File: GenObjC.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1750 lines) | stat: -rw-r--r-- 69,140 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
//===--- GenObjC.cpp - Objective-C interaction ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
//  This file implements bridging to Objective-C.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/InlineAsm.h"

#include "clang/AST/ASTContext.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/Basic/CharInfo.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "clang/CodeGen/CodeGenABITypes.h"

#include "swift/AST/Decl.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/Types.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/Demangling/ManglingMacros.h"
#include "swift/IRGen/Linking.h"
#include "swift/SIL/SILModule.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclObjC.h"

#include "CallEmission.h"
#include "ConstantBuilder.h"
#include "Explosion.h"
#include "GenCall.h"
#include "GenClass.h"
#include "GenFunc.h"
#include "GenHeap.h"
#include "GenPointerAuth.h"
#include "GenProto.h"
#include "GenType.h"
#include "HeapTypeInfo.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "MetadataRequest.h"
#include "NativeConventionSchema.h"
#include "ScalarTypeInfo.h"
#include "StructLayout.h"

#include "GenObjC.h"

using namespace swift;
using namespace irgen;

namespace {

/// A utility class that saves the original type of a value in its constructor,
/// casts the value to i8*, and then allows values later to be casted to the
/// original type.
struct CastToInt8PtrTy {
  llvm::Type *OrigTy;

  CastToInt8PtrTy(IRGenFunction &IGF, llvm::Value *&value)
      : OrigTy(value->getType()) {
    if (OrigTy->isPointerTy())
      value = IGF.Builder.CreateBitCast(value, IGF.IGM.Int8PtrTy);
    else
      value = IGF.Builder.CreateIntToPtr(value, IGF.IGM.Int8PtrTy);
  }

  llvm::Value *restore(IRGenFunction &IGF, llvm::Value *value) const {
    assert(value->getType() == IGF.IGM.Int8PtrTy);
    if (OrigTy->isPointerTy())
      return IGF.Builder.CreateBitCast(value, OrigTy);
    else
      return IGF.Builder.CreatePtrToInt(value, OrigTy);
  }
};

}

void IRGenFunction::emitObjCStrongRelease(llvm::Value *value) {
  CastToInt8PtrTy savedType(*this, value);
  Builder.CreateIntrinsicCall(llvm::Intrinsic::objc_release, value);
}

void IRGenFunction::emitObjCStrongRetain(llvm::Value *v) {
  emitObjCRetainCall(v);
}

llvm::Value *IRGenFunction::emitObjCRetainCall(llvm::Value *value) {
  CastToInt8PtrTy savedType(*this, value);
  auto call = Builder.CreateIntrinsicCall(llvm::Intrinsic::objc_retain, value);
  return savedType.restore(*this, call);
}

llvm::Value *IRGenFunction::emitObjCAutoreleaseCall(llvm::Value *value) {
  CastToInt8PtrTy savedType(*this, value);
  auto call = Builder.CreateIntrinsicCall(llvm::Intrinsic::objc_autorelease,
                                          value);
  return savedType.restore(*this, call);
}

llvm::InlineAsm *IRGenModule::getObjCRetainAutoreleasedReturnValueMarker() {
  // Check to see if we've already computed the market.  Note that we
  // might have cached a null marker, and that's fine.
  auto &cache = ObjCRetainAutoreleasedReturnValueMarker;
  if (cache.has_value())
    return cache.value();

  // Ask the target for the string.
  StringRef asmString = TargetInfo.ObjCRetainAutoreleasedReturnValueMarker;

  // If the string is empty, just leave, remembering that we did all this.
  if (asmString.empty()) {
    cache = nullptr;
    return nullptr;
  }

  // If we're emitting optimized code, record the string in the module
  // and let the late ARC pass insert it, but don't generate any calls
  // right now.
  if (IRGen.Opts.shouldOptimize()) {
    const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
    if (!Module.getModuleFlag(markerKey)) {
      auto *str = llvm::MDString::get(getLLVMContext(), asmString);
      Module.addModuleFlag(llvm::Module::Error, markerKey, str);
    }

    cache = nullptr;

  // Otherwise, create the module
  } else {
    llvm::FunctionType *type =
      llvm::FunctionType::get(VoidTy, /*variadic*/false);
    cache = llvm::InlineAsm::get(type, asmString, "", /*sideeffects*/ true);
  }

  return cache.value();
}

/// Reclaim an autoreleased return value.
llvm::Value *irgen::emitObjCRetainAutoreleasedReturnValue(IRGenFunction &IGF,
                                                          llvm::Value *value) {
  // Call the inline-assembly marker if we need one.
  if (auto marker = IGF.IGM.getObjCRetainAutoreleasedReturnValueMarker()) {
    IGF.Builder.CreateAsmCall(marker, {});
  }

  CastToInt8PtrTy savedType(IGF, value);

  auto call = IGF.Builder.CreateIntrinsicCall(
                     llvm::Intrinsic::objc_retainAutoreleasedReturnValue, value);

  const llvm::Triple &triple = IGF.IGM.Context.LangOpts.Target;
  if (triple.getArch() == llvm::Triple::x86_64) {
    // Don't tail call objc_retainAutoreleasedReturnValue. This blocks the
    // autoreleased return optimization.
    // callq  0x01ec08 ; symbol stub for: objc_msgSend
    // movq   %rax, %rdi
    // popq   %rbp  ;<== Blocks the handshake from objc_autoreleaseReturnValue
    // jmp    0x01ec20 ; symbol stub for: objc_retainAutoreleasedReturnValue
    call->setTailCallKind(llvm::CallInst::TCK_NoTail);
  }

  return savedType.restore(IGF, call);
}

/// Autorelease a return value.
llvm::Value *irgen::emitObjCAutoreleaseReturnValue(IRGenFunction &IGF,
                                                   llvm::Value *value) {
  CastToInt8PtrTy savedType(IGF, value);

  auto call = IGF.Builder.CreateIntrinsicCall(
                llvm::Intrinsic::objc_autoreleaseReturnValue, value);
  call->setDoesNotThrow();
  call->setTailCall(); // force tail calls at -O0
  return savedType.restore(IGF, call);
}

namespace {
  /// A type-info implementation suitable for AnyObject on platforms with ObjC
  /// interop.
  class UnknownTypeInfo : public HeapTypeInfo<UnknownTypeInfo> {
  public:
    UnknownTypeInfo(llvm::PointerType *storageType, Size size,
                 SpareBitVector spareBits, Alignment align)
      : HeapTypeInfo(ReferenceCounting::Unknown, storageType, size, spareBits,
                     align) {
    }

    /// AnyObject requires ObjC reference-counting.
    ReferenceCounting getReferenceCounting() const {
      return ReferenceCounting::Unknown;
    }
  };
} // end anonymous namespace

const LoadableTypeInfo *TypeConverter::convertBuiltinUnknownObject() {
  // UnknownObject is only interestingly different from NativeObject on
  // platforms with ObjC interop.
  if (IGM.Context.LangOpts.EnableObjCInterop) {
    return new UnknownTypeInfo(IGM.ObjCPtrTy, IGM.getPointerSize(),
                               IGM.getHeapObjectSpareBits(),
                               IGM.getPointerAlignment());
  }
  
  // Without ObjC interop, UnknownObject handles just like a NativeObject.
  return convertBuiltinNativeObject();
}

namespace {
  /// A type info implementation for BridgeObject
  class BridgeObjectTypeInfo : public HeapTypeInfo<BridgeObjectTypeInfo> {
  public:
    BridgeObjectTypeInfo(llvm::PointerType *storageType, Size size,
                 SpareBitVector spareBits, Alignment align)
      : HeapTypeInfo(ReferenceCounting::Bridge, storageType, size, spareBits,
                     align) {}

    /// Builtin.BridgeObject uses its own specialized refcounting implementation.
    ReferenceCounting getReferenceCounting() const {
      return ReferenceCounting::Bridge;
    }
  };
} // end anonymous namespace


const LoadableTypeInfo *TypeConverter::convertBuiltinBridgeObject() {
  return new BridgeObjectTypeInfo(IGM.BridgeObjectPtrTy, IGM.getPointerSize(),
      SpareBitVector::getConstant(IGM.getPointerSize().getValueInBits(), false),
                                  IGM.getPointerAlignment());
}

const TypeInfo &IRGenModule::getObjCClassPtrTypeInfo() {
  return Types.getObjCClassPtrTypeInfo();
}

const TypeInfo &TypeConverter::getObjCClassPtrTypeInfo() {
  // ObjC class pointers look like unmanaged (untagged) object references.
  if (ObjCClassPtrTI) return *ObjCClassPtrTI;
  ObjCClassPtrTI =
    createUnmanagedStorageType(IGM.ObjCClassPtrTy, ReferenceCounting::ObjC,
                               /*isOptional*/false);
  ObjCClassPtrTI->NextConverted = FirstType;
  FirstType = ObjCClassPtrTI;
  return *ObjCClassPtrTI;
}

/// Get or create a global Objective-C method name.  Always returns an i8*.
llvm::Constant *IRGenModule::getAddrOfObjCMethodName(StringRef selector) {
  // Check whether this selector already exists.
  auto &entry = ObjCMethodNames[selector];
  if (entry) return entry;

  // If not, create it.  This implicitly adds a trailing null.
  auto init = llvm::ConstantDataArray::getString(getLLVMContext(), selector);
  auto global = new llvm::GlobalVariable(Module, init->getType(), false,
                                         llvm::GlobalValue::PrivateLinkage,
                                         init,
                          llvm::Twine("\01L_selector_data(") + selector + ")");
  SetCStringLiteralSection(global, ObjCLabelType::MethodVarName);
  global->setAlignment(llvm::MaybeAlign(1));
  addCompilerUsedGlobal(global);

  // Drill down to make an i8*.
  auto zero = llvm::ConstantInt::get(SizeTy, 0);
  llvm::Constant *indices[] = { zero, zero };
  auto address = llvm::ConstantExpr::getInBoundsGetElementPtr(
      init->getType(), global, indices);

  // Cache and return.
  entry = address;
  return address;
}

/// Get or create an Objective-C selector reference.  Always returns
/// an i8**.  The design is that the compiler will emit a load of this
/// pointer, and the linker will ensure that pointer is unique.
llvm::Constant *IRGenModule::getAddrOfObjCSelectorRef(StringRef selector) {
  // Check whether a reference for this selector already exists.
  auto &entry = ObjCSelectorRefs[selector];
  if (entry) return entry;

  // If not, create it.  The initializer is just a pointer to the
  // method name.  Note that the label here is unimportant, so we
  // choose something descriptive to make the IR readable.
  auto init = getAddrOfObjCMethodName(selector);
  auto global = new llvm::GlobalVariable(Module, init->getType(), false,
                                         llvm::GlobalValue::PrivateLinkage,
                                         init,
                                llvm::Twine("\01L_selector(") + selector + ")");
  global->setExternallyInitialized(true);
  global->setAlignment(llvm::MaybeAlign(getPointerAlignment().getValue()));

  // This section name is magical for the Darwin static and dynamic linkers.
  global->setSection(GetObjCSectionName("__objc_selrefs",
                                        "literal_pointers,no_dead_strip"));

  // Make sure that this reference does not get optimized away.
  addCompilerUsedGlobal(global);

  // Cache and return.
  entry = global;
  return global;
}

/// Get or create an ObjC protocol record. Always returns an i8*. We lazily
/// create ObjC protocol_t records for protocols, storing references to the
/// record into the __objc_protolist and __objc_protorefs sections to be
/// fixed up by the runtime.
///
/// It is not correct to use this value as a Protocol* reference directly. The
/// ObjC runtime requires protocol references to be loaded from an
/// indirect variable, the address of which is given by
/// getAddrOfObjCProtocolRef.
llvm::Constant *
IRGenModule::getAddrOfObjCProtocolRecord(ProtocolDecl *proto,
                                         ForDefinition_t forDefinition) {
  return const_cast<llvm::Constant*>
    (cast<llvm::Constant>(getObjCProtocolGlobalVars(proto).record));
}

/// Get or create an ObjC protocol reference. Always returns an i8**. We lazily
/// create ObjC protocol_t records for protocols, storing references to the
/// record into the __objc_protolist and __objc_protorefs sections to be
/// fixed up by the runtime.
Address IRGenModule::getAddrOfObjCProtocolRef(ProtocolDecl *proto,
                                              ForDefinition_t forDefinition) {
  return Address(const_cast<llvm::Constant *>(cast<llvm::Constant>(
                     getObjCProtocolGlobalVars(proto).ref)),
                 Int8PtrTy, getPointerAlignment());
}

IRGenModule::ObjCProtocolPair
IRGenModule::getObjCProtocolGlobalVars(ProtocolDecl *proto) {
  // See whether we already emitted this protocol reference.
  auto found = ObjCProtocols.find(proto);
  if (found != ObjCProtocols.end()) {
    return found->second;
  }
  
  // Create a placeholder protocol record.
  llvm::Constant *protocolRecord =
    new llvm::GlobalVariable(Module, Int8Ty, /*constant*/ false,
                             llvm::GlobalValue::PrivateLinkage, nullptr);
  LazyObjCProtocolDefinitions.push_back(proto);

  // Introduce a variable to label the protocol.
  llvm::SmallString<64> nameBuffer;
  StringRef protocolName = proto->getObjCRuntimeName(nameBuffer);
  auto *protocolLabel
    = new llvm::GlobalVariable(Module, Int8PtrTy,
                               /*constant*/ false,
                               llvm::GlobalValue::WeakAnyLinkage,
                               protocolRecord,
                               llvm::Twine("\01l_OBJC_LABEL_PROTOCOL_$_")
                                 + protocolName);
  protocolLabel->setAlignment(
      llvm::MaybeAlign(getPointerAlignment().getValue()));
  protocolLabel->setVisibility(llvm::GlobalValue::HiddenVisibility);
  protocolLabel->setSection(GetObjCSectionName("__objc_protolist",
                                               "coalesced,no_dead_strip"));

  // Mark used to prevent DCE of public unreferenced protocols to ensure
  // that they are available for external use when a used module is used
  // as a library.
  addUsedGlobal(protocolLabel);

  // Introduce a variable to reference the protocol.
  auto *protocolRef =
      new llvm::GlobalVariable(Module, Int8PtrTy, /*constant*/ false,
                               llvm::GlobalValue::WeakAnyLinkage,
                               protocolRecord,
                               llvm::Twine("\01l_OBJC_PROTOCOL_REFERENCE_$_") + protocolName);
  protocolRef->setAlignment(llvm::MaybeAlign(getPointerAlignment().getValue()));
  protocolRef->setVisibility(llvm::GlobalValue::HiddenVisibility);
  protocolRef->setSection(GetObjCSectionName("__objc_protorefs",
                                             "coalesced,no_dead_strip"));

  // Mark used to prevent DCE of public unreferenced protocols to ensure
  // that they are available for external use when a used module is used
  // as a library.
  addUsedGlobal(protocolRef);

  ObjCProtocolPair pair{protocolRecord, protocolRef};
  ObjCProtocols.insert({proto, pair});
  
  return pair;
}

llvm::Constant *
IRGenModule::getObjCProtocolRefSymRefDescriptor(ProtocolDecl *protocol) {
  // See whether we already emitted this protocol reference.
  auto found = ObjCProtocolSymRefs.find(protocol);
  if (found != ObjCProtocolSymRefs.end()) {
    return found->second;
  }

  ConstantInitBuilder InitBuilder(*this);
  ConstantStructBuilder B(InitBuilder.beginStruct());
  B.setPacked(true);
  auto protocolRef = getAddrOfObjCProtocolRef(protocol, NotForDefinition);
  B.addRelativeAddress(cast<llvm::Constant>(protocolRef.getAddress()));
  auto ty = protocol->getDeclaredType()->getCanonicalType();
  auto typeRef =
      getTypeRef(ty, CanGenericSignature(), MangledTypeRefRole::FlatUnique)
          .first;
  B.addRelativeAddress(typeRef);
  auto future = B.finishAndCreateFuture();

  llvm::SmallString<64> nameBuffer;
  StringRef protocolName = protocol->getObjCRuntimeName(nameBuffer);
  auto *protocolSymRef = new llvm::GlobalVariable(
      Module, future.getType(), /*constant*/ true,
      llvm::GlobalValue::LinkOnceAnyLinkage, nullptr,
      llvm::Twine("\01l_OBJC_PROTOCOL_SYMREF_$_") + protocolName);
  future.installInGlobal(protocolSymRef);
  protocolSymRef->setAlignment(
      llvm::MaybeAlign(getPointerAlignment().getValue()));
  protocolSymRef->setVisibility(llvm::GlobalValue::HiddenVisibility);

  ObjCProtocolSymRefs.insert({protocol, protocolSymRef});

  return protocolSymRef;
}

static std::pair<uint64_t, llvm::ConstantArray *>
getProtocolRefsList(llvm::Constant *protocol) {
  // We expect to see a structure like this.
  // @"_OBJC_PROTOCOL_$_MyProto" = weak hidden global %struct._protocol_t {
  //  i8* null,
  //  i8* getelementptr inbounds ([8 x i8],
  //    [8 x i8]* @OBJC_CLASS_NAME_, i32 0, i32 0),
  //  %struct._objc_protocol_list* bitcast (
  //    { i64, [2 x %struct._protocol_t*] }*
  //       @"_OBJC_$_PROTOCOL_REFS_MyProto" to %struct._objc_protocol_list*),
  //  %struct.__method_list_t* null,
  //  %struct.__method_list_t* null,
  //  %struct.__method_list_t* null,
  //  %struct.__method_list_t* null,
  //  %struct._prop_list_t* null, i32 96, i32 0,
  //  i8** getelementptr inbounds ([1 x i8*],
  //    [1 x i8*]* @"_OBJC_$_PROTOCOL_METHOD_TYPES_MyProto", i32 0, i32 0),
  //  i8* null, %struct._prop_list_t* null }, align 8
  auto protocolVar = cast<llvm::GlobalVariable>(protocol);
  auto protocolStruct =
      cast<llvm::ConstantStruct>(protocolVar->getInitializer());
  auto objCProtocolList = cast<llvm::Constant>(protocolStruct->getOperand(2));
  if (objCProtocolList->isNullValue()) {
    return std::make_pair(0, nullptr);
  }

  auto protocolRefsVar = cast<llvm::GlobalVariable>(objCProtocolList);
  auto sizeListPair =
      cast<llvm::ConstantStruct>(protocolRefsVar->getInitializer());
  auto size =
      cast<llvm::ConstantInt>(sizeListPair->getOperand(0))->getZExtValue();
  auto protocolRefsList =
      cast<llvm::ConstantArray>(sizeListPair->getOperand(1));
  return std::make_pair(size, protocolRefsList);
}

static void appendNonRuntimeImpliedProtocols(
  clang::ObjCProtocolDecl *proto,
  llvm::SetVector<clang::ObjCProtocolDecl *> &nonRuntimeImpliedProtos) {

  if (!proto->isNonRuntimeProtocol()) {
    nonRuntimeImpliedProtos.insert(proto->getCanonicalDecl());
    return;
  }

  for (auto *parent : proto->protocols())
    appendNonRuntimeImpliedProtocols(parent, nonRuntimeImpliedProtos);
}

// Get runtime protocol list used during emission of objective-c protocol
// metadata taking non-runtime protocols into account.
static std::vector<clang::ObjCProtocolDecl *>
getRuntimeProtocolList(clang::ObjCProtocolDecl::protocol_range protocols) {

  llvm::DenseSet<clang::ObjCProtocolDecl *> nonRuntimeProtocols;
  std::vector<clang::ObjCProtocolDecl*> runtimeProtocols;
  for (auto p: protocols) {
    auto *proto = p->getCanonicalDecl();
    if (proto->isNonRuntimeProtocol())
      nonRuntimeProtocols.insert(proto);
    else
      runtimeProtocols.push_back(proto);
  }

  if (nonRuntimeProtocols.empty())
    return runtimeProtocols;

  // Find the non-runtime implied protocols: protocols that occur in the closest
  // ancestry of a non-runtime protocol.
  llvm::SetVector<clang::ObjCProtocolDecl *> nonRuntimeImpliedProtos;
  for (auto *nonRuntimeProto : nonRuntimeProtocols) {
    appendNonRuntimeImpliedProtocols(nonRuntimeProto, nonRuntimeImpliedProtos);
  }

  // Subtract the implied protocols of the runtime protocols and non runtime
  // protoocls implied protocols form the non runtime implied protocols.
  llvm::DenseSet<const clang::ObjCProtocolDecl *> impliedProtocols;
  for (auto *p : runtimeProtocols) {
    impliedProtocols.insert(p);
    p->getImpliedProtocols(impliedProtocols);
  }

  for (auto *p : nonRuntimeImpliedProtos) {
    p->getImpliedProtocols(impliedProtocols);
  }

  for (auto *p : nonRuntimeImpliedProtos) {
    if (!impliedProtocols.contains(p)) {
      runtimeProtocols.push_back(p);
    }
  }

  return runtimeProtocols;
}

static void updateProtocolRefs(IRGenModule &IGM,
                               const clang::ObjCProtocolDecl *objcProtocol,
                               llvm::Constant *protocol) {

  // Get the clang importer to map ObjCProtocolDecl to ProtocolDecl.
  auto &astContext = IGM.getSwiftModule()->getASTContext();
  auto *clangImporter =
      static_cast<ClangImporter *>(astContext.getClangModuleLoader());
  assert(clangImporter && "Must have a clang importer");

  // Get the array containining the protocol refs.
  unsigned protocolRefsSize = getProtocolRefsList(protocol).first;
  unsigned currentIdx = 0;
  auto inheritedObjCProtocols = getRuntimeProtocolList(objcProtocol->protocols());
  for (auto inheritedObjCProtocol : inheritedObjCProtocols) {
    assert(currentIdx < protocolRefsSize);

    // Getting the `protocolRefs` constant must not be hoisted out of the loop
    // because this constant might be deleted by
    // `oldVar->replaceAllUsesWith(newOpd)` below.
    llvm::ConstantArray *protocolRefs = getProtocolRefsList(protocol).second;
    auto oldVar = protocolRefs->getOperand(currentIdx);
    // Map the objc protocol to swift protocol.
    auto optionalDecl = clangImporter->importDeclCached(inheritedObjCProtocol);
    // This should not happen but the compiler currently silently accepts
    // protocol forward declarations without definitions (102058759).
    if (!optionalDecl || *optionalDecl == nullptr) {
      ++currentIdx;
      continue;
    }
    auto inheritedSwiftProtocol = cast<ProtocolDecl>(*optionalDecl);
    // Get the objc protocol record we use in Swift.
    auto record = IGM.getAddrOfObjCProtocolRecord(inheritedSwiftProtocol,
                                                  NotForDefinition);
    auto newOpd = llvm::ConstantExpr::getBitCast(record, oldVar->getType());
    if (newOpd != oldVar) {
      oldVar->replaceUsesWithIf(newOpd, [protocol](llvm::Use &U) -> bool {
                                return U.getUser() == getProtocolRefsList(protocol).second;
                                });
    }
    ++currentIdx;
  }
  assert(currentIdx == protocolRefsSize);
}

llvm::Constant *IRGenModule::emitClangProtocolObject(
    const clang::ObjCProtocolDecl *objcProtocol) {
  auto clangProto =
      clang::CodeGen::emitObjCProtocolObject(getClangCGM(), objcProtocol);
  updateProtocolRefs(*this, objcProtocol, clangProto);
  return clangProto;
}

void IRGenModule::emitLazyObjCProtocolDefinition(ProtocolDecl *proto) {
  // Emit the real definition.
  auto record = cast<llvm::GlobalVariable>(emitObjCProtocolData(*this, proto));

  // Find the placeholder.  It should always still be a placeholder,
  // because it was created as an anonymous symbol and nobody should
  // ever be randomly messing with those.
  auto placeholder =
    cast<llvm::GlobalVariable>(ObjCProtocols.find(proto)->second.record);

  // Move the new record to the placeholder's position.
  Module.removeGlobalVariable(record);
  Module.insertGlobalVariable(std::next(placeholder->getIterator()), record);
  // Replace and destroy the placeholder.
  placeholder->replaceAllUsesWith(
                            llvm::ConstantExpr::getBitCast(record, Int8PtrTy));
  placeholder->eraseFromParent();
}

void IRGenModule::emitLazyObjCProtocolDefinitions() {
  // Emit any lazy ObjC protocol definitions we require.  Try to do
  // this in the order in which we needed them, since they can require
  // other protocol definitions recursively.
  for (size_t i = 0; i != LazyObjCProtocolDefinitions.size(); ++i) {
    ProtocolDecl *protocol = LazyObjCProtocolDefinitions[i];
    emitLazyObjCProtocolDefinition(protocol);
  }
}

namespace {
  class Selector {
    
    llvm::SmallString<80> Buffer;
    StringRef Text;

  public:

    static constexpr struct ForGetter_t { } ForGetter{};
    static constexpr struct ForSetter_t { } ForSetter{};
    
    Selector() = default;

    Selector(FuncDecl *method) {
      Text = method->getObjCSelector().getString(Buffer);
    }
    
    Selector(ConstructorDecl *ctor) {
      Text = ctor->getObjCSelector().getString(Buffer);
    }
    
    Selector(ValueDecl *methodOrCtorOrDtor) {
      if (auto *method = dyn_cast<FuncDecl>(methodOrCtorOrDtor)) {
        Text = method->getObjCSelector().getString(Buffer);
      } else if (auto *ctor = dyn_cast<ConstructorDecl>(methodOrCtorOrDtor)) {
        Text = ctor->getObjCSelector().getString(Buffer);
      } else if (isa<DestructorDecl>(methodOrCtorOrDtor)) {
        Text = "dealloc";
      } else {
        llvm_unreachable("property or subscript selector should be generated "
                         "using ForGetter or ForSetter constructors");
      }
    }
    
    Selector(AbstractStorageDecl *asd, ForGetter_t) {
      Text = asd->getObjCGetterSelector().getString(Buffer);
    }

    Selector(AbstractStorageDecl *asd, ForSetter_t) {
      Text = asd->getObjCSetterSelector().getString(Buffer);
    }

    Selector(SILDeclRef ref) {
      switch (ref.kind) {
      case SILDeclRef::Kind::DefaultArgGenerator:
      case SILDeclRef::Kind::StoredPropertyInitializer:
      case SILDeclRef::Kind::EnumElement:
      case SILDeclRef::Kind::GlobalAccessor:
      case SILDeclRef::Kind::PropertyWrapperBackingInitializer:
      case SILDeclRef::Kind::PropertyWrapperInitFromProjectedValue:
      case SILDeclRef::Kind::EntryPoint:
      case SILDeclRef::Kind::AsyncEntryPoint:
        llvm_unreachable("Method does not have a selector");

      case SILDeclRef::Kind::Destroyer:
      case SILDeclRef::Kind::Deallocator:
        Text = "dealloc";
        break;
          
      case SILDeclRef::Kind::Func:
        Text = cast<FuncDecl>(ref.getDecl())->getObjCSelector()
                 .getString(Buffer);
        break;

      case SILDeclRef::Kind::Allocator:
      case SILDeclRef::Kind::Initializer:
        Text = cast<ConstructorDecl>(ref.getDecl())->getObjCSelector()
                 .getString(Buffer);
        break;

      case SILDeclRef::Kind::IVarInitializer:
        Text = ".cxx_construct";
        break;

      case SILDeclRef::Kind::IVarDestroyer:
        Text = ".cxx_destruct";
        break;
      }
    }

    StringRef str() const {
      return Text;
    }
  };
} // end anonymous namespace

llvm::Constant *IRGenModule::getAddrOfObjCSelectorRef(SILDeclRef method) {
  assert(method.isForeign);
  return getAddrOfObjCSelectorRef(Selector(method).str());
}

std::string IRGenModule::getObjCSelectorName(SILDeclRef method) {
  assert(method.isForeign);
  return Selector(method).str().str();
}

static llvm::Value *emitSuperArgument(IRGenFunction &IGF,
                                      bool isInstanceMethod,
                                      llvm::Value *selfValue,
                                      CanType searchClass) {
  // Allocate an objc_super struct.
  Address super = IGF.createAlloca(IGF.IGM.ObjCSuperStructTy,
                                   IGF.IGM.getPointerAlignment(),
                                   "objc_super");
  // TODO: Track lifetime markers for function args.
  llvm::Value *self = IGF.Builder.CreateBitCast(selfValue,
                                                IGF.IGM.ObjCPtrTy);
  
  // Generate the search class object reference.
  llvm::Value *searchValue;
  if (isInstanceMethod) {
    searchValue = emitClassHeapMetadataRef(IGF, searchClass,
                                           MetadataValueType::ObjCClass,
                                           MetadataState::Complete,
                                           /*allow uninitialized*/ true);
  } else {
    searchClass = cast<MetatypeType>(searchClass).getInstanceType();
    ClassDecl *searchClassDecl = searchClass.getClassOrBoundGenericClass();
    switch (IGF.IGM.getClassMetadataStrategy(searchClassDecl)) {
    case ClassMetadataStrategy::Resilient:
    case ClassMetadataStrategy::Singleton:
    case ClassMetadataStrategy::Update:
    case ClassMetadataStrategy::FixedOrUpdate:
      searchValue = emitClassHeapMetadataRef(IGF, searchClass,
                                             MetadataValueType::ObjCClass,
                                             MetadataState::Complete,
                                             /*allow uninitialized*/ true);
      searchValue = emitLoadOfObjCHeapMetadataRef(IGF, searchValue);
      searchValue = IGF.Builder.CreateBitCast(searchValue, IGF.IGM.ObjCClassPtrTy);
      break;

    case ClassMetadataStrategy::Fixed:
      searchValue = IGF.IGM.getAddrOfMetaclassObject(searchClassDecl,
                                                     NotForDefinition);
      break;
    }
  }
  
  // Store the receiver and class to the struct.
  Address selfAddr = IGF.Builder.CreateStructGEP(super, 0, Size(0));
  IGF.Builder.CreateStore(self, selfAddr);

  Address searchAddr =
    IGF.Builder.CreateStructGEP(super, 1, IGF.IGM.getPointerSize());
  IGF.Builder.CreateStore(searchValue, searchAddr);
  
  // Pass a pointer to the objc_super struct to the messenger.
  // Project the ownership semantics of 'self' to the super argument.
  return super.getAddress();
}

static llvm::FunctionType *getMsgSendSuperTy(IRGenModule &IGM,
                                             llvm::FunctionType *fnTy,
                                             bool indirectResult) {
  SmallVector<llvm::Type*, 4> args(fnTy->param_begin(), fnTy->param_end());
  if (indirectResult)
    args[1] = IGM.ObjCSuperPtrTy;
  else
    args[0] = IGM.ObjCSuperPtrTy;
  return llvm::FunctionType::get(fnTy->getReturnType(), args, fnTy->isVarArg());
}

Callee irgen::getObjCMethodCallee(IRGenFunction &IGF,
                                  const ObjCMethod &methodInfo,
                                  llvm::Value *selfValue,
                                  CalleeInfo &&info) {
  SILDeclRef method = methodInfo.getMethod();
  assert((method.kind == SILDeclRef::Kind::Initializer
          || method.kind == SILDeclRef::Kind::Allocator
          || method.kind == SILDeclRef::Kind::Func
          || method.kind == SILDeclRef::Kind::Destroyer
          || method.kind == SILDeclRef::Kind::Deallocator) &&
         "objc method call must be to a func/initializer/getter/setter/dtor");

  auto kind = methodInfo.getMessageKind();

  Signature sig = IGF.IGM.getSignature(info.OrigFnType);
  bool indirectResult =
    sig.getForeignInfo().ClangInfo->getReturnInfo().isIndirect();
  if (kind != ObjCMessageKind::Normal) {
    sig.setType(getMsgSendSuperTy(IGF.IGM, sig.getType(), indirectResult));
  }

  // Create the appropriate messenger function.
  // FIXME: this needs to be target-specific.  Ask Clang for it!
  llvm::Constant *messenger = [&]() -> llvm::Constant* {
    if (indirectResult && IGF.IGM.TargetInfo.ObjCUseStret) {
      switch (kind) {
      case ObjCMessageKind::Normal:
        return IGF.IGM.getObjCMsgSendStretFn();

      case ObjCMessageKind::Peer:
        return IGF.IGM.getObjCMsgSendSuperStretFn();

      case ObjCMessageKind::Super:
        return IGF.IGM.getObjCMsgSendSuperStret2Fn();
      }
      llvm_unreachable("unhandled kind");
    } else {
      switch (kind) {
      case ObjCMessageKind::Normal:
        return IGF.IGM.getObjCMsgSendFn();

      case ObjCMessageKind::Peer:
        return IGF.IGM.getObjCMsgSendSuperFn();

      case ObjCMessageKind::Super:
        return IGF.IGM.getObjCMsgSendSuper2Fn();
      }
      llvm_unreachable("unhandled kind");
    }
  }();

  messenger = llvm::ConstantExpr::getBitCast(messenger,
                                             sig.getType()->getPointerTo());

  // super.constructor references an instance method (even though the
  // decl is really a 'static' member). Similarly, destructors refer
  // to the instance method -dealloc.
  bool isInstanceMethod
    = method.kind == SILDeclRef::Kind::Initializer
      || method.kind == SILDeclRef::Kind::Deallocator
      || method.getDecl()->isInstanceMember();

  llvm::Value *receiverValue;
  if (auto searchType = methodInfo.getSearchType()) {
    receiverValue =
      emitSuperArgument(IGF, isInstanceMethod, selfValue,
                        searchType.getASTType());
  } else {
    receiverValue = selfValue;
  }

  // Compute the selector.
  Selector selector(method);
  llvm::Value *selectorValue = IGF.emitObjCSelectorRefLoad(selector.str());

  auto fn =
      FunctionPointer::forDirect(FunctionPointer::Kind::Function, messenger,
                                 /*secondaryValue*/ nullptr, sig,
                                 /*useSignature*/ true);
  return Callee(std::move(info), fn, receiverValue, selectorValue);
}

Callee irgen::getObjCDirectMethodCallee(CalleeInfo &&info, const FunctionPointer &fn,
                                        llvm::Value *selfValue) {
  // Direct calls to Objective-C methods don't have a selector value.
  return Callee(std::move(info), fn, selfValue, nullptr);
}

/// Call [self allocWithZone: nil].
llvm::Value *irgen::emitObjCAllocObjectCall(IRGenFunction &IGF,
                                            llvm::Value *self,
                                            SILType selfType) {
  // Get an appropriately-cast function pointer.
  auto fn = IGF.IGM.getObjCAllocWithZoneFn();
  auto fnType = IGF.IGM.getObjCAllocWithZoneFnType();

  if (self->getType() != IGF.IGM.ObjCClassPtrTy) {
    fnType = llvm::FunctionType::get(self->getType(), self->getType(), false);
    fn = llvm::ConstantExpr::getBitCast(fn, fnType->getPointerTo());
  }

  auto call = IGF.Builder.CreateCall(fnType, fn, self);

  // Cast the returned pointer to the right type.
  auto &classTI = IGF.getTypeInfo(selfType);
  llvm::Type *destType = classTI.getStorageType();
  return IGF.Builder.CreateBitCast(call, destType);
}

static llvm::Function *emitObjCPartialApplicationForwarder(IRGenModule &IGM,
                                                           ObjCMethod method,
                                            CanSILFunctionType origMethodType,
                                            CanSILFunctionType resultType,
                                            const HeapLayout &layout,
                                            SILType selfType) {
  auto &selfTI = IGM.getTypeInfo(selfType);
 
  assert(resultType->getRepresentation()
           == SILFunctionType::Representation::Thick);

  llvm::AttributeList attrs;
  llvm::FunctionType *fwdTy = IGM.getFunctionType(resultType, attrs);
  // FIXME: Give the thunk a real name.
  // FIXME: Maybe cache the thunk by function and closure types?
  llvm::Function *fwd =
    llvm::Function::Create(fwdTy, llvm::Function::InternalLinkage,
                           MANGLE_AS_STRING(OBJC_PARTIAL_APPLY_THUNK_SYM),
                           &IGM.Module);
  fwd->setCallingConv(expandCallingConv(
      IGM, SILFunctionTypeRepresentation::Thick, false/*isAsync*/));

  fwd->setAttributes(attrs);
  // Merge initial attributes with attrs.
  llvm::AttrBuilder b(IGM.getLLVMContext());
  IGM.constructInitialFnAttributes(b);
  fwd->addFnAttrs(b);

  IRGenFunction subIGF(IGM, fwd);
  if (IGM.DebugInfo)
    IGM.DebugInfo->emitArtificialFunction(subIGF, fwd);
  
  // Do we need to lifetime-extend self?
  bool lifetimeExtendsSelf;
  auto results = origMethodType->getResults();
  if (results.size() == 1) {
    switch (results[0].getConvention()) {
    case ResultConvention::UnownedInnerPointer:
      lifetimeExtendsSelf = true;
      break;

    case ResultConvention::Indirect:
    case ResultConvention::Unowned:
    case ResultConvention::Owned:
    case ResultConvention::Autoreleased:
    case ResultConvention::Pack:
      lifetimeExtendsSelf = false;
      break;
    }
  } else {
    lifetimeExtendsSelf = false;
  }
  
  // Do we need to retain self before calling, and/or release it after?
  bool retainsSelf;
  switch (origMethodType->getParameters().back().getConvention()) {
  case ParameterConvention::Direct_Unowned:
    retainsSelf = false;
    break;
  case ParameterConvention::Direct_Guaranteed:
  case ParameterConvention::Direct_Owned:
    retainsSelf = true;
    break;
  case ParameterConvention::Indirect_In_Guaranteed:
  case ParameterConvention::Indirect_In:
  case ParameterConvention::Indirect_Inout:
  case ParameterConvention::Indirect_InoutAliasable:
  case ParameterConvention::Pack_Guaranteed:
  case ParameterConvention::Pack_Owned:
  case ParameterConvention::Pack_Inout:
    llvm_unreachable("self passed indirectly?!");
  }
  
  // Recover 'self' from the context.
  Explosion params = subIGF.collectParameters();
  llvm::Value *context = params.takeLast();
  Address dataAddr = layout.emitCastTo(subIGF, context);
  auto &fieldLayout = layout.getElement(0);
  Address selfAddr = fieldLayout.project(subIGF, dataAddr, std::nullopt);
  Explosion selfParams;
  if (retainsSelf)
    cast<LoadableTypeInfo>(selfTI).loadAsCopy(subIGF, selfAddr, selfParams);
  else
    cast<LoadableTypeInfo>(selfTI).loadAsTake(subIGF, selfAddr, selfParams);
  llvm::Value *self = selfParams.claimNext();
  
  // Save off the forwarded indirect return address if we have one.
  llvm::Value *formalIndirectResult = nullptr;
  llvm::Value *indirectedDirectResult = nullptr;
  const LoadableTypeInfo *indirectedResultTI = nullptr;
  if (origMethodType->hasIndirectFormalResults()) {
    // We should never import an ObjC method as returning a tuple which
    // would get broken up into multiple results like this.
    assert(origMethodType->getNumIndirectFormalResults() == 1);
    formalIndirectResult = params.claimNext();
  } else {
    SILType appliedResultTy = origMethodType->getDirectFormalResultsType(
        IGM.getSILModule(), IGM.getMaximalTypeExpansionContext());
    indirectedResultTI =
      &cast<LoadableTypeInfo>(IGM.getTypeInfo(appliedResultTy));
    auto &nativeSchema = indirectedResultTI->nativeReturnValueSchema(IGM);
    if (nativeSchema.requiresIndirect()) {
      indirectedDirectResult = params.claimNext();
    }
  }

  // Translate direct parameters passed indirectly.
  Explosion translatedParams;

  // Add the formal indirect return here.
  if (formalIndirectResult)
    translatedParams.add(formalIndirectResult);

  // We already handled self.
  assert(origMethodType->hasSelfParam());
  auto origParamInfos = origMethodType->getParameters();
  origParamInfos = origParamInfos.drop_back();

  for (auto info : origParamInfos) {
    // Addresses consist of a single pointer argument.
    if (isIndirectFormalParameter(info.getConvention())) {
      translatedParams.add(params.claimNext());
      continue;
    }
    // Otherwise, we have a loadable type that can either be passed directly or
    // indirectly.
    assert(info.getSILStorageType(IGM.getSILModule(), origMethodType,
                                  IGM.getMaximalTypeExpansionContext())
               .isObject());
    auto curSILType =
        info.getSILStorageType(IGM.getSILModule(), origMethodType,
                               IGM.getMaximalTypeExpansionContext());
    auto &ti = cast<LoadableTypeInfo>(IGM.getTypeInfo(curSILType));

    // Load the indirectly passed parameter.
    auto &nativeSchema = ti.nativeParameterValueSchema(IGM);
    if (nativeSchema.requiresIndirect()) {
      Address paramAddr = ti.getAddressForPointer(params.claimNext());
      ti.loadAsTake(subIGF, paramAddr, translatedParams);
      continue;
    }
    // Map from the native calling convention into the explosion schema.
    auto &nativeParamSchema = ti.nativeParameterValueSchema(IGM);
    Explosion nativeParam;
    params.transferInto(nativeParam, nativeParamSchema.size());
    Explosion nonNativeParam = nativeParamSchema.mapFromNative(
        subIGF.IGM, subIGF, nativeParam, curSILType);
    assert(nativeParam.empty());

    // Pass along the value.
    ti.reexplode(nonNativeParam, translatedParams);
  }

  // Prepare the call to the underlying method.
  auto emission = getCallEmission(
      subIGF, self,
      getObjCMethodCallee(subIGF, method, self,
                          CalleeInfo(origMethodType, origMethodType, {})));
  emission->begin();

  emission->setArgs(translatedParams, false, /*witnessMetadata*/ nullptr);

  // Cleanup that always has to occur after the function call.
  auto cleanup = [&]{
    // Lifetime-extend 'self' by sending it to the autorelease pool if need be.
    if (lifetimeExtendsSelf) {
      subIGF.emitObjCRetainCall(self);
      subIGF.emitObjCAutoreleaseCall(self);
    }
    // Release the context.
    if (!resultType->isCalleeGuaranteed())
      subIGF.emitNativeStrongRelease(context, subIGF.getDefaultAtomicity());
  };
  
   // Emit the call and produce the return value.
  if (indirectedDirectResult) {
    Address addr =
      indirectedResultTI->getAddressForPointer(indirectedDirectResult);
    emission->emitToMemory(addr, *indirectedResultTI, false);
    emission->end();
    cleanup();
    subIGF.Builder.CreateRetVoid();
  } else {
    Explosion result;
    emission->emitToExplosion(result, false);
    emission->end();
    cleanup();
    auto &callee = emission->getCallee();
    auto resultType = callee.getOrigFunctionType()->getDirectFormalResultsType(
        IGM.getSILModule(), IGM.getMaximalTypeExpansionContext());
    subIGF.emitScalarReturn(resultType, resultType, result,
                            true /*isSwiftCCReturn*/, false);
  }
  
  return fwd;
}

void irgen::emitObjCPartialApplication(IRGenFunction &IGF,
                                       ObjCMethod method,
                                       CanSILFunctionType origMethodType,
                                       CanSILFunctionType resultType,
                                       llvm::Value *self,
                                       SILType selfType,
                                       Explosion &out) {
  // Create a heap object to contain the self argument.
  // TODO: If function context arguments were given objc retain counts,
  // we wouldn't need to create a separate heap object here.
  auto *selfTypeInfo = &IGF.getTypeInfo(selfType);
  HeapLayout layout(IGF.IGM, LayoutStrategy::Optimal,
                    selfType, selfTypeInfo);

  // FIXME: Either emit a descriptor for this or create a metadata kind
  // that indicates its trivial layout.
  auto Descriptor
    = llvm::ConstantPointerNull::get(IGF.IGM.CaptureDescriptorPtrTy);
  llvm::Value *data = IGF.emitUnmanagedAlloc(layout, "closure",
                                             Descriptor);
  // FIXME: non-fixed offsets
  NonFixedOffsets offsets = std::nullopt;
  Address dataAddr = layout.emitCastTo(IGF, data);
  auto &fieldLayout = layout.getElement(0);
  auto &fieldType = layout.getElementTypes()[0];
  Address fieldAddr = fieldLayout.project(IGF, dataAddr, offsets);
  Explosion selfParams;
  selfParams.add(self);
  fieldLayout.getType().initializeFromParams(IGF, selfParams, fieldAddr,
                                             fieldType, false);

  // Create the forwarding stub.
  llvm::Value *forwarder = emitObjCPartialApplicationForwarder(IGF.IGM,
                                                                method,
                                                                origMethodType,
                                                                resultType,
                                                                layout,
                                                                selfType);
  forwarder =
    IGF.IGM.getConstantSignedFunctionPointer(cast<llvm::Constant>(forwarder),
                                             resultType);
  forwarder = IGF.Builder.CreateBitCast(forwarder, IGF.IGM.Int8PtrTy);

  // Emit the result explosion.
  out.add(forwarder);
  out.add(data);
}

/// Create the LLVM function declaration for a thunk that acts like
/// an Objective-C method for a Swift method implementation.
static llvm::Constant *findSwiftAsObjCThunk(IRGenModule &IGM, SILDeclRef ref,
                                            SILFunction *&SILFn) {
  SILFn = IGM.getSILModule().lookUpFunction(ref);
  assert(SILFn && "no IR function for swift-as-objc thunk");
  auto fn = IGM.getAddrOfSILFunction(SILFn, NotForDefinition);
  // Don't add the unnamed_addr attribute: in some places Foundation is
  // comparing ObjC method pointers. Therefore LLVM's function merging pass must
  // not create aliases for identical functions, but create thunks.
  // This can be ensured if ObjC methods are not created with the unnamed_addr
  // attribute.
  return llvm::ConstantExpr::getBitCast(fn, IGM.Int8PtrTy);
}

/// Produce a function pointer, suitable for invocation by
/// objc_msgSend, for the given property's getter method implementation.
///
/// Returns a value of type i8*.
static llvm::Constant *getObjCGetterPointer(IRGenModule &IGM,
                                            AbstractStorageDecl *property,
                                            SILFunction *&silFn) {
  // Protocol properties have no impl.
  if (isa<ProtocolDecl>(property->getDeclContext()))
    return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);

  SILDeclRef getter = SILDeclRef(property->getOpaqueAccessor(AccessorKind::Get),
                                 SILDeclRef::Kind::Func)
    .asForeign();

  return findSwiftAsObjCThunk(IGM, getter, silFn);
}

/// Produce a function pointer, suitable for invocation by
/// objc_msgSend, for the given property's setter method implementation.
///
/// Returns a value of type i8*.
static llvm::Constant *getObjCSetterPointer(IRGenModule &IGM,
                                            AbstractStorageDecl *property,
                                            SILFunction *&silFn) {
  // Protocol properties have no impl.
  if (isa<ProtocolDecl>(property->getDeclContext()))
    return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);

  assert(property->isSettable(property->getDeclContext()) &&
         "property is not settable?!");
  
  SILDeclRef setter = SILDeclRef(property->getOpaqueAccessor(AccessorKind::Set),
                                 SILDeclRef::Kind::Func)
    .asForeign();
  return findSwiftAsObjCThunk(IGM, setter, silFn);
}

/// Produce a function pointer, suitable for invocation by
/// objc_msgSend, for the given method implementation.
///
/// Returns a value of type i8*.
static llvm::Constant *getObjCMethodPointer(IRGenModule &IGM,
                                            FuncDecl *method,
                                            SILFunction *&silFn) {
  // Protocol methods have no impl.
  if (isa<ProtocolDecl>(method->getDeclContext()))
    return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);

  SILDeclRef declRef = SILDeclRef(method, SILDeclRef::Kind::Func)
    .asForeign();

  return findSwiftAsObjCThunk(IGM, declRef, silFn);
}

/// Produce a function pointer, suitable for invocation by
/// objc_msgSend, for the given constructor implementation.
///
/// Returns a value of type i8*.
static llvm::Constant *getObjCMethodPointer(IRGenModule &IGM,
                                            ConstructorDecl *constructor,
                                            SILFunction *&silFn) {
  // Protocol methods have no impl.
  if (isa<ProtocolDecl>(constructor->getDeclContext()))
    return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);

  SILDeclRef declRef = SILDeclRef(constructor, SILDeclRef::Kind::Initializer)
    .asForeign();

  return findSwiftAsObjCThunk(IGM, declRef, silFn);
}

/// Produce a function pointer, suitable for invocation by
/// objc_msgSend, for the given destructor implementation.
///
/// Returns a value of type i8*.
static llvm::Constant *getObjCMethodPointer(IRGenModule &IGM,
                                            DestructorDecl *destructor,
                                            SILFunction *&silFn) {
  SILDeclRef declRef = SILDeclRef(destructor, SILDeclRef::Kind::Deallocator)
    .asForeign();

  return findSwiftAsObjCThunk(IGM, declRef, silFn);
}

static SILDeclRef getObjCMethodRef(AbstractFunctionDecl *method) {
  if (isa<ConstructorDecl>(method))
    return SILDeclRef(method, SILDeclRef::Kind::Initializer).asForeign();
  if (isa<DestructorDecl>(method))
    return SILDeclRef(method, SILDeclRef::Kind::Deallocator).asForeign();
  return SILDeclRef(method, SILDeclRef::Kind::Func).asForeign();
}

static CanSILFunctionType getObjCMethodType(IRGenModule &IGM,
                                            AbstractFunctionDecl *method) {
  return IGM.getSILTypes().getConstantFunctionType(
      TypeExpansionContext::minimal(), getObjCMethodRef(method));
}

static clang::CanQualType getObjCPropertyType(IRGenModule &IGM,
                                              VarDecl *property) {
  // Use the lowered return type of the foreign getter.
  auto getter = property->getOpaqueAccessor(AccessorKind::Get);
  CanSILFunctionType methodTy = getObjCMethodType(IGM, getter);
  return IGM.getClangType(
    methodTy->getFormalCSemanticResult(IGM.getSILModule()).getASTType());
}

void irgen::getObjCEncodingForPropertyType(IRGenModule &IGM,
                                           VarDecl *property, std::string &s) {
  // FIXME: Property encoding differs in slight ways that aren't publicly
  // exposed from Clang.
  IGM.getClangASTContext()
    .getObjCEncodingForPropertyType(getObjCPropertyType(IGM, property), s);
}

static void
HelperGetObjCEncodingForType(const clang::ASTContext &Context,
                             clang::CanQualType T,
                             std::string &S, bool Extended) {
  
  Context.getObjCEncodingForMethodParameter(clang::Decl::OBJC_TQ_None,
                                            T, S, Extended);
}

static llvm::Constant *getObjCEncodingForTypes(IRGenModule &IGM,
                                               CanSILFunctionType fnType,
                                               ArrayRef<SILParameterInfo> params,
                                               StringRef fixedParamsString,
                                               Size::int_type parmOffset,
                                               bool useExtendedEncoding) {
  auto resultType = fnType->getFormalCSemanticResult(IGM.getSILModule());
  auto &clangASTContext = IGM.getClangASTContext();
  
  std::string encodingString;

  // Return type.
  {
    auto clangType = IGM.getClangType(resultType.getASTType());
    if (clangType.isNull())
      return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
    HelperGetObjCEncodingForType(clangASTContext, clangType, encodingString,
                                 useExtendedEncoding);
  }

  // Parameter types.
  // TODO. Encode type qualifier, 'in', 'inout', etc. for the parameter.
  std::string paramsString;
  for (auto param : params) {
    auto clangType = IGM.getClangType(param.getArgumentType(
        IGM.getSILModule(), fnType, IGM.getMaximalTypeExpansionContext()));
    if (clangType.isNull())
      return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
    
    // TODO. Some stuff related to Array and Function type is missing.
    // TODO. Encode type qualifier, 'in', 'inout', etc. for the parameter.
    HelperGetObjCEncodingForType(clangASTContext, clangType, paramsString,
                                 useExtendedEncoding);
    paramsString += llvm::itostr(parmOffset);
    clang::CharUnits sz = clangASTContext.getObjCEncodingTypeSize(clangType);
    parmOffset += sz.getQuantity();
  }
  
  encodingString += llvm::itostr(parmOffset);
  encodingString += fixedParamsString;
  encodingString += paramsString;
  return IGM.getAddrOfGlobalString(encodingString);
}

static llvm::Constant *
getObjectEncodingFromClangNode(IRGenModule &IGM, Decl *d,
                               bool useExtendedEncoding) {
  // Use the clang node's encoding if there is a clang node.
  if (d->getClangNode()) {
    auto clangDecl = d->getClangNode().castAsDecl();
    auto &clangASTContext = IGM.getClangASTContext();
    std::string typeStr;
    if (auto objcMethodDecl = dyn_cast<clang::ObjCMethodDecl>(clangDecl)) {
      typeStr = clangASTContext.getObjCEncodingForMethodDecl(
          objcMethodDecl, useExtendedEncoding /*extended*/);
    }
    if (auto objcPropertyDecl = dyn_cast<clang::ObjCPropertyDecl>(clangDecl)) {
      typeStr = clangASTContext.getObjCEncodingForPropertyDecl(objcPropertyDecl,
                                                               nullptr);
    }
    if (!typeStr.empty()) {
      return IGM.getAddrOfGlobalString(typeStr.c_str());
    }
  }
  return nullptr;
}

static llvm::Constant *getObjCEncodingForMethod(IRGenModule &IGM,
                                                CanSILFunctionType fnType,
                                                bool useExtendedEncoding,
                                                Decl *optionalDecl) {
  // Use the decl's ClangNode to get the encoding if possible.
  if (optionalDecl) {
    if (auto *enc = getObjectEncodingFromClangNode(IGM, optionalDecl,
                                                   useExtendedEncoding)) {
      return enc;
    }
  }

  // Get the inputs without 'self'.
  auto inputs = fnType->getParameters().drop_back();

  // Include the encoding for 'self' and '_cmd'.
  llvm::SmallString<8> specialParams;
  specialParams += "@0:";
  auto ptrSize = IGM.getPointerSize().getValue();
  specialParams += llvm::itostr(ptrSize);
  GenericContextScope scope(IGM, fnType->getInvocationGenericSignature());
  return getObjCEncodingForTypes(IGM, fnType, inputs, specialParams,
                                 ptrSize * 2, useExtendedEncoding);
}

/// Emit the components of an Objective-C method descriptor: its selector,
/// type encoding, and IMP pointer.
ObjCMethodDescriptor
irgen::emitObjCMethodDescriptorParts(IRGenModule &IGM,
                                     AbstractFunctionDecl *method,
                                     bool concrete) {
  ObjCMethodDescriptor descriptor{};
  Selector selector(method);
  
  /// The first element is the selector.
  descriptor.selectorRef = IGM.getAddrOfObjCMethodName(selector.str());
  
  /// The second element is the method signature. A method signature is made
  /// of the return type @encoding and every parameter type @encoding, glued
  /// with numbers that used to represent stack offsets for each of these
  /// elements.
  CanSILFunctionType methodType = getObjCMethodType(IGM, method);
  
  bool useExtendedEncoding =
    method->hasAsync() && !isa<ProtocolDecl>(method->getDeclContext());
  descriptor.typeEncoding = getObjCEncodingForMethod(
      IGM, methodType, /*extended*/ useExtendedEncoding, method);
  /// The third element is the method implementation pointer.
  if (!concrete) {
    descriptor.impl = nullptr;
    descriptor.silFunction = nullptr;
    return descriptor;
  }
  descriptor.silFunction = nullptr;

  if (auto func = dyn_cast<FuncDecl>(method))
    descriptor.impl = getObjCMethodPointer(IGM, func, descriptor.silFunction);
  else if (auto ctor = dyn_cast<ConstructorDecl>(method))
    descriptor.impl = getObjCMethodPointer(IGM, ctor, descriptor.silFunction);
  else
    descriptor.impl = getObjCMethodPointer(IGM, cast<DestructorDecl>(method),
                                           descriptor.silFunction);
  return descriptor;
}

/// Emit the components of an Objective-C method descriptor for a
/// property getter method.
ObjCMethodDescriptor
irgen::emitObjCGetterDescriptorParts(IRGenModule &IGM, VarDecl *property) {
  Selector getterSel(property, Selector::ForGetter);
  ObjCMethodDescriptor descriptor{};
  descriptor.selectorRef = IGM.getAddrOfObjCMethodName(getterSel.str());
  
  auto clangType = getObjCPropertyType(IGM, property);
  if (clangType.isNull()) {
    descriptor.typeEncoding = llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
    descriptor.silFunction = nullptr;
    return descriptor;
  }

  auto &clangASTContext = IGM.getClangASTContext();
  std::string TypeStr;
  clangASTContext.getObjCEncodingForType(clangType, TypeStr);
  
  Size PtrSize = IGM.getPointerSize();
  Size::int_type ParmOffset = 2 * PtrSize.getValue();
  
  TypeStr += llvm::itostr(ParmOffset);
  TypeStr += "@0:";
  TypeStr += llvm::itostr(PtrSize.getValue());
  descriptor.typeEncoding = IGM.getAddrOfGlobalString(TypeStr.c_str());
  descriptor.silFunction = nullptr;
  descriptor.impl = getObjCGetterPointer(IGM, property, descriptor.silFunction);
  return descriptor;
}

/// Emit the components of an Objective-C method descriptor for a
/// subscript getter method.
ObjCMethodDescriptor
irgen::emitObjCGetterDescriptorParts(IRGenModule &IGM,
                                     SubscriptDecl *subscript) {
  Selector getterSel(subscript, Selector::ForGetter);
  ObjCMethodDescriptor descriptor{};
  descriptor.selectorRef = IGM.getAddrOfObjCMethodName(getterSel.str());

  auto methodTy =
      getObjCMethodType(IGM, subscript->getOpaqueAccessor(AccessorKind::Get));
  descriptor.typeEncoding =
      getObjCEncodingForMethod(IGM, methodTy,
                               /*extended*/ false, subscript);

  descriptor.silFunction = nullptr;
  descriptor.impl = getObjCGetterPointer(IGM, subscript,
                                         descriptor.silFunction);
  return descriptor;
}

ObjCMethodDescriptor
irgen::emitObjCGetterDescriptorParts(IRGenModule &IGM,
                                     AbstractStorageDecl *decl) {
  if (auto sub = dyn_cast<SubscriptDecl>(decl)) {
    return emitObjCGetterDescriptorParts(IGM, sub);
  }
  if (auto var = dyn_cast<VarDecl>(decl)) {
    return emitObjCGetterDescriptorParts(IGM, var);
  }
  llvm_unreachable("unknown storage!");
}

/// Emit the components of an Objective-C method descriptor for a
/// property getter method.
ObjCMethodDescriptor
irgen::emitObjCSetterDescriptorParts(IRGenModule &IGM,
                                     VarDecl *property) {
  // Optional properties support mutation on the Objective-C side, but not the
  // Swift side.
  assert((property->getAttrs().hasAttribute<OptionalAttr>() ||
          property->isSettable(property->getDeclContext())) &&
         "not a settable property?!");

  Selector setterSel(property, Selector::ForSetter);
  ObjCMethodDescriptor descriptor{};
  descriptor.selectorRef = IGM.getAddrOfObjCMethodName(setterSel.str());
  
  auto &clangASTContext = IGM.getClangASTContext();
  std::string TypeStr;
  auto clangType = clangASTContext.VoidTy;
  clangASTContext.getObjCEncodingForType(clangType, TypeStr);
  
  Size PtrSize = IGM.getPointerSize();
  Size::int_type ParmOffset = 2 * PtrSize.getValue();

  clangType = getObjCPropertyType(IGM, property);
  if (clangType.isNull()) {
    descriptor.typeEncoding = llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
    descriptor.silFunction = nullptr;
    return descriptor;
  }
  clang::CharUnits sz = clangASTContext.getObjCEncodingTypeSize(clangType);
  if (!sz.isZero())
    ParmOffset += sz.getQuantity();
  TypeStr += llvm::itostr(ParmOffset);
  TypeStr += "@0:";
  TypeStr += llvm::itostr(PtrSize.getValue());
  ParmOffset = 2 * PtrSize.getValue();
  clangASTContext.getObjCEncodingForType(clangType, TypeStr);
  TypeStr += llvm::itostr(ParmOffset);
  descriptor.typeEncoding = IGM.getAddrOfGlobalString(TypeStr.c_str());
  descriptor.silFunction = nullptr;
  descriptor.impl = getObjCSetterPointer(IGM, property, descriptor.silFunction);
  return descriptor;
}

/// Emit the components of an Objective-C method descriptor for a
/// subscript getter method.
ObjCMethodDescriptor
irgen::emitObjCSetterDescriptorParts(IRGenModule &IGM,
                                     SubscriptDecl *subscript) {
  // Optional subscripts support mutation on the Objective-C side, but not the
  // Swift side.
  assert((subscript->getAttrs().hasAttribute<OptionalAttr>() ||
          subscript->supportsMutation()) &&
         "not a settable subscript?!");

  Selector setterSel(subscript, Selector::ForSetter);
  ObjCMethodDescriptor descriptor{};
  descriptor.selectorRef = IGM.getAddrOfObjCMethodName(setterSel.str());
  auto methodTy = getObjCMethodType(IGM,
                              subscript->getOpaqueAccessor(AccessorKind::Set));
  descriptor.typeEncoding =
      getObjCEncodingForMethod(IGM, methodTy,
                               /*extended*/ false, subscript);
  descriptor.silFunction = nullptr;
  descriptor.impl = getObjCSetterPointer(IGM, subscript,
                                         descriptor.silFunction);
  return descriptor;
}

ObjCMethodDescriptor
irgen::emitObjCSetterDescriptorParts(IRGenModule &IGM,
                                     AbstractStorageDecl *decl) {
  if (auto sub = dyn_cast<SubscriptDecl>(decl)) {
    return emitObjCSetterDescriptorParts(IGM, sub);
  }
  if (auto var = dyn_cast<VarDecl>(decl)) {
    return emitObjCSetterDescriptorParts(IGM, var);
  }
  llvm_unreachable("unknown storage!");
}

static void buildMethodDescriptor(IRGenModule &IGM,
                                  ConstantArrayBuilder &descriptors,
                                  ObjCMethodDescriptor &parts) {
  auto descriptor = descriptors.beginStruct();
  descriptor.add(parts.selectorRef);
  descriptor.add(parts.typeEncoding);
  if (parts.impl->isNullValue()) {
    descriptor.add(parts.impl);
  } else {
    descriptor.addSignedPointer(parts.impl,
               IGM.getOptions().PointerAuth.ObjCMethodListFunctionPointers,
                                PointerAuthEntity());
  }
  descriptor.finishAndAddTo(descriptors);
}

static void emitObjCDescriptor(IRGenModule &IGM,
                               ConstantArrayBuilder &descriptors,
                               ObjCMethodDescriptor &descriptor) {
  buildMethodDescriptor(IGM, descriptors, descriptor);
  auto *silFn = descriptor.silFunction;
  if (silFn && silFn->hasObjCReplacement()) {
    auto replacedSelector =
      IGM.getAddrOfObjCMethodName(silFn->getObjCReplacement().str());
    descriptor.selectorRef = replacedSelector;
    buildMethodDescriptor(IGM, descriptors, descriptor);
  }
}

/// Emit an Objective-C method descriptor for the given method.
/// struct method_t {
///   SEL name;
///   const char *types;
///   IMP imp;
/// };
void irgen::emitObjCMethodDescriptor(IRGenModule &IGM,
                                     ConstantArrayBuilder &descriptors,
                                     AbstractFunctionDecl *method) {
  ObjCMethodDescriptor descriptor(
    emitObjCMethodDescriptorParts(IGM, method, /*concrete*/ true));
  emitObjCDescriptor(IGM, descriptors, descriptor);
}

void irgen::emitObjCIVarInitDestroyDescriptor(IRGenModule &IGM,
                                              ConstantArrayBuilder &descriptors,
                                              ClassDecl *cd,
                                              llvm::Function *objcImpl,
                                              bool isDestroyer) {
  /// The first element is the selector.
  SILDeclRef declRef = SILDeclRef(cd, 
                                  isDestroyer? SILDeclRef::Kind::IVarDestroyer
                                             : SILDeclRef::Kind::IVarInitializer,
                                  /*foreign*/ true);
  Selector selector(declRef);
  ObjCMethodDescriptor descriptor{};
  descriptor.selectorRef = IGM.getAddrOfObjCMethodName(selector.str());
  
  /// The second element is the method signature. A method signature is made of
  /// the return type @encoding and every parameter type @encoding, glued with
  /// numbers that used to represent stack offsets for each of these elements.
  auto ptrSize = IGM.getPointerSize().getValue();
  llvm::SmallString<8> signature;
  signature = "v" + llvm::itostr(ptrSize * 2) + "@0:" + llvm::itostr(ptrSize);
  descriptor.typeEncoding = IGM.getAddrOfGlobalString(signature);

  /// The third element is the method implementation pointer.
  descriptor.impl = llvm::ConstantExpr::getBitCast(objcImpl, IGM.Int8PtrTy);

  // Form the method_t instance.
  buildMethodDescriptor(IGM, descriptors, descriptor);
}


llvm::Constant *
irgen::getMethodTypeExtendedEncoding(IRGenModule &IGM,
                                     AbstractFunctionDecl *method) {
  CanSILFunctionType methodType = getObjCMethodType(IGM, method);
  return getObjCEncodingForMethod(IGM, methodType, true /*Extended*/, method);
}

llvm::Constant *
irgen::getBlockTypeExtendedEncoding(IRGenModule &IGM,
                                    CanSILFunctionType invokeTy) {
  // Skip the storage pointer, which is encoded as '@?' to avoid the infinite
  // recursion of the usual '@?<...>' rule for blocks.
  auto paramTypes = invokeTy->getParameters().slice(1);
  
  return getObjCEncodingForTypes(IGM, invokeTy, paramTypes,
                                 "@?0", IGM.getPointerSize().getValue(),
                                 /*extended*/ true);
}

void irgen::emitObjCGetterDescriptor(IRGenModule &IGM,
                                     ConstantArrayBuilder &descriptors,
                                     AbstractStorageDecl *storage) {
  ObjCMethodDescriptor descriptor(emitObjCGetterDescriptorParts(IGM, storage));
  emitObjCDescriptor(IGM, descriptors, descriptor);
}

void irgen::emitObjCSetterDescriptor(IRGenModule &IGM,
                                     ConstantArrayBuilder &descriptors,
                                     AbstractStorageDecl *storage) {
  ObjCMethodDescriptor descriptor(emitObjCSetterDescriptorParts(IGM, storage));
  emitObjCDescriptor(IGM, descriptors, descriptor);
}

static bool isObjCGenericClassExtension(ValueDecl *decl) {
  // Don't emit category entries for @objc methods in extensions they would
  // normally be disallowed except for @_dynamicReplacement(for:) methods that
  // use the native dynamic replacement mechanism instead of objc categories.
  auto *DC = decl->getDeclContext();
  if (!isa<ExtensionDecl>(DC))
    return false;
  return decl->isNativeMethodReplacement();
}

bool irgen::requiresObjCMethodDescriptor(FuncDecl *method) {
  // Property accessors should be generated alongside the property.
  if (isa<AccessorDecl>(method))
    return false;

  return method->isObjC() && !isObjCGenericClassExtension(method);
}

bool irgen::requiresObjCMethodDescriptor(ConstructorDecl *constructor) {
  return constructor->isObjC();
}

bool irgen::requiresObjCPropertyDescriptor(IRGenModule &IGM,
                                           VarDecl *property) {
  // Don't generate a descriptor for a property without any accessors.
  // This is only possible in SIL files because Sema will normally
  // implicitly synthesize accessors for @objc properties.
  return property->isObjC() && property->requiresOpaqueAccessors() &&
         !isObjCGenericClassExtension(property);
}

bool irgen::requiresObjCSubscriptDescriptor(IRGenModule &IGM,
                                            SubscriptDecl *subscript) {
  return subscript->isObjC() && !isObjCGenericClassExtension(subscript);
}

llvm::Value *IRGenFunction::emitBlockCopyCall(llvm::Value *value) {
  // Get an appropriately-cast function pointer.
  auto fn = IGM.getBlockCopyFn();
  auto fnType = IGM.getBlockCopyFnType();

  if (value->getType() != IGM.ObjCBlockPtrTy) {
    fnType = llvm::FunctionType::get(value->getType(), value->getType(), false);
    fn = llvm::ConstantExpr::getBitCast(fn, fnType->getPointerTo());
  }

  auto call = Builder.CreateCall(fnType, fn, value);
  return call;
}

void IRGenFunction::emitBlockRelease(llvm::Value *value) {
  // Get an appropriately-cast function pointer.
  auto fn = IGM.getBlockReleaseFn();
  auto fnType = IGM.getBlockReleaseFnType();
  if (value->getType() != IGM.ObjCBlockPtrTy) {
    fnType = llvm::FunctionType::get(IGM.VoidTy, value->getType(), false);
    fn = llvm::ConstantExpr::getBitCast(fn, fnType->getPointerTo());
  }
  auto call = Builder.CreateCall(fnType, fn, value);
  call->setDoesNotThrow();
}

void IRGenFunction::emitForeignReferenceTypeLifetimeOperation(
    ValueDecl *fn, llvm::Value *value, bool needsNullCheck) {
  assert(fn->getClangDecl() && isa<clang::FunctionDecl>(fn->getClangDecl()));

  auto clangFn = cast<clang::FunctionDecl>(fn->getClangDecl());
  auto llvmFn = cast<llvm::Function>(
      IGM.getAddrOfClangGlobalDecl(clangFn, ForDefinition));

  auto argType =
      cast<llvm::FunctionType>(llvmFn->getFunctionType())->getParamType(0);
  value = Builder.CreateBitCast(value, argType);

  llvm::CallInst *call = nullptr;
  if (needsNullCheck) {
    // Check if the pointer is null.
    auto nullValue = llvm::Constant::getNullValue(argType);
    auto hasValue = Builder.CreateICmpNE(value, nullValue);

    auto nonNullValueBB = createBasicBlock("lifetime.nonnull-value");
    auto contBB = createBasicBlock("lifetime.cont");

    // If null, just continue.
    Builder.CreateCondBr(hasValue, nonNullValueBB, contBB);

    // If non-null, emit a call to release/retain function.
    Builder.emitBlock(nonNullValueBB);
    call = Builder.CreateCall(llvmFn->getFunctionType(), llvmFn, value);

    Builder.CreateBr(contBB);

    Builder.emitBlock(contBB);
  } else {
    call = Builder.CreateCall(llvmFn->getFunctionType(), llvmFn, value);
  }

  call->setDoesNotThrow();
}