1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
|
//===--- GenType.cpp - Swift IR Generation For Types ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for types in Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/ABI/MetadataValues.h"
#include "swift/AST/CanTypeVisitor.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Platform.h"
#include "swift/Basic/SourceManager.h"
#include "swift/IRGen/Linking.h"
#include "swift/SIL/SILModule.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Path.h"
#include "clang/CodeGen/SwiftCallingConv.h"
#include "BitPatternBuilder.h"
#include "CallEmission.h"
#include "EnumPayload.h"
#include "LegacyLayoutFormat.h"
#include "LoadableTypeInfo.h"
#include "GenCall.h"
#include "GenMeta.h"
#include "GenPoly.h"
#include "GenProto.h"
#include "GenType.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "Address.h"
#include "Explosion.h"
#include "GenOpaque.h"
#include "HeapTypeInfo.h"
#include "IndirectTypeInfo.h"
#include "Outlining.h"
#include "ProtocolInfo.h"
#include "ReferenceTypeInfo.h"
#include "ScalarPairTypeInfo.h"
#include "NativeConventionSchema.h"
#include "IRGenMangler.h"
#include "NonFixedTypeInfo.h"
using namespace swift;
using namespace irgen;
Alignment IRGenModule::getCappedAlignment(Alignment align) {
return std::min(align, Alignment(MaximumAlignment));
}
llvm::DenseMap<TypeBase *, const TypeInfo *> &
TypeConverter::Types_t::getCacheFor(bool isDependent, TypeConverter::Mode mode) {
return (isDependent
? DependentCache[unsigned(mode)]
: IndependentCache[unsigned(mode)]);
}
llvm::DenseMap<TypeBase *, const TypeLayoutEntry *> &
TypeConverter::Types_t::getTypeLayoutCacheFor(bool isDependent,
TypeConverter::Mode mode) {
return (isDependent ? DependentTypeLayoutCache[unsigned(mode)]
: IndependentTypeLayoutCache[unsigned(mode)]);
}
void TypeInfo::assign(IRGenFunction &IGF, Address dest, Address src,
IsTake_t isTake, SILType T, bool isOutlined) const {
if (isTake) {
assignWithTake(IGF, dest, src, T, isOutlined);
} else {
assignWithCopy(IGF, dest, src, T, isOutlined);
}
}
void TypeInfo::initialize(IRGenFunction &IGF, Address dest, Address src,
IsTake_t isTake, SILType T, bool isOutlined) const {
if (isTake) {
initializeWithTake(IGF, dest, src, T, isOutlined);
} else {
initializeWithCopy(IGF, dest, src, T, isOutlined);
}
}
bool TypeInfo::isSingleRetainablePointer(ResilienceExpansion expansion,
ReferenceCounting *refcounting) const {
return false;
}
ExplosionSchema TypeInfo::getSchema() const {
ExplosionSchema schema;
getSchema(schema);
return schema;
}
TypeInfo::~TypeInfo() {
if (nativeReturnSchema)
delete nativeReturnSchema;
if (nativeParameterSchema)
delete nativeParameterSchema;
}
Address TypeInfo::getAddressForPointer(llvm::Value *ptr) const {
return Address(ptr, getStorageType(), getBestKnownAlignment());
}
Address TypeInfo::getUndefAddress() const {
return Address(llvm::UndefValue::get(getStorageType()->getPointerTo(0)),
getStorageType(), getBestKnownAlignment());
}
/// Whether this type is known to be empty.
bool TypeInfo::isKnownEmpty(ResilienceExpansion expansion) const {
if (auto fixed = dyn_cast<FixedTypeInfo>(this))
return fixed->isKnownEmpty(expansion);
return false;
}
const NativeConventionSchema &
TypeInfo::nativeReturnValueSchema(IRGenModule &IGM) const {
if (nativeReturnSchema == nullptr)
nativeReturnSchema = new NativeConventionSchema(IGM, this, true);
return *nativeReturnSchema;
}
const NativeConventionSchema &
TypeInfo::nativeParameterValueSchema(IRGenModule &IGM) const {
if (nativeParameterSchema == nullptr)
nativeParameterSchema = new NativeConventionSchema(IGM, this, false);
return *nativeParameterSchema;
}
/// Copy a value from one object to a new object, directly taking
/// responsibility for anything it might have. This is like C++
/// move-initialization, except the old object will not be destroyed.
void FixedTypeInfo::initializeWithTake(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T,
bool isOutlined) const {
assert(isBitwiseTakable(ResilienceExpansion::Maximal)
&& "non-bitwise-takable type must override default initializeWithTake");
// Prefer loads and stores if we won't make a million of them.
// Maybe this should also require the scalars to have a fixed offset.
ExplosionSchema schema = getSchema();
if (!schema.containsAggregate() && schema.size() <= 2) {
auto &loadableTI = cast<LoadableTypeInfo>(*this);
Explosion copy;
loadableTI.loadAsTake(IGF, srcAddr, copy);
loadableTI.initialize(IGF, copy, destAddr, isOutlined);
return;
}
// Otherwise, use a memcpy.
IGF.emitMemCpy(destAddr, srcAddr, getFixedSize());
}
/// Copy a value from one object to a new object. This is just the
/// default implementation.
void LoadableTypeInfo::initializeWithCopy(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T,
bool isOutlined) const {
// Use memcpy if that's legal.
if (isTriviallyDestroyable(ResilienceExpansion::Maximal)) {
return initializeWithTake(IGF, destAddr, srcAddr, T, isOutlined);
}
// Otherwise explode and re-implode.
if (isOutlined) {
Explosion copy;
loadAsCopy(IGF, srcAddr, copy);
initialize(IGF, copy, destAddr, true);
} else {
OutliningMetadataCollector collector(T, IGF, LayoutIsNeeded,
DeinitIsNotNeeded);
// No need to collect anything because we assume loadable types can be
// loaded without enums.
collector.emitCallToOutlinedCopy(
destAddr, srcAddr, T, *this, IsInitialization, IsNotTake);
}
}
LoadedRef LoadableTypeInfo::loadRefcountedPtr(IRGenFunction &IGF,
SourceLoc loc,
Address addr) const {
IGF.IGM.error(loc, "Can only load from an address that holds a reference to "
"a refcounted type or an address of an optional reference.");
llvm::report_fatal_error("loadRefcountedPtr: Invalid SIL in IRGen");
}
void LoadableTypeInfo::addScalarToAggLowering(IRGenModule &IGM,
SwiftAggLowering &lowering,
llvm::Type *type, Size offset,
Size storageSize) {
lowering.addTypedData(type, offset.asCharUnits(),
offset.asCharUnits() + storageSize.asCharUnits());
}
llvm::Value *FixedTypeInfo::getSize(IRGenFunction &IGF, SILType T) const {
return FixedTypeInfo::getStaticSize(IGF.IGM);
}
llvm::Constant *FixedTypeInfo::getStaticSize(IRGenModule &IGM) const {
return IGM.getSize(getFixedSize());
}
llvm::Value *FixedTypeInfo::getAlignmentMask(IRGenFunction &IGF,
SILType T) const {
return FixedTypeInfo::getStaticAlignmentMask(IGF.IGM);
}
llvm::Constant *FixedTypeInfo::getStaticAlignmentMask(IRGenModule &IGM) const {
return IGM.getSize(Size(getFixedAlignment().getValue() - 1));
}
llvm::Value *FixedTypeInfo::getStride(IRGenFunction &IGF, SILType T) const {
return FixedTypeInfo::getStaticStride(IGF.IGM);
}
llvm::Value *FixedTypeInfo::getIsTriviallyDestroyable(IRGenFunction &IGF, SILType T) const {
return llvm::ConstantInt::get(IGF.IGM.Int1Ty,
isTriviallyDestroyable(ResilienceExpansion::Maximal) == IsTriviallyDestroyable);
}
llvm::Value *FixedTypeInfo::getIsBitwiseTakable(IRGenFunction &IGF, SILType T) const {
return llvm::ConstantInt::get(IGF.IGM.Int1Ty,
getBitwiseTakable(ResilienceExpansion::Maximal) >= IsBitwiseTakableOnly);
}
llvm::Constant *FixedTypeInfo::getStaticStride(IRGenModule &IGM) const {
return IGM.getSize(getFixedStride());
}
llvm::Value *FixedTypeInfo::isDynamicallyPackedInline(IRGenFunction &IGF,
SILType T) const {
auto packing = getFixedPacking(IGF.IGM);
assert(packing == FixedPacking::Allocate ||
packing == FixedPacking::OffsetZero);
return llvm::ConstantInt::get(IGF.IGM.Int1Ty,
packing == FixedPacking::OffsetZero);
}
unsigned FixedTypeInfo::getSpareBitExtraInhabitantCount() const {
if (SpareBits.none())
return 0;
// Make sure the arithmetic below doesn't overflow.
if (getFixedSize().getValue() >= 4)
return ValueWitnessFlags::MaxNumExtraInhabitants;
unsigned spareBitCount = SpareBits.count();
assert(spareBitCount <= getFixedSize().getValueInBits()
&& "more spare bits than storage bits?!");
unsigned inhabitedBitCount = getFixedSize().getValueInBits() - spareBitCount;
unsigned rawCount = ((1U << spareBitCount) - 1U) << inhabitedBitCount;
return std::min(rawCount,
unsigned(ValueWitnessFlags::MaxNumExtraInhabitants));
}
void FixedTypeInfo::applyFixedSpareBitsMask(const IRGenModule &IGM,
SpareBitVector &mask) const {
auto builder = BitPatternBuilder(IGM.Triple.isLittleEndian());
// If the mask is no longer than the stored spare bits, we can just
// apply the stored spare bits.
if (mask.size() <= SpareBits.size()) {
// Grow the mask out if necessary; the tail padding is all spare bits.
builder.append(mask);
builder.padWithSetBitsTo(SpareBits.size());
mask = SpareBitVector(builder.build());
mask &= SpareBits;
return;
}
// Otherwise, we have to grow out the stored spare bits before we
// can intersect.
builder.append(SpareBits);
builder.padWithSetBitsTo(mask.size());
mask &= builder.build();
return;
}
APInt
FixedTypeInfo::getSpareBitFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const {
// Factor the index into the part that goes in the occupied bits and the
// part that goes in the spare bits.
unsigned occupiedIndex, spareIndex = 0;
unsigned spareBitCount = SpareBits.count();
unsigned occupiedBitCount = SpareBits.size() - spareBitCount;
if (occupiedBitCount >= 31) {
occupiedIndex = index;
// The spare bit value is biased by one because all zero spare bits
// represents a valid value of the type.
spareIndex = 1;
} else {
occupiedIndex = index & ((1 << occupiedBitCount) - 1);
// The spare bit value is biased by one because all zero spare bits
// represents a valid value of the type.
spareIndex = (index >> occupiedBitCount) + 1;
}
APInt mask = SpareBits.asAPInt().zextOrTrunc(bits);
APInt v = scatterBits(mask, spareIndex);
v |= scatterBits(~mask, occupiedIndex);
return v;
}
llvm::Value *
FixedTypeInfo::getSpareBitExtraInhabitantIndex(IRGenFunction &IGF,
Address src) const {
assert(!SpareBits.none() && "no spare bits");
auto &C = IGF.IGM.getLLVMContext();
// Load the value.
auto payloadTy = llvm::IntegerType::get(C, getFixedSize().getValueInBits());
src = IGF.Builder.CreateElementBitCast(src, payloadTy);
auto val = IGF.Builder.CreateLoad(src);
// If the spare bits are all zero, then we have a valid value and not an
// extra inhabitant.
auto spareBitsMask
= llvm::ConstantInt::get(C, SpareBits.asAPInt());
auto valSpareBits = IGF.Builder.CreateAnd(val, spareBitsMask);
auto isValid = IGF.Builder.CreateICmpEQ(valSpareBits,
llvm::ConstantInt::get(payloadTy, 0));
auto *origBB = IGF.Builder.GetInsertBlock();
auto *endBB = llvm::BasicBlock::Create(C);
auto *spareBB = llvm::BasicBlock::Create(C);
IGF.Builder.CreateCondBr(isValid, endBB, spareBB);
IGF.Builder.emitBlock(spareBB);
ConditionalDominanceScope condition(IGF);
// Gather the occupied bits.
auto OccupiedBits = SpareBits;
OccupiedBits.flipAll();
llvm::Value *idx = emitGatherBits(IGF, OccupiedBits.asAPInt(), val, 0, 31);
// See if spare bits fit into the 31 bits of the index.
unsigned numSpareBits = SpareBits.count();
unsigned numOccupiedBits = getFixedSize().getValueInBits() - numSpareBits;
if (numOccupiedBits < 31) {
// Gather the spare bits.
llvm::Value *spareIdx
= emitGatherBits(IGF, SpareBits.asAPInt(), val, numOccupiedBits, 31);
// Unbias by subtracting one.
uint64_t shifted = static_cast<uint64_t>(1) << numOccupiedBits;
spareIdx = IGF.Builder.CreateSub(spareIdx,
llvm::ConstantInt::get(spareIdx->getType(), shifted));
idx = IGF.Builder.CreateOr(idx, spareIdx);
}
idx = IGF.Builder.CreateZExt(idx, IGF.IGM.Int32Ty);
IGF.Builder.CreateBr(endBB);
IGF.Builder.emitBlock(endBB);
// If we had a valid value, return -1. Otherwise, return the index.
auto phi = IGF.Builder.CreatePHI(IGF.IGM.Int32Ty, 2);
phi->addIncoming(llvm::ConstantInt::get(IGF.IGM.Int32Ty, -1), origBB);
phi->addIncoming(idx, spareBB);
return phi;
}
static llvm::Value *computeExtraTagBytes(IRGenFunction &IGF, IRBuilder &Builder,
Size fixedSize,
llvm::Value *numEmptyCases) {
// We can use the payload area with a tag bit set somewhere outside of the
// payload area to represent cases. See how many bytes we need to cover
// all the empty cases.
// Algorithm:
// unsigned numTags = 1;
// if (size >= 4)
// // Assume that one tag bit is enough if the precise calculation overflows
// // an int32.
// numTags += 1;
// else {
// unsigned bits = size * 8U;
// unsigned casesPerTagBitValue = 1U << bits;
// numTags += ((emptyCases + (casesPerTagBitValue - 1U)) >> bits);
// }
// return (numTags < 256 ? 1 :
// numTags < 65536 ? 2 : 4);
auto &IGM = IGF.IGM;
auto &Ctx = Builder.getContext();
auto *int32Ty = IGM.Int32Ty;
auto *one = llvm::ConstantInt::get(int32Ty, 1U);
if (fixedSize >= Size(4)) {
return one;
}
auto *entryBB = Builder.GetInsertBlock();
llvm::Value *size = IGM.getSize(fixedSize);
auto *returnBB = llvm::BasicBlock::Create(Ctx);
size = Builder.CreateZExtOrTrunc(size, int32Ty); // We know size < 4.
auto *two = llvm::ConstantInt::get(int32Ty, 2U);
auto *four = llvm::ConstantInt::get(int32Ty, 4U);
auto *bits = Builder.CreateMul(size, llvm::ConstantInt::get(int32Ty, 8U));
auto *casesPerTagBitValue = Builder.CreateShl(one, bits);
auto *numTags = Builder.CreateSub(casesPerTagBitValue, one);
numTags = Builder.CreateAdd(numTags, numEmptyCases);
numTags = Builder.CreateLShr(numTags, bits);
numTags = Builder.CreateAdd(numTags, one);
auto *notLT256BB = llvm::BasicBlock::Create(Ctx);
auto *isLT256 =
Builder.CreateICmpULT(numTags, llvm::ConstantInt::get(int32Ty, 256U));
Builder.CreateCondBr(isLT256, returnBB, notLT256BB);
Builder.emitBlock(notLT256BB);
auto *isLT65536 =
Builder.CreateICmpULT(numTags, llvm::ConstantInt::get(int32Ty, 65536U));
numTags = Builder.CreateSelect(isLT65536, two, four);
Builder.CreateBr(returnBB);
Builder.emitBlock(returnBB);
auto *phi = Builder.CreatePHI(int32Ty, 3);
phi->addIncoming(one, entryBB);
phi->addIncoming(numTags, notLT256BB);
return phi;
}
/// Emit a specialized memory operation for a \p size of 0, 1, 2 or
/// 4 bytes.
/// \p emitMemOpFn will be called in a basic block where \p size is
/// a known constant value passed as a parameter to the function.
static void emitSpecializedMemOperation(
IRGenFunction &IGF,
llvm::function_ref<void(IRBuilder &, Size)> emitMemOpFn,
llvm::Value *size,
const std::array<Size, 4> &sizes) {
auto &Ctx = IGF.IGM.getLLVMContext();
auto &Builder = IGF.Builder;
// Block to jump to after successful match.
auto *returnBB = llvm::BasicBlock::Create(Ctx);
// Test all the sizes in turn, generating code similar to:
//
// if (size == 0) {
// <op>
// } else if (size == 1) {
// <op>
// } else if (size == 2) {
// <op>
// } else if (size == 4) {
// <op>
// } else {
// <unreachable>
// }
//
for (const Size &s : sizes) {
auto *matchBB = llvm::BasicBlock::Create(Ctx);
auto *nextBB = llvm::BasicBlock::Create(Ctx);
// Check if size matches.
auto *imm = Builder.getInt32(s.getValue());
auto *cmp = Builder.CreateICmpEQ(size, imm);
Builder.CreateCondBr(cmp, matchBB, nextBB);
// Size matches: execute sized operation.
Builder.emitBlock(matchBB);
emitMemOpFn(Builder, s);
Builder.CreateBr(returnBB);
// Size does not match: try next size.
Builder.emitBlock(nextBB);
}
// No size matched. Should never happen.
Builder.CreateUnreachable();
// Continue.
Builder.emitBlock(returnBB);
}
/// Emit a load of the \p size byte integer values zero extended to 4 bytes. \p
/// size maybe any of the four values specified in the \p sizes array.
static llvm::Value *emitLoadBytes(IRGenFunction &IGF, Address from,
llvm::Value *size,
const std::array<Size, 4> &sizes) {
auto *phi = llvm::PHINode::Create(IGF.IGM.Int32Ty, 4);
emitSpecializedMemOperation(IGF,
[=](IRBuilder &B, Size s) {
if (s == Size(0)) {
// If the size is 0 bytes return 0.
phi->addIncoming(B.getInt32(0), B.GetInsertBlock());
return;
}
// Generate a load of size bytes and zero-extend it to 32-bits.
auto *type = B.getIntNTy(s.getValueInBits());
Address addr = B.CreateElementBitCast(from, type);
auto *val = B.CreateZExtOrTrunc(B.CreateLoad(addr), B.getInt32Ty());
phi->addIncoming(val, B.GetInsertBlock());
},
size,
sizes);
IGF.Builder.Insert(phi);
return phi;
}
/// Emit a load of a \p size byte integer value zero extended to 4 bytes \p size
/// may be 1, 2, 3, or 4.
llvm::Value *irgen::emitLoad1to4Bytes(IRGenFunction &IGF, Address from,
llvm::Value *size) {
// Sizes to try. Tested in order.
const std::array<Size, 4> sizes = {
Size(1),
Size(2),
Size(3),
Size(4),
};
return emitLoadBytes(IGF, from, size, sizes);
}
/// Emit a load of a \p size byte integer value zero extended to 4 bytes.
/// \p size may be 0, 1, 2 or 4.
llvm::Value *irgen::emitGetTag(IRGenFunction &IGF, Address from,
llvm::Value *size) {
// Sizes to try. Tested in order.
const std::array<Size, 4> sizes = {
Size(0),
Size(1),
Size(2),
Size(4),
};
return emitLoadBytes(IGF, from, size, sizes);
}
/// Emit a store of \p val truncated to \p size bytes.
/// \p size may be one of the entries in the \p sizes array.
static void emitStoreBytes(IRGenFunction &IGF, Address to, llvm::Value *val,
llvm::Value *size,
const std::array<Size, 4> &sizes) {
emitSpecializedMemOperation(IGF,
[=](IRBuilder &B, Size s) {
if (s == Size(0)) {
// Nothing to store.
return;
}
// Store value truncated to size bytes.
auto *type = B.getIntNTy(s.getValueInBits());
auto *trunc = B.CreateZExtOrTrunc(val, type);
Address addr = B.CreateElementBitCast(to, type);
B.CreateStore(trunc, addr);
},
size,
sizes);
}
/// Emit a store of \p val truncated to \p size bytes.
/// \p size may be 1, 2, 3, or 4.
void irgen::emitStore1to4Bytes(IRGenFunction &IGF, Address to, llvm::Value *val,
llvm::Value *size) {
// Sizes to try. Tested in order.
const std::array<Size, 4> sizes = {
Size(1),
Size(2),
Size(3),
Size(4),
};
emitStoreBytes(IGF, to, val, size, sizes);
}
/// Emit a store of \p val truncated to \p size bytes.
/// \p size may be 0, 1, 2 or 4.
void irgen::emitSetTag(IRGenFunction &IGF,
Address to, llvm::Value *val,
llvm::Value *size) {
// Sizes to try. Tested in order.
const std::array<Size, 4> sizes = {
Size(0),
Size(1),
Size(2),
Size(4),
};
emitStoreBytes(IGF, to, val, size, sizes);
}
llvm::Value *FixedTypeInfo::getEnumTagSinglePayload(IRGenFunction &IGF,
llvm::Value *numEmptyCases,
Address enumAddr,
SILType T,
bool isOutlined) const {
return getFixedTypeEnumTagSinglePayload(IGF, *this, numEmptyCases, enumAddr,
T, isOutlined);
}
llvm::Value *irgen::getFixedTypeEnumTagSinglePayload(IRGenFunction &IGF,
const FixedTypeInfo &ti,
llvm::Value *numEmptyCases,
Address enumAddr,
SILType T,
bool isOutlined) {
auto *size = ti.getSize(IGF, T);
Size fixedSize = ti.getFixedSize();
auto fixedExtraInhabitantCount = ti.getFixedExtraInhabitantCount(IGF.IGM);
return getFixedTypeEnumTagSinglePayload(
IGF, numEmptyCases, enumAddr, size, fixedSize, fixedExtraInhabitantCount,
[&](Address addr) -> llvm::Value * {
return ti.getExtraInhabitantIndex(IGF, addr, T, false);
},
isOutlined);
}
llvm::Value *irgen::getFixedTypeEnumTagSinglePayload(
IRGenFunction &IGF, llvm::Value *numEmptyCases, Address enumAddr,
llvm::Value *size, Size fixedSize, unsigned fixedExtraInhabitantCount,
llvm::function_ref<llvm::Value *(Address)> getExtraInhabitantIndex,
bool isOutlined) {
auto &IGM = IGF.IGM;
auto &Ctx = IGF.IGM.getLLVMContext();
auto &Builder = IGF.Builder;
auto *numExtraInhabitants =
llvm::ConstantInt::get(IGM.Int32Ty, fixedExtraInhabitantCount);
auto *zero = llvm::ConstantInt::get(IGM.Int32Ty, 0U);
auto *one = llvm::ConstantInt::get(IGM.Int32Ty, 1U);
auto *four = llvm::ConstantInt::get(IGM.Int32Ty, 4U);
auto *eight = llvm::ConstantInt::get(IGM.Int32Ty, 8U);
auto *extraTagBitsBB = llvm::BasicBlock::Create(Ctx);
auto *noExtraTagBitsBB = llvm::BasicBlock::Create(Ctx);
auto *hasEmptyCasesBB = llvm::BasicBlock::Create(Ctx);
auto *singleCaseEnumBB = llvm::BasicBlock::Create(Ctx);
// No empty cases so we must be the payload.
auto *hasNoEmptyCases = Builder.CreateICmpEQ(zero, numEmptyCases);
Builder.CreateCondBr(hasNoEmptyCases, singleCaseEnumBB, hasEmptyCasesBB);
// Otherwise, check whether we need extra tag bits.
Builder.emitBlock(hasEmptyCasesBB);
auto *hasExtraTagBits =
Builder.CreateICmpUGT(numEmptyCases, numExtraInhabitants);
Builder.CreateCondBr(hasExtraTagBits, extraTagBitsBB, noExtraTagBitsBB);
// There are extra tag bits to check.
Builder.emitBlock(extraTagBitsBB);
// Compute the number of extra tag bytes.
auto *emptyCases = Builder.CreateSub(numEmptyCases, numExtraInhabitants);
auto *numExtraTagBytes =
computeExtraTagBytes(IGF, Builder, fixedSize, emptyCases);
// Read the value stored in the extra tag bytes.
auto *valueAddr =
Builder.CreateBitOrPointerCast(enumAddr.getAddress(), IGM.Int8PtrTy);
auto *extraTagBitsAddr =
Builder.CreateConstInBoundsGEP1_32(IGM.Int8Ty, valueAddr,
fixedSize.getValue());
auto *extraTagBits =
emitGetTag(IGF, Address(extraTagBitsAddr, IGM.Int8Ty, Alignment(1)),
numExtraTagBytes);
extraTagBitsBB = llvm::BasicBlock::Create(Ctx);
Builder.CreateCondBr(Builder.CreateICmpEQ(extraTagBits, zero),
noExtraTagBitsBB, extraTagBitsBB);
auto *resultBB = llvm::BasicBlock::Create(Ctx);
Builder.emitBlock(extraTagBitsBB);
auto *truncSize = Builder.CreateZExtOrTrunc(size, IGM.Int32Ty);
auto *caseIndexFromExtraTagBits = Builder.CreateSelect(
Builder.CreateICmpUGE(truncSize, four), zero,
Builder.CreateShl(Builder.CreateSub(extraTagBits, one),
Builder.CreateMul(eight, truncSize)));
llvm::Value *caseIndexFromValue = zero;
if (fixedSize > Size(0)) {
// llvm only supports integer types upto a certain size (i.e selection dag
// will crash).
if (fixedSize.getValueInBits() <= llvm::IntegerType::MAX_INT_BITS / 4) {
// Read up to one pointer-sized 'chunk' of the payload.
// The size of the chunk does not have to be a power of 2.
auto *caseIndexType =
llvm::IntegerType::get(Ctx, fixedSize.getValueInBits());
auto *caseIndexAddr =
Builder.CreateBitCast(valueAddr, caseIndexType->getPointerTo());
caseIndexFromValue = Builder.CreateZExtOrTrunc(
Builder.CreateLoad(
Address(caseIndexAddr, caseIndexType, Alignment(1))),
IGM.Int32Ty);
} else {
auto *caseIndexType = llvm::IntegerType::get(Ctx, 32);
auto *caseIndexAddr =
Builder.CreateBitCast(valueAddr, caseIndexType->getPointerTo());
caseIndexFromValue = Builder.CreateZExtOrTrunc(
Builder.CreateLoad(
Address(caseIndexAddr, caseIndexType, Alignment(1))),
IGM.Int32Ty);
}
}
auto *result1 = Builder.CreateAdd(
numExtraInhabitants,
Builder.CreateOr(caseIndexFromValue, caseIndexFromExtraTagBits));
Builder.CreateBr(resultBB);
// Extra tag bits were considered and zero or there are not extra tag
// bits.
Builder.emitBlock(noExtraTagBitsBB);
// If there are extra inhabitants, see whether the payload is valid.
llvm::Value *result0;
if (fixedExtraInhabitantCount > 0) {
result0 = getExtraInhabitantIndex(enumAddr);
noExtraTagBitsBB = Builder.GetInsertBlock();
} else {
result0 = llvm::ConstantInt::getSigned(IGM.Int32Ty, -1);
}
Builder.CreateBr(resultBB);
Builder.emitBlock(singleCaseEnumBB);
// Otherwise, we have a valid payload.
auto *result2 = llvm::ConstantInt::getSigned(IGM.Int32Ty, -1);
Builder.CreateBr(resultBB);
Builder.emitBlock(resultBB);
auto *result = Builder.CreatePHI(IGM.Int32Ty, 3);
result->addIncoming(result0, noExtraTagBitsBB);
result->addIncoming(result1, extraTagBitsBB);
result->addIncoming(result2, singleCaseEnumBB);
return Builder.CreateAdd(result, llvm::ConstantInt::get(IGM.Int32Ty, 1));
}
void FixedTypeInfo::storeEnumTagSinglePayload(IRGenFunction &IGF,
llvm::Value *whichCase,
llvm::Value *numEmptyCases,
Address enumAddr,
SILType T,
bool isOutlined) const {
storeFixedTypeEnumTagSinglePayload(IGF, *this, whichCase, numEmptyCases,
enumAddr, T, isOutlined);
}
void irgen::storeFixedTypeEnumTagSinglePayload(IRGenFunction &IGF,
const FixedTypeInfo &ti,
llvm::Value *whichCase,
llvm::Value *numEmptyCases,
Address enumAddr,
SILType T,
bool isOutlined) {
auto fixedSize = ti.getFixedSize();
auto *size = ti.getSize(IGF, T);
auto fixedExtraInhabitantCount = ti.getFixedExtraInhabitantCount(IGF.IGM);
storeFixedTypeEnumTagSinglePayload(
IGF, whichCase, numEmptyCases, enumAddr, size, fixedSize,
fixedExtraInhabitantCount,
[&](llvm::Value *nonPayloadElementIndex, Address enumAddr) {
ti.storeExtraInhabitant(IGF, nonPayloadElementIndex, enumAddr, T,
/*outlined*/ false);
},
isOutlined);
}
void irgen::storeFixedTypeEnumTagSinglePayload(
IRGenFunction &IGF, llvm::Value *whichCase, llvm::Value *numEmptyCases,
Address enumAddr, llvm::Value *size, Size fixedSize,
unsigned fixedExtraInhabitantCount,
llvm::function_ref<void(llvm::Value *, Address)> storeExtraInhabitant,
bool isOutlined) {
auto &IGM = IGF.IGM;
auto &Ctx = IGF.IGM.getLLVMContext();
auto &Builder = IGF.Builder;
auto &int32Ty = IGM.Int32Ty;
auto *zero = llvm::ConstantInt::get(int32Ty, 0U);
auto *one = llvm::ConstantInt::get(int32Ty, 1U);
auto *four = llvm::ConstantInt::get(int32Ty, 4U);
auto *eight = llvm::ConstantInt::get(int32Ty, 8U);
Address valueAddr = Builder.CreateElementBitCast(enumAddr, IGM.Int8Ty);
Address extraTagBitsAddr =
Builder.CreateConstByteArrayGEP(valueAddr, fixedSize);
auto *numExtraInhabitants =
llvm::ConstantInt::get(IGM.Int32Ty, fixedExtraInhabitantCount);
// Do we need extra tag bytes.
auto *entryBB = Builder.GetInsertBlock();
auto *continueBB = llvm::BasicBlock::Create(Ctx);
auto *computeExtraTagBytesBB = llvm::BasicBlock::Create(Ctx);
auto *hasExtraTagBits =
Builder.CreateICmpUGT(numEmptyCases, numExtraInhabitants);
Builder.CreateCondBr(hasExtraTagBits, computeExtraTagBytesBB, continueBB);
Builder.emitBlock(computeExtraTagBytesBB);
// Compute the number of extra tag bytes.
auto *emptyCases = Builder.CreateSub(numEmptyCases, numExtraInhabitants);
auto *numExtraTagBytes0 =
computeExtraTagBytes(IGF, Builder, fixedSize, emptyCases);
computeExtraTagBytesBB = Builder.GetInsertBlock();
Builder.CreateBr(continueBB);
Builder.emitBlock(continueBB);
auto *numExtraTagBytes = Builder.CreatePHI(int32Ty, 2);
numExtraTagBytes->addIncoming(zero, entryBB);
numExtraTagBytes->addIncoming(numExtraTagBytes0, computeExtraTagBytesBB);
// Check whether we need to set the extra tag bits to non zero.
auto *isExtraTagBitsCaseBB = llvm::BasicBlock::Create(Ctx);
auto *isPayloadOrInhabitantCaseBB = llvm::BasicBlock::Create(Ctx);
auto *isPayloadOrExtraInhabitant =
Builder.CreateICmpULE(whichCase, numExtraInhabitants);
Builder.CreateCondBr(isPayloadOrExtraInhabitant, isPayloadOrInhabitantCaseBB,
isExtraTagBitsCaseBB);
// We are the payload or fit within the extra inhabitants.
Builder.emitBlock(isPayloadOrInhabitantCaseBB);
// Zero the tag bits.
emitSetTag(IGF, extraTagBitsAddr, zero, numExtraTagBytes);
isPayloadOrInhabitantCaseBB = Builder.GetInsertBlock();
auto *storeInhabitantBB = llvm::BasicBlock::Create(Ctx);
auto *returnBB = llvm::BasicBlock::Create(Ctx);
auto *isPayload = Builder.CreateICmpEQ(whichCase, zero);
Builder.CreateCondBr(isPayload, returnBB, storeInhabitantBB);
Builder.emitBlock(storeInhabitantBB);
if (fixedExtraInhabitantCount > 0) {
// Store an index in the range [0..ElementsWithNoPayload-1].
auto *nonPayloadElementIndex = Builder.CreateSub(whichCase, one);
storeExtraInhabitant(nonPayloadElementIndex, enumAddr);
}
Builder.CreateBr(returnBB);
// There are extra tag bits to consider.
Builder.emitBlock(isExtraTagBitsCaseBB);
// Write the extra tag bytes. At this point we know we have an no payload case
// and therefore the index we should store is in the range
// [0..ElementsWithNoPayload-1].
auto *nonPayloadElementIndex = Builder.CreateSub(whichCase, one);
auto *caseIndex =
Builder.CreateSub(nonPayloadElementIndex, numExtraInhabitants);
auto *truncSize = Builder.CreateZExtOrTrunc(size, IGM.Int32Ty);
auto *isFourBytesPayload = Builder.CreateICmpUGE(truncSize, four);
auto *payloadGE4BB = Builder.GetInsertBlock();
auto *payloadLT4BB = llvm::BasicBlock::Create(Ctx);
continueBB = llvm::BasicBlock::Create(Ctx);
Builder.CreateCondBr(isFourBytesPayload, continueBB, payloadLT4BB);
Builder.emitBlock(payloadLT4BB);
auto *payloadBits = Builder.CreateMul(truncSize, eight);
auto *extraTagIndex0 = Builder.CreateLShr(caseIndex, payloadBits);
extraTagIndex0 = Builder.CreateAdd(one, extraTagIndex0);
auto *payloadIndex0 = Builder.CreateShl(one, payloadBits);
payloadIndex0 = Builder.CreateSub(payloadIndex0, one);
payloadIndex0 = Builder.CreateAnd(payloadIndex0, caseIndex);
Builder.CreateBr(continueBB);
Builder.emitBlock(continueBB);
auto *extraTagIndex = Builder.CreatePHI(int32Ty, 2);
extraTagIndex->addIncoming(llvm::ConstantInt::get(int32Ty, 1), payloadGE4BB);
extraTagIndex->addIncoming(extraTagIndex0, payloadLT4BB);
auto *payloadIndex = Builder.CreatePHI(int32Ty, 2);
payloadIndex->addIncoming(caseIndex, payloadGE4BB);
payloadIndex->addIncoming(payloadIndex0, payloadLT4BB);
if (fixedSize > Size(0)) {
if (fixedSize.getValueInBits() <= llvm::IntegerType::MAX_INT_BITS / 4) {
// Write the value to the payload as a zero extended integer.
auto *intType = Builder.getIntNTy(fixedSize.getValueInBits());
Builder.CreateStore(Builder.CreateZExtOrTrunc(payloadIndex, intType),
Builder.CreateElementBitCast(valueAddr, intType));
} else {
// Write the value to the payload as a zero extended integer.
Size limit = IGM.getPointerSize();
auto *intType = Builder.getIntNTy(limit.getValueInBits());
Builder.CreateStore(Builder.CreateZExtOrTrunc(payloadIndex, intType),
Builder.CreateElementBitCast(valueAddr, intType));
// Zero the remainder of the payload.
auto zeroAddr = Builder.CreateConstByteArrayGEP(valueAddr, limit);
auto zeroSize = Builder.CreateSub(
size, llvm::ConstantInt::get(size->getType(), limit.getValue()));
Builder.CreateMemSet(zeroAddr, Builder.getInt8(0), zeroSize);
}
}
// Write to the extra tag bytes, if any.
emitSetTag(IGF, extraTagBitsAddr, extraTagIndex, numExtraTagBytes);
Builder.CreateBr(returnBB);
Builder.emitBlock(returnBB);
}
void
FixedTypeInfo::storeSpareBitExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address dest) const {
assert(!SpareBits.none() && "no spare bits");
auto &C = IGF.IGM.getLLVMContext();
auto payloadTy = llvm::IntegerType::get(C, getFixedSize().getValueInBits());
unsigned spareBitCount = SpareBits.count();
unsigned occupiedBitCount = SpareBits.size() - spareBitCount;
llvm::Value *occupiedIndex;
llvm::Value *spareIndex;
// The spare bit value is biased by one because all zero spare bits
// represents a valid value of the type.
auto spareBitBias = llvm::ConstantInt::get(IGF.IGM.Int32Ty, 1U);
// Factor the spare and occupied bit values from the index.
if (occupiedBitCount >= 31) {
occupiedIndex = index;
spareIndex = spareBitBias;
} else {
auto occupiedBitMask = APInt::getAllOnes(occupiedBitCount);
occupiedBitMask = occupiedBitMask.zext(32);
auto occupiedBitMaskValue = llvm::ConstantInt::get(C, occupiedBitMask);
occupiedIndex = IGF.Builder.CreateAnd(index, occupiedBitMaskValue);
auto occupiedBitCountValue
= llvm::ConstantInt::get(IGF.IGM.Int32Ty, occupiedBitCount);
spareIndex = IGF.Builder.CreateLShr(index, occupiedBitCountValue);
spareIndex = IGF.Builder.CreateAdd(spareIndex, spareBitBias);
}
// Scatter the occupied bits.
auto OccupiedBits = ~SpareBits.asAPInt();
llvm::Value *occupied = emitScatterBits(IGF.IGM, IGF.Builder, OccupiedBits,
occupiedIndex, 0);
// Scatter the spare bits.
llvm::Value *spare = emitScatterBits(IGF.IGM, IGF.Builder, SpareBits.asAPInt(),
spareIndex, 0);
// Combine the values and store to the destination.
llvm::Value *inhabitant = IGF.Builder.CreateOr(occupied, spare);
dest = IGF.Builder.CreateElementBitCast(dest, payloadTy);
IGF.Builder.CreateStore(inhabitant, dest);
}
namespace {
/// A TypeInfo implementation for empty types.
struct EmptyTypeInfo : ScalarTypeInfo<EmptyTypeInfo, LoadableTypeInfo> {
EmptyTypeInfo(llvm::Type *ty)
: ScalarTypeInfo(ty, Size(0), SpareBitVector{}, Alignment(1),
IsTriviallyDestroyable,
IsCopyable,
IsFixedSize) {}
unsigned getExplosionSize() const override { return 0; }
void getSchema(ExplosionSchema &schema) const override {}
void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
Size offset) const override {}
void loadAsCopy(IRGenFunction &IGF, Address addr,
Explosion &e) const override {}
void loadAsTake(IRGenFunction &IGF, Address addr,
Explosion &e) const override {}
void assign(IRGenFunction &IGF, Explosion &e, Address addr,
bool isOutlined, SILType T) const override {}
void initialize(IRGenFunction &IGF, Explosion &e, Address addr,
bool isOutlined) const override {}
void copy(IRGenFunction &IGF, Explosion &src,
Explosion &dest, Atomicity atomicity) const override {}
void consume(IRGenFunction &IGF, Explosion &src,
Atomicity atomicity, SILType T) const override {}
void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {}
void destroy(IRGenFunction &IGF, Address addr, SILType T,
bool isOutlined) const override {}
void packIntoEnumPayload(IRGenModule &IGM,
IRBuilder &builder, EnumPayload &payload,
Explosion &src, unsigned offset) const override {}
void unpackFromEnumPayload(IRGenFunction &IGF,
const EnumPayload &payload,
Explosion &dest,
unsigned offset) const override {}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType,
bool useStructLayouts) const override {
return IGM.typeLayoutCache.getEmptyEntry();
}
};
/// A TypeInfo implementation for types represented as a single
/// scalar type.
class PrimitiveTypeInfo final :
public PODSingleScalarTypeInfo<PrimitiveTypeInfo, LoadableTypeInfo> {
public:
PrimitiveTypeInfo(llvm::Type *storage, Size size,
SpareBitVector &&spareBits,
Alignment align)
: PODSingleScalarTypeInfo(storage, size, std::move(spareBits), align) {}
};
/// A TypeInfo implementation for pointers that are:
/// - valid (i.e. non-null, and generally >= LeastValidPointerValue),
/// - aligned (i.e. have zero low bits up to some bit), and
/// - trivial (i.e. not reference-counted or otherwise managed).
///
/// These properties make it suitable for unmanaged pointers with special
/// uses in the ABI.
class AlignedRawPointerTypeInfo final :
public PODSingleScalarTypeInfo<AlignedRawPointerTypeInfo,
LoadableTypeInfo> {
Alignment PointeeAlign;
public:
AlignedRawPointerTypeInfo(llvm::Type *storage,
Size size, SpareBitVector &&spareBits,
Alignment align, Alignment pointeeAlign)
: PODSingleScalarTypeInfo(storage, size, std::move(spareBits), align),
PointeeAlign(pointeeAlign) {}
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return true;
}
PointerInfo getPointerInfo() const {
return PointerInfo::forAligned(PointeeAlign);
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return getPointerInfo().getExtraInhabitantCount(IGM);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM, unsigned bits,
unsigned index) const override {
return getPointerInfo()
.getFixedExtraInhabitantValue(IGM, bits, index, 0);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address src,
SILType T,
bool isOutlined) const override {
return getPointerInfo().getExtraInhabitantIndex(IGF, src);
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T,
bool isOutlined) const override {
getPointerInfo().storeExtraInhabitant(IGF, index, dest);
}
};
/// A TypeInfo implementation for Builtin.RawPointer. We intentionally
/// do not make any assumptions about values of this type except that
/// they are not the special "null" extra inhabitant; as a result, an
/// Optional<Builtin.RawPointer> can reliably carry an arbitrary
/// bit-pattern of its size without fear of corruption. Since the
/// primary uses of Builtin.RawPointer are the unsafe pointer APIs,
/// that is exactly what we want. It does mean that Builtin.RawPointer
/// is usually a suboptimal type for representing known-valid pointers.
class RawPointerTypeInfo final :
public PODSingleScalarTypeInfo<RawPointerTypeInfo, LoadableTypeInfo> {
public:
RawPointerTypeInfo(llvm::Type *storage, Size size, Alignment align)
: PODSingleScalarTypeInfo(
storage, size,
SpareBitVector::getConstant(size.getValueInBits(), false),
align) {}
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return true;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return 1;
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM, unsigned bits,
unsigned index) const override {
assert(index == 0);
return APInt(bits, 0);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address src,
SILType T,
bool isOutlined) const override {
// Copied from BridgeObjectTypeInfo.
src = IGF.Builder.CreateElementBitCast(src, IGF.IGM.IntPtrTy);
auto val = IGF.Builder.CreateLoad(src);
auto zero = llvm::ConstantInt::get(IGF.IGM.IntPtrTy, 0);
auto isNonzero = IGF.Builder.CreateICmpNE(val, zero);
// We either have extra inhabitant 0 or no extra inhabitant (-1).
// Conveniently, this is just a sext i1 -> i32 away.
return IGF.Builder.CreateSExt(isNonzero, IGF.IGM.Int32Ty);
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T,
bool isOutlined) const override {
// Copied from BridgeObjectTypeInfo.
// There's only one extra inhabitant, 0.
dest = IGF.Builder.CreateElementBitCast(dest, IGF.IGM.IntPtrTy);
IGF.Builder.CreateStore(llvm::ConstantInt::get(IGF.IGM.IntPtrTy, 0),dest);
}
};
/// A TypeInfo implementation for opaque storage. Swift will preserve any
/// data stored into this arbitrarily sized and aligned field, but doesn't
/// know anything about the data.
class OpaqueStorageTypeInfo final :
public ScalarTypeInfo<OpaqueStorageTypeInfo, LoadableTypeInfo>
{
std::vector<llvm::IntegerType *> ScalarTypes;
public:
OpaqueStorageTypeInfo(llvm::ArrayType *storage,
std::vector<llvm::IntegerType *> &&scalarTypes,
Size size,
SpareBitVector &&spareBits,
Alignment align)
: ScalarTypeInfo(storage, size, std::move(spareBits), align,
IsTriviallyDestroyable,
IsCopyable,
IsFixedSize),
ScalarTypes(std::move(scalarTypes))
{}
llvm::ArrayType *getStorageType() const {
return cast<llvm::ArrayType>(ScalarTypeInfo::getStorageType());
}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
if (!useStructLayouts) {
return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
}
return IGM.typeLayoutCache.getOrCreateScalarEntry(*this, T,
ScalarKind::TriviallyDestroyable);
}
unsigned getExplosionSize() const override {
return ScalarTypes.size();
}
void loadAsCopy(IRGenFunction &IGF, Address addr,
Explosion &explosion) const override {
loadAsTake(IGF, addr, explosion);
}
void loadAsTake(IRGenFunction &IGF, Address addr,
Explosion &explosion) const override {
auto index = ScalarTypes.size();
for (auto scalarTy : ScalarTypes) {
addr = IGF.Builder.CreateElementBitCast(addr, scalarTy);
explosion.add(IGF.Builder.CreateLoad(addr));
--index;
// Advance to next scalar chunk.
if (index > 0) {
addr = IGF.Builder.CreateElementBitCast(addr, IGF.IGM.Int8Ty);
auto currentScalarTypeSize = Size(scalarTy->getIntegerBitWidth()/8);
addr = IGF.Builder.CreateConstByteArrayGEP(addr, currentScalarTypeSize);
}
}
}
void assign(IRGenFunction &IGF, Explosion &explosion, Address addr,
bool isOutlined, SILType T) const override {
initialize(IGF, explosion, addr, isOutlined);
}
void initialize(IRGenFunction &IGF, Explosion &explosion, Address addr,
bool isOutlined) const override {
auto index = ScalarTypes.size();
for (auto scalarTy : ScalarTypes) {
addr = IGF.Builder.CreateElementBitCast(addr, scalarTy);
IGF.Builder.CreateStore(explosion.claimNext(), addr);
--index;
// Advance to next scalar chunk.
if (index > 0) {
addr = IGF.Builder.CreateElementBitCast(addr, IGF.IGM.Int8Ty);
auto currentScalarTypeSize = Size(scalarTy->getIntegerBitWidth()/8);
addr = IGF.Builder.CreateConstByteArrayGEP(addr, currentScalarTypeSize);
}
}
}
void reexplode(Explosion &sourceExplosion,
Explosion &targetExplosion) const override {
for (auto scalarTy : ScalarTypes) {
(void)scalarTy;
targetExplosion.add(sourceExplosion.claimNext());
}
}
void copy(IRGenFunction &IGF, Explosion &sourceExplosion,
Explosion &targetExplosion, Atomicity atomicity) const override {
reexplode(sourceExplosion, targetExplosion);
}
void consume(IRGenFunction &IGF, Explosion &explosion,
Atomicity atomicity, SILType T) const override {
for (auto scalarTy: ScalarTypes) {
(void)scalarTy;
(void)explosion.claimNext();
}
}
void fixLifetime(IRGenFunction &IGF, Explosion &explosion) const override {
for (auto scalarTy: ScalarTypes) {
(void)scalarTy;
(void)explosion.claimNext();
}
}
void destroy(IRGenFunction &IGF, Address address, SILType T,
bool isOutlined) const override {
/* nop */
}
void getSchema(ExplosionSchema &schema) const override {
for (auto scalarTy: ScalarTypes) {
schema.add(ExplosionSchema::Element::forScalar(scalarTy));
}
}
void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
Size offset) const override {
lowering.addOpaqueData(offset.asCharUnits(),
(offset + getFixedSize()).asCharUnits());
}
void packIntoEnumPayload(IRGenModule &IGM,
IRBuilder &builder,
EnumPayload &payload,
Explosion &source,
unsigned offset) const override {
for (auto scalarTy: ScalarTypes) {
payload.insertValue(IGM, builder, source.claimNext(), offset);
offset += scalarTy->getIntegerBitWidth();
}
}
void unpackFromEnumPayload(IRGenFunction &IGF,
const EnumPayload &payload,
Explosion &target,
unsigned offset) const override {
for (auto scalarTy : ScalarTypes) {
target.add(payload.extractValue(IGF, scalarTy, offset));
offset += scalarTy->getIntegerBitWidth();
}
}
};
template <class Impl, class Base>
class ImmovableTypeInfoBase : public IndirectTypeInfo<Impl, Base> {
public:
template <class... Args>
ImmovableTypeInfoBase(Args &&...args)
: IndirectTypeInfo<Impl, Base>(std::forward<Args>(args)...) {}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
if (!useStructLayouts) {
return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
}
return IGM.typeLayoutCache.getOrCreateScalarEntry(*this, T,
ScalarKind::Immovable);
}
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
llvm_unreachable("cannot opaquely manipulate immovable types!");
}
void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
llvm_unreachable("cannot opaquely manipulate immovable types!");
}
void initializeWithTake(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T,
bool isOutlined) const override {
llvm_unreachable("cannot opaquely manipulate immovable types!");
}
void initializeWithCopy(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T,
bool isOutlined) const override {
llvm_unreachable("cannot opaquely manipulate immovable types!");
}
void destroy(IRGenFunction &IGF, Address address, SILType T,
bool isOutlined) const override {
llvm_unreachable("cannot opaquely manipulate immovable types!");
}
};
/// A TypeInfo implementation for address-only types which can never
/// be copied.
class ImmovableTypeInfo :
public ImmovableTypeInfoBase<ImmovableTypeInfo, FixedTypeInfo> {
public:
ImmovableTypeInfo(llvm::Type *storage, Size size,
SpareBitVector &&spareBits,
Alignment align)
: ImmovableTypeInfoBase(storage, size, std::move(spareBits), align,
IsNotTriviallyDestroyable,
IsNotBitwiseTakable,
IsNotCopyable,
IsFixedSize) {}
};
/// A TypeInfo implementation for address-only types which can never
/// be copied and whose layouts are not even dynamically knowable.
class OpaqueImmovableTypeInfo :
public ImmovableTypeInfoBase<OpaqueImmovableTypeInfo, TypeInfo> {
public:
OpaqueImmovableTypeInfo(llvm::Type *storage, Alignment minAlign)
: ImmovableTypeInfoBase(storage, minAlign, IsNotTriviallyDestroyable,
IsNotBitwiseTakable,
IsNotCopyable,
IsNotFixedSize,
IsNotABIAccessible,
SpecialTypeInfoKind::None) {}
llvm::Value *getSize(IRGenFunction &IGF, SILType T) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
llvm::Value *getAlignmentMask(IRGenFunction &IGF, SILType T) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
llvm::Value *getStride(IRGenFunction &IGF, SILType T) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
llvm::Value *getIsTriviallyDestroyable(IRGenFunction &IGF, SILType T) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
llvm::Value *getIsBitwiseTakable(IRGenFunction &IGF, SILType T) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
llvm::Value *isDynamicallyPackedInline(IRGenFunction &IGF,
SILType T) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
llvm::Constant *getStaticSize(IRGenModule &IGM) const override {
return nullptr;
}
llvm::Constant *getStaticAlignmentMask(IRGenModule &IGM) const override {
return nullptr;
}
llvm::Constant *getStaticStride(IRGenModule &IGM) const override {
return nullptr;
}
StackAddress allocateStack(IRGenFunction &IGF, SILType T,
const llvm::Twine &name) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
StackAddress allocateVector(IRGenFunction &IGF, SILType T,
llvm::Value *capacity,
const Twine &name) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
void deallocateStack(IRGenFunction &IGF, StackAddress addr,
SILType T) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
void destroyStack(IRGenFunction &IGF, StackAddress addr, SILType T,
bool isOutlined) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
void initializeFromParams(IRGenFunction &IGF, Explosion ¶ms,
Address src, SILType T,
bool isOutlined) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
llvm::Value *numEmptyCases,
Address enumAddr,
SILType T,
bool isOutlined) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
void storeEnumTagSinglePayload(IRGenFunction &IGF,
llvm::Value *whichCase,
llvm::Value *numEmptyCases,
Address enumAddr,
SILType T,
bool isOutlined) const override {
llvm_unreachable("should not call on an immovable opaque type");
}
};
} // end anonymous namespace
/// Constructs a type info which performs simple loads and stores of
/// the given IR type.
const LoadableTypeInfo *
TypeConverter::createPrimitive(llvm::Type *type, Size size, Alignment align) {
return new PrimitiveTypeInfo(type, size, IGM.getSpareBitsForType(type, size),
align);
}
static SpareBitVector getSpareBitsForAlignedPointer(IRGenModule &IGM,
Alignment pointeeAlign) {
// FIXME: this is little-endian
SpareBitVector spareBits = IGM.TargetInfo.PointerSpareBits;
for (unsigned bit = 0; Alignment(1ull << bit) != pointeeAlign; ++bit) {
spareBits.setBit(bit);
}
return spareBits;
}
static LoadableTypeInfo *createAlignedPointerTypeInfo(IRGenModule &IGM,
llvm::Type *ty,
Alignment pointeeAlign) {
return new AlignedRawPointerTypeInfo(ty, IGM.getPointerSize(),
getSpareBitsForAlignedPointer(IGM, pointeeAlign),
IGM.getPointerAlignment(),
pointeeAlign);
}
/// Constructs a fixed-size type info which asserts if you try to copy
/// or destroy it.
const FixedTypeInfo *
TypeConverter::createImmovable(llvm::Type *type, Size size, Alignment align) {
auto spareBits = SpareBitVector::getConstant(size.getValueInBits(), false);
return new ImmovableTypeInfo(type, size, std::move(spareBits), align);
}
const TypeInfo *
TypeConverter::createOpaqueImmovable(llvm::Type *type, Alignment align) {
return new OpaqueImmovableTypeInfo(type, align);
}
static TypeInfo *invalidTypeInfo() { return (TypeInfo*) 1; }
bool TypeConverter::readLegacyTypeInfo(llvm::vfs::FileSystem &fs,
StringRef path) {
auto fileOrErr = fs.getBufferForFile(path);
if (!fileOrErr)
return true;
auto file = std::move(fileOrErr.get());
llvm::yaml::Input yin(file->getBuffer());
// Read the document list.
std::vector<YAMLModuleNode> modules;
yin >> modules;
if (yin.error())
return true;
for (auto &module : modules) {
for (auto &decl : module.Decls) {
auto result = LegacyTypeInfos.insert(std::make_pair(
decl.Name,
decl));
assert(result.second);
(void) result;
}
}
return false;
}
static std::string mangleTypeAsContext(const NominalTypeDecl *decl) {
Mangle::ASTMangler Mangler;
return Mangler.mangleTypeAsContextUSR(decl);
}
std::optional<YAMLTypeInfoNode>
TypeConverter::getLegacyTypeInfo(NominalTypeDecl *decl) const {
auto &mangledName = const_cast<TypeConverter *>(this)->DeclMangledNames[decl];
if (mangledName.empty())
mangledName = mangleTypeAsContext(decl);
assert(!mangledName.empty());
auto found = LegacyTypeInfos.find(mangledName);
if (found == LegacyTypeInfos.end())
return std::nullopt;
return found->second;
}
// The following Apple platforms support backward deployment of Swift
// code built with Swift 5.0 running on an old Objective-C runtime
// that does not support the class metadata update hook.
//
// We ship a YAML legacy type info file for these platforms as part
// of the toolchain.
static llvm::StringLiteral platformsWithLegacyLayouts[][2] = {
{"appletvos", "arm64"},
{"appletvsimulator", "x86_64"},
{"iphoneos", "armv7"},
{"iphoneos", "armv7s"},
{"iphoneos", "arm64"},
{"iphonesimulator", "i386"},
{"iphonesimulator", "x86_64"},
{"macosx", "x86_64"},
{"watchos", "armv7k"},
{"watchos", "arm64_32"},
{"watchsimulator", "i386"}
};
static bool doesPlatformUseLegacyLayouts(StringRef platformName,
StringRef archName) {
for (auto platformArchPair : platformsWithLegacyLayouts) {
if (platformName == platformArchPair[0] &&
archName == platformArchPair[1]) {
return true;
}
}
return false;
}
TypeConverter::TypeConverter(IRGenModule &IGM)
: IGM(IGM),
FirstType(invalidTypeInfo()) {
// Whether the Objective-C runtime is guaranteed to invoke the class
// metadata update callback when realizing a Swift class referenced from
// Objective-C.
auto deploymentAvailability =
AvailabilityContext::forDeploymentTarget(IGM.Context);
bool supportsObjCMetadataUpdateCallback =
deploymentAvailability.isContainedIn(
IGM.Context.getObjCMetadataUpdateCallbackAvailability());
// If our deployment target allows us to rely on the metadata update
// callback being called, we don't have to emit a legacy layout for a
// class with resiliently-sized fields.
if (supportsObjCMetadataUpdateCallback)
return;
// We have a bunch of -parse-stdlib tests that pass a -target in the test
// suite. To prevent these from failing when the user hasn't build the
// standard library for that target, we pass -disable-legacy-type-info to
// disable trying to load the legacy type info.
if (IGM.IRGen.Opts.DisableLegacyTypeInfo)
return;
llvm::SmallString<128> defaultPath;
StringRef path = IGM.IRGen.Opts.ReadLegacyTypeInfoPath;
auto fs =
IGM.getSwiftModule()->getASTContext().SourceMgr.getFileSystem();
if (path.empty()) {
const auto &Triple = IGM.Context.LangOpts.Target;
// If the flag was not explicitly specified, look for a file in a
// platform-specific location, if this platform is known to require
// one.
auto platformName = getPlatformNameForTriple(Triple);
auto archName = swift::getMajorArchitectureName(Triple);
if (!doesPlatformUseLegacyLayouts(platformName, archName))
return;
defaultPath = IGM.Context.SearchPathOpts.RuntimeLibraryPaths[0];
llvm::sys::path::append(defaultPath, "layouts-");
defaultPath.append(archName);
defaultPath.append(".yaml");
path = defaultPath;
}
bool error = readLegacyTypeInfo(*fs, path);
if (error) {
IGM.error(SourceLoc(), "Cannot read legacy layout file at '" + path + "'");
}
}
TypeConverter::~TypeConverter() {
// Delete all the converted type infos.
for (const TypeInfo *I = FirstType; I != invalidTypeInfo(); ) {
const TypeInfo *Cur = I;
I = Cur->NextConverted;
delete Cur;
}
}
void TypeConverter::setGenericContext(CanGenericSignature signature) {
CurGenericSignature = signature;
// Clear the dependent type info cache since we have a new active signature
// now.
Types.getCacheFor(/*isDependent*/ true, Mode::Normal).clear();
Types.getCacheFor(/*isDependent*/ true, Mode::Legacy).clear();
Types.getCacheFor(/*isDependent*/ true, Mode::CompletelyFragile).clear();
Types.getTypeLayoutCacheFor(/*isDependent*/ true, Mode::Normal).clear();
Types.getTypeLayoutCacheFor(/*isDependent*/ true, Mode::Legacy).clear();
Types.getTypeLayoutCacheFor(/*isDependent*/ true, Mode::CompletelyFragile)
.clear();
}
CanGenericSignature IRGenModule::getCurGenericContext() {
return Types.getCurGenericContext();
}
GenericEnvironment *TypeConverter::getGenericEnvironment() {
return CurGenericSignature.getGenericEnvironment();
}
GenericEnvironment *IRGenModule::getGenericEnvironment() {
return Types.getGenericEnvironment();
}
/// Add a temporary forward declaration for a type. This will live
/// only until a proper mapping is added.
void TypeConverter::addForwardDecl(TypeBase *key) {
assert(key->isCanonical());
assert(!key->hasTypeParameter());
auto &Cache = Types.getCacheFor(/*isDependent*/ false, LoweringMode);
auto result = Cache.insert(std::make_pair(key, nullptr));
assert(result.second && "entry already exists for type!");
(void) result;
}
const TypeInfo &IRGenModule::getWitnessTablePtrTypeInfo() {
return Types.getWitnessTablePtrTypeInfo();
}
const LoadableTypeInfo &TypeConverter::getWitnessTablePtrTypeInfo() {
if (WitnessTablePtrTI) return *WitnessTablePtrTI;
auto spareBits =
getSpareBitsForAlignedPointer(IGM, IGM.getWitnessTableAlignment());
// This is sub-optimal because it doesn't consider that there are
// also potential extra inhabitants in witness table pointers, but
// it's what we're currently doing, so we might be stuck.
// TODO: it's likely that this never matters in the current ABI,
// so we can just switch to using AlignedRawPointerTypeInfo; but
// we need to check that first.
WitnessTablePtrTI = new PrimitiveTypeInfo(IGM.WitnessTablePtrTy,
IGM.getPointerSize(),
std::move(spareBits),
IGM.getPointerAlignment());
WitnessTablePtrTI->NextConverted = FirstType;
FirstType = WitnessTablePtrTI;
return *WitnessTablePtrTI;
}
const SpareBitVector &IRGenModule::getWitnessTablePtrSpareBits() const {
// Witness tables are pointers and have pointer spare bits.
// FIXME: this is not what we use in getWitnessTablePtrTypeInfo()
return TargetInfo.PointerSpareBits;
}
const TypeInfo &IRGenModule::getTypeMetadataPtrTypeInfo() {
return Types.getTypeMetadataPtrTypeInfo();
}
const TypeInfo &TypeConverter::getTypeMetadataPtrTypeInfo() {
if (TypeMetadataPtrTI) return *TypeMetadataPtrTI;
TypeMetadataPtrTI = createUnmanagedStorageType(IGM.TypeMetadataPtrTy,
ReferenceCounting::Unknown,
/*isOptional*/false);
TypeMetadataPtrTI->NextConverted = FirstType;
FirstType = TypeMetadataPtrTI;
return *TypeMetadataPtrTI;
}
const TypeInfo &IRGenModule::getSwiftContextPtrTypeInfo() {
return Types.getSwiftContextPtrTypeInfo();
}
const TypeInfo &TypeConverter::getSwiftContextPtrTypeInfo() {
if (SwiftContextPtrTI) return *SwiftContextPtrTI;
SwiftContextPtrTI = createUnmanagedStorageType(IGM.SwiftContextPtrTy,
ReferenceCounting::Unknown,
/*isOptional*/false);
SwiftContextPtrTI->NextConverted = FirstType;
FirstType = SwiftContextPtrTI;
return *SwiftContextPtrTI;
}
const TypeInfo &IRGenModule::getTaskContinuationFunctionPtrTypeInfo() {
return Types.getTaskContinuationFunctionPtrTypeInfo();
}
const TypeInfo &TypeConverter::getTaskContinuationFunctionPtrTypeInfo() {
if (TaskContinuationFunctionPtrTI) return *TaskContinuationFunctionPtrTI;
TaskContinuationFunctionPtrTI = createUnmanagedStorageType(
IGM.TaskContinuationFunctionPtrTy, ReferenceCounting::Unknown,
/*isOptional*/ false);
TaskContinuationFunctionPtrTI->NextConverted = FirstType;
FirstType = TaskContinuationFunctionPtrTI;
return *TaskContinuationFunctionPtrTI;
}
const LoadableTypeInfo &
IRGenModule::getReferenceObjectTypeInfo(ReferenceCounting refcounting) {
switch (refcounting) {
case ReferenceCounting::Native:
return getNativeObjectTypeInfo();
case ReferenceCounting::Unknown:
return getUnknownObjectTypeInfo();
case ReferenceCounting::Bridge:
return getBridgeObjectTypeInfo();
case ReferenceCounting::Block:
case ReferenceCounting::Error:
case ReferenceCounting::ObjC:
case ReferenceCounting::Custom:
case ReferenceCounting::None:
llvm_unreachable("not implemented");
}
llvm_unreachable("Not a valid ReferenceCounting.");
}
const LoadableTypeInfo &IRGenModule::getNativeObjectTypeInfo() {
return Types.getNativeObjectTypeInfo();
}
const LoadableTypeInfo &TypeConverter::getNativeObjectTypeInfo() {
if (NativeObjectTI) return *NativeObjectTI;
NativeObjectTI = convertBuiltinNativeObject();
NativeObjectTI->NextConverted = FirstType;
FirstType = NativeObjectTI;
return *NativeObjectTI;
}
const LoadableTypeInfo &IRGenModule::getUnknownObjectTypeInfo() {
return Types.getUnknownObjectTypeInfo();
}
const LoadableTypeInfo &TypeConverter::getUnknownObjectTypeInfo() {
if (UnknownObjectTI) return *UnknownObjectTI;
UnknownObjectTI = convertBuiltinUnknownObject();
UnknownObjectTI->NextConverted = FirstType;
FirstType = UnknownObjectTI;
return *UnknownObjectTI;
}
const LoadableTypeInfo &IRGenModule::getBridgeObjectTypeInfo() {
return Types.getBridgeObjectTypeInfo();
}
const LoadableTypeInfo &TypeConverter::getBridgeObjectTypeInfo() {
if (BridgeObjectTI) return *BridgeObjectTI;
BridgeObjectTI = convertBuiltinBridgeObject();
BridgeObjectTI->NextConverted = FirstType;
FirstType = BridgeObjectTI;
return *BridgeObjectTI;
}
const LoadableTypeInfo &IRGenModule::getRawPointerTypeInfo() {
return Types.getRawPointerTypeInfo();
}
const LoadableTypeInfo &TypeConverter::getRawPointerTypeInfo() {
if (RawPointerTI) return *RawPointerTI;
RawPointerTI = new RawPointerTypeInfo(IGM.Int8PtrTy,
IGM.getPointerSize(),
IGM.getPointerAlignment());
RawPointerTI->NextConverted = FirstType;
FirstType = RawPointerTI;
return *RawPointerTI;
}
const LoadableTypeInfo &IRGenModule::getRawUnsafeContinuationTypeInfo() {
return Types.getRawUnsafeContinuationTypeInfo();
}
const LoadableTypeInfo &TypeConverter::getRawUnsafeContinuationTypeInfo() {
if (RawUnsafeContinuationTI) return *RawUnsafeContinuationTI;
// A Builtin.RawUnsafeContinuation is an AsyncTask*, which is a heap
// object aligned to 2*alignof(void*). Incomplete tasks are
// self-owning, which is to say that pointers to them can be held
// reliably without retaining or releasing until the task starts
// running again.
//
// TODO: It is possible to retain and release task pointers, which means
// they can be used directly as Swift function contexts. Preserve this
// information to optimize closure-creation (partial apply).
auto ty = IGM.Int8PtrTy;
auto pointeeAlign = Alignment(2 * IGM.getPointerAlignment().getValue());
RawUnsafeContinuationTI =
createAlignedPointerTypeInfo(IGM, ty, pointeeAlign);
RawUnsafeContinuationTI->NextConverted = FirstType;
FirstType = RawUnsafeContinuationTI;
return *RawUnsafeContinuationTI;
}
const LoadableTypeInfo &TypeConverter::getJobTypeInfo() {
if (JobTI) return *JobTI;
// A Builtin.Job is a Job*, which is an arbitrary pointer aligned to
// 2*alignof(void*). Jobs are self-owning, which is to say that
// they're valid until they are scheduled, and then they're responsible
// for destroying themselves. (Jobs are often interior pointers into
// an AsyncTask*, but that's not guaranteed.)
auto ty = IGM.SwiftJobPtrTy;
auto pointeeAlign = Alignment(2 * IGM.getPointerAlignment().getValue());
JobTI = createAlignedPointerTypeInfo(IGM, ty, pointeeAlign);
JobTI->NextConverted = FirstType;
FirstType = JobTI;
return *JobTI;
}
const LoadableTypeInfo &TypeConverter::getEmptyTypeInfo() {
if (EmptyTI) return *EmptyTI;
EmptyTI = new EmptyTypeInfo(IGM.Int8Ty);
EmptyTI->NextConverted = FirstType;
FirstType = EmptyTI;
return *EmptyTI;
}
const TypeInfo &
TypeConverter::getDynamicTupleTypeInfo(IsCopyable_t isCopyable) {
auto &cache = DynamicTupleTI[(unsigned)isCopyable];
if (cache) return *cache;
cache = convertDynamicTupleType(isCopyable);
cache->NextConverted = FirstType;
FirstType = cache;
return *cache;
}
const TypeInfo &
TypeConverter::getResilientStructTypeInfo(IsCopyable_t isCopyable,
IsABIAccessible_t isAccessible) {
auto &cache = ResilientStructTI[(unsigned)isCopyable][(unsigned)isAccessible];
if (cache) return *cache;
cache = convertResilientStruct(isCopyable, isAccessible);
cache->NextConverted = FirstType;
FirstType = cache;
return *cache;
}
/// Get the fragile type information for the given type, which may not
/// have yet undergone SIL type lowering. The type can serve as its own
/// abstraction pattern.
const TypeInfo &IRGenFunction::getTypeInfoForUnlowered(Type subst) {
return IGM.getTypeInfoForUnlowered(subst);
}
/// Get the fragile type information for the given type, which may not
/// have yet undergone SIL type lowering.
const TypeInfo &
IRGenFunction::getTypeInfoForUnlowered(AbstractionPattern orig, Type subst) {
return IGM.getTypeInfoForUnlowered(orig, subst);
}
/// Get the fragile type information for the given type, which may not
/// have yet undergone SIL type lowering.
const TypeInfo &
IRGenFunction::getTypeInfoForUnlowered(AbstractionPattern orig, CanType subst) {
return IGM.getTypeInfoForUnlowered(orig, subst);
}
/// Get the fragile type information for the given type, which is known
/// to have undergone SIL type lowering (or be one of the types for
/// which that lowering is the identity function).
const TypeInfo &IRGenFunction::getTypeInfoForLowered(CanType T) {
return IGM.getTypeInfoForLowered(T);
}
/// Get the fragile type information for the given type.
const TypeInfo &IRGenFunction::getTypeInfo(SILType T) {
return IGM.getTypeInfo(T);
}
/// Return the SIL-lowering of the given type.
SILType IRGenModule::getLoweredType(AbstractionPattern orig, Type subst) const {
return getSILTypes().getLoweredType(
orig, subst, TypeExpansionContext::maximalResilienceExpansionOnly());
}
/// Return the SIL-lowering of the given type.
SILType IRGenModule::getLoweredType(Type subst) const {
return getSILTypes().getLoweredType(
subst, TypeExpansionContext::maximalResilienceExpansionOnly());
}
/// Return the SIL-lowering of the given type.
const Lowering::TypeLowering &IRGenModule::getTypeLowering(SILType type) const {
return getSILTypes().getTypeLowering(
type, TypeExpansionContext::maximalResilienceExpansionOnly());
}
bool IRGenModule::isTypeABIAccessible(SILType type) const {
return getSILModule().isTypeABIAccessible(
type, TypeExpansionContext::maximalResilienceExpansionOnly());
}
/// Get a pointer to the storage type for the given type. Note that,
/// unlike fetching the type info and asking it for the storage type,
/// this operation will succeed for forward-declarations.
llvm::PointerType *IRGenModule::getStoragePointerType(SILType T) {
return getStoragePointerTypeForLowered(T.getASTType());
}
llvm::PointerType *IRGenModule::getStoragePointerTypeForUnlowered(Type T) {
return getStorageTypeForUnlowered(T)->getPointerTo();
}
llvm::PointerType *IRGenModule::getStoragePointerTypeForLowered(CanType T) {
return getStorageTypeForLowered(T)->getPointerTo();
}
llvm::Type *IRGenModule::getStorageTypeForUnlowered(Type subst) {
return getStorageType(getLoweredType(subst));
}
llvm::Type *IRGenModule::getStorageType(SILType T) {
return getStorageTypeForLowered(T.getASTType());
}
/// Get the storage type for the given type.
llvm::Type *IRGenModule::getStorageTypeForLowered(CanType T) {
return Types.getTypeEntry(T)->getStorageType();
}
/// Get the type information for the given type, which may not have
/// yet undergone SIL type lowering. The type can serve as its own
/// abstraction pattern.
const TypeInfo &IRGenModule::getTypeInfoForUnlowered(Type subst) {
return getTypeInfoForUnlowered(AbstractionPattern(subst), subst);
}
/// Get the type information for the given type, which may not
/// have yet undergone SIL type lowering.
const TypeInfo &
IRGenModule::getTypeInfoForUnlowered(AbstractionPattern orig, Type subst) {
return getTypeInfoForUnlowered(orig, subst->getCanonicalType());
}
/// Get the type information for the given type, which may not
/// have yet undergone SIL type lowering.
const TypeInfo &
IRGenModule::getTypeInfoForUnlowered(AbstractionPattern orig, CanType subst) {
return getTypeInfo(getLoweredType(orig, subst));
}
/// Get the fragile type information for the given type, which is known
/// to have undergone SIL type lowering (or be one of the types for
/// which that lowering is the identity function).
const TypeInfo &IRGenModule::getTypeInfo(SILType T) {
return getTypeInfoForLowered(T.getASTType());
}
/// Get the fragile type information for the given type.
const TypeInfo &IRGenModule::getTypeInfoForLowered(CanType T) {
return Types.getCompleteTypeInfo(T);
}
///
const TypeInfo &TypeConverter::getCompleteTypeInfo(CanType T) {
return *getTypeEntry(T);
}
ArchetypeType *TypeConverter::getExemplarArchetype(ArchetypeType *t) {
if (isa<LocalArchetypeType>(t) || isa<OpaqueTypeArchetypeType>(t))
return t;
assert(isa<PrimaryArchetypeType>(t) || isa<PackArchetypeType>(t));
// Get the root archetype.
auto root = t->getRoot();
// Retrieve the generic environment of the archetype.
auto genericEnv = root->getGenericEnvironment();
// Dig out the canonical generic environment.
auto genericSig = genericEnv->getGenericSignature();
auto canGenericSig = genericSig.getCanonicalSignature();
auto canGenericEnv = canGenericSig.getGenericEnvironment();
if (canGenericEnv == genericEnv) return t;
// Map the archetype out of its own generic environment and into the
// canonical generic environment.
auto interfaceType = t->getInterfaceType();
auto exemplar = canGenericEnv->mapTypeIntoContext(interfaceType)
->castTo<ArchetypeType>();
assert(isExemplarArchetype(exemplar));
return exemplar;
}
/// Fold archetypes to unique exemplars. Any archetype with the same
/// constraints is equivalent for type lowering purposes.
CanType TypeConverter::getExemplarType(CanType contextTy) {
// FIXME: A generic SILFunctionType should not contain any nondependent
// archetypes.
if (isa<SILFunctionType>(contextTy)
&& cast<SILFunctionType>(contextTy)->isPolymorphic()) {
return contextTy;
} else {
auto exemplified = contextTy.subst(
[&](SubstitutableType *type) -> Type {
if (auto arch = dyn_cast<ArchetypeType>(type))
return getExemplarArchetype(arch);
return type;
},
MakeAbstractConformanceForGenericType(),
SubstFlags::AllowLoweredTypes |
SubstFlags::PreservePackExpansionLevel);
return CanType(exemplified);
}
}
const TypeLayoutEntry
&TypeConverter::getTypeLayoutEntry(SILType T, bool useStructLayouts) {
auto astTy = T.getASTType();
auto cache =
Types.getTypeLayoutCacheFor(astTy->hasTypeParameter(), LoweringMode);
auto it = cache.find(astTy.getPointer());
if (it != cache.end()) {
return *it->second;
}
auto *ti = getTypeEntry(T.getASTType());
auto *entry = ti->buildTypeLayoutEntry(IGM, T, useStructLayouts);
cache[astTy.getPointer()] = entry;
return *entry;
}
const TypeInfo *TypeConverter::getTypeEntry(CanType canonicalTy) {
// Cache this entry in the dependent or independent cache appropriate to it.
auto &Cache = Types.getCacheFor(canonicalTy->hasTypeParameter(),
LoweringMode);
{
auto it = Cache.find(canonicalTy.getPointer());
if (it != Cache.end()) {
return it->second;
}
}
// If the type is dependent, substitute it into our current context.
auto contextTy = canonicalTy;
if (contextTy->hasTypeParameter()) {
// The type we got should be lowered, so lower it like a SILType.
contextTy = getGenericEnvironment()->mapTypeIntoContext(
IGM.getSILModule(),
SILType::getPrimitiveAddressType(contextTy)).getASTType();
}
// Fold archetypes to unique exemplars. Any archetype with the same
// constraints is equivalent for type lowering purposes.
CanType exemplarTy = getExemplarType(contextTy);
assert(!exemplarTy->hasTypeParameter());
// See whether we lowered a type equivalent to this one.
if (exemplarTy != canonicalTy) {
auto &Cache = Types.getCacheFor(/*isDependent*/ false, LoweringMode);
auto it = Cache.find(exemplarTy.getPointer());
if (it != Cache.end()) {
// Record the object under the original type.
auto result = it->second;
Cache[canonicalTy.getPointer()] = result;
return result;
}
}
// Convert the type.
auto *convertedTI = convertType(exemplarTy);
// Cache the entry under the original type and the exemplar type, so that
// we can avoid relowering equivalent types.
auto insertEntry = [&](const TypeInfo *&entry) {
assert(entry == nullptr);
entry = convertedTI;
};
insertEntry(Cache[canonicalTy.getPointer()]);
if (canonicalTy != exemplarTy) {
auto &IndependentCache = Types.getCacheFor(/*isDependent*/ false,
LoweringMode);
insertEntry(IndependentCache[exemplarTy.getPointer()]);
}
// If the type info hasn't been added to the list of types, do so.
if (!convertedTI->NextConverted) {
convertedTI->NextConverted = FirstType;
FirstType = convertedTI;
}
return convertedTI;
}
/// Return a TypeInfo the represents opaque storage for a loadable POD value
/// with the given storage size.
///
/// The formal alignment of the opaque storage will be 1.
///
/// The TypeInfo will completely ignore any type passed to its
/// implementation methods; it is safe to pass a null type.
const LoadableTypeInfo &
IRGenModule::getOpaqueStorageTypeInfo(Size size, Alignment align) {
return Types.getOpaqueStorageTypeInfo(size, align);
}
const LoadableTypeInfo &
TypeConverter::getOpaqueStorageTypeInfo(Size size, Alignment align) {
assert(!size.isZero());
std::pair<unsigned, unsigned> key = {size.getValue(), align.getValue()};
auto existing = OpaqueStorageTypes.find(key);
if (existing != OpaqueStorageTypes.end())
return *existing->second;
// Use an [N x i8] array for storage, but load and store as a single iNNN
// scalar.
auto storageType = llvm::ArrayType::get(IGM.Int8Ty, size.getValue());
// Create chunks of MAX_INT_BITS integer scalar types if necessary.
std::vector<llvm::IntegerType*> scalarTypes;
Size chunkSize = size;
auto maxChunkSize = Size(llvm::IntegerType::MAX_INT_BITS/8);
while (chunkSize) {
if (chunkSize > maxChunkSize) {
auto intType = llvm::IntegerType::get(IGM.getLLVMContext(),
maxChunkSize.getValueInBits());
scalarTypes.push_back(intType);
chunkSize -= maxChunkSize;
continue;
}
auto intType = llvm::IntegerType::get(IGM.getLLVMContext(),
chunkSize.getValueInBits());
scalarTypes.push_back(intType);
chunkSize = Size(0);
}
// There are no spare bits in an opaque storage type.
auto type = new OpaqueStorageTypeInfo(storageType, std::move(scalarTypes),
size,
SpareBitVector::getConstant(size.getValueInBits(), false),
align);
type->NextConverted = FirstType;
FirstType = type;
OpaqueStorageTypes[key] = type;
return *type;
}
/// Convert a primitive builtin type to its LLVM type, size, and
/// alignment.
static std::tuple<llvm::Type *, Size, Alignment>
convertPrimitiveBuiltin(IRGenModule &IGM, CanType canTy) {
using RetTy = std::tuple<llvm::Type *, Size, Alignment>;
llvm::LLVMContext &ctx = IGM.getLLVMContext();
TypeBase *ty = canTy.getPointer();
switch (ty->getKind()) {
case TypeKind::BuiltinRawPointer:
return RetTy{ IGM.Int8PtrTy, IGM.getPointerSize(),
IGM.getPointerAlignment() };
case TypeKind::BuiltinFloat:
switch (cast<BuiltinFloatType>(ty)->getFPKind()) {
case BuiltinFloatType::IEEE16:
return RetTy{ llvm::Type::getHalfTy(ctx), Size(2), Alignment(2) };
case BuiltinFloatType::IEEE32:
return RetTy{ llvm::Type::getFloatTy(ctx), Size(4), Alignment(4) };
case BuiltinFloatType::IEEE64:
return RetTy{ llvm::Type::getDoubleTy(ctx), Size(8), Alignment(8) };
case BuiltinFloatType::IEEE80: {
llvm::Type *floatTy = llvm::Type::getX86_FP80Ty(ctx);
uint64_t ByteSize = IGM.DataLayout.getTypeAllocSize(floatTy);
unsigned align = IGM.DataLayout.getABITypeAlign(floatTy).value();
return RetTy{ floatTy, Size(ByteSize), Alignment(align) };
}
case BuiltinFloatType::IEEE128:
return RetTy{ llvm::Type::getFP128Ty(ctx), Size(16), Alignment(16) };
case BuiltinFloatType::PPC128:
return RetTy{ llvm::Type::getPPC_FP128Ty(ctx),Size(16), Alignment(16) };
}
llvm_unreachable("bad builtin floating-point type kind");
case TypeKind::BuiltinInteger: {
auto intTy = cast<BuiltinIntegerType>(ty);
unsigned BitWidth = IGM.getBuiltinIntegerWidth(intTy);
unsigned ByteSize = (BitWidth+7U)/8U;
// Round up the memory size and alignment to a power of 2.
if (!llvm::isPowerOf2_32(ByteSize))
ByteSize = llvm::NextPowerOf2(ByteSize);
return RetTy{ llvm::IntegerType::get(ctx, BitWidth), Size(ByteSize),
Alignment(ByteSize) };
}
case TypeKind::BuiltinVector: {
auto vecTy = ty->castTo<BuiltinVectorType>();
llvm::Type *elementTy;
Size size;
Alignment align;
std::tie(elementTy, size, align)
= convertPrimitiveBuiltin(IGM,
vecTy->getElementType()->getCanonicalType());
auto llvmVecTy =
llvm::FixedVectorType::get(elementTy, vecTy->getNumElements());
unsigned bitSize = size.getValue() * vecTy->getNumElements() * 8;
if (!llvm::isPowerOf2_32(bitSize))
bitSize = llvm::NextPowerOf2(bitSize);
return RetTy{ llvmVecTy, Size(bitSize / 8), align };
}
default:
llvm_unreachable("Not a primitive builtin type");
}
}
const TypeInfo *TypeConverter::convertType(CanType ty) {
PrettyStackTraceType stackTrace(IGM.Context, "converting", ty);
switch (ty->getKind()) {
case TypeKind::Error: {
// We might see error types if type checking has failed.
// Try to do something graceful and return an zero sized type.
auto &ctx = IGM.Context;
return convertTupleType(cast<TupleType>(ctx.TheEmptyTupleType));
}
#define UNCHECKED_TYPE(id, parent) \
case TypeKind::id: \
llvm_unreachable("found a " #id "Type in IR-gen");
#define SUGARED_TYPE(id, parent) \
case TypeKind::id: \
llvm_unreachable("converting a " #id "Type after canonicalization");
#define TYPE(id, parent)
#include "swift/AST/TypeNodes.def"
case TypeKind::LValue:
llvm_unreachable("@lvalue type made it to IRGen");
case TypeKind::BuiltinTuple:
llvm_unreachable("BuiltinTupleType made it to IRGen");
case TypeKind::ExistentialMetatype:
return convertExistentialMetatypeType(cast<ExistentialMetatypeType>(ty));
case TypeKind::Metatype:
return convertMetatypeType(cast<MetatypeType>(ty));
case TypeKind::Module:
return convertModuleType(cast<ModuleType>(ty));
case TypeKind::DynamicSelf: {
// DynamicSelf has the same representation as its superclass type.
auto dynamicSelf = cast<DynamicSelfType>(ty);
auto nominal = dynamicSelf->getSelfType()->getAnyNominal();
return convertAnyNominalType(ty, nominal);
}
case TypeKind::BuiltinNativeObject:
return &getNativeObjectTypeInfo();
case TypeKind::BuiltinBridgeObject:
return &getBridgeObjectTypeInfo();
case TypeKind::BuiltinUnsafeValueBuffer:
return createImmovable(IGM.getFixedBufferTy(),
getFixedBufferSize(IGM),
getFixedBufferAlignment(IGM));
case TypeKind::BuiltinRawPointer:
return &getRawPointerTypeInfo();
case TypeKind::BuiltinRawUnsafeContinuation:
return &getRawUnsafeContinuationTypeInfo();
case TypeKind::BuiltinJob:
return &getJobTypeInfo();
case TypeKind::BuiltinExecutor:
return &getExecutorTypeInfo();
case TypeKind::BuiltinIntegerLiteral:
return &getIntegerLiteralTypeInfo();
case TypeKind::BuiltinPackIndex:
return createPrimitive(IGM.SizeTy, IGM.getPointerSize(),
IGM.getCappedAlignment(IGM.getPointerAlignment()));
case TypeKind::BuiltinFloat:
case TypeKind::BuiltinInteger:
case TypeKind::BuiltinVector: {
llvm::Type *llvmTy;
Size size;
Alignment align;
std::tie(llvmTy, size, align) = convertPrimitiveBuiltin(IGM, ty);
align = IGM.getCappedAlignment(align);
return createPrimitive(llvmTy, size, align);
}
case TypeKind::BuiltinDefaultActorStorage: {
// Builtin.DefaultActorStorage represents the extra storage
// (beyond the heap header) of a default actor. It is
// fixed-size and totally opaque.
auto numWords = NumWords_DefaultActor;
auto ty = llvm::StructType::create(IGM.getLLVMContext(),
llvm::ArrayType::get(IGM.Int8PtrTy, numWords),
"swift.defaultactor");
auto size = IGM.getPointerSize() * numWords;
auto align = Alignment(2 * IGM.getPointerAlignment().getValue());
auto spareBits = SpareBitVector::getConstant(size.getValueInBits(), false);
return new PrimitiveTypeInfo(ty, size, std::move(spareBits), align);
}
case TypeKind::BuiltinNonDefaultDistributedActorStorage: {
// Builtin.NonDefaultDistributedActorStorage represents the extra storage
// (beyond the heap header) of a distributed actor that is not a default actor.
// It is fixed-size and totally opaque.
auto numWords = NumWords_NonDefaultDistributedActor;
auto ty = llvm::StructType::create(IGM.getLLVMContext(),
llvm::ArrayType::get(IGM.Int8PtrTy, numWords),
"swift.nondefaultdistributedactor");
auto size = IGM.getPointerSize() * numWords;
auto align = Alignment(2 * IGM.getPointerAlignment().getValue());
auto spareBits = SpareBitVector::getConstant(size.getValueInBits(), false);
return new PrimitiveTypeInfo(ty, size, std::move(spareBits), align);
}
case TypeKind::PrimaryArchetype:
case TypeKind::OpenedArchetype:
case TypeKind::OpaqueTypeArchetype:
case TypeKind::ElementArchetype:
return convertArchetypeType(cast<ArchetypeType>(ty));
case TypeKind::Class:
case TypeKind::Enum:
case TypeKind::Struct:
return convertAnyNominalType(ty, cast<NominalType>(ty)->getDecl());
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericEnum:
case TypeKind::BoundGenericStruct:
return convertAnyNominalType(ty, cast<BoundGenericType>(ty)->getDecl());
case TypeKind::SILMoveOnlyWrapped:
llvm_unreachable("implement this");
case TypeKind::InOut:
return convertInOutType(cast<InOutType>(ty));
case TypeKind::Tuple:
return convertTupleType(cast<TupleType>(ty));
case TypeKind::Function:
case TypeKind::GenericFunction:
llvm_unreachable("AST FunctionTypes should be lowered by SILGen");
case TypeKind::SILFunction:
return convertFunctionType(cast<SILFunctionType>(ty));
case TypeKind::Protocol:
return convertProtocolType(cast<ProtocolType>(ty));
case TypeKind::ProtocolComposition:
return convertProtocolCompositionType(cast<ProtocolCompositionType>(ty));
case TypeKind::ParameterizedProtocol:
return convertParameterizedProtocolType(cast<ParameterizedProtocolType>(ty));
case TypeKind::Existential:
return convertExistentialType(cast<ExistentialType>(ty));
case TypeKind::GenericTypeParam:
case TypeKind::DependentMember:
llvm_unreachable("can't convert dependent type");
#define REF_STORAGE(Name, ...) \
case TypeKind::Name##Storage: \
return convert##Name##StorageType(cast<Name##StorageType>(ty));
#include "swift/AST/ReferenceStorage.def"
case TypeKind::SILBlockStorage: {
return convertBlockStorageType(cast<SILBlockStorageType>(ty));
case TypeKind::SILBox:
return convertBoxType(cast<SILBoxType>(ty));
case TypeKind::Pack:
llvm_unreachable("AST pack types should be lowered by SILGen");
case TypeKind::SILPack:
return convertPackType(cast<SILPackType>(ty));
case TypeKind::PackArchetype:
case TypeKind::PackExpansion:
case TypeKind::PackElement:
llvm_unreachable("pack archetypes and expansions should not be seen in "
" arbitrary type positions");
case TypeKind::SILToken:
llvm_unreachable("should not be asking for representation of a SILToken");
}
}
llvm_unreachable("bad type kind");
}
/// Convert an inout type. This is always just a bare pointer.
const TypeInfo *TypeConverter::convertInOutType(InOutType *T) {
auto referenceType =
IGM.getStoragePointerTypeForUnlowered(CanType(T->getObjectType()));
// Just use the reference type as a primitive pointer.
return createPrimitive(referenceType, IGM.getPointerSize(),
IGM.getPointerAlignment());
}
const TypeInfo *TypeConverter::convertPackType(SILPackType *pack) {
if (pack->isElementAddress())
return createOpaqueImmovable(IGM.OpaquePtrTy, IGM.getPointerAlignment());
return createOpaqueImmovable(IGM.OpaqueTy, Alignment(1));
}
/// Convert a reference storage type. The implementation here depends on the
/// underlying reference type. The type may be optional.
#define REF_STORAGE(Name, ...) \
const TypeInfo * \
TypeConverter::convert##Name##StorageType(Name##StorageType *refType) { \
CanType referent(refType->getReferentType()); \
bool isOptional = false; \
if (auto referentObj = referent.getOptionalObjectType()) { \
referent = referentObj; \
isOptional = true; \
} \
assert(referent->allowsOwnership()); \
auto &referentTI = cast<ReferenceTypeInfo>(getCompleteTypeInfo(referent)); \
return referentTI.create##Name##StorageType(*this, isOptional); \
}
#include "swift/AST/ReferenceStorage.def"
static void overwriteForwardDecl(llvm::DenseMap<TypeBase *, const TypeInfo *> &cache,
TypeBase *key, const TypeInfo *result) {
assert(cache.count(key) && "no forward declaration?");
assert(cache[key] == nullptr && "overwriting real entry!");
cache[key] = result;
}
namespace {
/// Is IR-gen type-dependent for the given type? Specifically, will
/// basic operations on the type misbehave (e.g. by having an IR
/// type mismatch) if an aggregate type containing a value of this
/// type is generated generically rather than independently for
/// different specializations?
class IsIRTypeDependent : public CanTypeVisitor<IsIRTypeDependent, bool> {
IRGenModule &IGM;
public:
IsIRTypeDependent(IRGenModule &IGM) : IGM(IGM) {}
// If the type isn't actually dependent, we're okay.
bool visit(CanType type) {
if (!type->hasArchetype() && !type->hasTypeParameter())
return false;
return CanTypeVisitor::visit(type);
}
// Dependent struct types need their own implementation if any
// field type might need its own implementation.
bool visitStructType(CanStructType type) {
return visitStructDecl(type->getDecl());
}
bool visitBoundGenericStructType(CanBoundGenericStructType type) {
return visitStructDecl(type->getDecl());
}
bool visitStructDecl(StructDecl *decl) {
if (IGM.isResilient(decl, ResilienceExpansion::Maximal))
return true;
auto rawLayout = decl->getAttrs().getAttribute<RawLayoutAttr>();
// If our struct has a raw layout, it may be dependent on the like type.
if (rawLayout) {
if (auto likeType = rawLayout->getResolvedScalarLikeType(decl)) {
return visit((*likeType)->getCanonicalType());
} else if (auto likeArray = rawLayout->getResolvedArrayLikeTypeAndCount(decl)) {
return visit(likeArray->first->getCanonicalType());
}
}
for (auto field : decl->getStoredProperties()) {
if (visit(field->getInterfaceType()->getCanonicalType()))
return true;
}
return false;
}
// Dependent enum types need their own implementation if any
// element payload type might need its own implementation.
bool visitEnumType(CanEnumType type) {
return visitEnumDecl(type->getDecl());
}
bool visitBoundGenericEnumType(CanBoundGenericEnumType type) {
return visitEnumDecl(type->getDecl());
}
bool visitEnumDecl(EnumDecl *decl) {
if (IGM.isResilient(decl, ResilienceExpansion::Maximal))
return true;
if (decl->isIndirect())
return false;
for (auto elt : decl->getAllElements()) {
if (!elt->hasAssociatedValues() || elt->isIndirect())
continue;
if (visit(elt->getArgumentInterfaceType()->getCanonicalType()))
return true;
}
return false;
}
// Conservatively assume classes need unique implementations.
bool visitClassType(CanClassType type) {
return visitClassDecl(type->getDecl());
}
bool visitBoundGenericClassType(CanBoundGenericClassType type) {
return visitClassDecl(type->getDecl());
}
bool visitClassDecl(ClassDecl *theClass) {
return true;
}
// Reference storage types propagate the decision.
bool visitReferenceStorageType(CanReferenceStorageType type) {
return visit(type.getReferentType());
}
// The IR-generation for function types is specifically not
// type-dependent.
bool visitAnyFunctionType(CanAnyFunctionType type) {
return false;
}
// The safe default for a dependent type is to assume that it
// needs its own implementation.
bool visitType(CanType type) {
return true;
}
};
} // end anonymous namespace
static bool isIRTypeDependent(IRGenModule &IGM, NominalTypeDecl *decl) {
assert(!isa<ProtocolDecl>(decl));
if (auto classDecl = dyn_cast<ClassDecl>(decl)) {
return IsIRTypeDependent(IGM).visitClassDecl(classDecl);
} else if (auto structDecl = dyn_cast<StructDecl>(decl)) {
return IsIRTypeDependent(IGM).visitStructDecl(structDecl);
} else {
auto enumDecl = cast<EnumDecl>(decl);
return IsIRTypeDependent(IGM).visitEnumDecl(enumDecl);
}
}
namespace {
class LegacyTypeInfo : public FixedTypeInfo {
unsigned NumExtraInhabitants;
public:
LegacyTypeInfo(llvm::Type *type, const SpareBitVector &spareBits,
const YAMLTypeInfoNode &node)
: FixedTypeInfo(type,
Size(node.Size),
spareBits,
Alignment(node.Alignment),
IsNotTriviallyDestroyable, /* irrelevant */
IsNotBitwiseTakable, /* irrelevant */
IsCopyable, /* irrelevant */
IsFixedSize /* irrelevant */),
NumExtraInhabitants(node.NumExtraInhabitants) {}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
llvm_unreachable("Cannot construct type layout for legacy types");
}
virtual unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return NumExtraInhabitants;
}
virtual APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
llvm_unreachable("TypeConverter::Mode::Legacy is not for real values");
}
virtual APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
llvm_unreachable("TypeConverter::Mode::Legacy is not for real values");
}
virtual void getSchema(ExplosionSchema &schema) const override {
llvm_unreachable("TypeConverter::Mode::Legacy is not for real values");
}
virtual void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
llvm_unreachable("TypeConverter::Mode::Legacy is not for real values");
}
virtual void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
llvm_unreachable("TypeConverter::Mode::Legacy is not for real values");
}
virtual void initializeWithCopy(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T,
bool isOutlined) const override {
llvm_unreachable("TypeConverter::Mode::Legacy is not for real values");
}
virtual void initializeFromParams(IRGenFunction &IGF, Explosion ¶ms,
Address src, SILType T,
bool isOutlined) const override {
llvm_unreachable("TypeConverter::Mode::Legacy is not for real values");
}
virtual void destroy(IRGenFunction &IGF, Address address, SILType T,
bool isOutlined) const override {
llvm_unreachable("TypeConverter::Mode::Legacy is not for real values");
}
};
} // namespace
const TypeInfo *TypeConverter::convertAnyNominalType(CanType type,
NominalTypeDecl *decl) {
// By "any", we don't mean existentials.
assert(!isa<ProtocolDecl>(decl));
// If we're producing a legacy type layout, and we have a serialized
// record for this type, produce it now.
if (LoweringMode == Mode::Legacy) {
auto node = getLegacyTypeInfo(decl);
if (node) {
Size size(node->Size);
auto ty = IGM.createNominalType(type);
ty->setBody(llvm::ArrayType::get(IGM.Int8Ty, size.getValue()));
SpareBitVector spareBits;
spareBits.appendClearBits(size.getValueInBits());
return new LegacyTypeInfo(ty, spareBits, *node);
}
}
// We need to give generic specializations distinct TypeInfo objects
// if their IR-gen might be different, e.g. if they use different IR
// types or if type-specific operations like projections might need
// to be handled differently.
if (!decl->isGenericContext() || isIRTypeDependent(IGM, decl)) {
switch (decl->getKind()) {
#define NOMINAL_TYPE_DECL(ID, PARENT)
#define DECL(ID, PARENT) \
case DeclKind::ID:
#include "swift/AST/DeclNodes.def"
llvm_unreachable("not a nominal type declaration");
case DeclKind::Protocol:
llvm_unreachable("protocol types shouldn't be handled here");
case DeclKind::Class:
return convertClassType(type, cast<ClassDecl>(decl));
case DeclKind::Enum:
return convertEnumType(type.getPointer(), type, cast<EnumDecl>(decl));
case DeclKind::Struct:
return convertStructType(type.getPointer(), type, cast<StructDecl>(decl));
case DeclKind::BuiltinTuple:
llvm_unreachable("BuiltinTupleType should not show up here");
}
llvm_unreachable("bad declaration kind");
}
assert(decl->isGenericContext());
// Look to see if we've already emitted this type under a different
// set of arguments. We cache under the unbound type, which should
// never collide with anything.
//
// FIXME: this isn't really inherently good; we might want to use
// different type implementations for different applications.
assert(decl->getDeclaredType()->isCanonical());
assert(decl->getDeclaredType()->hasUnboundGenericType());
TypeBase *key = decl->getDeclaredType().getPointer();
auto &Cache = Types.getCacheFor(/*isDependent*/ false, LoweringMode);
auto entry = Cache.find(key);
if (entry != Cache.end())
return entry->second;
switch (decl->getKind()) {
#define NOMINAL_TYPE_DECL(ID, PARENT)
#define DECL(ID, PARENT) \
case DeclKind::ID:
#include "swift/AST/DeclNodes.def"
llvm_unreachable("not a nominal type declaration");
case DeclKind::Protocol:
llvm_unreachable("protocol types don't take generic parameters");
case DeclKind::Class:
llvm_unreachable("classes are always considered dependent for now");
case DeclKind::BuiltinTuple:
llvm_unreachable("BuiltinTupleType should not show up here");
case DeclKind::Enum: {
auto type = decl->getDeclaredTypeInContext()->getCanonicalType();
auto result = convertEnumType(key, type, cast<EnumDecl>(decl));
overwriteForwardDecl(Cache, key, result);
return result;
}
case DeclKind::Struct: {
auto type = decl->getDeclaredTypeInContext()->getCanonicalType();
auto result = convertStructType(key, type, cast<StructDecl>(decl));
overwriteForwardDecl(Cache, key, result);
return result;
}
}
llvm_unreachable("bad declaration kind");
}
const TypeInfo *TypeConverter::convertModuleType(ModuleType *T) {
return new EmptyTypeInfo(IGM.Int8Ty);
}
const TypeInfo *TypeConverter::convertMetatypeType(MetatypeType *T) {
assert(T->hasRepresentation() &&
"metatype should have been assigned a representation by SIL");
return &getMetatypeTypeInfo(T->getRepresentation());
}
const TypeInfo &
TypeConverter::getMetatypeTypeInfo(MetatypeRepresentation representation) {
switch (representation) {
case MetatypeRepresentation::Thin:
// Thin metatypes are empty.
return getEmptyTypeInfo();
case MetatypeRepresentation::Thick:
// Thick metatypes are represented with a metadata pointer.
return getTypeMetadataPtrTypeInfo();
case MetatypeRepresentation::ObjC:
// ObjC metatypes are represented with an objc_class pointer.
return getObjCClassPtrTypeInfo();
}
llvm_unreachable("bad representation");
}
/// createNominalType - Create a new nominal type.
llvm::StructType *IRGenModule::createNominalType(CanType type) {
assert(type.getNominalOrBoundGenericNominal());
// We share type infos for different instantiations of a generic type
// when the archetypes have the same exemplars. We cannot mangle
// archetypes, and the mangling does not have to be unique, so we just
// mangle the unbound generic form of the type.
if (type->hasArchetype())
type = type.getNominalOrBoundGenericNominal()->getDeclaredType()
->getCanonicalType();
IRGenMangler Mangler;
std::string typeName = Mangler.mangleTypeForLLVMTypeName(type);
return llvm::StructType::create(getLLVMContext(), StringRef(typeName));
}
/// createNominalType - Create a new nominal LLVM type for the given
/// protocol composition type. Protocol composition types are
/// structural in the swift type system, but LLVM's type system
/// doesn't really care about this distinction, and it's nice to
/// distinguish different cases.
llvm::StructType *
IRGenModule::createNominalType(ProtocolCompositionType *type) {
IRGenMangler Mangler;
std::string typeName = Mangler.mangleProtocolForLLVMTypeName(type);
return llvm::StructType::create(getLLVMContext(), StringRef(typeName));
}
SpareBitVector IRGenModule::getSpareBitsForType(llvm::Type *scalarTy, Size size) {
auto it = SpareBitsForTypes.find(scalarTy);
if (it != SpareBitsForTypes.end())
return it->second;
assert(!isa<llvm::StructType>(scalarTy));
unsigned allocBits = size.getValueInBits();
assert(allocBits >= DataLayout.getTypeAllocSizeInBits(scalarTy) &&
"using a size that's smaller than LLVM's alloc size?");
// Allocate a new cache entry.
SpareBitVector &result = SpareBitsForTypes[scalarTy];
// FIXME: Currently we only implement spare bits for primitive integer
// types.
if (auto *intTy = dyn_cast<llvm::IntegerType>(scalarTy)) {
// Pad integers with spare bits up to their allocation size.
auto v = llvm::APInt::getBitsSetFrom(allocBits, intTy->getBitWidth());
// FIXME: byte swap v on big-endian platforms.
result = SpareBitVector::fromAPInt(v);
return result;
}
// No spare bits.
result = SpareBitVector::getConstant(allocBits, false);
return result;
}
unsigned IRGenModule::getBuiltinIntegerWidth(BuiltinIntegerType *t) {
return getBuiltinIntegerWidth(t->getWidth());
}
unsigned IRGenModule::getBuiltinIntegerWidth(BuiltinIntegerWidth w) {
if (w.isFixedWidth())
return w.getFixedWidth();
if (w.isPointerWidth())
return getPointerSize().getValueInBits();
llvm_unreachable("impossible width value");
}
void IRGenFunction::setDynamicSelfMetadata(CanType selfClass,
bool isExactSelfClass,
llvm::Value *value,
IRGenFunction::DynamicSelfKind kind) {
assert(!SelfValue && "already have local self metadata");
SelfValue = value;
assert(selfClass->getClassOrBoundGenericClass()
&& "self type not a class?");
SelfTypeIsExact = isExactSelfClass;
SelfType = selfClass;
SelfKind = kind;
}
#ifndef NDEBUG
bool TypeConverter::isExemplarArchetype(ArchetypeType *arch) const {
auto primary = arch->getRoot();
if (!isa<PrimaryArchetypeType>(primary) &&
!isa<PackArchetypeType>(primary))
return true;
auto genericEnv = primary->getGenericEnvironment();
// Dig out the canonical generic environment.
auto genericSig = genericEnv->getGenericSignature();
auto canGenericSig = genericSig.getCanonicalSignature();
auto canGenericEnv = canGenericSig.getGenericEnvironment();
// If this archetype is in the canonical generic environment, it's an
// exemplar archetype.
return canGenericEnv == genericEnv;
}
#endif
SILType irgen::getSingletonAggregateFieldType(IRGenModule &IGM, SILType t,
ResilienceExpansion expansion) {
if (auto tuple = t.getAs<TupleType>())
if (tuple->getNumElements() == 1)
return t.getTupleElementType(0);
if (auto structDecl = t.getStructOrBoundGenericStruct()) {
// If the struct has to be accessed resiliently from this resilience domain,
// we can't assume anything about its layout.
if (IGM.isResilient(structDecl, expansion))
return SILType();
// C ABI wackiness may cause a single-field struct to have different layout
// from its field.
if (structDecl->hasUnreferenceableStorage()
|| structDecl->hasClangNode())
return SILType();
// A single-field struct with custom layout has different layout from its
// field.
if (structDecl->getAttrs().hasAttribute<AlignmentAttr>()
|| structDecl->getAttrs().hasAttribute<RawLayoutAttr>())
return SILType();
// If there's only one stored property, we have the layout of its field.
auto allFields = structDecl->getStoredProperties();
if (allFields.size() == 1) {
auto fieldTy = t.getFieldType(
allFields[0], IGM.getSILModule(),
TypeExpansionContext(expansion, IGM.getSwiftModule(),
IGM.getSILModule().isWholeModule()));
if (!IGM.isTypeABIAccessible(fieldTy))
return SILType();
if (fieldTy.isMoveOnly() != t.isMoveOnly())
return SILType();
return fieldTy;
}
return SILType();
}
if (auto enumDecl = t.getEnumOrBoundGenericEnum()) {
// If the enum has to be accessed resiliently from this resilience domain,
// we can't assume anything about its layout.
if (IGM.isResilient(enumDecl, expansion))
return SILType();
auto allCases = enumDecl->getAllElements();
auto theCase = allCases.begin();
if (!allCases.empty() && std::next(theCase) == allCases.end()
&& (*theCase)->hasAssociatedValues()) {
auto enumEltTy = t.getEnumElementType(
*theCase, IGM.getSILModule(),
TypeExpansionContext(expansion, IGM.getSwiftModule(),
IGM.getSILModule().isWholeModule()));
if (!IGM.isTypeABIAccessible(enumEltTy))
return SILType();
return enumEltTy;
}
return SILType();
}
return SILType();
}
void TypeInfo::verify(IRGenTypeVerifierFunction &IGF,
llvm::Value *typeMetadata,
SILType T) const {
// By default, no type-specific verifier behavior.
}
static bool tryEmitDeinitCall(IRGenFunction &IGF,
SILType T,
llvm::function_ref<void (Explosion &)> direct,
llvm::function_ref<Address ()> indirect,
llvm::function_ref<void ()> indirectCleanup) {
auto ty = T.getASTType();
auto nominal = ty->getAnyNominal();
// We are only concerned with move-only type deinits here.
if (!nominal || !nominal->getValueTypeDestructor()) {
return false;
}
auto deinitTable = IGF.getSILModule().lookUpMoveOnlyDeinit(
nominal, false /*deserialize lazily*/);
// If we do not have a deinit table already deserialized, call the value
// witness instead.
if (!deinitTable) {
irgen::emitDestroyCall(IGF, T, indirect());
indirectCleanup();
return true;
}
// The deinit should take a single value parameter of the nominal type, either
// by @owned or indirect @in convention.
auto deinitFn = IGF.IGM.getAddrOfSILFunction(deinitTable->getImplementation(),
NotForDefinition);
auto deinitTy = deinitTable->getImplementation()->getLoweredFunctionType();
auto deinitFP = FunctionPointer::forDirect(IGF.IGM, deinitFn,
nullptr, deinitTy);
assert(deinitTy->getNumParameters() == 1
&& deinitTy->getNumResults() == 0
&& !deinitTy->hasError()
&& "deinit should have only one parameter");
auto substitutions = ty->getContextSubstitutionMap(IGF.getSwiftModule(),
nominal);
CalleeInfo info(deinitTy,
deinitTy->substGenericArgs(IGF.getSILModule(),
substitutions,
IGF.IGM.getMaximalTypeExpansionContext()),
substitutions);
bool isIndirect;
Address indirectArg;
Explosion directArg;
switch (deinitTy->getParameters()[0].getConvention()) {
case ParameterConvention::Direct_Owned:
isIndirect = false;
direct(directArg);
break;
case ParameterConvention::Indirect_In:
isIndirect = true;
indirectArg = indirect();
break;
default:
llvm_unreachable("move-only deinit should only have consuming parameter convention");
}
// If the deinit's convention has a special `self` parameter, then the
// (pointer to) the value being destroyed is that parameter.
llvm::Value *self = nullptr;
if (hasSelfContextParameter(deinitTy)) {
self = isIndirect ? indirectArg.getAddress() : directArg.claimNext();
assert(directArg.empty()
&& "direct param (if any) should be a single pointer if "
"it's the swiftself param");
}
GenericContextScope scope(IGF.IGM,
nominal->getGenericSignature().getCanonicalSignature());
Callee deinitCallee(std::move(info), deinitFP, self);
auto callEmission = getCallEmission(IGF, self, std::move(deinitCallee));
callEmission->begin();
// Pass the parameter if it wasn't already the by-convention self parameter.
if (!self) {
if (isIndirect) {
directArg.add(indirectArg.getAddress());
}
}
if (hasPolymorphicParameters(deinitTy)) {
emitPolymorphicArguments(IGF, deinitTy, substitutions, nullptr,
directArg);
}
callEmission->setArgs(directArg, /*outlined*/ false, /*witness*/nullptr);
Explosion nothing;
callEmission->emitToExplosion(nothing, /*isOutlined*/ false);
callEmission->end();
if (isIndirect) {
indirectCleanup();
}
return true;
}
bool irgen::tryEmitConsumeUsingDeinit(IRGenFunction &IGF, Explosion &explosion,
SILType T) {
const LoadableTypeInfo *ti = cast<LoadableTypeInfo>(&IGF.getTypeInfo(T));
StackAddress temporary;
return tryEmitDeinitCall(IGF, T,
// Direct parameter case
[&](Explosion &arg) {
ti->reexplode(explosion, arg);
},
// Indirect parameter setup
[&]() -> Address {
// Allocate stack space to store the indirect argument, and forward our
// value into it. The deinit will consume the value in memory.
temporary = ti->allocateStack(IGF, T, "deinit.arg");
ti->initialize(IGF, explosion, temporary.getAddress(), /*outlined*/false);
return temporary.getAddress();
},
// Indirect parameter teardown
[&]{
// End the lifetime of the stack allocation.
ti->deallocateStack(IGF, temporary, T);
});
}
bool irgen::tryEmitDestroyUsingDeinit(IRGenFunction &IGF, Address address,
SILType T) {
return tryEmitDeinitCall(IGF, T,
// Direct parameter case
[&](Explosion &arg) {
// Load the value from the address.
auto *ti = cast<LoadableTypeInfo>(&IGF.getTypeInfo(T));
ti->loadAsTake(IGF, address, arg);
},
// Indirect parameter setup
[&]() -> Address {
return address;
},
// Indirect parameter teardown
[&]{ /* nothing to do */ });
}
|