) {
llvm::Value *contextPtr = emission->getContext(); (void)contextPtr;
assert(contextPtr->getType() == IGM.RefCountedPtrTy);
}
Explosion polyArgs;
// Emit the polymorphic arguments.
assert((subs.hasAnySubstitutableParams()
== hasPolymorphicParameters(origType) ||
(!subs.hasAnySubstitutableParams() && origType->getRepresentation() ==
SILFunctionTypeRepresentation::WitnessMethod))
&& "should have substitutions iff original function is generic");
WitnessMetadata witnessMetadata;
// If we have a layout we might have to bind polymorphic arguments from the
// captured arguments which we will do later. Otherwise, we have to
// potentially bind polymorphic arguments from the context if it was a
// partially applied argument.
bool hasPolymorphicParams =
hasPolymorphicParameters(origType) &&
(!staticFnPtr || !staticFnPtr->shouldSuppressPolymorphicArguments());
if (!layout && hasPolymorphicParams) {
assert(conventions.size() == 1);
// We could have either partially applied an argument from the function
// signature or otherwise we could have a closure context to forward. We only
// care for the former for the purpose of reconstructing polymorphic
// parameters from regular arguments.
if (!calleeHasContext) {
unsigned paramI =
findSinglePartiallyAppliedParameterIndexIgnoringEmptyTypes(
subIGF, substType, outType);
auto paramInfo = substType->getParameters()[paramI];
auto &ti = IGM.getTypeInfoForLowered(paramInfo.getArgumentType(
IGM.getSILModule(), substType, IGM.getMaximalTypeExpansionContext()));
Explosion param;
auto ref = rawData;
// We can get a '{ swift.refcounted* }' type for AnyObject on linux.
if (!ti.getStorageType()->isPointerTy() &&
ti.isSingleSwiftRetainablePointer(ResilienceExpansion::Maximal))
ref = subIGF.coerceValue(rawData, ti.getStorageType(),
subIGF.IGM.DataLayout);
else
ref = subIGF.Builder.CreateBitCast(rawData, ti.getStorageType());
param.add(ref);
bindPolymorphicParameter(subIGF, origType, substType, param, paramI);
(void)param.claimAll();
}
emitPolymorphicArguments(subIGF, origType, subs,
&witnessMetadata, polyArgs);
}
auto haveContextArgument =
calleeHasContext || hasSelfContextParameter(origType);
// Witness method calls expect self, followed by the self type followed by,
// the witness table at the end of the parameter list. But polymorphic
// arguments come before this.
bool isWitnessMethodCallee = origType->getRepresentation() ==
SILFunctionTypeRepresentation::WitnessMethod;
bool isMethodCallee =
origType->getRepresentation() == SILFunctionTypeRepresentation::Method;
Explosion witnessMethodSelfValue;
llvm::Value *lastCapturedFieldPtr = nullptr;
// If there's a data pointer required, but it's a swift-retainable
// value being passed as the context, just forward it down.
if (!layout) {
assert(conventions.size() == 1);
// We need to retain the parameter if:
// - we received at +0 (either) and are passing as owned
// - we received as unowned and are passing as guaranteed
auto argConvention = conventions[0];
switch (argConvention) {
case ParameterConvention::Indirect_In:
case ParameterConvention::Direct_Owned:
if (!consumesContext) subIGF.emitNativeStrongRetain(rawData, subIGF.getDefaultAtomicity());
break;
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Direct_Guaranteed:
dependsOnContextLifetime = true;
if (outType->getCalleeConvention() ==
ParameterConvention::Direct_Unowned) {
subIGF.emitNativeStrongRetain(rawData, subIGF.getDefaultAtomicity());
consumesContext = true;
}
break;
case ParameterConvention::Direct_Unowned:
// Make sure we release later if we received at +1.
if (consumesContext)
dependsOnContextLifetime = true;
break;
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
llvm_unreachable("should never happen!");
}
// FIXME: The naming and documentation here isn't ideal. This
// parameter is always present which is evident since we always
// grab a type to cast to, but sometimes after the polymorphic
// arguments. This is just following the lead of existing (and not
// terribly easy to follow) code.
// If there is a context argument, it comes after the polymorphic
// arguments.
auto argIndex = emission->getCurrentArgumentIndex();
if (haveContextArgument)
argIndex += polyArgs.size();
if (origType->isAsync())
argIndex += 1;
llvm::Type *expectedArgTy = origSig.getType()->getParamType(argIndex);
llvm::Value *argValue;
if (isIndirectFormalParameter(argConvention)) {
// We can use rawData's type for the alloca because it is a swift
// retainable value. Defensively, give it that type. We can't use the
// expectedArgType because it might be a generic parameter and therefore
// have opaque storage.
auto RetainableValue = rawData;
if (RetainableValue->getType() != subIGF.IGM.RefCountedPtrTy)
RetainableValue = subIGF.Builder.CreateBitCast(
RetainableValue, subIGF.IGM.RefCountedPtrTy);
needsAllocas = true;
auto temporary = subIGF.createAlloca(RetainableValue->getType(),
subIGF.IGM.getPointerAlignment(),
"partial-apply.context");
subIGF.Builder.CreateStore(RetainableValue, temporary);
argValue = temporary.getAddress();
argValue = subIGF.Builder.CreateBitCast(argValue, expectedArgTy);
} else {
argValue = subIGF.Builder.CreateBitCast(rawData, expectedArgTy);
}
emission->addArgument(argValue);
// If there's a data pointer required, grab it and load out the
// extra, previously-curried parameters.
} else {
unsigned origParamI = outType->getParameters().size();
unsigned extraFieldIndex = 0;
assert(layout->getElements().size() == conventions.size()
&& "conventions don't match context layout");
// Calculate non-fixed field offsets.
HeapNonFixedOffsets offsets(subIGF, *layout);
// Perform the loads.
for (unsigned fieldIndex : indices(layout->getElements())) {
// Ignore the bindings field, which we handled above.
if (layout->hasBindings() &&
fieldIndex == layout->getBindingsIndex())
continue;
auto &fieldLayout = layout->getElement(fieldIndex);
auto &fieldTy = layout->getElementTypes()[fieldIndex];
auto fieldConvention = conventions[fieldIndex];
Address fieldAddr = fieldLayout.project(subIGF, data, offsets);
auto &fieldTI = fieldLayout.getType();
lastCapturedFieldPtr = fieldAddr.getAddress();
Explosion param;
switch (fieldConvention) {
case ParameterConvention::Indirect_In: {
auto initStackCopy = [&addressesToDeallocate, &needsAllocas, ¶m,
&subIGF](const TypeInfo &fieldTI, SILType fieldTy,
Address fieldAddr) {
// The +1 argument is passed indirectly, so we need to copy into a
// temporary.
needsAllocas = true;
auto stackAddr = fieldTI.allocateStack(subIGF, fieldTy, "arg.temp");
auto addressPointer = stackAddr.getAddress().getAddress();
fieldTI.initializeWithCopy(subIGF, stackAddr.getAddress(), fieldAddr,
fieldTy, false);
param.add(addressPointer);
// Remember to deallocate later.
addressesToDeallocate.push_back(
AddressToDeallocate{fieldTy, fieldTI, stackAddr});
};
if (outType->isNoEscape()) {
// If the closure is [onstack] it only captured the address of the
// value. Load that address from the context.
Explosion addressExplosion;
cast<LoadableTypeInfo>(fieldTI).loadAsCopy(subIGF, fieldAddr,
addressExplosion);
assert(fieldTy.isAddress());
auto newFieldTy = fieldTy.getObjectType();
auto &newFieldTI =
subIGF.getTypeInfoForLowered(newFieldTy.getASTType());
fieldAddr =
newFieldTI.getAddressForPointer(addressExplosion.claimNext());
initStackCopy(newFieldTI, newFieldTy, fieldAddr);
} else {
initStackCopy(fieldTI, fieldTy, fieldAddr);
}
break;
}
case ParameterConvention::Indirect_In_Guaranteed:
if (outType->isNoEscape()) {
cast<LoadableTypeInfo>(fieldTI).loadAsCopy(subIGF, fieldAddr, param);
} else {
// The argument is +0, so we can use the address of the param in
// the context directly.
param.add(fieldAddr.getAddress());
dependsOnContextLifetime = true;
}
break;
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
llvm_unreachable("partial application of pack?");
break;
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
// Load the address of the inout parameter.
cast<LoadableTypeInfo>(fieldTI).loadAsCopy(subIGF, fieldAddr, param);
break;
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Direct_Unowned:
// If the type is nontrivial, keep the context alive since the field
// depends on the context to not be deallocated.
if (!fieldTI.isTriviallyDestroyable(ResilienceExpansion::Maximal))
dependsOnContextLifetime = true;
// Load these parameters directly. We can "take" since the parameter is
// +0. This can happen since the context will keep the parameter alive.
cast<LoadableTypeInfo>(fieldTI).loadAsTake(subIGF, fieldAddr, param);
break;
case ParameterConvention::Direct_Owned:
// Copy the value out at +1.
cast<LoadableTypeInfo>(fieldTI).loadAsCopy(subIGF, fieldAddr, param);
break;
}
// Reemit the capture params as unsubstituted.
// Skip empty parameters.
while (origParamI < origType->getParameters().size()) {
if (!isABIIgnoredParameterWithoutStorage(IGM, subIGF, substType,
origParamI))
break;
++origParamI;
}
if (origParamI < origType->getParameters().size()) {
Explosion origParam;
auto origParamInfo = origType->getParameters()[origParamI];
if (hasPolymorphicParams)
bindPolymorphicParameter(subIGF, origType, substType, param,
origParamI);
emitApplyArgument(subIGF, origType, origParamInfo, substType,
emission->getParameterInfo(origParamI), param,
origParam);
bool isWitnessMethodCalleeSelf = (isWitnessMethodCallee &&
origParamI + 1 == origType->getParameters().size());
Explosion arg;
needsAllocas |= emission->transformArgumentToNative(
origParamInfo, origParam,
isWitnessMethodCalleeSelf ? witnessMethodSelfValue : arg);
if (!isWitnessMethodCalleeSelf) {
emission->addArgument(arg, origParamI);
}
++origParamI;
} else {
switch (extraFieldIndex) {
case 0:
emission->addDynamicFunctionContext(param);
break;
case 1:
emission->addDynamicFunctionPointer(param);
break;
default:
llvm_unreachable("unexpected extra field in thick context");
}
++extraFieldIndex;
}
}
// If the parameters can live independent of the context, release it now
// so we can tail call. The safety of this assumes that neither this release
// nor any of the loads can throw.
if (consumesContext && !dependsOnContextLifetime && rawData) {
assert(!outType->isNoEscape() && "Trivial context must not be released");
subIGF.emitNativeStrongRelease(rawData, subIGF.getDefaultAtomicity());
}
// Now that we have bound generic parameters from the captured arguments
// emit the polymorphic arguments.
if (hasPolymorphicParameters(origType)) {
emitPolymorphicArguments(subIGF, origType, subs,
&witnessMetadata, polyArgs);
}
}
// Derive the callee function pointer.
auto fnTy = origSig.getType()->getPointerTo();
FunctionPointer fnPtr = [&]() -> FunctionPointer {
// If we found a function pointer statically, great.
if (staticFnPtr) {
if (staticFnPtr->getPointer(subIGF)->getType() != fnTy) {
auto fnPtr = staticFnPtr->getPointer(subIGF);
fnPtr = subIGF.Builder.CreateBitCast(fnPtr, fnTy);
return FunctionPointer::createUnsigned(origType, fnPtr, origSig);
}
return *staticFnPtr;
}
// Otherwise, it was the last thing we added to the layout.
assert(lastCapturedFieldPtr);
auto authInfo = PointerAuthInfo::emit(
subIGF,
origType->isAsync()
? IGM.getOptions().PointerAuth.AsyncPartialApplyCapture
: IGM.getOptions().PointerAuth.PartialApplyCapture,
lastCapturedFieldPtr, PointerAuthEntity::Special::PartialApplyCapture);
// The dynamic function pointer is packed "last" into the context,
// and we pulled it out as an argument. Just pop it off.
auto fnPtr = emission->getDynamicFunctionPointer();
// It comes out of the context as an i8*. Cast to the function type.
fnPtr = subIGF.Builder.CreateBitCast(fnPtr, fnTy);
return FunctionPointer::createSigned(
origType->isAsync() ? FunctionPointer::Kind::AsyncFunctionPointer
: FunctionPointer::Kind::Function,
fnPtr, authInfo, origSig);
}();
if (origType->isAsync())
emission->mapAsyncParameters(fnPtr);
// Derive the context argument if needed. This is either:
// - the saved context argument, in which case it was the last
// thing we added to the layout other than a possible non-static
// function pointer (which we already popped off of 'args'); or
// - 'self', in which case it was the last formal argument.
// In either case, it's the last thing in 'args'.
llvm::Value *fnContext = nullptr;
if (haveContextArgument)
fnContext = emission->getDynamicFunctionContext();
emission->addPolymorphicArguments(std::move(polyArgs));
// If we have a witness method call, the inner context is the
// witness table. Metadata for Self is derived inside the partial
// application thunk and doesn't need to be stored in the outer
// context.
if (isWitnessMethodCallee) {
assert(fnContext->getType() == IGM.Int8PtrTy);
llvm::Value *wtable = subIGF.Builder.CreateBitCast(
fnContext, IGM.WitnessTablePtrTy);
assert(wtable->getType() == IGM.WitnessTablePtrTy);
witnessMetadata.SelfWitnessTable = wtable;
// Okay, this is where the callee context goes.
} else if (fnContext) {
Explosion explosion;
explosion.add(fnContext);
if (isMethodCallee) {
emission->addSelf(explosion);
} else {
emission->addDynamicFunctionContext(explosion);
}
// Pass a placeholder for thin function calls.
} else if (origType->hasErrorResult() && !origType->isAsync()) {
emission->addArgument(llvm::UndefValue::get(IGM.RefCountedPtrTy));
}
// Add the witness methods self argument before the error parameter after the
// polymorphic arguments.
if (isWitnessMethodCallee)
emission->addSelf(witnessMethodSelfValue);
// Pass down the error result.
if (origType->hasErrorResult()) {
emission->forwardErrorResult();
}
assert(emission->originalParametersConsumed());
if (isWitnessMethodCallee) {
assert(witnessMetadata.SelfMetadata->getType() == IGM.TypeMetadataPtrTy);
emission->addWitnessSelfMetadata(witnessMetadata.SelfMetadata);
assert(witnessMetadata.SelfWitnessTable->getType() == IGM.WitnessTablePtrTy);
emission->addWitnessSelfWitnessTable(witnessMetadata.SelfWitnessTable);
}
llvm::CallInst *call = emission->createCall(fnPtr);
if (!origType->isAsync() && addressesToDeallocate.empty() && !needsAllocas &&
(!consumesContext || !dependsOnContextLifetime))
call->setTailCall();
// Deallocate everything we allocated above.
// FIXME: exceptions?
for (auto &entry : addressesToDeallocate) {
entry.TI.deallocateStack(subIGF, entry.Addr, entry.Type);
}
// If the parameters depended on the context, consume the context now.
if (rawData && consumesContext && dependsOnContextLifetime) {
assert(!outType->isNoEscape() && "Trivial context must not be released");
subIGF.emitNativeStrongRelease(rawData, subIGF.getDefaultAtomicity());
}
emission->createReturn(call);
emission->end();
return asyncFunctionPtr ? asyncFunctionPtr : fwd;
}
/// Emit a partial application thunk for a function pointer applied to a partial
/// set of argument values.
std::optional<StackAddress> irgen::emitFunctionPartialApplication(
IRGenFunction &IGF, SILFunction &SILFn, const FunctionPointer &fn,
llvm::Value *fnContext, Explosion &args, ArrayRef<SILParameterInfo> params,
SubstitutionMap subs, CanSILFunctionType origType,
CanSILFunctionType substType, CanSILFunctionType outType, Explosion &out,
bool isOutlined) {
// If we have a single Swift-refcounted context value, we can adopt it
// directly as our closure context without creating a box and thunk.
enum HasSingleSwiftRefcountedContext { Maybe, Yes, No, Thunkable }
hasSingleSwiftRefcountedContext = Maybe;
std::optional<ParameterConvention> singleRefcountedConvention;
std::optional<llvm::Type *> singleRefCountedType;
SmallVector<const TypeInfo *, 4> argTypeInfos;
SmallVector<SILType, 4> argValTypes;
SmallVector<ParameterConvention, 4> argConventions;
// A context's HeapLayout stores all of the partially applied args.
// A HeapLayout is "fixed" if all of its fields have a fixed layout.
// Otherwise the HeapLayout is "non-fixed".
// Only a non-fixed HeapLayout needs TypeMetadata of the non-fixed fields
// during IRGen of the HeapLayout's destructor function.
// We should not consider partially applied args as TypeMetadata sources,
// because they are available only in the caller and the partial application
// forwarder, but not in the destructor function.
// It is safe to consider partially applied args as TypeMetadata sources for
// "fixed" HeapLayout, because they are not accessed during the IRGen of the
// destructor function.
bool considerParameterSources = true;
for (auto param : params) {
SILType argType = IGF.IGM.silConv.getSILType(
param, origType, IGF.IGM.getMaximalTypeExpansionContext());
auto argLoweringTy = getArgumentLoweringType(argType.getASTType(), param,
outType->isNoEscape());
auto &ti = IGF.getTypeInfoForLowered(argLoweringTy);
if (!isa<FixedTypeInfo>(ti)) {
considerParameterSources = false;
break;
}
}
auto addParam = [&](SILParameterInfo param) {
SILType argType = IGF.IGM.silConv.getSILType(
param, origType, IGF.IGM.getMaximalTypeExpansionContext());
auto argLoweringTy = getArgumentLoweringType(argType.getASTType(), param,
outType->isNoEscape());
auto &ti = IGF.getTypeInfoForLowered(argLoweringTy);
// Empty values don't matter.
auto schema = ti.getSchema();
if (schema.empty() && !param.isFormalIndirect())
return;
argValTypes.push_back(argType);
argConventions.push_back(param.getConvention());
argTypeInfos.push_back(&ti);
// Update the single-swift-refcounted check, unless we already ruled that
// out.
if (hasSingleSwiftRefcountedContext == No)
return;
// Adding nonempty values when we already have a single refcounted pointer
// means we don't have a single value anymore.
if (hasSingleSwiftRefcountedContext != Maybe) {
hasSingleSwiftRefcountedContext = No;
return;
}
if (ti.isSingleSwiftRetainablePointer(ResilienceExpansion::Maximal)) {
hasSingleSwiftRefcountedContext = Yes;
singleRefcountedConvention = param.getConvention();
singleRefCountedType = ti.getStorageType();
} else {
hasSingleSwiftRefcountedContext = No;
}
};
// If the out type is @isolated(any), the storage for the erased isolation
// goes first.
bool hasErasedIsolation = outType->hasErasedIsolation();
if (hasErasedIsolation) {
assert(params[0].getInterfaceType() ==
SILType::getOpaqueIsolationType(IGF.IGM.Context).getASTType());
addParam(params[0]);
}
// Reserve space for polymorphic bindings.
auto bindings = NecessaryBindings::forPartialApplyForwarder(
IGF.IGM, origType, subs, outType->isNoEscape(),
considerParameterSources);
std::optional<unsigned> bindingsIndex;
if (!bindings.empty()) {
bindingsIndex = argTypeInfos.size();
hasSingleSwiftRefcountedContext = No;
auto bindingsSize = bindings.getBufferSize(IGF.IGM);
auto &bindingsTI = IGF.IGM.getOpaqueStorageTypeInfo(bindingsSize,
IGF.IGM.getPointerAlignment());
argValTypes.push_back(SILType());
argTypeInfos.push_back(&bindingsTI);
argConventions.push_back(ParameterConvention::Direct_Unowned);
}
// Collect the type infos for the context parameters.
for (auto param : params.slice(hasErasedIsolation ? 1 : 0)) {
addParam(param);
}
// We can't just bitcast if there's an error parameter to forward.
// This is an unfortunate restriction arising from the fact that a
// thin throwing function will have the signature:
// %result (%arg*, %context*, %error*)
// but the output signature needs to be
// %result (%context*, %error*)
//
// 'swifterror' fixes this physically, but there's still a risk of
// miscompiles because the LLVM optimizer may forward arguments
// positionally without considering 'swifterror'.
//
// Note, however, that we will override this decision below if the
// only thing we have to forward is already a context pointer.
// That's fine.
//
// The proper long-term fix is that closure functions should be
// emitted with a convention that takes the closure box as the
// context parameter. When we do that, all of this code will
// disappear.
if (hasSingleSwiftRefcountedContext == Yes &&
origType->hasErrorResult()) {
hasSingleSwiftRefcountedContext = Thunkable;
}
// If the function pointer is a witness method call, include the witness
// table in the context.
if (origType->getRepresentation() ==
SILFunctionTypeRepresentation::WitnessMethod) {
llvm::Value *wtable = fnContext;
assert(wtable->getType() == IGF.IGM.WitnessTablePtrTy);
// TheRawPointerType lowers as i8*, not i8**.
args.add(IGF.Builder.CreateBitCast(wtable, IGF.IGM.Int8PtrTy));
argValTypes.push_back(SILType::getRawPointerType(IGF.IGM.Context));
argTypeInfos.push_back(
&IGF.getTypeInfoForLowered(IGF.IGM.Context.TheRawPointerType));
argConventions.push_back(ParameterConvention::Direct_Unowned);
hasSingleSwiftRefcountedContext = No;
// Otherwise, we might have a reference-counted context pointer.
} else if (fnContext) {
args.add(fnContext);
argValTypes.push_back(SILType::getNativeObjectType(IGF.IGM.Context));
argConventions.push_back(origType->getCalleeConvention());
argTypeInfos.push_back(
&IGF.getTypeInfoForLowered(IGF.IGM.Context.TheNativeObjectType));
// If this is the only context argument we end up with, we can just share
// it.
if (args.size() == 1) {
assert(bindings.empty());
hasSingleSwiftRefcountedContext = Yes;
singleRefcountedConvention = origType->getCalleeConvention();
singleRefCountedType = IGF.IGM.getNativeObjectTypeInfo().getStorageType();
}
}
auto outAuthInfo = PointerAuthInfo::forFunctionPointer(IGF.IGM, outType);
// If we have a single refcounted pointer context (and no polymorphic args
// to capture), and the dest ownership semantics match the parameter's,
// skip building the box and thunk and just take the pointer as
// context.
// TODO: We can only do this and use swiftself if all our swiftcc emit the
// last parameter that fits into a register as swiftself.
// We should get this optimization back using the @convention(closure) whose
// box argument should just be swift self.
if (/* DISABLES CODE */ (false) &&
!origType->isPolymorphic() &&
hasSingleSwiftRefcountedContext == Yes &&
outType->getCalleeConvention() == *singleRefcountedConvention) {
assert(args.size() == 1);
auto fnPtr = emitPointerAuthResign(IGF, fn, outAuthInfo).getPointer(IGF);
fnPtr = IGF.Builder.CreateBitCast(fnPtr, IGF.IGM.Int8PtrTy);
out.add(fnPtr);
llvm::Value *ctx = args.claimNext();
ctx = IGF.Builder.CreateBitCast(ctx, IGF.IGM.RefCountedPtrTy);
out.add(ctx);
return {};
}
std::optional<FunctionPointer> staticFn;
if (fn.isConstant()) staticFn = fn;
// If the function pointer is dynamic, include it in the context.
size_t nonStaticFnIndex = ~size_t(0);
if (!staticFn) {
nonStaticFnIndex = argTypeInfos.size();
argValTypes.push_back(SILType::getRawPointerType(IGF.IGM.Context));
argTypeInfos.push_back(
&IGF.getTypeInfoForLowered(IGF.IGM.Context.TheRawPointerType));
argConventions.push_back(ParameterConvention::Direct_Unowned);
hasSingleSwiftRefcountedContext = No;
}
// If we only need to capture a single Swift-refcounted object, we
// still need to build a thunk, but we don't need to allocate anything.
if ((hasSingleSwiftRefcountedContext == Yes ||
hasSingleSwiftRefcountedContext == Thunkable) &&
*singleRefcountedConvention != ParameterConvention::Indirect_Inout &&
*singleRefcountedConvention !=
ParameterConvention::Indirect_InoutAliasable) {
assert(bindings.empty());
assert(args.size() == 1);
assert(!substType->hasErasedIsolation());
assert(!hasErasedIsolation);
auto origSig = IGF.IGM.getSignature(origType);
llvm::Value *forwarder =
emitPartialApplicationForwarder(IGF.IGM, staticFn, fnContext != nullptr,
origSig, origType, substType,
outType, subs, nullptr, argConventions);
forwarder = emitPointerAuthSign(IGF, forwarder, outAuthInfo);
forwarder = IGF.Builder.CreateBitCast(forwarder, IGF.IGM.Int8PtrTy);
out.add(forwarder);
llvm::Value *ctx = args.claimNext();
if (isIndirectFormalParameter(*singleRefcountedConvention))
ctx = IGF.Builder.CreateLoad(
Address(ctx, *singleRefCountedType, IGF.IGM.getPointerAlignment()));
auto expectedClosureTy =
outType->isNoEscape() ? IGF.IGM.OpaquePtrTy : IGF.IGM.RefCountedPtrTy;
// We might get a struct containing a pointer e.g type <{ %AClass* }>
if (ctx->getType() != expectedClosureTy)
ctx = IGF.coerceValue(ctx, expectedClosureTy, IGF.IGM.DataLayout);
out.add(ctx);
if (outType->isNoEscape())
return StackAddress();
return {};
}
// Store the context arguments on the heap/stack.
assert(argValTypes.size() == argTypeInfos.size()
&& argTypeInfos.size() == argConventions.size()
&& "argument info lists out of sync");
HeapLayout layout(IGF.IGM, LayoutStrategy::Optimal, argValTypes, argTypeInfos,
/*typeToFill*/ nullptr, std::move(bindings),
bindingsIndex ? *bindingsIndex : 0);
#ifndef NDEBUG
if (hasErasedIsolation) {
auto &isolationFieldLayout = layout.getElement(0);
assert(isolationFieldLayout.hasByteOffset() &&
isolationFieldLayout.getByteOffset() ==
getOffsetOfOpaqueIsolationField(IGF.IGM,
cast<LoadableTypeInfo>(isolationFieldLayout.getType())));
}
#endif
llvm::Value *data;
std::optional<StackAddress> stackAddr;
if (args.empty() && layout.isKnownEmpty()) {
if (outType->isNoEscape())
data = llvm::ConstantPointerNull::get(IGF.IGM.OpaquePtrTy);
else
data = IGF.IGM.RefCountedNull;
} else {
// Allocate a new object on the heap or stack.
HeapNonFixedOffsets offsets(IGF, layout);
if (outType->isNoEscape()) {
stackAddr = IGF.emitDynamicAlloca(
IGF.IGM.Int8Ty,
layout.isFixedLayout() ? layout.emitSize(IGF.IGM) : offsets.getSize(),
Alignment(16));
stackAddr = stackAddr->withAddress(IGF.Builder.CreateElementBitCast(
stackAddr->getAddress(), IGF.IGM.OpaqueTy));
data = stackAddr->getAddress().getAddress();
} else {
auto descriptor = IGF.IGM.getAddrOfCaptureDescriptor(SILFn, origType,
substType, subs,
layout);
data = IGF.emitUnmanagedAlloc(layout, "closure", descriptor, &offsets);
}
Address dataAddr = layout.emitCastTo(IGF, data);
// Store the context arguments.
for (unsigned i : indices(layout.getElements())) {
auto &fieldLayout = layout.getElement(i);
Address fieldAddr = fieldLayout.project(IGF, dataAddr, offsets);
// Handle necessary bindings specially.
if (i == bindingsIndex) {
layout.getBindings().save(IGF, fieldAddr);
continue;
}
auto &fieldTy = layout.getElementTypes()[i];
// We don't add non-constant function pointers to the explosion above,
// so we need to handle them specially now.
if (i == nonStaticFnIndex) {
llvm::Value *fnPtr = fn.getRawPointer();
if (auto &schema =
origType->isAsync()
? IGF.getOptions().PointerAuth.AsyncPartialApplyCapture
: IGF.getOptions().PointerAuth.PartialApplyCapture) {
auto schemaAuthInfo = PointerAuthInfo::emit(
IGF, schema, fieldAddr.getAddress(),
PointerAuthEntity::Special::PartialApplyCapture);
fnPtr =
emitPointerAuthResign(IGF, fn, schemaAuthInfo).getRawPointer();
}
fnPtr = IGF.Builder.CreateBitCast(fnPtr, IGF.IGM.Int8PtrTy);
IGF.Builder.CreateStore(fnPtr, fieldAddr);
continue;
}
switch (argConventions[i]) {
// Take indirect value arguments out of memory.
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Guaranteed: {
if (outType->isNoEscape()) {
cast<LoadableTypeInfo>(fieldLayout.getType())
.initialize(IGF, args, fieldAddr, isOutlined);
} else {
auto addr =
fieldLayout.getType().getAddressForPointer(args.claimNext());
fieldLayout.getType().initializeWithTake(IGF, fieldAddr, addr,
fieldTy, isOutlined);
}
break;
}
// Take direct value arguments and inout pointers by value.
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Owned:
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
cast<LoadableTypeInfo>(fieldLayout.getType())
.initialize(IGF, args, fieldAddr, isOutlined);
break;
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
llvm_unreachable("partial application of pack?");
break;
}
}
}
assert(args.empty() && "unused args in partial application?!");
// Create the forwarding stub.
auto origSig = IGF.IGM.getSignature(origType);
llvm::Value *forwarder = emitPartialApplicationForwarder(
IGF.IGM, staticFn, fnContext != nullptr, origSig, origType, substType,
outType, subs, &layout, argConventions);
forwarder = emitPointerAuthSign(IGF, forwarder, outAuthInfo);
forwarder = IGF.Builder.CreateBitCast(forwarder, IGF.IGM.Int8PtrTy);
out.add(forwarder);
out.add(data);
return stackAddr;
}
/// Emit the block copy helper for a block.
static llvm::Function *emitBlockCopyHelper(IRGenModule &IGM,
CanSILBlockStorageType blockTy,
const BlockStorageTypeInfo &blockTL){
// See if we've produced a block copy helper for this type before.
// TODO
// Create the helper.
llvm::Type *args[] = {
blockTL.getStorageType()->getPointerTo(),
blockTL.getStorageType()->getPointerTo(),
};
auto copyTy = llvm::FunctionType::get(IGM.VoidTy, args, /*vararg*/ false);
// TODO: Give these predictable mangled names and shared linkage.
auto func = llvm::Function::Create(copyTy, llvm::GlobalValue::InternalLinkage,
"block_copy_helper",
IGM.getModule());
func->setAttributes(IGM.constructInitialAttributes());
IRGenFunction IGF(IGM, func);
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(IGF, func);
// Copy the captures from the source to the destination.
Explosion params = IGF.collectParameters();
auto dest = Address(params.claimNext(), blockTL.getStorageType(),
blockTL.getFixedAlignment());
auto src = Address(params.claimNext(), blockTL.getStorageType(),
blockTL.getFixedAlignment());
auto destCapture = blockTL.projectCapture(IGF, dest);
auto srcCapture = blockTL.projectCapture(IGF, src);
auto &captureTL = IGM.getTypeInfoForLowered(blockTy->getCaptureType());
captureTL.initializeWithCopy(IGF, destCapture, srcCapture,
blockTy->getCaptureAddressType(), false);
IGF.Builder.CreateRetVoid();
return func;
}
/// Emit the block copy helper for a block.
static llvm::Function *emitBlockDisposeHelper(IRGenModule &IGM,
CanSILBlockStorageType blockTy,
const BlockStorageTypeInfo &blockTL){
// See if we've produced a block destroy helper for this type before.
// TODO
// Create the helper.
auto destroyTy = llvm::FunctionType::get(IGM.VoidTy,
blockTL.getStorageType()->getPointerTo(),
/*vararg*/ false);
// TODO: Give these predictable mangled names and shared linkage.
auto func = llvm::Function::Create(destroyTy,
llvm::GlobalValue::InternalLinkage,
"block_destroy_helper",
IGM.getModule());
func->setAttributes(IGM.constructInitialAttributes());
IRGenFunction IGF(IGM, func);
assert(!func->hasFnAttribute(llvm::Attribute::SanitizeThread));
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(IGF, func);
// Destroy the captures.
Explosion params = IGF.collectParameters();
auto storage = Address(params.claimNext(), blockTL.getStorageType(),
blockTL.getFixedAlignment());
auto capture = blockTL.projectCapture(IGF, storage);
auto &captureTL = IGM.getTypeInfoForLowered(blockTy->getCaptureType());
captureTL.destroy(IGF, capture, blockTy->getCaptureAddressType(),
false /*block storage code path: never outlined*/);
IGF.Builder.CreateRetVoid();
return func;
}
/// Emit the block header into a block storage slot.
void irgen::emitBlockHeader(IRGenFunction &IGF,
Address storage,
CanSILBlockStorageType blockTy,
llvm::Constant *invokeFunction,
CanSILFunctionType invokeTy,
ForeignFunctionInfo foreignInfo) {
auto &storageTL
= IGF.getTypeInfoForLowered(blockTy).as<BlockStorageTypeInfo>();
Address headerAddr = storageTL.projectBlockHeader(IGF, storage);
//
// Initialize the "isa" pointer, which is _NSConcreteStackBlock.
auto NSConcreteStackBlock =
IGF.IGM.getModule()->getOrInsertGlobal("_NSConcreteStackBlock",
IGF.IGM.ObjCClassStructTy);
ApplyIRLinkage(IRLinkage::ExternalImport)
.to(cast<llvm::GlobalVariable>(NSConcreteStackBlock));
//
// Set the flags.
// - HAS_COPY_DISPOSE unless the capture type is POD
uint32_t flags = 0;
auto &captureTL
= IGF.getTypeInfoForLowered(blockTy->getCaptureType());
bool isTriviallyDestroyable = captureTL.isTriviallyDestroyable(ResilienceExpansion::Maximal);
if (!isTriviallyDestroyable)
flags |= 1 << 25;
// - HAS_STRET, if the invoke function is sret
assert(foreignInfo.ClangInfo);
if (foreignInfo.ClangInfo->getReturnInfo().isIndirect())
flags |= 1 << 29;
// - HAS_SIGNATURE
flags |= 1 << 30;
auto flagsVal = llvm::ConstantInt::get(IGF.IGM.Int32Ty, flags);
// Collect the reserved and invoke pointer fields.
auto reserved = llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0);
llvm::Value *invokeVal = llvm::ConstantExpr::getBitCast(invokeFunction,
IGF.IGM.FunctionPtrTy);
// Build the block descriptor.
ConstantInitBuilder builder(IGF.IGM);
auto descriptorFields = builder.beginStruct();
const clang::ASTContext &ASTContext = IGF.IGM.getClangASTContext();
llvm::IntegerType *UnsignedLongTy =
llvm::IntegerType::get(IGF.IGM.getLLVMContext(),
ASTContext.getTypeSize(ASTContext.UnsignedLongTy));
descriptorFields.addInt(UnsignedLongTy, 0);
descriptorFields.addInt(UnsignedLongTy,
storageTL.getFixedSize().getValue());
if (!isTriviallyDestroyable) {
// Define the copy and dispose helpers.
descriptorFields.addSignedPointer(
emitBlockCopyHelper(IGF.IGM, blockTy, storageTL),
IGF.getOptions().PointerAuth.BlockHelperFunctionPointers,
PointerAuthEntity::Special::BlockCopyHelper);
descriptorFields.addSignedPointer(
emitBlockDisposeHelper(IGF.IGM, blockTy, storageTL),
IGF.getOptions().PointerAuth.BlockHelperFunctionPointers,
PointerAuthEntity::Special::BlockDisposeHelper);
}
// Build the descriptor signature.
descriptorFields.add(getBlockTypeExtendedEncoding(IGF.IGM, invokeTy));
// Create the descriptor.
auto descriptor =
descriptorFields.finishAndCreateGlobal("block_descriptor",
IGF.IGM.getPointerAlignment(),
/*constant*/ true);
auto descriptorVal = llvm::ConstantExpr::getBitCast(descriptor,
IGF.IGM.Int8PtrTy);
// Store the block header.
auto layout = IGF.IGM.DataLayout.getStructLayout(IGF.IGM.ObjCBlockStructTy);
IGF.Builder.CreateStore(NSConcreteStackBlock,
IGF.Builder.CreateStructGEP(headerAddr, 0, layout));
IGF.Builder.CreateStore(flagsVal,
IGF.Builder.CreateStructGEP(headerAddr, 1, layout));
IGF.Builder.CreateStore(reserved,
IGF.Builder.CreateStructGEP(headerAddr, 2, layout));
auto invokeAddr = IGF.Builder.CreateStructGEP(headerAddr, 3, layout);
if (auto &schema =
IGF.getOptions().PointerAuth.BlockInvocationFunctionPointers) {
auto invokeAuthInfo = PointerAuthInfo::emit(IGF, schema,
invokeAddr.getAddress(),
invokeTy);
invokeVal = emitPointerAuthSign(IGF, invokeVal, invokeAuthInfo);
}
IGF.Builder.CreateStore(invokeVal, invokeAddr);
IGF.Builder.CreateStore(descriptorVal,
IGF.Builder.CreateStructGEP(headerAddr, 4, layout));
}
llvm::Value *
IRGenFunction::emitAsyncResumeProjectContext(llvm::Value *calleeContext) {
auto addr = Builder.CreateBitOrPointerCast(calleeContext, IGM.Int8PtrPtrTy);
Address callerContextAddr(addr, IGM.Int8PtrTy, IGM.getPointerAlignment());
llvm::Value *callerContext = Builder.CreateLoad(callerContextAddr);
if (auto schema = IGM.getOptions().PointerAuth.AsyncContextParent) {
auto authInfo =
PointerAuthInfo::emit(*this, schema, addr, PointerAuthEntity());
callerContext = emitPointerAuthAuth(*this, callerContext, authInfo);
}
// TODO: remove this once all platforms support lowering the intrinsic.
// At the time of this writing only arm64 supports it.
if (IGM.TargetInfo.canUseSwiftAsyncContextAddrIntrinsic()) {
llvm::Value *storedCallerContext = callerContext;
auto contextLocationInExtendedFrame =
Address(Builder.CreateIntrinsicCall(
llvm::Intrinsic::swift_async_context_addr, {}),
IGM.Int8PtrTy, IGM.getPointerAlignment());
// On arm64e we need to sign this pointer address discriminated
// with 0xc31a and process dependent key.
if (auto schema =
IGM.getOptions().PointerAuth.AsyncContextExtendedFrameEntry) {
auto authInfo = PointerAuthInfo::emit(
*this, schema, contextLocationInExtendedFrame.getAddress(),
PointerAuthEntity());
storedCallerContext =
emitPointerAuthSign(*this, storedCallerContext, authInfo);
}
Builder.CreateStore(storedCallerContext, contextLocationInExtendedFrame);
}
return callerContext;
}
llvm::Function *IRGenFunction::getOrCreateResumePrjFn(bool forPrologue) {
// The prologue version lacks artificial debug info as this would cause
// verification errors when it gets inlined.
auto name = forPrologue ? "__swift_async_resume_project_context_prologue"
: "__swift_async_resume_project_context";
auto Fn = cast<llvm::Function>(IGM.getOrCreateHelperFunction(
name, IGM.Int8PtrTy, {IGM.Int8PtrTy},
[&](IRGenFunction &IGF) {
auto it = IGF.CurFn->arg_begin();
auto &Builder = IGF.Builder;
auto addr = &(*it);
auto callerContext = IGF.emitAsyncResumeProjectContext(addr);
Builder.CreateRet(callerContext);
},
false /*isNoInline*/, forPrologue));
Fn->addFnAttr(llvm::Attribute::AlwaysInline);
return Fn;
}
llvm::Function *
IRGenFunction::createAsyncDispatchFn(const FunctionPointer &fnPtr,
ArrayRef<llvm::Value *> args) {
SmallVector<llvm::Type*, 8> argTys;
for (auto arg : args) {
auto *ty = arg->getType();
argTys.push_back(ty);
}
return createAsyncDispatchFn(fnPtr, argTys);
}
llvm::Function *
IRGenFunction::createAsyncDispatchFn(const FunctionPointer &fnPtr,
ArrayRef<llvm::Type *> argTypes) {
SmallVector<llvm::Type*, 8> argTys;
argTys.push_back(IGM.Int8PtrTy); // Function pointer to be called.
auto originalAuthInfo = fnPtr.getAuthInfo();
if (fnPtr.getAuthInfo()) {
argTys.push_back(IGM.Int64Ty); // Discriminator for the function pointer.
}
for (auto ty : argTypes) {
argTys.push_back(ty);
}
auto calleeFnPtrType = fnPtr.getRawPointer()->getType();
auto *dispatchFnTy =
llvm::FunctionType::get(IGM.VoidTy, argTys, false /*vaargs*/);
llvm::SmallString<40> name;
llvm::raw_svector_ostream(name) << CurFn->getName() << ".0";
llvm::Function *dispatch =
llvm::Function::Create(dispatchFnTy, llvm::Function::InternalLinkage,
llvm::StringRef(name), &IGM.Module);
dispatch->setCallingConv(IGM.SwiftAsyncCC);
dispatch->setDoesNotThrow();
dispatch->addFnAttr(llvm::Attribute::AlwaysInline);
IRGenFunction dispatchIGF(IGM, dispatch);
// Don't emit debug info if we are generating a function for the prologue.
if (IGM.DebugInfo && Builder.getCurrentDebugLocation())
IGM.DebugInfo->emitOutlinedFunction(dispatchIGF, dispatch, CurFn->getName());
auto &Builder = dispatchIGF.Builder;
auto it = dispatchIGF.CurFn->arg_begin(), end = dispatchIGF.CurFn->arg_end();
llvm::Value *fnPtrArg = &*(it++);
llvm::Value *discriminatorArg = ((bool)originalAuthInfo) ? &*(it++) : nullptr;
SmallVector<llvm::Value *, 8> callArgs;
for (; it != end; ++it) {
callArgs.push_back(&*it);
}
fnPtrArg = Builder.CreateBitOrPointerCast(fnPtrArg, calleeFnPtrType);
PointerAuthInfo newAuthInfo =
((bool)originalAuthInfo)
? PointerAuthInfo(fnPtr.getAuthInfo().getKey(), discriminatorArg)
: originalAuthInfo;
auto callee = FunctionPointer::createSigned(
fnPtr.getKind(), fnPtrArg, newAuthInfo, fnPtr.getSignature());
auto call = Builder.CreateCall(callee, callArgs);
call->setTailCallKind(IGM.AsyncTailCallKind);
Builder.CreateRetVoid();
return dispatch;
}
void IRGenFunction::emitSuspensionPoint(Explosion &toExecutor,
llvm::Value *asyncResume) {
// Setup the suspend point.
SmallVector<llvm::Value *, 8> arguments;
unsigned swiftAsyncContextIndex = 0;
arguments.push_back(IGM.getInt32(swiftAsyncContextIndex)); // context index
arguments.push_back(asyncResume);
auto resumeProjFn = getOrCreateResumeFromSuspensionFn();
arguments.push_back(
Builder.CreateBitOrPointerCast(resumeProjFn, IGM.Int8PtrTy));
llvm::Function *suspendFn = createAsyncSuspendFn();
arguments.push_back(
Builder.CreateBitOrPointerCast(suspendFn, IGM.Int8PtrTy));
// Extra arguments to pass to the suspension function.
arguments.push_back(asyncResume);
arguments.push_back(toExecutor.claimNext());
arguments.push_back(toExecutor.claimNext());
arguments.push_back(getAsyncContext());
auto resultTy = llvm::StructType::get(IGM.getLLVMContext(), {IGM.Int8PtrTy},
false /*packed*/);
emitSuspendAsyncCall(swiftAsyncContextIndex, resultTy, arguments);
}
llvm::Function *IRGenFunction::getOrCreateResumeFromSuspensionFn() {
auto name = "__swift_async_resume_get_context";
auto fn = cast<llvm::Function>(IGM.getOrCreateHelperFunction(
name, IGM.Int8PtrTy, {IGM.Int8PtrTy},
[&](IRGenFunction &IGF) {
auto &Builder = IGF.Builder;
Builder.CreateRet(&*IGF.CurFn->arg_begin());
},
false /*isNoInline*/));
fn->addFnAttr(llvm::Attribute::AlwaysInline);
return fn;
}
llvm::Function *IRGenFunction::createAsyncSuspendFn() {
llvm::SmallString<40> nameBuffer;
llvm::raw_svector_ostream(nameBuffer) << CurFn->getName() << ".1";
StringRef name(nameBuffer);
if (llvm::GlobalValue *F = IGM.Module.getNamedValue(name))
return cast<llvm::Function>(F);
// The parameters here match the extra arguments passed to
// @llvm.coro.suspend.async by emitSuspensionPoint.
SmallVector<llvm::Type*, 8> argTys;
argTys.push_back(IGM.Int8PtrTy); // resume function
argTys.push_back(IGM.ExecutorFirstTy); // target executor (first half)
argTys.push_back(IGM.ExecutorSecondTy); // target executor (second half)
argTys.push_back(getAsyncContext()->getType()); // current context
auto *suspendFnTy =
llvm::FunctionType::get(IGM.VoidTy, argTys, false /*vaargs*/);
llvm::Function *suspendFn =
llvm::Function::Create(suspendFnTy, llvm::Function::InternalLinkage,
name, &IGM.Module);
suspendFn->setCallingConv(IGM.SwiftAsyncCC);
suspendFn->setDoesNotThrow();
suspendFn->addFnAttr(llvm::Attribute::AlwaysInline);
IRGenFunction suspendIGF(IGM, suspendFn);
if (IGM.DebugInfo)
IGM.DebugInfo->emitOutlinedFunction(suspendIGF, suspendFn,
CurFn->getName());
auto &Builder = suspendIGF.Builder;
llvm::Value *resumeFunction = suspendFn->getArg(0);
llvm::Value *targetExecutorFirst = suspendFn->getArg(1);
llvm::Value *targetExecutorSecond = suspendFn->getArg(2);
llvm::Value *context = suspendFn->getArg(3);
context = Builder.CreateBitCast(context, IGM.SwiftContextPtrTy);
// Sign the task resume function with the C function pointer schema.
if (auto schema = IGM.getOptions().PointerAuth.FunctionPointers) {
// Use the Clang type for TaskContinuationFunction*
// to make this work with type diversity.
if (schema.hasOtherDiscrimination())
schema = IGM.getOptions().PointerAuth.ClangTypeTaskContinuationFunction;
auto authInfo = PointerAuthInfo::emit(suspendIGF, schema, nullptr,
PointerAuthEntity());
resumeFunction = emitPointerAuthSign(suspendIGF, resumeFunction, authInfo);
}
auto *suspendCall = Builder.CreateCall(
IGM.getTaskSwitchFuncFunctionPointer(),
{context, resumeFunction, targetExecutorFirst, targetExecutorSecond});
suspendCall->setCallingConv(IGM.SwiftAsyncCC);
suspendCall->setDoesNotThrow();
suspendCall->setTailCallKind(IGM.AsyncTailCallKind);
llvm::AttributeList attrs = suspendCall->getAttributes();
IGM.addSwiftAsyncContextAttributes(attrs, /*context arg index*/ 0);
suspendCall->setAttributes(attrs);
Builder.CreateRetVoid();
return suspendFn;
}
|