1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
|
//===--- GenRecord.h - IR generation for record types -----------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides some common code for emitting record types.
// A record type is something like a tuple or a struct.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_IRGEN_GENRECORD_H
#define SWIFT_IRGEN_GENRECORD_H
#include "BitPatternBuilder.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "Explosion.h"
#include "GenEnum.h"
#include "GenOpaque.h"
#include "LoadableTypeInfo.h"
#include "Outlining.h"
#include "TypeInfo.h"
#include "StructLayout.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TrailingObjects.h"
#include "swift/AST/DiagnosticsIRGen.h"
namespace swift {
namespace irgen {
template <class, class, class> class RecordTypeBuilder;
/// A field of a record type.
template <class FieldImpl> class RecordField {
ElementLayout Layout;
template <class, class, class> friend class RecordTypeBuilder;
/// Begin/End - the range of explosion indexes for this element
unsigned Begin;
unsigned End;
protected:
explicit RecordField(const TypeInfo &elementTI)
: Layout(ElementLayout::getIncomplete(elementTI)) {}
explicit RecordField(const ElementLayout &layout,
unsigned begin, unsigned end)
: Layout(layout), Begin(begin), End(end) {}
const FieldImpl *asImpl() const {
return static_cast<const FieldImpl*>(this);
}
public:
const TypeInfo &getTypeInfo() const { return Layout.getType(); }
void completeFrom(const ElementLayout &layout) {
Layout.completeFrom(layout);
}
bool isEmpty() const {
return Layout.isEmpty();
}
IsTriviallyDestroyable_t isTriviallyDestroyable() const {
return Layout.isTriviallyDestroyable();
}
IsABIAccessible_t isABIAccessible() const {
return Layout.getType().isABIAccessible();
}
Address projectAddress(IRGenFunction &IGF, Address seq,
NonFixedOffsets offsets) const {
return Layout.project(IGF, seq, offsets, "." + asImpl()->getFieldName());
}
ElementLayout::Kind getKind() const {
return Layout.getKind();
}
bool hasFixedByteOffset() const {
return Layout.hasByteOffset();
}
Size getFixedByteOffset() const {
return Layout.getByteOffset();
}
unsigned getStructIndex() const { return Layout.getStructIndex(); }
unsigned getNonFixedElementIndex() const {
return Layout.getNonFixedElementIndex();
}
std::pair<unsigned, unsigned> getProjectionRange() const {
return {Begin, End};
}
};
enum FieldsAreABIAccessible_t : bool {
FieldsAreNotABIAccessible = false,
FieldsAreABIAccessible = true,
};
/// A metaprogrammed TypeInfo implementation for record types.
template <class Impl, class Base, class FieldImpl_,
bool IsLoadable = std::is_base_of<LoadableTypeInfo, Base>::value>
class RecordTypeInfoImpl : public Base,
private llvm::TrailingObjects<Impl, FieldImpl_> {
friend class llvm::TrailingObjects<Impl, FieldImpl_>;
public:
using FieldImpl = FieldImpl_;
private:
const unsigned NumFields;
const unsigned AreFieldsABIAccessible : 1;
mutable std::optional<const FieldImpl *> ExtraInhabitantProvidingField;
mutable std::optional<bool> MayHaveExtraInhabitants;
protected:
const Impl &asImpl() const { return *static_cast<const Impl*>(this); }
template <class... As>
RecordTypeInfoImpl(ArrayRef<FieldImpl> fields,
FieldsAreABIAccessible_t fieldsABIAccessible,
As&&...args)
: Base(std::forward<As>(args)...),
NumFields(fields.size()),
AreFieldsABIAccessible(fieldsABIAccessible) {
std::uninitialized_copy(fields.begin(), fields.end(),
this->template getTrailingObjects<FieldImpl>());
}
public:
/// Allocate and initialize a type info of this type.
template <class... As>
static Impl *create(ArrayRef<FieldImpl> fields, As &&...args) {
size_t size = Impl::template totalSizeToAlloc<FieldImpl>(fields.size());
void *buffer = ::operator new(size);
return new(buffer) Impl(fields, std::forward<As>(args)...);
}
bool areFieldsABIAccessible() const {
return AreFieldsABIAccessible;
}
ArrayRef<FieldImpl> getFields() const {
return {this->template getTrailingObjects<FieldImpl>(), NumFields};
}
/// The standard schema is just all the fields jumbled together.
void getSchema(ExplosionSchema &schema) const override {
for (auto &field : getFields()) {
field.getTypeInfo().getSchema(schema);
}
}
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src, SILType T,
bool isOutlined) const override {
// If the fields are not ABI-accessible, use the value witness table.
if (!AreFieldsABIAccessible) {
return emitAssignWithCopyCall(IGF, T, dest, src);
}
if (isOutlined || T.hasParameterizedExistential()) {
auto offsets = asImpl().getNonFixedOffsets(IGF, T);
for (auto &field : getFields()) {
if (field.isEmpty())
continue;
Address destField = field.projectAddress(IGF, dest, offsets);
Address srcField = field.projectAddress(IGF, src, offsets);
field.getTypeInfo().assignWithCopy(
IGF, destField, srcField, field.getType(IGF.IGM, T), isOutlined);
}
} else {
this->callOutlinedCopy(IGF, dest, src, T, IsNotInitialization, IsNotTake);
}
}
void assignWithTake(IRGenFunction &IGF, Address dest, Address src, SILType T,
bool isOutlined) const override {
// If the fields are not ABI-accessible, use the value witness table.
if (!AreFieldsABIAccessible) {
return emitAssignWithTakeCall(IGF, T, dest, src);
}
if (auto rawLayout = T.getRawLayout()) {
// Because we have a rawlayout attribute, we know this has to be a struct.
auto structDecl = T.getStructOrBoundGenericStruct();
if (auto likeType = rawLayout->getResolvedScalarLikeType(structDecl)) {
if (rawLayout->shouldMoveAsLikeType()) {
auto astT = T.getASTType();
auto subs = astT->getContextSubstitutionMap(IGF.IGM.getSwiftModule(),
structDecl);
auto loweredLikeType = IGF.IGM.getLoweredType(likeType->subst(subs));
auto &likeTypeInfo = IGF.IGM.getTypeInfo(loweredLikeType);
likeTypeInfo.assignWithTake(IGF, dest, src, loweredLikeType,
isOutlined);
return;
}
}
}
if (isOutlined || T.hasParameterizedExistential()) {
auto offsets = asImpl().getNonFixedOffsets(IGF, T);
for (auto &field : getFields()) {
if (field.isEmpty())
continue;
Address destField = field.projectAddress(IGF, dest, offsets);
Address srcField = field.projectAddress(IGF, src, offsets);
field.getTypeInfo().assignWithTake(
IGF, destField, srcField, field.getType(IGF.IGM, T), isOutlined);
}
} else {
this->callOutlinedCopy(IGF, dest, src, T, IsNotInitialization, IsTake);
}
}
void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
// If we're POD, use the generic routine.
if (this->isTriviallyDestroyable(ResilienceExpansion::Maximal) &&
isa<LoadableTypeInfo>(this)) {
return cast<LoadableTypeInfo>(this)->LoadableTypeInfo::initializeWithCopy(
IGF, dest, src, T, isOutlined);
}
// If the fields are not ABI-accessible, use the value witness table.
if (!AreFieldsABIAccessible) {
return emitInitializeWithCopyCall(IGF, T, dest, src);
}
if (isOutlined || T.hasParameterizedExistential()) {
auto offsets = asImpl().getNonFixedOffsets(IGF, T);
for (auto &field : getFields()) {
if (field.isEmpty())
continue;
Address destField = field.projectAddress(IGF, dest, offsets);
Address srcField = field.projectAddress(IGF, src, offsets);
field.getTypeInfo().initializeWithCopy(
IGF, destField, srcField, field.getType(IGF.IGM, T), isOutlined);
}
} else {
this->callOutlinedCopy(IGF, dest, src, T, IsInitialization, IsNotTake);
}
}
void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
// If we're bitwise-takable, use memcpy.
if (this->isBitwiseTakable(ResilienceExpansion::Maximal)) {
IGF.Builder.CreateMemCpy(
dest.getAddress(), llvm::MaybeAlign(dest.getAlignment().getValue()),
src.getAddress(), llvm::MaybeAlign(src.getAlignment().getValue()),
asImpl().Impl::getSize(IGF, T));
} else if (!AreFieldsABIAccessible) {
// If the fields are not ABI-accessible, use the value witness table.
return emitInitializeWithTakeCall(IGF, T, dest, src);
} else if (auto rawLayout = T.getRawLayout()) {
// Because we have a rawlayout attribute, we know this has to be a struct.
auto structDecl = T.getStructOrBoundGenericStruct();
if (auto likeType = rawLayout->getResolvedScalarLikeType(structDecl)) {
if (rawLayout->shouldMoveAsLikeType()) {
auto astT = T.getASTType();
auto subs = astT->getContextSubstitutionMap(IGF.IGM.getSwiftModule(),
structDecl);
auto loweredLikeType = IGF.IGM.getLoweredType(likeType->subst(subs));
auto &likeTypeInfo = IGF.IGM.getTypeInfo(loweredLikeType);
likeTypeInfo.initializeWithTake(IGF, dest, src, loweredLikeType,
isOutlined);
}
}
} else if (isOutlined || T.hasParameterizedExistential()) {
auto offsets = asImpl().getNonFixedOffsets(IGF, T);
for (auto &field : getFields()) {
if (field.isEmpty())
continue;
Address destField = field.projectAddress(IGF, dest, offsets);
Address srcField = field.projectAddress(IGF, src, offsets);
field.getTypeInfo().initializeWithTake(
IGF, destField, srcField, field.getType(IGF.IGM, T), isOutlined);
}
} else {
this->callOutlinedCopy(IGF, dest, src, T, IsInitialization, IsTake);
}
}
void destroy(IRGenFunction &IGF, Address addr, SILType T,
bool isOutlined) const override {
// If the fields are not ABI-accessible, use the value witness table.
if (!AreFieldsABIAccessible) {
return emitDestroyCall(IGF, T, addr);
}
if (isOutlined || T.hasParameterizedExistential()) {
auto offsets = asImpl().getNonFixedOffsets(IGF, T);
for (auto &field : getFields()) {
if (field.isTriviallyDestroyable())
continue;
field.getTypeInfo().destroy(IGF,
field.projectAddress(IGF, addr, offsets),
field.getType(IGF.IGM, T), isOutlined);
}
} else {
this->callOutlinedDestroy(IGF, addr, T);
}
}
// The extra inhabitants of a record are determined from its fields.
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
if (!MayHaveExtraInhabitants.has_value()) {
MayHaveExtraInhabitants = false;
for (auto &field : asImpl().getFields())
if (field.getTypeInfo().mayHaveExtraInhabitants(IGM)) {
MayHaveExtraInhabitants = true;
break;
}
}
return *MayHaveExtraInhabitants;
}
// Perform an operation using the field that provides extra inhabitants for
// the aggregate, whether that field is known statically or dynamically.
llvm::Value *withExtraInhabitantProvidingField(IRGenFunction &IGF,
Address structAddr,
SILType structType,
llvm::Value *knownStructNumXI,
llvm::Type *resultTy,
llvm::function_ref<llvm::Value* (const FieldImpl &field,
llvm::Value *numXI)> body) const {
// If we know one field consistently provides extra inhabitants, delegate
// to that field.
if (auto field = asImpl().getFixedExtraInhabitantProvidingField(IGF.IGM)){
return body(*field, knownStructNumXI);
}
// Otherwise, we have to figure out which field at runtime.
// The number of extra inhabitants the instantiated type has can be used
// to figure out which field the runtime chose. The runtime uses the same
// algorithm as above--use the field with the most extra inhabitants,
// favoring the earliest field in a tie. If we test the number of extra
// inhabitants in the struct against each field type's, then the first
// match should indicate which field we chose.
//
// We can reduce the decision space somewhat if there are fixed-layout
// fields, since we know the only possible runtime choices are
// either the fixed field with the most extra inhabitants (if any), or
// one of the unknown-layout fields.
//
// See whether we have a fixed candidate.
const FieldImpl *fixedCandidate = nullptr;
unsigned fixedCount = 0;
for (auto &field : asImpl().getFields()) {
if (!field.getTypeInfo().mayHaveExtraInhabitants(IGF.IGM))
continue;
if (const FixedTypeInfo *fixed =
dyn_cast<FixedTypeInfo>(&field.getTypeInfo())) {
auto fieldCount = fixed->getFixedExtraInhabitantCount(IGF.IGM);
if (fieldCount > fixedCount) {
fixedCandidate = &field;
fixedCount = fieldCount;
}
}
}
// Loop through checking to see whether we picked the fixed candidate
// (if any) or one of the unknown-layout fields.
llvm::Value *instantiatedCount
= (knownStructNumXI
? knownStructNumXI
: emitLoadOfExtraInhabitantCount(IGF, structType));
auto contBB = IGF.createBasicBlock("chose_field_for_xi");
llvm::PHINode *contPhi = nullptr;
if (resultTy != IGF.IGM.VoidTy)
contPhi = llvm::PHINode::Create(resultTy,
asImpl().getFields().size());
// If two fields have the same type, they have the same extra inhabitant
// count, and we'll pick the first. We don't have to check both.
SmallPtrSet<SILType, 4> visitedTypes;
for (auto &field : asImpl().getFields()) {
if (!field.getTypeInfo().mayHaveExtraInhabitants(IGF.IGM))
continue;
ConditionalDominanceScope condition(IGF);
llvm::Value *fieldCount;
if (isa<FixedTypeInfo>(field.getTypeInfo())) {
// Skip fixed fields except for the candidate with the most known
// extra inhabitants we picked above.
if (&field != fixedCandidate)
continue;
fieldCount = IGF.IGM.getInt32(fixedCount);
} else {
auto fieldTy = field.getType(IGF.IGM, structType);
// If this field has the same type as a field we already tested,
// we'll never pick this one, since they both have the same count.
if (!visitedTypes.insert(fieldTy).second)
continue;
fieldCount = emitLoadOfExtraInhabitantCount(IGF, fieldTy);
}
auto equalsCount = IGF.Builder.CreateICmpEQ(instantiatedCount,
fieldCount);
auto yesBB = IGF.createBasicBlock("");
auto noBB = IGF.createBasicBlock("");
IGF.Builder.CreateCondBr(equalsCount, yesBB, noBB);
IGF.Builder.emitBlock(yesBB);
auto value = body(field, instantiatedCount);
if (contPhi)
contPhi->addIncoming(value, IGF.Builder.GetInsertBlock());
IGF.Builder.CreateBr(contBB);
IGF.Builder.emitBlock(noBB);
}
// We shouldn't have picked a number of extra inhabitants inconsistent
// with any individual field.
IGF.Builder.CreateUnreachable();
IGF.Builder.emitBlock(contBB);
if (contPhi)
IGF.Builder.Insert(contPhi);
return contPhi;
}
const FieldImpl *
getFixedExtraInhabitantProvidingField(IRGenModule &IGM) const {
if (!ExtraInhabitantProvidingField.has_value()) {
unsigned mostExtraInhabitants = 0;
const FieldImpl *fieldWithMost = nullptr;
const FieldImpl *singleNonFixedField = nullptr;
// TODO: If two fields have the same type, they have the same extra
// inhabitant count, and we'll pick the first. We don't have to check
// both. However, we don't always have access to the substituted struct
// type from this context, which would be necessary to make that
// judgment reliably.
for (auto &field : asImpl().getFields()) {
auto &ti = field.getTypeInfo();
if (!ti.mayHaveExtraInhabitants(IGM))
continue;
auto *fixed = dyn_cast<FixedTypeInfo>(&field.getTypeInfo());
// If any field is non-fixed, we can't definitively pick a best one,
// unless it happens to be the only non-fixed field and none of the
// other fields have extra inhabitants.
if (!fixed) {
// If we already saw a non-fixed field, then we can't pick one
// at compile time.
if (singleNonFixedField) {
singleNonFixedField = fieldWithMost = nullptr;
break;
}
// Otherwise, note this field for later. If we have no fixed
// candidates, it may be the only choice for extra inhabitants.
singleNonFixedField = &field;
continue;
}
unsigned count = fixed->getFixedExtraInhabitantCount(IGM);
if (count > mostExtraInhabitants) {
mostExtraInhabitants = count;
fieldWithMost = &field;
}
}
if (fieldWithMost) {
if (singleNonFixedField) {
// If we have a non-fixed and fixed candidate, we can't know for
// sure now.
ExtraInhabitantProvidingField = nullptr;
} else {
// If we had all fixed fields, pick the one with the most extra
// inhabitants.
ExtraInhabitantProvidingField = fieldWithMost;
}
} else {
// If there were no fixed candidates, but we had a single non-fixed
// field with potential extra inhabitants, then it's our only choice.
ExtraInhabitantProvidingField = singleNonFixedField;
}
}
return *ExtraInhabitantProvidingField;
}
void collectMetadataForOutlining(OutliningMetadataCollector &collector,
SILType T) const override {
for (auto &field : getFields()) {
auto fType = field.getType(collector.IGF.IGM, T);
field.getTypeInfo().collectMetadataForOutlining(collector, fType);
}
collector.collectTypeMetadata(T);
}
};
template <class Impl, class Base, class FieldImpl_,
bool IsFixedSize = std::is_base_of<FixedTypeInfo, Base>::value,
bool IsLoadable = std::is_base_of<LoadableTypeInfo, Base>::value>
class RecordTypeInfo;
/// An implementation of RecordTypeInfo for non-fixed-size types
/// (but not resilient ones where we don't know the complete set of
/// stored properties).
///
/// Override the buffer operations to just delegate to the unique
/// non-empty field, if there is one.
template <class Impl, class Base, class FieldImpl>
class RecordTypeInfo<Impl, Base, FieldImpl,
/*IsFixedSize*/ false, /*IsLoadable*/ false>
: public RecordTypeInfoImpl<Impl, Base, FieldImpl> {
using super = RecordTypeInfoImpl<Impl, Base, FieldImpl>;
/// The index+1 of the unique non-empty field, or zero if there is none.
unsigned UniqueNonEmptyFieldIndexPlusOne;
protected:
template <class... As>
RecordTypeInfo(ArrayRef<FieldImpl> fields, As&&...args)
: super(fields, std::forward<As>(args)...) {
// Look for a unique non-empty field.
UniqueNonEmptyFieldIndexPlusOne = findUniqueNonEmptyField(fields);
}
public:
using super::getStorageType;
Address initializeBufferWithCopyOfBuffer(IRGenFunction &IGF,
Address destBuffer,
Address srcBuffer,
SILType type) const override {
if (auto field = getUniqueNonEmptyField()) {
auto &fieldTI = field->getTypeInfo();
Address fieldResult =
fieldTI.initializeBufferWithCopyOfBuffer(IGF, destBuffer, srcBuffer,
field->getType(IGF.IGM, type));
return IGF.Builder.CreateElementBitCast(fieldResult, getStorageType());
} else {
return super::initializeBufferWithCopyOfBuffer(IGF, destBuffer,
srcBuffer, type);
}
}
private:
static unsigned findUniqueNonEmptyField(ArrayRef<FieldImpl> fields) {
unsigned result = 0;
for (auto &field : fields) {
// Ignore empty fields.
if (field.isEmpty()) continue;
// If the field is not ABI-accessible, suppress this.
if (!field.isABIAccessible()) return 0;
// If we've already found an index, then there isn't a
// unique non-empty field.
if (result) return 0;
result = (&field - fields.data()) + 1;
}
return result;
}
const FieldImpl *getUniqueNonEmptyField() const {
if (UniqueNonEmptyFieldIndexPlusOne) {
return &this->getFields()[UniqueNonEmptyFieldIndexPlusOne - 1];
} else {
return nullptr;
}
}
};
/// An implementation of RecordTypeInfo for fixed-layout types that
/// aren't necessarily loadable.
template <class Impl, class Base, class FieldImpl>
class RecordTypeInfo<Impl, Base, FieldImpl,
/*IsFixedSize*/ true, /*IsLoadable*/ false>
: public RecordTypeInfoImpl<Impl, Base, FieldImpl> {
using super = RecordTypeInfoImpl<Impl, Base, FieldImpl>;
protected:
template <class... As>
RecordTypeInfo(ArrayRef<FieldImpl> fields, As &&...args)
: super(fields, FieldsAreABIAccessible, std::forward<As>(args)...) {}
using super::asImpl;
public:
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
if (auto field = asImpl().getFixedExtraInhabitantProvidingField(IGM)) {
auto &fieldTI = cast<FixedTypeInfo>(field->getTypeInfo());
return fieldTI.getFixedExtraInhabitantCount(IGM);
}
return 0;
}
bool canValueWitnessExtraInhabitantsUpTo(IRGenModule &IGM,
unsigned index) const override {
if (auto field = asImpl().getFixedExtraInhabitantProvidingField(IGM)) {
// The non-extra-inhabitant-providing fields of the type must be
// trivial, because an enum may contain garbage values in those fields'
// storage which the value witness operation won't handle.
for (auto &otherField : asImpl().getFields()) {
if (field == &otherField)
continue;
auto &ti = otherField.getTypeInfo();
if (!ti.isTriviallyDestroyable(ResilienceExpansion::Maximal)) {
return false;
}
}
return field->getTypeInfo()
.canValueWitnessExtraInhabitantsUpTo(IGM, index);
}
return false;
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
// We are only called if the type is known statically to have extra
// inhabitants.
auto &field = *asImpl().getFixedExtraInhabitantProvidingField(IGM);
auto &fieldTI = cast<FixedTypeInfo>(field.getTypeInfo());
auto fieldSize = fieldTI.getFixedExtraInhabitantMask(IGM).getBitWidth();
auto value = BitPatternBuilder(IGM.Triple.isLittleEndian());
value.appendClearBits(field.getFixedByteOffset().getValueInBits());
value.append(fieldTI.getFixedExtraInhabitantValue(IGM, fieldSize, index));
value.padWithClearBitsTo(bits);
return value.build().value();
}
APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
auto field = asImpl().getFixedExtraInhabitantProvidingField(IGM);
if (!field)
return APInt();
const FixedTypeInfo &fieldTI
= cast<FixedTypeInfo>(field->getTypeInfo());
auto targetSize = asImpl().getFixedSize().getValueInBits();
if (fieldTI.isKnownEmpty(ResilienceExpansion::Maximal))
return APInt(targetSize, 0);
auto mask = BitPatternBuilder(IGM.Triple.isLittleEndian());
mask.appendClearBits(field->getFixedByteOffset().getValueInBits());
mask.append(fieldTI.getFixedExtraInhabitantMask(IGM));
mask.padWithClearBitsTo(targetSize);
return mask.build().value();
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address structAddr,
SILType structType,
bool isOutlined) const override {
auto field = *asImpl().getFixedExtraInhabitantProvidingField(IGF.IGM);
Address fieldAddr =
asImpl().projectFieldAddress(IGF, structAddr, structType, field);
auto &fieldTI = cast<FixedTypeInfo>(field.getTypeInfo());
return fieldTI.getExtraInhabitantIndex(IGF, fieldAddr,
field.getType(IGF.IGM, structType),
false /*not outlined for field*/);
}
void storeExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address structAddr,
SILType structType,
bool isOutlined) const override {
auto field = *asImpl().getFixedExtraInhabitantProvidingField(IGF.IGM);
Address fieldAddr =
asImpl().projectFieldAddress(IGF, structAddr, structType, field);
auto &fieldTI = cast<FixedTypeInfo>(field.getTypeInfo());
fieldTI.storeExtraInhabitant(IGF, index, fieldAddr,
field.getType(IGF.IGM, structType),
false /*not outlined for field*/);
}
};
/// An implementation of RecordTypeInfo for loadable types.
template <class Impl, class Base, class FieldImpl>
class RecordTypeInfo<Impl, Base, FieldImpl,
/*IsFixedSize*/ true, /*IsLoadable*/ true>
: public RecordTypeInfo<Impl, Base, FieldImpl, true, false> {
using super = RecordTypeInfo<Impl, Base, FieldImpl, true, false>;
unsigned ExplosionSize : 16;
protected:
using super::asImpl;
template <class... As>
RecordTypeInfo(ArrayRef<FieldImpl> fields,
unsigned explosionSize,
As &&...args)
: super(fields, std::forward<As>(args)...),
ExplosionSize(explosionSize) {}
private:
template <void (LoadableTypeInfo::*Op)(IRGenFunction &IGF,
Address addr,
Explosion &out) const>
void forAllFields(IRGenFunction &IGF, Address addr, Explosion &out) const {
auto offsets = asImpl().getNonFixedOffsets(IGF);
for (auto &field : getFields()) {
if (field.isEmpty()) continue;
Address fieldAddr = field.projectAddress(IGF, addr, offsets);
(cast<LoadableTypeInfo>(field.getTypeInfo()).*Op)(IGF, fieldAddr, out);
}
}
template <void (LoadableTypeInfo::*Op)(IRGenFunction &IGF, Address addr,
Explosion &out, Atomicity atomicity) const>
void forAllFields(IRGenFunction &IGF, Address addr, Explosion &out,
Atomicity atomicity) const {
auto offsets = asImpl().getNonFixedOffsets(IGF);
for (auto &field : getFields()) {
if (field.isEmpty()) continue;
Address fieldAddr = field.projectAddress(IGF, addr, offsets);
(cast<LoadableTypeInfo>(field.getTypeInfo()).*Op)(IGF, fieldAddr, out,
atomicity);
}
}
template <void (LoadableTypeInfo::*Op)(IRGenFunction &IGF, Explosion &in,
Address addr, bool isOutlined) const>
void forAllFields(IRGenFunction &IGF, Explosion &in, Address addr,
bool isOutlined) const {
auto offsets = asImpl().getNonFixedOffsets(IGF);
for (auto &field : getFields()) {
if (field.isEmpty()) continue;
Address fieldAddr = field.projectAddress(IGF, addr, offsets);
(cast<LoadableTypeInfo>(field.getTypeInfo()).*Op)(IGF, in, fieldAddr,
isOutlined);
}
}
template <void (LoadableTypeInfo::*Op)(IRGenFunction &IGF, Explosion &in,
Address addr, bool isOutlined,
SILType T) const>
void forAllFields(IRGenFunction &IGF, Explosion &in, Address addr,
bool isOutlined, SILType T) const {
auto offsets = asImpl().getNonFixedOffsets(IGF);
for (auto &field : getFields()) {
if (field.isEmpty()) continue;
Address fieldAddr = field.projectAddress(IGF, addr, offsets);
(cast<LoadableTypeInfo>(field.getTypeInfo()).*Op)(IGF, in, fieldAddr,
isOutlined,
field.getType(IGF.IGM, T));
}
}
public:
using super::getFields;
void loadAsCopy(IRGenFunction &IGF, Address addr,
Explosion &out) const override {
forAllFields<&LoadableTypeInfo::loadAsCopy>(IGF, addr, out);
}
void loadAsTake(IRGenFunction &IGF, Address addr,
Explosion &out) const override {
forAllFields<&LoadableTypeInfo::loadAsTake>(IGF, addr, out);
}
void assign(IRGenFunction &IGF, Explosion &e, Address addr,
bool isOutlined, SILType T) const override {
forAllFields<&LoadableTypeInfo::assign>(IGF, e, addr, isOutlined, T);
}
void initialize(IRGenFunction &IGF, Explosion &e, Address addr,
bool isOutlined) const override {
forAllFields<&LoadableTypeInfo::initialize>(IGF, e, addr, isOutlined);
}
unsigned getExplosionSize() const override {
return ExplosionSize;
}
void reexplode(Explosion &src,
Explosion &dest) const override {
for (auto &field : getFields())
cast<LoadableTypeInfo>(field.getTypeInfo()).reexplode(src, dest);
}
void copy(IRGenFunction &IGF, Explosion &src,
Explosion &dest, Atomicity atomicity) const override {
for (auto &field : getFields())
cast<LoadableTypeInfo>(field.getTypeInfo())
.copy(IGF, src, dest, atomicity);
}
void consume(IRGenFunction &IGF, Explosion &src,
Atomicity atomicity, SILType T) const override {
for (auto &field : getFields()) {
cast<LoadableTypeInfo>(field.getTypeInfo())
.consume(IGF, src, atomicity, field.getType(IGF.IGM, T));
}
}
void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {
for (auto &field : getFields())
cast<LoadableTypeInfo>(field.getTypeInfo()).fixLifetime(IGF, src);
}
void packIntoEnumPayload(IRGenModule &IGM,
IRBuilder &builder,
EnumPayload &payload,
Explosion &src,
unsigned startOffset) const override {
for (auto &field : getFields()) {
if (!field.isEmpty()) {
unsigned offset = field.getFixedByteOffset().getValueInBits()
+ startOffset;
cast<LoadableTypeInfo>(field.getTypeInfo())
.packIntoEnumPayload(IGM, builder, payload, src, offset);
}
}
}
void unpackFromEnumPayload(IRGenFunction &IGF, const EnumPayload &payload,
Explosion &dest, unsigned startOffset)
const override {
for (auto &field : getFields()) {
if (!field.isEmpty()) {
unsigned offset = field.getFixedByteOffset().getValueInBits()
+ startOffset;
cast<LoadableTypeInfo>(field.getTypeInfo())
.unpackFromEnumPayload(IGF, payload, dest, offset);
}
}
}
};
/// A builder of record types.
///
/// Required for a full implementation:
/// TypeInfoImpl *construct(void *buffer, ArrayRef<ASTField> fields);
/// FieldImpl getFieldInfo(const ASTField &field, const TypeInfo &fieldTI);
/// Type getType(const ASTField &field);
/// void performLayout(ArrayRef<const TypeInfo *> fieldTypes);
/// - should call recordLayout with the layout
template <class BuilderImpl, class FieldImpl, class ASTField>
class RecordTypeBuilder {
protected:
IRGenModule &IGM;
RecordTypeBuilder(IRGenModule &IGM) : IGM(IGM) {}
BuilderImpl *asImpl() { return static_cast<BuilderImpl*>(this); }
public:
TypeInfo *layout(ArrayRef<ASTField> astFields) {
SmallVector<FieldImpl, 8> fields;
SmallVector<const TypeInfo *, 8> fieldTypesForLayout;
fields.reserve(astFields.size());
fieldTypesForLayout.reserve(astFields.size());
auto fieldsABIAccessible = FieldsAreABIAccessible;
unsigned explosionSize = 0;
for (unsigned i : indices(astFields)) {
auto &astField = astFields[i];
// Compute the field's type info.
auto &fieldTI = IGM.getTypeInfo(asImpl()->getType(astField));
fieldTypesForLayout.push_back(&fieldTI);
if (!fieldTI.isABIAccessible())
fieldsABIAccessible = FieldsAreNotABIAccessible;
fields.push_back(FieldImpl(asImpl()->getFieldInfo(i, astField, fieldTI)));
auto loadableFieldTI = dyn_cast<LoadableTypeInfo>(&fieldTI);
if (!loadableFieldTI) {
continue;
}
auto &fieldInfo = fields.back();
fieldInfo.Begin = explosionSize;
bool overflow = false;
explosionSize = llvm::SaturatingAdd(explosionSize, loadableFieldTI->getExplosionSize(), &overflow);
if (overflow) {
IGM.Context.Diags.diagnose(SourceLoc(), diag::explosion_size_oveflow);
}
fieldInfo.End = explosionSize;
}
// Perform layout and fill in the fields.
StructLayout layout = asImpl()->performLayout(fieldTypesForLayout);
for (unsigned i = 0, e = fields.size(); i != e; ++i) {
fields[i].completeFrom(layout.getElements()[i]);
}
// Create the type info.
if (layout.isLoadable()) {
assert(layout.isFixedLayout());
assert(fieldsABIAccessible);
return asImpl()->createLoadable(fields, std::move(layout), explosionSize);
} else if (layout.isFixedLayout()) {
assert(fieldsABIAccessible);
return asImpl()->createFixed(fields, std::move(layout));
} else {
return asImpl()->createNonFixed(fields, fieldsABIAccessible,
std::move(layout));
}
}
};
} // end namespace irgen
} // end namespace swift
#endif
|