File: GenStruct.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1753 lines) | stat: -rw-r--r-- 72,280 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
//===--- GenStruct.cpp - Swift IR Generation For 'struct' Types -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
//  This file implements IR generation for struct types.
//
//===----------------------------------------------------------------------===//

#include "GenStruct.h"

#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/Decl.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/Types.h"
#include "swift/IRGen/Linking.h"
#include "swift/SIL/SILFunctionBuilder.h"
#include "swift/SIL/SILModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "clang/CodeGen/SwiftCallingConv.h"
#include "clang/Sema/Sema.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"

#include "GenDecl.h"
#include "GenMeta.h"
#include "GenRecord.h"
#include "GenType.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "IndirectTypeInfo.h"
#include "MemberAccessStrategy.h"
#include "MetadataLayout.h"
#include "NonFixedTypeInfo.h"
#include "ResilientTypeInfo.h"
#include "Signature.h"
#include "StructMetadataVisitor.h"

#pragma clang diagnostic ignored "-Winconsistent-missing-override"

using namespace swift;
using namespace irgen;

/// The kinds of TypeInfos implementing struct types.
enum class StructTypeInfoKind {
  LoadableStructTypeInfo,
  FixedStructTypeInfo,
  LoadableClangRecordTypeInfo,
  AddressOnlyClangRecordTypeInfo,
  NonFixedStructTypeInfo,
  ResilientStructTypeInfo
};

static StructTypeInfoKind getStructTypeInfoKind(const TypeInfo &type) {
  return (StructTypeInfoKind) type.getSubclassKind();
}

/// If this type has a CXXDestructorDecl, find it and return it. Otherwise,
/// return nullptr.
static clang::CXXDestructorDecl *getCXXDestructor(SILType type) {
  auto *structDecl = type.getStructOrBoundGenericStruct();
  if (!structDecl || !structDecl->getClangDecl())
    return nullptr;
  const clang::CXXRecordDecl *cxxRecordDecl =
      dyn_cast<clang::CXXRecordDecl>(structDecl->getClangDecl());
  if (!cxxRecordDecl)
    return nullptr;
  return cxxRecordDecl->getDestructor();
}
namespace {
  class StructFieldInfo : public RecordField<StructFieldInfo> {
  public:
    StructFieldInfo(VarDecl *field, const TypeInfo &type)
      : RecordField(type), Field(field) {}

    /// The field.
    VarDecl * const Field;

    StringRef getFieldName() const {
      return Field->getName().str();
    }

    SILType getType(IRGenModule &IGM, SILType T) const {
      return T.getFieldType(Field, IGM.getSILModule(),
                            IGM.getMaximalTypeExpansionContext());
    }
  };

  /// A field-info implementation for fields of Clang types.
  class ClangFieldInfo : public RecordField<ClangFieldInfo> {
  public:
    ClangFieldInfo(VarDecl *swiftField, const ElementLayout &layout,
                   const TypeInfo &typeInfo)
        : RecordField(typeInfo), Field(swiftField) {
      completeFrom(layout);
    }

    ClangFieldInfo(VarDecl *swiftField, const ElementLayout &layout,
                   unsigned explosionBegin, unsigned explosionEnd)
      : RecordField(layout, explosionBegin, explosionEnd),
        Field(swiftField) {}

    VarDecl *Field;

    StringRef getFieldName() const {
      if (Field) return Field->getName().str();
      return "<unimported>";
    }

    SILType getType(IRGenModule &IGM, SILType T) const {
      if (Field)
        return T.getFieldType(Field, IGM.getSILModule(),
                              IGM.getMaximalTypeExpansionContext());

      // The Swift-field-less cases use opaque storage, which is
      // guaranteed to ignore the type passed to it.
      return {};
    }
  };

  /// A common base class for structs.
  template <class Impl, class Base, class FieldInfoType = StructFieldInfo>
  class StructTypeInfoBase :
     public RecordTypeInfo<Impl, Base, FieldInfoType> {
    using super = RecordTypeInfo<Impl, Base, FieldInfoType>;
  protected:
    template <class... As>
    StructTypeInfoBase(StructTypeInfoKind kind, As &&...args)
      : super(std::forward<As>(args)...) {
      super::setSubclassKind((unsigned) kind);
    }

    using super::asImpl;

  public:
    const FieldInfoType &getFieldInfo(VarDecl *field) const {
      // FIXME: cache the physical field index in the VarDecl.
      for (auto &fieldInfo : asImpl().getFields()) {
        if (fieldInfo.Field == field)
          return fieldInfo;
      }
      llvm_unreachable("field not in struct?");
    }

    /// Given a full struct explosion, project out a single field.
    virtual void projectFieldFromExplosion(IRGenFunction &IGF, Explosion &in,
                                           VarDecl *field,
                                           Explosion &out) const {
      auto &fieldInfo = getFieldInfo(field);

      // If the field requires no storage, there's nothing to do.
      if (fieldInfo.isEmpty())
        return;

      // Otherwise, project from the base.
      auto fieldRange = fieldInfo.getProjectionRange();
      auto elements = in.getRange(fieldRange.first, fieldRange.second);
      out.add(elements);
    }

    /// Given the address of a struct value, project out the address of a
    /// single field.
    Address projectFieldAddress(IRGenFunction &IGF, Address addr, SILType T,
                                const FieldInfoType &field) const {
      return asImpl().projectFieldAddress(IGF, addr, T, field.Field);
    }

    /// Given the address of a struct value, project out the address of a
    /// single field.
    Address projectFieldAddress(IRGenFunction &IGF, Address addr, SILType T,
                                VarDecl *field) const {
      auto &fieldInfo = getFieldInfo(field);
      if (fieldInfo.isEmpty()) {
        // For fields with empty types, we could return undef.
        // But if this is a struct_element_addr which is a result of an optimized
        // `MemoryLayout<S>.offset(of: \.field)` we cannot return undef. We have
        // to be consistent with `offset(of:)`, which returns 0. Therefore we
        // return the base address of the struct.
        return addr;
      }

      auto offsets = asImpl().getNonFixedOffsets(IGF, T);
      return fieldInfo.projectAddress(IGF, addr, offsets);
    }

    /// Return the constant offset of a field as a Int32Ty, or nullptr if the
    /// field is not at a fixed offset.
    llvm::Constant *getConstantFieldOffset(IRGenModule &IGM,
                                           VarDecl *field) const {
      auto &fieldInfo = getFieldInfo(field);
      if (fieldInfo.hasFixedByteOffset()) {
        return llvm::ConstantInt::get(
            IGM.Int32Ty, fieldInfo.getFixedByteOffset().getValue());
      }
      return nullptr;
    }

    const TypeInfo *getFieldTypeInfo(IRGenModule &IGM, VarDecl *field) const {
      auto &fieldInfo = getFieldInfo(field);
      if (fieldInfo.isEmpty())
        return nullptr;
      return &fieldInfo.getTypeInfo();
    }

    MemberAccessStrategy getFieldAccessStrategy(IRGenModule &IGM,
                                             SILType T, VarDecl *field) const {
      auto &fieldInfo = getFieldInfo(field);
      switch (fieldInfo.getKind()) {
      case ElementLayout::Kind::Fixed:
      case ElementLayout::Kind::Empty:
      case ElementLayout::Kind::EmptyTailAllocatedCType:
        return MemberAccessStrategy::getDirectFixed(
                                               fieldInfo.getFixedByteOffset());
      case ElementLayout::Kind::InitialNonFixedSize:
        return MemberAccessStrategy::getDirectFixed(Size(0));
      case ElementLayout::Kind::NonFixed:
        return asImpl().getNonFixedFieldAccessStrategy(IGM, T, fieldInfo);
      }
      llvm_unreachable("bad field layout kind");
    }

    unsigned getFieldIndex(IRGenModule &IGM, VarDecl *field) const {
      auto &fieldInfo = getFieldInfo(field);
      return fieldInfo.getStructIndex();
    }

    std::optional<unsigned> getFieldIndexIfNotEmpty(IRGenModule &IGM,
                                                    VarDecl *field) const {
      auto &fieldInfo = getFieldInfo(field);
      if (fieldInfo.isEmpty())
        return std::nullopt;
      return fieldInfo.getStructIndex();
    }

    bool isSingleRetainablePointer(ResilienceExpansion expansion,
                                   ReferenceCounting *rc) const override {
      // If the type isn't copyable, it doesn't share representation with
      // a single-refcounted pointer.
      //
      // This is sufficient to rule out types with user-defined deinits today,
      // since copyable structs are not allowed to define a deinit. If we
      // ever added user-defined copy constructors to the language, then we'd
      // have to also check that.
      if (!this->isCopyable(expansion)) {
        return false;
      }
                                   
      auto fields = asImpl().getFields();
      if (fields.size() != 1)
        return false;
      return fields[0].getTypeInfo().isSingleRetainablePointer(expansion, rc);
    }

    void destroy(IRGenFunction &IGF, Address address, SILType T,
                 bool isOutlined) const override {
      // If the struct has a deinit declared, then call it to destroy the
      // value.
      if (tryEmitDestroyUsingDeinit(IGF, address, T)) {
        return;
      }
      
      // Otherwise, perform elementwise destruction of the value.
      return super::destroy(IGF, address, T, isOutlined);
    }

    void verify(IRGenTypeVerifierFunction &IGF,
                llvm::Value *metadata,
                SILType structType) const override {
      // Check that constant field offsets we know match
      for (auto &field : asImpl().getFields()) {
        switch (field.getKind()) {
        case ElementLayout::Kind::Fixed: {
          // We know the offset at compile time. See whether there's also an
          // entry for this field in the field offset vector.
          class FindOffsetOfFieldOffsetVector
            : public StructMetadataScanner<FindOffsetOfFieldOffsetVector> {
          public:
            VarDecl *FieldToFind;
            Size AddressPoint = Size::invalid();
            Size FieldOffset = Size::invalid();

            FindOffsetOfFieldOffsetVector(IRGenModule &IGM, VarDecl *Field)
                : StructMetadataScanner<FindOffsetOfFieldOffsetVector>(
                      IGM, cast<StructDecl>(Field->getDeclContext())),
                  FieldToFind(Field) {}

            void noteAddressPoint() {
              AddressPoint = this->NextOffset;
            }

            void addFieldOffset(VarDecl *Field) {
              if (Field == FieldToFind) {
                FieldOffset = this->NextOffset;
              }
              StructMetadataScanner<
                  FindOffsetOfFieldOffsetVector>::addFieldOffset(Field);
            }
          };

          FindOffsetOfFieldOffsetVector scanner(IGF.IGM, field.Field);
          scanner.layout();

          if (scanner.FieldOffset == Size::invalid()
              || scanner.AddressPoint == Size::invalid())
            continue;

          // Load the offset from the field offset vector and ensure it matches
          // the compiler's idea of the offset.
          auto metadataBytes =
            IGF.Builder.CreateBitCast(metadata, IGF.IGM.Int8PtrTy);
          auto fieldOffsetPtr = IGF.Builder.CreateInBoundsGEP(
              IGF.IGM.Int8Ty, metadataBytes,
              IGF.IGM.getSize(scanner.FieldOffset - scanner.AddressPoint));
          fieldOffsetPtr =
            IGF.Builder.CreateBitCast(fieldOffsetPtr,
                                      IGF.IGM.Int32Ty->getPointerTo());
          llvm::Value *fieldOffset = IGF.Builder.CreateLoad(
              Address(fieldOffsetPtr, IGF.IGM.Int32Ty, Alignment(4)));
          fieldOffset = IGF.Builder.CreateZExtOrBitCast(fieldOffset,
                                                        IGF.IGM.SizeTy);

          IGF.verifyValues(metadata, fieldOffset,
                       IGF.IGM.getSize(field.getFixedByteOffset()),
                       Twine("offset of struct field ") + field.getFieldName());
          break;
        }
        case ElementLayout::Kind::Empty:
        case ElementLayout::Kind::EmptyTailAllocatedCType:
        case ElementLayout::Kind::InitialNonFixedSize:
        case ElementLayout::Kind::NonFixed:
          continue;
        }
      }
    }
  };

  /// A type implementation for loadable record types imported from Clang.
  class LoadableClangRecordTypeInfo final
      : public StructTypeInfoBase<LoadableClangRecordTypeInfo, LoadableTypeInfo,
                                  ClangFieldInfo> {
    const clang::RecordDecl *ClangDecl;

    template <class Fn>
    void forEachNonEmptyBase(Fn fn) const {
      auto &layout = ClangDecl->getASTContext().getASTRecordLayout(ClangDecl);

      if (auto cxxRecord = dyn_cast<clang::CXXRecordDecl>(ClangDecl)) {
        for (auto base : cxxRecord->bases()) {
          auto baseType = base.getType().getCanonicalType();

          auto baseRecord = cast<clang::RecordType>(baseType)->getDecl();
          auto baseCxxRecord = cast<clang::CXXRecordDecl>(baseRecord);

          if (baseCxxRecord->isEmpty())
            continue;

          auto offset = layout.getBaseClassOffset(baseCxxRecord);
          auto size =
              ClangDecl->getASTContext().getTypeSizeInChars(baseType);
          fn(baseType, offset, size);
        }
      }
    }

  public:
    LoadableClangRecordTypeInfo(ArrayRef<ClangFieldInfo> fields,
                                unsigned explosionSize, llvm::Type *storageType,
                                Size size, SpareBitVector &&spareBits,
                                Alignment align,
                                const clang::RecordDecl *clangDecl)
        : StructTypeInfoBase(StructTypeInfoKind::LoadableClangRecordTypeInfo,
                             fields, explosionSize, storageType, size,
                             std::move(spareBits), align,
                             IsTriviallyDestroyable,
                             IsCopyable,
                             IsFixedSize),
          ClangDecl(clangDecl) {}

    TypeLayoutEntry
    *buildTypeLayoutEntry(IRGenModule &IGM,
                          SILType T,
                          bool useStructLayouts) const override {
      if (!useStructLayouts) {
        return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
      }
      if (!areFieldsABIAccessible()) {
        return IGM.typeLayoutCache.getOrCreateResilientEntry(T);
      }
      if (getFields().empty()) {
        return IGM.typeLayoutCache.getEmptyEntry();
      }

      std::vector<TypeLayoutEntry *> fields;
      for (auto &field : getFields()) {
        auto fieldTy = field.getType(IGM, T);
        if (!fieldTy) {
          return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
        }
        fields.push_back(
            field.getTypeInfo().buildTypeLayoutEntry(IGM, fieldTy, useStructLayouts));
      }
      assert(!fields.empty() &&
             "Empty structs should not be LoadableClangRecordTypeInfo");

      // if (fields.size() == 1 && getBestKnownAlignment() == *fields[0]->fixedAlignment(IGM)) {
      //   return fields[0];
      // }

      return IGM.typeLayoutCache.getOrCreateAlignedGroupEntry(
          fields, T, getBestKnownAlignment().getValue(), *this);
    }

    void initializeFromParams(IRGenFunction &IGF, Explosion &params,
                              Address addr, SILType T,
                              bool isOutlined) const override {
      LoadableClangRecordTypeInfo::initialize(IGF, params, addr, isOutlined);
    }

    void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
                          Size offset) const override {
      forEachNonEmptyBase([&](clang::QualType type, clang::CharUnits offset,
                              clang::CharUnits) {
        lowering.addTypedData(type, offset);
      });

      lowering.addTypedData(ClangDecl, offset.asCharUnits());
    }

    std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF) const {
      return std::nullopt;
    }
    std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
      return std::nullopt;
    }
    MemberAccessStrategy
    getNonFixedFieldAccessStrategy(IRGenModule &IGM, SILType T,
                                   const ClangFieldInfo &field) const {
      llvm_unreachable("non-fixed field in Clang type?");
    }
  };

  class AddressOnlyPointerAuthRecordTypeInfo final
      : public StructTypeInfoBase<AddressOnlyPointerAuthRecordTypeInfo,
                                  FixedTypeInfo, ClangFieldInfo> {
    const clang::RecordDecl *clangDecl;

    void emitCopyWithCopyFunction(IRGenFunction &IGF, SILType T, Address src,
                                  Address dst) const {
      auto *copyFunction =
          clang::CodeGen::getNonTrivialCStructCopyAssignmentOperator(
              IGF.IGM.getClangCGM(), dst.getAlignment(), src.getAlignment(),
              /*isVolatile*/ false,
              clang::QualType(clangDecl->getTypeForDecl(), 0));
      auto *dstValue = dst.getAddress();
      auto *srcValue = src.getAddress();
      IGF.Builder.CreateCall(copyFunction->getFunctionType(), copyFunction,
                             {dstValue, srcValue});
    }

  public:
    AddressOnlyPointerAuthRecordTypeInfo(ArrayRef<ClangFieldInfo> fields,
                                         llvm::Type *storageType, Size size,
                                         Alignment align,
                                         const clang::RecordDecl *clangDecl)
        : StructTypeInfoBase(StructTypeInfoKind::AddressOnlyClangRecordTypeInfo,
                             fields, storageType, size,
                             // We can't assume any spare bits in a C++ type
                             // with user-defined special member functions.
                             SpareBitVector(std::optional<APInt>{
                                 llvm::APInt(size.getValueInBits(), 0)}),
                             align, IsNotTriviallyDestroyable,
                             IsNotBitwiseTakable, IsCopyable, IsFixedSize),
          clangDecl(clangDecl) {
      (void)clangDecl;
    }

    TypeLayoutEntry
    *buildTypeLayoutEntry(IRGenModule &IGM,
                          SILType T,
                          bool useStructLayouts) const override {
      if (!useStructLayouts) {
        return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
      }
      assert(false && "Implement proper type layout info in the future");
      return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
    }

    void initializeFromParams(IRGenFunction &IGF, Explosion &params,
                              Address addr, SILType T,
                              bool isOutlined) const override {
      llvm_unreachable("Address-only C++ types must be created by C++ special "
                       "member functions.");
    }

    void initializeWithCopy(IRGenFunction &IGF, Address dst, Address src,
                            SILType T, bool isOutlined) const override {
      emitCopyWithCopyFunction(IGF, T, src, dst);
    }

    void assignWithCopy(IRGenFunction &IGF, Address dst, Address src, SILType T,
                        bool isOutlined) const override {
      emitCopyWithCopyFunction(IGF, T, src, dst);
    }

    void initializeWithTake(IRGenFunction &IGF, Address dst, Address src,
                            SILType T, bool isOutlined) const override {
      emitCopyWithCopyFunction(IGF, T, src, dst);
      destroy(IGF, src, T, isOutlined);
    }

    void assignWithTake(IRGenFunction &IGF, Address dst, Address src, SILType T,
                        bool isOutlined) const override {
      emitCopyWithCopyFunction(IGF, T, src, dst);
      destroy(IGF, src, T, isOutlined);
    }

    std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF) const {
      return std::nullopt;
    }
    std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
      return std::nullopt;
    }
    MemberAccessStrategy
    getNonFixedFieldAccessStrategy(IRGenModule &IGM, SILType T,
                                   const ClangFieldInfo &field) const {
      llvm_unreachable("non-fixed field in Clang type?");
    }
  };

  class AddressOnlyCXXClangRecordTypeInfo final
      : public StructTypeInfoBase<AddressOnlyCXXClangRecordTypeInfo,
                                  FixedTypeInfo, ClangFieldInfo> {
    const clang::RecordDecl *ClangDecl;

    const clang::CXXConstructorDecl *findCopyConstructor() const {
      const clang::CXXRecordDecl *cxxRecordDecl =
          dyn_cast<clang::CXXRecordDecl>(ClangDecl);
      if (!cxxRecordDecl)
        return nullptr;
      for (auto method : cxxRecordDecl->methods()) {
        if (auto ctor = dyn_cast<clang::CXXConstructorDecl>(method)) {
          if (ctor->isCopyConstructor() &&
              ctor->getAccess() == clang::AS_public &&
              // rdar://106964356
              // ctor->doesThisDeclarationHaveABody() &&
              !ctor->isDeleted())
            return ctor;
        }
      }
      return nullptr;
    }

    const clang::CXXConstructorDecl *findMoveConstructor() const {
      const clang::CXXRecordDecl *cxxRecordDecl =
          dyn_cast<clang::CXXRecordDecl>(ClangDecl);
      if (!cxxRecordDecl)
        return nullptr;
      for (auto method : cxxRecordDecl->methods()) {
        if (auto ctor = dyn_cast<clang::CXXConstructorDecl>(method)) {
          if (ctor->isMoveConstructor() &&
              ctor->getAccess() == clang::AS_public &&
              ctor->doesThisDeclarationHaveABody() &&
              !ctor->isDeleted())
            return ctor;
        }
      }
      return nullptr;
    }

    CanSILFunctionType createCXXCopyConstructorFunctionType(IRGenFunction &IGF,
                                                            SILType T) const {
      // Create the following function type:
      //   @convention(c) (UnsafePointer<T>) -> @out T
      // This is how clang *would* import the copy constructor. So, later, when
      // we pass it to "emitCXXConstructorThunkIfNeeded" we get a thunk with
      // the following LLVM function type:
      //   void (%struct.T* %this, %struct.T* %0)
      auto ptrTypeDecl =
          IGF.getSILModule().getASTContext().getUnsafePointerDecl();
      auto sig = ptrTypeDecl->getGenericSignature();

      // Map the generic parameter to T
      auto subst = SubstitutionMap::get(sig, {T.getASTType()},
                              LookUpConformanceInModule{IGF.getSwiftModule()});
      auto ptrType = ptrTypeDecl->getDeclaredInterfaceType().subst(subst);
      SILParameterInfo ptrParam(ptrType->getCanonicalType(),
                                ParameterConvention::Direct_Unowned);
      SILResultInfo result(T.getASTType(), ResultConvention::Indirect);

      auto clangFnType = T.getASTContext().getCanonicalClangFunctionType(
          {ptrParam}, result, SILFunctionTypeRepresentation::CFunctionPointer);
      auto extInfo = SILExtInfoBuilder()
                         .withClangFunctionType(clangFnType)
                         .withRepresentation(
                             SILFunctionTypeRepresentation::CFunctionPointer)
                         .build();

      return SILFunctionType::get(
          GenericSignature(),
          extInfo,
          SILCoroutineKind::None,
          /*callee=*/ParameterConvention::Direct_Unowned,
          /*params*/ {ptrParam},
          /*yields*/ {}, /*results*/ {result},
          /*error*/ std::nullopt,
          /*pattern subs*/ SubstitutionMap(),
          /*invocation subs*/ SubstitutionMap(), IGF.IGM.Context);
    }

    void emitCopyWithCopyConstructor(
        IRGenFunction &IGF, SILType T,
        const clang::CXXConstructorDecl *copyConstructor, llvm::Value *src,
        llvm::Value *dest) const {
      auto fnType = createCXXCopyConstructorFunctionType(IGF, T);
      auto globalDecl =
          clang::GlobalDecl(copyConstructor, clang::Ctor_Complete);
      auto clangFnAddr =
          IGF.IGM.getAddrOfClangGlobalDecl(globalDecl, NotForDefinition);
      auto callee = cast<llvm::Function>(clangFnAddr->stripPointerCasts());
      Signature signature = IGF.IGM.getSignature(fnType, copyConstructor);
      std::string name = "__swift_cxx_copy_ctor" + callee->getName().str();
      auto *origClangFnAddr = clangFnAddr;
      clangFnAddr = emitCXXConstructorThunkIfNeeded(
          IGF.IGM, signature, copyConstructor, name, clangFnAddr);
      callee = cast<llvm::Function>(clangFnAddr);
      llvm::Value *args[] = {dest, src};
      if (clangFnAddr == origClangFnAddr) {
        // Ensure we can use 'invoke' to trap on uncaught exceptions when
        // calling original copy constructor without going through the thunk.
        emitCXXConstructorCall(IGF, copyConstructor, callee->getFunctionType(),
                               callee, args);
        return;
      }
      // Check if we're calling a thunk that traps on exception thrown from copy
      // constructor.
      if (IGF.IGM.emittedForeignFunctionThunksWithExceptionTraps.count(callee))
        IGF.setCallsThunksWithForeignExceptionTraps();
      IGF.Builder.CreateCall(callee->getFunctionType(), callee, args);
    }

  public:
    AddressOnlyCXXClangRecordTypeInfo(ArrayRef<ClangFieldInfo> fields,
                                      llvm::Type *storageType, Size size,
                                      Alignment align,
                                      const clang::RecordDecl *clangDecl)
        : StructTypeInfoBase(StructTypeInfoKind::AddressOnlyClangRecordTypeInfo,
                             fields, storageType, size,
                             // We can't assume any spare bits in a C++ type
                             // with user-defined special member functions.
                             SpareBitVector(std::optional<APInt>{
                                 llvm::APInt(size.getValueInBits(), 0)}),
                             align, IsNotTriviallyDestroyable,
                             IsNotBitwiseTakable,
                             // TODO: Set this appropriately for the type's
                             // C++ import behavior.
                             IsCopyable, IsFixedSize),
          ClangDecl(clangDecl) {
      (void)ClangDecl;
    }

    void destroy(IRGenFunction &IGF, Address address, SILType T,
                 bool isOutlined) const override {
      auto *destructor = getCXXDestructor(T);
      // If the destructor is trivial, clang will assert when we call
      // `emitCXXDestructorCall` so, just let Swift handle this destructor.
      if (!destructor || destructor->isTrivial()) {
        // If we didn't find a destructor to call, bail out to the parent
        // implementation.
        StructTypeInfoBase<AddressOnlyCXXClangRecordTypeInfo, FixedTypeInfo,
                           ClangFieldInfo>::destroy(IGF, address, T,
                                                    isOutlined);
        return;
      }

      if (!destructor->isUserProvided() &&
          !destructor->doesThisDeclarationHaveABody()) {
        assert(!destructor->isDeleted() &&
               "Swift cannot handle a type with no known destructor.");
        // Make sure we define the destructor so we have something to call.
        auto &sema = IGF.IGM.Context.getClangModuleLoader()->getClangSema();
        sema.DefineImplicitDestructor(clang::SourceLocation(), destructor);
      }

      clang::GlobalDecl destructorGlobalDecl(destructor, clang::Dtor_Complete);
      auto *destructorFnAddr =
          cast<llvm::Function>(IGF.IGM.getAddrOfClangGlobalDecl(
              destructorGlobalDecl, NotForDefinition));

      SmallVector<llvm::Value *, 2> args;
      auto *thisArg = address.getAddress();
      args.push_back(thisArg);
      llvm::Value *implicitParam =
          clang::CodeGen::getCXXDestructorImplicitParam(
              IGF.IGM.getClangCGM(), IGF.Builder.GetInsertBlock(),
              IGF.Builder.GetInsertPoint(), destructor, clang::Dtor_Complete,
              false, false);
      if (implicitParam) {
        implicitParam = IGF.coerceValue(implicitParam,
                                        destructorFnAddr->getArg(1)->getType(),
                                        IGF.IGM.DataLayout);
        args.push_back(implicitParam);
      }
      bool canThrow = false;
      if (IGF.IGM.isForeignExceptionHandlingEnabled()) {
        if (!IGF.IGM.isCxxNoThrow(destructor, /*defaultNoThrow=*/true))
          canThrow = true;
      }
      if (canThrow) {
        IGF.createExceptionTrapScope([&](llvm::BasicBlock *invokeNormalDest,
                                         llvm::BasicBlock *invokeUnwindDest) {
          IGF.Builder.createInvoke(destructorFnAddr->getFunctionType(),
                                   destructorFnAddr, args, invokeNormalDest,
                                   invokeUnwindDest);
        });
        return;
      }

      IGF.Builder.CreateCall(destructorFnAddr->getFunctionType(),
                             destructorFnAddr, args);
    }

    TypeLayoutEntry
    *buildTypeLayoutEntry(IRGenModule &IGM,
                          SILType T,
                          bool useStructLayouts) const override {
      if (!useStructLayouts || getCXXDestructor(T) ||
          !areFieldsABIAccessible()) {
        return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
      }

      std::vector<TypeLayoutEntry *> fields;
      for (auto &field : getFields()) {
        auto fieldTy = field.getType(IGM, T);
        if (!fieldTy) {
          return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
        }
        fields.push_back(
            field.getTypeInfo().buildTypeLayoutEntry(IGM, fieldTy, useStructLayouts));
      }
      assert(!fields.empty() &&
             "Empty structs should not be AddressOnlyRecordTypeInfo");

      if (fields.size() == 1 && getBestKnownAlignment() == *fields[0]->fixedAlignment(IGM)) {
        return fields[0];
      }

      return IGM.typeLayoutCache.getOrCreateAlignedGroupEntry(
          fields, T, getBestKnownAlignment().getValue(), *this);
    }

    void initializeFromParams(IRGenFunction &IGF, Explosion &params,
                              Address addr, SILType T,
                              bool isOutlined) const override {
      llvm_unreachable("Address-only C++ types must be created by C++ special "
                       "member functions.");
    }

    void initializeWithCopy(IRGenFunction &IGF, Address destAddr,
                            Address srcAddr, SILType T,
                            bool isOutlined) const override {
      if (auto copyConstructor = findCopyConstructor()) {
        emitCopyWithCopyConstructor(IGF, T, copyConstructor,
                                    srcAddr.getAddress(),
                                    destAddr.getAddress());
        return;
      }
      StructTypeInfoBase<AddressOnlyCXXClangRecordTypeInfo, FixedTypeInfo,
                         ClangFieldInfo>::initializeWithCopy(IGF, destAddr,
                                                             srcAddr, T,
                                                             isOutlined);
    }

    void assignWithCopy(IRGenFunction &IGF, Address destAddr, Address srcAddr,
                        SILType T, bool isOutlined) const override {
      if (auto copyConstructor = findCopyConstructor()) {
        destroy(IGF, destAddr, T, isOutlined);
        emitCopyWithCopyConstructor(IGF, T, copyConstructor,
                                    srcAddr.getAddress(),
                                    destAddr.getAddress());
        return;
      }
      StructTypeInfoBase<AddressOnlyCXXClangRecordTypeInfo, FixedTypeInfo,
                         ClangFieldInfo>::assignWithCopy(IGF, destAddr, srcAddr,
                                                         T, isOutlined);
    }

    void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
                            SILType T, bool isOutlined) const override {
      if (auto moveConstructor = findMoveConstructor()) {
        emitCopyWithCopyConstructor(IGF, T, moveConstructor,
                                    src.getAddress(),
                                    dest.getAddress());
        destroy(IGF, src, T, isOutlined);
        return;
      }

      if (auto copyConstructor = findCopyConstructor()) {
        emitCopyWithCopyConstructor(IGF, T, copyConstructor,
                                    src.getAddress(),
                                    dest.getAddress());
        destroy(IGF, src, T, isOutlined);
        return;
      }

      StructTypeInfoBase<AddressOnlyCXXClangRecordTypeInfo, FixedTypeInfo,
                         ClangFieldInfo>::initializeWithTake(IGF, dest, src, T,
                                                             isOutlined);
    }

    void assignWithTake(IRGenFunction &IGF, Address dest, Address src, SILType T,
                        bool isOutlined) const override {
      if (auto moveConstructor = findMoveConstructor()) {
        destroy(IGF, dest, T, isOutlined);
        emitCopyWithCopyConstructor(IGF, T, moveConstructor,
                                    src.getAddress(),
                                    dest.getAddress());
        destroy(IGF, src, T, isOutlined);
        return;
      }

      if (auto copyConstructor = findCopyConstructor()) {
        destroy(IGF, dest, T, isOutlined);
        emitCopyWithCopyConstructor(IGF, T, copyConstructor,
                                    src.getAddress(),
                                    dest.getAddress());
        destroy(IGF, src, T, isOutlined);
        return;
      }

      StructTypeInfoBase<AddressOnlyCXXClangRecordTypeInfo, FixedTypeInfo,
                         ClangFieldInfo>::assignWithTake(IGF, dest, src, T,
                                                         isOutlined);
    }

    std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF) const {
      return std::nullopt;
    }
    std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
      return std::nullopt;
    }
    MemberAccessStrategy
    getNonFixedFieldAccessStrategy(IRGenModule &IGM, SILType T,
                                   const ClangFieldInfo &field) const {
      llvm_unreachable("non-fixed field in Clang type?");
    }
  };

  /// A type implementation for loadable struct types.
  class LoadableStructTypeInfo final
      : public StructTypeInfoBase<LoadableStructTypeInfo, LoadableTypeInfo> {
    using super = StructTypeInfoBase<LoadableStructTypeInfo, LoadableTypeInfo>;
  public:
    LoadableStructTypeInfo(ArrayRef<StructFieldInfo> fields,
                           unsigned explosionSize,
                           llvm::Type *storageType, Size size,
                           SpareBitVector &&spareBits,
                           Alignment align,
                           IsTriviallyDestroyable_t isTriviallyDestroyable,
                           IsCopyable_t isCopyable,
                           IsFixedSize_t alwaysFixedSize)
      : StructTypeInfoBase(StructTypeInfoKind::LoadableStructTypeInfo,
                           fields, explosionSize,
                           storageType, size, std::move(spareBits),
                           align, isTriviallyDestroyable,
                           isCopyable,
                           alwaysFixedSize)
    {}

    void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
                          Size offset) const override {
      for (auto &field : getFields()) {
        auto fieldOffset = offset + field.getFixedByteOffset();
        cast<LoadableTypeInfo>(field.getTypeInfo())
          .addToAggLowering(IGM, lowering, fieldOffset);
      }
    }

    TypeLayoutEntry
    *buildTypeLayoutEntry(IRGenModule &IGM,
                          SILType T,
                          bool useStructLayouts) const override {
      if (!useStructLayouts) {
        return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
      }

      if (!areFieldsABIAccessible()) {
        return IGM.typeLayoutCache.getOrCreateResilientEntry(T);
      }

      if (getFields().empty()) {
        return IGM.typeLayoutCache.getEmptyEntry();
      }

      std::vector<TypeLayoutEntry *> fields;
      for (auto &field : getFields()) {
        auto fieldTy = field.getType(IGM, T);
        fields.push_back(
            field.getTypeInfo().buildTypeLayoutEntry(IGM, fieldTy, useStructLayouts));
      }

      // if (fields.size() == 1 && isFixedSize() &&
      //     getBestKnownAlignment() == *fields[0]->fixedAlignment(IGM)) {
      //   return fields[0];
      // }

      return IGM.typeLayoutCache.getOrCreateAlignedGroupEntry(
          fields, T, getBestKnownAlignment().getValue(), *this);
    }

    void initializeFromParams(IRGenFunction &IGF, Explosion &params,
                              Address addr, SILType T,
                              bool isOutlined) const override {
      LoadableStructTypeInfo::initialize(IGF, params, addr, isOutlined);
    }
    std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF) const {
      return std::nullopt;
    }
    std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
      return std::nullopt;
    }
    MemberAccessStrategy
    getNonFixedFieldAccessStrategy(IRGenModule &IGM, SILType T,
                                   const StructFieldInfo &field) const {
      llvm_unreachable("non-fixed field in loadable type?");
    }
    
    void consume(IRGenFunction &IGF, Explosion &explosion,
                 Atomicity atomicity, SILType T) const override {
      // If the struct has a deinit declared, then call it to consume the
      // value.
      if (tryEmitConsumeUsingDeinit(IGF, explosion, T)) {
        return;
      }
      
      // Otherwise, do elementwise destruction of the value.
      return super::consume(IGF, explosion, atomicity, T);
    }
  };

  /// A type implementation for non-loadable but fixed-size struct types.
  class FixedStructTypeInfo final
      : public StructTypeInfoBase<FixedStructTypeInfo,
                                  IndirectTypeInfo<FixedStructTypeInfo,
                                                   FixedTypeInfo>> {
  public:
    // FIXME: Spare bits between struct members.
    FixedStructTypeInfo(ArrayRef<StructFieldInfo> fields, llvm::Type *T,
                        Size size, SpareBitVector &&spareBits,
                        Alignment align,
                        IsTriviallyDestroyable_t isTriviallyDestroyable,
                        IsBitwiseTakable_t isBT,
                        IsCopyable_t isCopyable,
                        IsFixedSize_t alwaysFixedSize)
      : StructTypeInfoBase(StructTypeInfoKind::FixedStructTypeInfo,
                           fields, T, size, std::move(spareBits), align,
                           isTriviallyDestroyable, isBT, isCopyable,
                           alwaysFixedSize)
    {}

    TypeLayoutEntry
    *buildTypeLayoutEntry(IRGenModule &IGM,
                          SILType T,
                          bool useStructLayouts) const override {
      if (!useStructLayouts) {
        return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
      }

      if (!areFieldsABIAccessible()) {
        return IGM.typeLayoutCache.getOrCreateResilientEntry(T);
      }

      auto decl = T.getASTType()->getStructOrBoundGenericStruct();
      auto rawLayout = decl->getAttrs().getAttribute<RawLayoutAttr>();

      // If we have a raw layout struct who is fixed size, it means the
      // layout of the struct is fully concrete.
      if (rawLayout) {
        // Defer to this fixed type info for type layout if the raw layout
        // specifies size and alignment.
        if (rawLayout->getSizeAndAlignment()) {
          return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
        }

        auto likeType = rawLayout->getResolvedLikeType(decl)->getCanonicalType();
        SILType loweredLikeType = IGM.getLoweredType(likeType);

        // The given struct type T that we're building is fully concrete, but
        // our like type is still in terms of the potential archetype of the
        // type.
        auto subs = T.getASTType()->getContextSubstitutionMap(
          IGM.getSwiftModule(), decl);

        loweredLikeType = loweredLikeType.subst(IGM.getSILModule(), subs);

        // Array like raw layouts are still handled correctly even though the
        // type layout entry is only that of the like type.
        return IGM.getTypeInfo(loweredLikeType)
            .buildTypeLayoutEntry(IGM, loweredLikeType, useStructLayouts);
      }

      std::vector<TypeLayoutEntry *> fields;
      for (auto &field : getFields()) {
        auto fieldTy = field.getType(IGM, T);
        fields.push_back(
            field.getTypeInfo().buildTypeLayoutEntry(IGM, fieldTy, useStructLayouts));
      }
      assert(!fields.empty() &&
             "Empty structs should not be FixedStructTypeInfo");

      // if (fields.size() == 1  && getBestKnownAlignment() == *fields[0]->fixedAlignment(IGM)) {
      //   return fields[0];
      // }

      return IGM.typeLayoutCache.getOrCreateAlignedGroupEntry(
          fields, T, getBestKnownAlignment().getValue(), *this);
    }

    std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF) const {
      return std::nullopt;
    }
    std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
      return std::nullopt;
    }
    MemberAccessStrategy
    getNonFixedFieldAccessStrategy(IRGenModule &IGM, SILType T,
                                   const StructFieldInfo &field) const {
      llvm_unreachable("non-fixed field in fixed struct?");
    }
  };

  /// Accessor for the non-fixed offsets of a struct type.
  class StructNonFixedOffsets : public NonFixedOffsetsImpl {
    SILType TheStruct;
  public:
    StructNonFixedOffsets(SILType type) : TheStruct(type) {
      assert(TheStruct.getStructOrBoundGenericStruct());
    }

    llvm::Value *getOffsetForIndex(IRGenFunction &IGF, unsigned index) override {
      auto &layout =
          IGF.IGM.getMetadataLayout(TheStruct.getStructOrBoundGenericStruct());
      auto offset = layout.getFieldOffset(
          IGF, layout.getDecl()->getStoredProperties()[index]);
      llvm::Value *metadata = IGF.emitTypeMetadataRefForLayout(TheStruct);
      auto field = IGF.emitAddressAtOffset(metadata, offset, IGF.IGM.Int32Ty,
                                           IGF.IGM.getPointerAlignment());
      return IGF.Builder.CreateLoad(field);
    }

    MemberAccessStrategy getFieldAccessStrategy(IRGenModule &IGM,
                                                unsigned nonFixedIndex) {
      auto start =
        IGM.getMetadataLayout(TheStruct.getStructOrBoundGenericStruct())
          .getFieldOffsetVectorOffset();

      // FIXME: Handle resilience
      auto indirectOffset = start.getStatic() +
        (IGM.getPointerSize() * nonFixedIndex);

      return MemberAccessStrategy::getIndirectFixed(indirectOffset,
                               MemberAccessStrategy::OffsetKind::Bytes_Word);
    }
  };

  /// A type implementation for non-fixed struct types.
  class NonFixedStructTypeInfo final
      : public StructTypeInfoBase<NonFixedStructTypeInfo,
                                  WitnessSizedTypeInfo<NonFixedStructTypeInfo>>
  {
  public:
    NonFixedStructTypeInfo(ArrayRef<StructFieldInfo> fields,
                           FieldsAreABIAccessible_t fieldsAccessible,
                           llvm::Type *T,
                           Alignment align,
                           IsTriviallyDestroyable_t isTriviallyDestroyable,
                           IsBitwiseTakable_t isBT,
                           IsCopyable_t isCopyable,
                           IsABIAccessible_t structAccessible)
      : StructTypeInfoBase(StructTypeInfoKind::NonFixedStructTypeInfo,
                           fields, fieldsAccessible,
                           T, align, isTriviallyDestroyable, isBT, isCopyable,
                           structAccessible) {
    }

    TypeLayoutEntry
    *buildTypeLayoutEntry(IRGenModule &IGM,
                          SILType T,
                          bool useStructLayouts) const override {
      if (!areFieldsABIAccessible()) {
        return IGM.typeLayoutCache.getOrCreateResilientEntry(T);
      }

      auto decl = T.getASTType()->getStructOrBoundGenericStruct();
      auto rawLayout = decl->getAttrs().getAttribute<RawLayoutAttr>();

      // If we have a raw layout struct who is non-fixed size, it means the
      // layout of the struct is dependent on the archetype of the thing it's
      // like.
      if (rawLayout) {
        // Note: We don't have to handle the size and alignment case here for
        // raw layout because those are always fixed, so only dependent layouts
        // will be non-fixed.

        auto likeType = rawLayout->getResolvedLikeType(decl)->getCanonicalType();
        SILType loweredLikeType = IGM.getLoweredType(likeType);

        // The given struct type T that we're building may be in a generic
        // environment that is different than that which was built our
        // resolved rawLayout like type. Map our like type into the given
        // environment.
        auto subs = T.getASTType()->getContextSubstitutionMap(
          IGM.getSwiftModule(), decl);

        loweredLikeType = loweredLikeType.subst(IGM.getSILModule(), subs);

        // Array like raw layouts are still handled correctly even though the
        // type layout entry is only that of the like type.
        return IGM.getTypeInfo(loweredLikeType)
            .buildTypeLayoutEntry(IGM, loweredLikeType, useStructLayouts);
      }

      std::vector<TypeLayoutEntry *> fields;
      for (auto &field : getFields()) {
        auto fieldTy = field.getType(IGM, T);
        fields.push_back(
            field.getTypeInfo().buildTypeLayoutEntry(IGM, fieldTy, useStructLayouts));
      }
      assert(!fields.empty() &&
             "Empty structs should not be NonFixedStructTypeInfo");

      // if (fields.size() == 1 && getBestKnownAlignment() > Alignment(1)) {
      //   return fields[0];
      // }

      return IGM.typeLayoutCache.getOrCreateAlignedGroupEntry(
          fields, T, getBestKnownAlignment().getValue(), *this);
    }

    // We have an indirect schema.
    void getSchema(ExplosionSchema &s) const override {
      s.add(ExplosionSchema::Element::forAggregate(getStorageType(),
                                                   getBestKnownAlignment()));
    }

    StructNonFixedOffsets
    getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
      return StructNonFixedOffsets(T);
    }

    MemberAccessStrategy
    getNonFixedFieldAccessStrategy(IRGenModule &IGM, SILType T,
                                   const StructFieldInfo &field) const {
      return StructNonFixedOffsets(T).getFieldAccessStrategy(IGM,
                                              field.getNonFixedElementIndex());
    }

    llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
                                         llvm::Value *numEmptyCases,
                                         Address structAddr,
                                         SILType structType,
                                         bool isOutlined) const override {
      // If we're not emitting the value witness table's implementation,
      // just call that.
      if (!isOutlined) {
        return emitGetEnumTagSinglePayloadCall(IGF, structType, numEmptyCases,
                                               structAddr);
      }

      return emitGetEnumTagSinglePayloadGenericCall(IGF, structType, *this,
                                                    numEmptyCases, structAddr,
        [this,structType](IRGenFunction &IGF, Address structAddr,
                          llvm::Value *structNumXI) {
          return withExtraInhabitantProvidingField(IGF, structAddr, structType,
                                                   structNumXI, IGF.IGM.Int32Ty,
            [&](const FieldImpl &field, llvm::Value *numXI) -> llvm::Value* {
              Address fieldAddr = asImpl().projectFieldAddress(
                                           IGF, structAddr, structType, field);
              auto fieldTy = field.getType(IGF.IGM, structType);
              return field.getTypeInfo()
                          .getExtraInhabitantTagDynamic(IGF, fieldAddr, fieldTy,
                                                     numXI, /*outlined*/ false);
            });
        });
    }

    void storeEnumTagSinglePayload(IRGenFunction &IGF,
                                   llvm::Value *whichCase,
                                   llvm::Value *numEmptyCases,
                                   Address structAddr,
                                   SILType structType,
                                   bool isOutlined) const override {
      // If we're not emitting the value witness table's implementation,
      // just call that.
      if (!isOutlined) {
        return emitStoreEnumTagSinglePayloadCall(IGF, structType, whichCase,
                                                 numEmptyCases, structAddr);
      }

      emitStoreEnumTagSinglePayloadGenericCall(IGF, structType, *this,
                                               whichCase, numEmptyCases,
                                               structAddr,
        [this,structType](IRGenFunction &IGF, Address structAddr,
                          llvm::Value *tag, llvm::Value *structNumXI) {
          withExtraInhabitantProvidingField(IGF, structAddr, structType,
                                            structNumXI, IGF.IGM.VoidTy,
            [&](const FieldImpl &field, llvm::Value *numXI) -> llvm::Value* {
              Address fieldAddr = asImpl().projectFieldAddress(
                                           IGF, structAddr, structType, field);
              auto fieldTy = field.getType(IGF.IGM, structType);
              field.getTypeInfo()
                   .storeExtraInhabitantTagDynamic(IGF, tag, fieldAddr, fieldTy,
                                                   /*outlined*/ false);
              return nullptr;
            });
        });
    }
  };

  class StructTypeBuilder :
    public RecordTypeBuilder<StructTypeBuilder, StructFieldInfo, VarDecl*> {

    llvm::StructType *StructTy;
    CanType TheStruct;
  public:
    StructTypeBuilder(IRGenModule &IGM, llvm::StructType *structTy,
                      CanType type) :
      RecordTypeBuilder(IGM), StructTy(structTy), TheStruct(type) {
    }

    LoadableStructTypeInfo *createLoadable(ArrayRef<StructFieldInfo> fields,
                                           StructLayout &&layout,
                                           unsigned explosionSize) {
      return LoadableStructTypeInfo::create(fields,
                                            explosionSize,
                                            layout.getType(),
                                            layout.getSize(),
                                            std::move(layout.getSpareBits()),
                                            layout.getAlignment(),
                                            layout.isTriviallyDestroyable(),
                                            layout.isCopyable(),
                                            layout.isAlwaysFixedSize());
    }

    FixedStructTypeInfo *createFixed(ArrayRef<StructFieldInfo> fields,
                                     StructLayout &&layout) {
      return FixedStructTypeInfo::create(fields, layout.getType(),
                                         layout.getSize(),
                                         std::move(layout.getSpareBits()),
                                         layout.getAlignment(),
                                         layout.isTriviallyDestroyable(),
                                         layout.isBitwiseTakable(),
                                         layout.isCopyable(),
                                         layout.isAlwaysFixedSize());
    }

    NonFixedStructTypeInfo *createNonFixed(ArrayRef<StructFieldInfo> fields,
                                     FieldsAreABIAccessible_t fieldsAccessible,
                                           StructLayout &&layout) {
      auto structAccessible = IsABIAccessible_t(
        IGM.getSILModule().isTypeMetadataAccessible(TheStruct));
      return NonFixedStructTypeInfo::create(fields, fieldsAccessible,
                                            layout.getType(),
                                            layout.getAlignment(),
                                            layout.isTriviallyDestroyable(),
                                            layout.isBitwiseTakable(),
                                            layout.isCopyable(),
                                            structAccessible);
    }

    StructFieldInfo getFieldInfo(unsigned index,
                                 VarDecl *field, const TypeInfo &fieldTI) {
      return StructFieldInfo(field, fieldTI);
    }

    SILType getType(VarDecl *field) {
      assert(field->getDeclContext() == TheStruct->getAnyNominal());
      auto silType = SILType::getPrimitiveAddressType(TheStruct);
      return silType.getFieldType(
          field, IGM.getSILModule(),
          IGM.getMaximalTypeExpansionContext());
    }

    StructLayout performLayout(ArrayRef<const TypeInfo *> fieldTypes) {
      return StructLayout(IGM, TheStruct, LayoutKind::NonHeapObject,
                          LayoutStrategy::Optimal, fieldTypes, StructTy);
    }
  };

/// A class for lowering Clang records.
class ClangRecordLowering {
  IRGenModule &IGM;
  StructDecl *SwiftDecl;
  SILType SwiftType;
  const clang::RecordDecl *ClangDecl;
  const clang::ASTContext &ClangContext;
  const clang::ASTRecordLayout &ClangLayout;
  const Size TotalStride;
  const Alignment TotalAlignment;
  SpareBitVector SpareBits;

  SmallVector<llvm::Type *, 8> LLVMFields;
  SmallVector<ClangFieldInfo, 8> FieldInfos;
  Size NextOffset = Size(0);
  unsigned NextExplosionIndex = 0;
public:
  ClangRecordLowering(IRGenModule &IGM, StructDecl *swiftDecl,
                      const clang::RecordDecl *clangDecl,
                      SILType swiftType)
    : IGM(IGM), SwiftDecl(swiftDecl), SwiftType(swiftType),
      ClangDecl(clangDecl), ClangContext(clangDecl->getASTContext()),
      ClangLayout(ClangContext.getASTRecordLayout(clangDecl)),
      TotalStride(Size(ClangLayout.getSize().getQuantity())),
      TotalAlignment(IGM.getCappedAlignment(
                                       Alignment(ClangLayout.getAlignment()))) {
  }

  void collectRecordFields() {
    if (ClangDecl->isUnion()) {
      collectUnionFields();
    } else {
      collectBases();
      collectStructFields();
    }
  }

  const TypeInfo *createTypeInfo(llvm::StructType *llvmType) {
    llvmType->setBody(LLVMFields, /*packed*/ true);
    if (SwiftType.getStructOrBoundGenericStruct()->isCxxNonTrivial()) {
      return AddressOnlyCXXClangRecordTypeInfo::create(
          FieldInfos, llvmType, TotalStride, TotalAlignment, ClangDecl);
    }
    if (SwiftType.getStructOrBoundGenericStruct()->isNonTrivialPtrAuth()) {
      return AddressOnlyPointerAuthRecordTypeInfo::create(
          FieldInfos, llvmType, TotalStride, TotalAlignment, ClangDecl);
    }
    return LoadableClangRecordTypeInfo::create(
        FieldInfos, NextExplosionIndex, llvmType, TotalStride,
        std::move(SpareBits), TotalAlignment, ClangDecl);
  }

private:
  /// Collect all the fields of a union.
  void collectUnionFields() {
    addOpaqueField(Size(0), TotalStride);
  }

  static bool isImportOfClangField(VarDecl *swiftField,
                                   const clang::FieldDecl *clangField) {
    assert(swiftField->hasClangNode());
    return (swiftField->getClangNode().castAsDecl() == clangField);
  }

  void collectBases() {
    auto &layout = ClangDecl->getASTContext().getASTRecordLayout(ClangDecl);

    if (auto cxxRecord = dyn_cast<clang::CXXRecordDecl>(ClangDecl)) {
      for (auto base : cxxRecord->bases()) {
        if (base.isVirtual())
          continue;

        auto baseType = base.getType().getCanonicalType();

        auto baseRecord = cast<clang::RecordType>(baseType)->getDecl();
        auto baseCxxRecord = cast<clang::CXXRecordDecl>(baseRecord);

        if (baseCxxRecord->isEmpty())
          continue;

        auto offset = layout.getBaseClassOffset(baseCxxRecord);
        auto size = ClangDecl->getASTContext().getTypeSizeInChars(baseType);
        addOpaqueField(Size(offset.getQuantity()), Size(size.getQuantity()));
      }
    }
  }

  void collectStructFields() {
    auto cfi = ClangDecl->field_begin(), cfe = ClangDecl->field_end();
    auto swiftProperties = SwiftDecl->getStoredProperties();
    auto sfi = swiftProperties.begin(), sfe = swiftProperties.end();

    while (cfi != cfe) {
      const clang::FieldDecl *clangField = *cfi++;

      // Bitfields are currently never mapped, but that doesn't mean
      // we don't have to copy them.
      if (clangField->isBitField()) {
        // Collect all of the following bitfields.
        unsigned bitStart =
          ClangLayout.getFieldOffset(clangField->getFieldIndex());
        unsigned bitEnd = bitStart + clangField->getBitWidthValue(ClangContext);

        while (cfi != cfe && (*cfi)->isBitField()) {
          clangField = *cfi++;
          unsigned nextStart =
            ClangLayout.getFieldOffset(clangField->getFieldIndex());
          assert(nextStart >= bitEnd && "laying out bit-fields out of order?");

          // In a heuristic effort to reduce the number of weird-sized
          // fields, whenever we see a bitfield starting on a 32-bit
          // boundary, start a new storage unit.
          if (nextStart % 32 == 0) {
            addOpaqueBitField(bitStart, bitEnd);
            bitStart = nextStart;
          }

          bitEnd = nextStart + clangField->getBitWidthValue(ClangContext);
        }

        addOpaqueBitField(bitStart, bitEnd);
        continue;
      }

      VarDecl *swiftField;
      if (sfi != sfe) {
        swiftField = *sfi;
        if (isImportOfClangField(swiftField, clangField)) {
          ++sfi;
        } else {
          swiftField = nullptr;
        }
      } else {
        swiftField = nullptr;
      }

      // Try to position this field.  If this fails, it's because we
      // didn't lay out padding correctly.
      addStructField(clangField, swiftField);
    }

    assert(sfi == sfe && "more Swift fields than there were Clang fields?");

    // We never take advantage of tail padding, because that would prevent
    // us from passing the address of the object off to C, which is a pretty
    // likely scenario for imported C types.
    assert(NextOffset <= TotalStride);
    assert(SpareBits.size() <= TotalStride.getValueInBits());
    if (NextOffset < TotalStride) {
      addPaddingField(TotalStride);
    }
  }

  /// Place the next struct field at its appropriate offset.
  void addStructField(const clang::FieldDecl *clangField,
                      VarDecl *swiftField) {
    unsigned fieldOffset = ClangLayout.getFieldOffset(clangField->getFieldIndex());
    assert(!clangField->isBitField());
    Size offset(fieldOffset / 8);

    // If we have a Swift import of this type, use our lowered information.
    if (swiftField) {
      auto &fieldTI = cast<FixedTypeInfo>(IGM.getTypeInfo(
          SwiftType.getFieldType(swiftField, IGM.getSILModule(),
                                 IGM.getMaximalTypeExpansionContext())));
      addField(swiftField, offset, fieldTI);
      return;
    }

    // Otherwise, add it as an opaque blob.
    auto fieldSize = ClangContext.getTypeSizeInChars(clangField->getType());
    return addOpaqueField(offset, Size(fieldSize.getQuantity()));
  }

  /// Add opaque storage for bitfields spanning the given range of bits.
  void addOpaqueBitField(unsigned bitBegin, unsigned bitEnd) {
    assert(bitBegin <= bitEnd);

    // No need to add storage for zero-width bitfields.
    if (bitBegin == bitEnd) return;

    // Round up to an even number of bytes.
    assert(bitBegin % 8 == 0);
    Size offset = Size(bitBegin / 8);
    Size byteLength = Size((bitEnd - bitBegin + 7) / 8);

    addOpaqueField(offset, byteLength);
  }

  /// Add opaque storage at the given offset.
  void addOpaqueField(Size offset, Size fieldSize) {
    // No need to add storage for zero-size fields (e.g. incomplete array
    // decls).
    if (fieldSize.isZero()) return;

    auto &opaqueTI = IGM.getOpaqueStorageTypeInfo(fieldSize, Alignment(1));
    addField(nullptr, offset, opaqueTI);
  }

  /// Add storage for an (optional) Swift field at the given offset.
  void addField(VarDecl *swiftField, Size offset,
                const FixedTypeInfo &fieldType) {
    assert(offset >= NextOffset && "adding fields out of order");

    // Add a padding field if required.
    if (offset != NextOffset)
      addPaddingField(offset);

    addFieldInfo(swiftField, fieldType);
  }

  /// Add information to track a value field at the current offset.
  void addFieldInfo(VarDecl *swiftField, const FixedTypeInfo &fieldType) {
    bool isLoadableField = isa<LoadableTypeInfo>(fieldType);
    unsigned explosionSize = 0;
    if (isLoadableField)
      explosionSize = cast<LoadableTypeInfo>(fieldType).getExplosionSize();
    unsigned explosionBegin = NextExplosionIndex;
    NextExplosionIndex += explosionSize;
    unsigned explosionEnd = NextExplosionIndex;

    ElementLayout layout = ElementLayout::getIncomplete(fieldType);
    auto isEmpty = fieldType.isKnownEmpty(ResilienceExpansion::Maximal);
    if (isEmpty)
      layout.completeEmptyTailAllocatedCType(
          fieldType.isTriviallyDestroyable(ResilienceExpansion::Maximal), NextOffset);
    else
      layout.completeFixed(fieldType.isTriviallyDestroyable(ResilienceExpansion::Maximal),
                           NextOffset, LLVMFields.size());

    if (isLoadableField)
      FieldInfos.push_back(
          ClangFieldInfo(swiftField, layout, explosionBegin, explosionEnd));
    else
      FieldInfos.push_back(ClangFieldInfo(swiftField, layout, fieldType));

    if (!isEmpty) {
      LLVMFields.push_back(fieldType.getStorageType());
      NextOffset += fieldType.getFixedSize();
      SpareBits.append(fieldType.getSpareBits());
    }
  }

  /// Add padding to get up to the given offset.
  void addPaddingField(Size offset) {
    assert(offset > NextOffset);
    Size count = offset - NextOffset;
    LLVMFields.push_back(llvm::ArrayType::get(IGM.Int8Ty, count.getValue()));
    NextOffset = offset;
    SpareBits.appendSetBits(count.getValueInBits());
  }
};

} // end anonymous namespace

/// A convenient macro for delegating an operation to all of the
/// various struct implementations.
#define FOR_STRUCT_IMPL(IGF, type, op, ...)                                    \
  do {                                                                         \
    auto &structTI = IGF.getTypeInfo(type);                                    \
    switch (getStructTypeInfoKind(structTI)) {                                 \
    case StructTypeInfoKind::LoadableClangRecordTypeInfo:                      \
      return structTI.as<LoadableClangRecordTypeInfo>().op(IGF, __VA_ARGS__);  \
    case StructTypeInfoKind::AddressOnlyClangRecordTypeInfo:                   \
      return structTI.as<AddressOnlyCXXClangRecordTypeInfo>().op(IGF,          \
                                                                 __VA_ARGS__); \
    case StructTypeInfoKind::LoadableStructTypeInfo:                           \
      return structTI.as<LoadableStructTypeInfo>().op(IGF, __VA_ARGS__);       \
    case StructTypeInfoKind::FixedStructTypeInfo:                              \
      return structTI.as<FixedStructTypeInfo>().op(IGF, __VA_ARGS__);          \
    case StructTypeInfoKind::NonFixedStructTypeInfo:                           \
      return structTI.as<NonFixedStructTypeInfo>().op(IGF, __VA_ARGS__);       \
    case StructTypeInfoKind::ResilientStructTypeInfo:                          \
      llvm_unreachable("resilient structs are opaque");                        \
    }                                                                          \
    llvm_unreachable("bad struct type info kind!");                            \
  } while (0)

Address irgen::projectPhysicalStructMemberAddress(IRGenFunction &IGF,
                                                  Address base,
                                                  SILType baseType,
                                                  VarDecl *field) {
  FOR_STRUCT_IMPL(IGF, baseType, projectFieldAddress, base,
                  baseType, field);
}

void irgen::projectPhysicalStructMemberFromExplosion(IRGenFunction &IGF,
                                                     SILType baseType,
                                                     Explosion &base,
                                                     VarDecl *field,
                                                     Explosion &out) {
  FOR_STRUCT_IMPL(IGF, baseType, projectFieldFromExplosion, base, field, out);
}

llvm::Constant *irgen::emitPhysicalStructMemberFixedOffset(IRGenModule &IGM,
                                                           SILType baseType,
                                                           VarDecl *field) {
  FOR_STRUCT_IMPL(IGM, baseType, getConstantFieldOffset, field);
}

MemberAccessStrategy
irgen::getPhysicalStructMemberAccessStrategy(IRGenModule &IGM,
                                             SILType baseType, VarDecl *field) {
  FOR_STRUCT_IMPL(IGM, baseType, getFieldAccessStrategy, baseType, field);
}

std::optional<unsigned> irgen::getPhysicalStructFieldIndex(IRGenModule &IGM,
                                                           SILType baseType,
                                                           VarDecl *field) {
  FOR_STRUCT_IMPL(IGM, baseType, getFieldIndexIfNotEmpty, field);
}

const TypeInfo *irgen::getPhysicalStructFieldTypeInfo(IRGenModule &IGM,
                                                      SILType baseType,
                                                      VarDecl *field) {
  FOR_STRUCT_IMPL(IGM, baseType, getFieldTypeInfo, field);
}

void IRGenModule::emitStructDecl(StructDecl *st) {
  if (!IRGen.hasLazyMetadata(st) &&
      !st->getASTContext().LangOpts.hasFeature(Feature::Embedded)) {
    emitStructMetadata(*this, st);
    emitFieldDescriptor(st);
  }

  emitNestedTypeDecls(st->getMembers());
}

void IRGenModule::maybeEmitOpaqueTypeDecl(OpaqueTypeDecl *opaque) {
  if (opaque->getASTContext().LangOpts.hasFeature(Feature::Embedded))
    return;

  if (!opaque->isAvailableDuringLowering())
    return;

  if (IRGen.Opts.EnableAnonymousContextMangledNames) {
    // If we're emitting anonymous context mangled names for debuggability,
    // then emit all opaque type descriptors and make them runtime-discoverable
    // so that remote ast/mirror can recover them.
    addRuntimeResolvableType(opaque);
    if (IRGen.hasLazyMetadata(opaque))
      IRGen.noteUseOfOpaqueTypeDescriptor(opaque);
    else {
      if (IRGen.EmittedNonLazyOpaqueTypeDecls.insert(opaque).second)
        emitOpaqueTypeDecl(opaque);
    }
  } else if (!IRGen.hasLazyMetadata(opaque)) {
    if (IRGen.EmittedNonLazyOpaqueTypeDecls.insert(opaque).second)
      emitOpaqueTypeDecl(opaque);
  }
}

namespace {
  /// A type implementation for resilient struct types. This is not a
  /// StructTypeInfoBase at all, since we don't know anything about
  /// the struct's fields.
  class ResilientStructTypeInfo
      : public ResilientTypeInfo<ResilientStructTypeInfo>
  {
  public:
    ResilientStructTypeInfo(llvm::Type *T,
                            IsCopyable_t copyable,
                            IsABIAccessible_t abiAccessible)
      : ResilientTypeInfo(T, copyable, abiAccessible) {
      setSubclassKind((unsigned) StructTypeInfoKind::ResilientStructTypeInfo);
    }

    TypeLayoutEntry
    *buildTypeLayoutEntry(IRGenModule &IGM,
                          SILType T,
                          bool useStructLayouts) const override {
      return IGM.typeLayoutCache.getOrCreateResilientEntry(T);
    }
  };
} // end anonymous namespace

const TypeInfo *
TypeConverter::convertResilientStruct(IsCopyable_t copyable,
                                      IsABIAccessible_t abiAccessible) {
  llvm::Type *storageType = IGM.OpaqueTy;
  return new ResilientStructTypeInfo(storageType, copyable, abiAccessible);
}

const TypeInfo *TypeConverter::convertStructType(TypeBase *key, CanType type,
                                                 StructDecl *D){
  // All resilient structs have the same opaque lowering, since they are
  // indistinguishable as values --- except that we have to track
  // ABI-accessibility.
  //
  // Treat infinitely-sized types as resilient as well, since they can never
  // be concretized.
  if (IGM.isResilient(D, ResilienceExpansion::Maximal)
      || IGM.getSILTypes().getTypeLowering(SILType::getPrimitiveAddressType(type),
                                            TypeExpansionContext::minimal())
            .getRecursiveProperties().isInfinite()) {
    auto copyable = !D->canBeCopyable()
      ? IsNotCopyable : IsCopyable;
    auto structAccessible =
      IsABIAccessible_t(IGM.getSILModule().isTypeMetadataAccessible(type));
    auto *bitwiseCopyableProtocol =
        IGM.getSwiftModule()->getASTContext().getProtocol(
            KnownProtocolKind::BitwiseCopyable);
    if (bitwiseCopyableProtocol &&
        IGM.getSwiftModule()->checkConformance(type, bitwiseCopyableProtocol)) {
      return BitwiseCopyableTypeInfo::create(IGM.OpaqueTy, structAccessible);
    }
    return &getResilientStructTypeInfo(copyable, structAccessible);
  }

  // Create the struct type.
  auto ty = IGM.createNominalType(type);

  // Register a forward declaration before we look at any of the child types.
  addForwardDecl(key);

  // Use different rules for types imported from C.
  if (D->hasClangNode()) {
    const clang::Decl *clangDecl = D->getClangNode().getAsDecl();
    assert(clangDecl && "Swift struct from an imported C macro?");

    if (auto clangRecord = dyn_cast<clang::RecordDecl>(clangDecl)) {
      ClangRecordLowering lowering(IGM, D, clangRecord,
                                   SILType::getPrimitiveObjectType(type));
      lowering.collectRecordFields();
      return lowering.createTypeInfo(ty);

    } else if (isa<clang::EnumDecl>(clangDecl)) {
      // Fall back to Swift lowering for the enum's representation as a struct.
      assert(D->getStoredProperties().size() == 1 &&
             "Struct representation of a Clang enum should wrap one value");
    } else if (clangDecl->hasAttr<clang::SwiftNewTypeAttr>()) {
      // Fall back to Swift lowering for the underlying type's
      // representation as a struct member.
      assert(D->getStoredProperties().size() == 1 &&
             "Struct representation of a swift_newtype should wrap one value");
    } else {
      llvm_unreachable("Swift struct represents unexpected imported type");
    }
  }

  // Collect all the fields from the type.
  SmallVector<VarDecl*, 8> fields;
  for (VarDecl *VD : D->getStoredProperties())
    fields.push_back(VD);

  // Build the type.
  StructTypeBuilder builder(IGM, ty, type);
  return builder.layout(fields);
}