1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
//===--- IRGen.h - Common Declarations for IR Generation --------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines some types that are generically useful in IR
// Generation.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_IRGEN_IRGEN_H
#define SWIFT_IRGEN_IRGEN_H
#include "llvm/Support/DataTypes.h"
#include "clang/AST/CharUnits.h"
#include "clang/CodeGen/ConstantInitFuture.h"
#include "swift/AST/ResilienceExpansion.h"
#include "swift/SIL/AbstractionPattern.h"
#include <cassert>
namespace llvm {
class Value;
}
namespace swift {
class CanType;
class ClusteredBitVector;
enum ForDefinition_t : bool;
namespace irgen {
using Lowering::AbstractionPattern;
class ConstantInitBuilder;
using clang::CodeGen::ConstantInitFuture;
class IRGenFunction;
/// In IRGen, we use Swift's ClusteredBitVector data structure to
/// store vectors of spare bits.
using SpareBitVector = ClusteredBitVector;
enum class StackProtectorMode : bool { NoStackProtector, StackProtector };
class Size;
/// True if no runtime work has to occur to destroy values of a type.
/// If the type is also copyable, this also implies that the type is bitwise-
/// copyable.
enum IsTriviallyDestroyable_t : bool {
IsNotTriviallyDestroyable,
IsTriviallyDestroyable,
};
inline IsTriviallyDestroyable_t operator&(IsTriviallyDestroyable_t l,
IsTriviallyDestroyable_t r) {
return IsTriviallyDestroyable_t(unsigned(l) & unsigned(r));
}
inline IsTriviallyDestroyable_t &operator&=(IsTriviallyDestroyable_t &l,
IsTriviallyDestroyable_t r) {
return (l = (l & r));
}
enum IsFixedSize_t : bool { IsNotFixedSize, IsFixedSize };
inline IsFixedSize_t operator&(IsFixedSize_t l, IsFixedSize_t r) {
return IsFixedSize_t(unsigned(l) & unsigned(r));
}
inline IsFixedSize_t &operator&=(IsFixedSize_t &l, IsFixedSize_t r) {
return (l = (l & r));
}
enum IsLoadable_t : bool { IsNotLoadable, IsLoadable };
inline IsLoadable_t operator&(IsLoadable_t l, IsLoadable_t r) {
return IsLoadable_t(unsigned(l) & unsigned(r));
}
inline IsLoadable_t &operator&=(IsLoadable_t &l, IsLoadable_t r) {
return (l = (l & r));
}
enum IsBitwiseTakable_t : uint8_t {
IsNotBitwiseTakable = 0,
// The type is bitwise-takable, but borrows are pinned to memory.
IsBitwiseTakableOnly = 1,
// The type is bitwise-takable and -borrowable.
IsBitwiseTakableAndBorrowable = 3,
};
inline IsBitwiseTakable_t operator&(IsBitwiseTakable_t l, IsBitwiseTakable_t r) {
return IsBitwiseTakable_t(std::min(unsigned(l), unsigned(r)));
}
inline IsBitwiseTakable_t &operator&=(IsBitwiseTakable_t &l, IsBitwiseTakable_t r) {
return (l = (l & r));
}
enum IsCopyable_t : bool { IsNotCopyable, IsCopyable };
inline IsCopyable_t operator&(IsCopyable_t l, IsCopyable_t r) {
return IsCopyable_t(unsigned(l) & unsigned(r));
}
inline IsCopyable_t &operator&=(IsCopyable_t &l, IsCopyable_t r) {
return (l = (l & r));
}
enum IsABIAccessible_t : bool {
IsNotABIAccessible = false,
IsABIAccessible = true
};
/// The atomicity of a reference counting operation to be used.
enum class Atomicity : bool {
/// Atomic reference counting operations should be used.
Atomic,
/// Non-atomic reference counting operations can be used.
NonAtomic,
};
/// Whether or not an object should be emitted on the heap.
enum OnHeap_t : unsigned char {
NotOnHeap,
OnHeap
};
/// Whether a function requires extra data.
enum class ExtraData : uint8_t {
/// The function requires no extra data.
None,
/// The function requires a retainable object pointer of extra data.
Retainable,
/// The function takes its block object as extra data.
Block,
Last_ExtraData = Block
};
/// Given that we have metadata for a type, is it for exactly the
/// specified type, or might it be a subtype?
enum IsExact_t : bool {
IsInexact = false,
IsExact = true
};
/// Ways in which an object can be referenced.
///
/// See the comment in RelativePointer.h.
enum class SymbolReferenceKind : uint8_t {
/// An absolute reference to the object, i.e. an ordinary pointer.
///
/// Generally well-suited for when C compatibility is a must, dynamic
/// initialization is the dominant case, or the runtime performance
/// of accesses is an overriding concern.
Absolute,
/// A direct relative reference to the object, i.e. the offset of the
/// object from the address at which the relative reference is stored.
///
/// Generally well-suited for when the reference is always statically
/// initialized and will always refer to another object within the
/// same linkage unit.
Relative_Direct,
/// A direct relative reference that is guaranteed to be as wide as a
/// pointer.
///
/// Generally well-suited for when the reference may be dynamically
/// initialized, but will only refer to objects within the linkage unit
/// when statically initialized.
Far_Relative_Direct,
/// A relative reference that may be indirect: the direct reference is
/// either directly to the object or to a variable holding an absolute
/// reference to the object.
///
/// The low bit of the target offset is used to mark an indirect reference,
/// and so the low bit of the target address must be zero. This means that,
/// in general, it is not possible to form this kind of reference to a
/// function (due to the THUMB bit) or unaligned data (such as a C string).
///
/// Generally well-suited for when the reference is always statically
/// initialized but may refer to something outside of the linkage unit.
Relative_Indirectable,
/// An indirectable reference to the object; guaranteed to be as wide
/// as a pointer.
///
/// Generally well-suited for when the reference may be dynamically
/// initialized but may also statically refer outside of the linkage unit.
Far_Relative_Indirectable,
};
/// A lazy constant initializer.
struct LazyConstantInitializer {
llvm::Type *DefaultType;
llvm::function_ref<ConstantInitFuture(ConstantInitBuilder &)> Build;
llvm::function_ref<void(llvm::GlobalVariable *)> Create;
};
/// An initial value for a definition of an llvm::GlobalVariable.
class ConstantInit {
union {
ConstantInitFuture Future;
const LazyConstantInitializer *Lazy;
llvm::Type *Delayed;
};
enum class Kind {
None, Future, Lazy, Delayed
} TheKind;
public:
/// No initializer is given. When this is used as an argument to
/// a getAddrOf... API, it means that only a declaration is being
/// requested.
ConstantInit() : TheKind(Kind::None) {}
/// Use a concrete value as a concrete initializer.
ConstantInit(llvm::Constant *initializer)
: Future(ConstantInitFuture(initializer)), TheKind(Kind::Future) {}
/// Use a ConstantInitBuilder future as a concrete initializer.
/*implicit*/ ConstantInit(ConstantInitFuture future)
: Future(future), TheKind(Kind::Future) {
assert(future && "don't pass around null futures");
}
static ConstantInit getLazy(const LazyConstantInitializer *initializer) {
assert(initializer && "null lazy initializer");
auto result = ConstantInit();
result.TheKind = Kind::Lazy;
result.Lazy = initializer;
return result;
}
/// There will be a definition (with the given type), but we don't
/// have it yet.
static ConstantInit getDelayed(llvm::Type *type) {
auto result = ConstantInit();
result.TheKind = Kind::Delayed;
result.Delayed = type;
return result;
}
explicit operator bool() const { return TheKind != Kind::None; }
inline llvm::Type *getType() const {
assert(TheKind != Kind::None && "not a definition");
if (TheKind == Kind::Delayed) {
return Delayed;
} else if (TheKind == Kind::Lazy) {
return Lazy->DefaultType;
} else {
assert(TheKind == Kind::Future);
return Future.getType();
}
}
bool isLazy() const {
return TheKind == Kind::Lazy;
}
const LazyConstantInitializer *getLazy() const {
assert(isLazy());
return Lazy;
}
bool hasInit() const {
return TheKind == Kind::Future;
}
ConstantInitFuture getInit() const {
assert(hasInit());
return Future;
}
};
/// An abstraction for computing the cost of an operation.
enum class OperationCost : unsigned {
Free = 0,
Arithmetic = 1,
Load = 3, // TODO: split into static- and dynamic-offset cases?
Call = 10
};
inline OperationCost operator+(OperationCost l, OperationCost r) {
return OperationCost(unsigned(l) + unsigned(r));
}
inline OperationCost &operator+=(OperationCost &l, OperationCost r) {
l = l + r;
return l;
}
inline bool operator<(OperationCost l, OperationCost r) {
return unsigned(l) < unsigned(r);
}
inline bool operator<=(OperationCost l, OperationCost r) {
return unsigned(l) <= unsigned(r);
}
/// An alignment value, in eight-bit units.
class Alignment {
public:
using int_type = uint64_t;
constexpr Alignment() : Shift(0) {}
explicit Alignment(int_type Value) : Shift(llvm::Log2_64(Value)) {
assert(llvm::isPowerOf2_64(Value));
}
explicit Alignment(clang::CharUnits value) : Alignment(value.getQuantity()) {}
constexpr int_type getValue() const { return int_type(1) << Shift; }
constexpr int_type getMaskValue() const { return getValue() - 1; }
Alignment alignmentAtOffset(Size S) const;
Size asSize() const;
unsigned log2() const { return Shift; }
operator clang::CharUnits() const {
return asCharUnits();
}
clang::CharUnits asCharUnits() const {
return clang::CharUnits::fromQuantity(getValue());
}
explicit operator llvm::MaybeAlign() const { return llvm::MaybeAlign(getValue()); }
friend bool operator< (Alignment L, Alignment R){ return L.Shift < R.Shift; }
friend bool operator<=(Alignment L, Alignment R){ return L.Shift <= R.Shift; }
friend bool operator> (Alignment L, Alignment R){ return L.Shift > R.Shift; }
friend bool operator>=(Alignment L, Alignment R){ return L.Shift >= R.Shift; }
friend bool operator==(Alignment L, Alignment R){ return L.Shift == R.Shift; }
friend bool operator!=(Alignment L, Alignment R){ return L.Shift != R.Shift; }
template<unsigned Value>
static constexpr Alignment create() {
Alignment result;
result.Shift = llvm::CTLog2<Value>();
return result;
}
private:
unsigned char Shift;
};
/// A size value, in eight-bit units.
class Size {
public:
using int_type = uint64_t;
constexpr Size() : Value(0) {}
explicit constexpr Size(int_type Value) : Value(Value) {}
static constexpr Size forBits(int_type bitSize) {
return Size((bitSize + 7U) / 8U);
}
/// An "invalid" size, equal to the maximum possible size.
static constexpr Size invalid() { return Size(~int_type(0)); }
/// Is this the "invalid" size value?
bool isInvalid() const { return *this == Size::invalid(); }
constexpr int_type getValue() const { return Value; }
int_type getValueInBits() const { return Value * 8; }
bool isZero() const { return Value == 0; }
friend Size operator+(Size L, Size R) {
return Size(L.Value + R.Value);
}
friend Size &operator+=(Size &L, Size R) {
L.Value += R.Value;
return L;
}
friend Size operator-(Size L, Size R) {
return Size(L.Value - R.Value);
}
friend Size &operator-=(Size &L, Size R) {
L.Value -= R.Value;
return L;
}
friend Size operator*(Size L, int_type R) {
return Size(L.Value * R);
}
friend Size operator*(int_type L, Size R) {
return Size(L * R.Value);
}
friend Size &operator*=(Size &L, int_type R) {
L.Value *= R;
return L;
}
friend int_type operator/(Size L, Size R) {
return L.Value / R.Value;
}
explicit operator bool() const { return Value != 0; }
Size roundUpToAlignment(Alignment align) const {
int_type value = getValue() + align.getValue() - 1;
return Size(value & ~int_type(align.getValue() - 1));
}
bool isPowerOf2() const {
auto value = getValue();
return ((value & -value) == value);
}
bool isMultipleOf(Size other) const {
return (Value % other.Value) == 0;
}
unsigned log2() const {
return llvm::Log2_64(Value);
}
operator clang::CharUnits() const {
return asCharUnits();
}
clang::CharUnits asCharUnits() const {
return clang::CharUnits::fromQuantity(getValue());
}
friend bool operator< (Size L, Size R) { return L.Value < R.Value; }
friend bool operator<=(Size L, Size R) { return L.Value <= R.Value; }
friend bool operator> (Size L, Size R) { return L.Value > R.Value; }
friend bool operator>=(Size L, Size R) { return L.Value >= R.Value; }
friend bool operator==(Size L, Size R) { return L.Value == R.Value; }
friend bool operator!=(Size L, Size R) { return L.Value != R.Value; }
friend Size operator%(Size L, Alignment R) {
return Size(L.Value % R.getValue());
}
private:
int_type Value;
};
/// Compute the alignment of a pointer which points S bytes after a
/// pointer with this alignment.
inline Alignment Alignment::alignmentAtOffset(Size S) const {
assert(getValue() && "called on object with zero alignment");
// If the offset is zero, use the original alignment.
Size::int_type V = S.getValue();
if (!V) return *this;
// Find the offset's largest power-of-two factor.
V = V & -V;
// The alignment at the offset is then the min of the two values.
if (V < getValue())
return Alignment(static_cast<Alignment::int_type>(V));
return *this;
}
/// Get this alignment as a Size value.
inline Size Alignment::asSize() const {
return Size(getValue());
}
/// A static or dynamic offset.
class Offset {
enum Kind {
Static,
Dynamic,
};
enum : uint64_t {
KindBits = 1,
KindMask = (1 << KindBits) - 1,
PayloadMask = ~uint64_t(KindMask)
};
uint64_t Data;
public:
explicit Offset(llvm::Value *offset)
: Data(reinterpret_cast<uintptr_t>(offset) | Dynamic) {}
explicit Offset(Size offset)
: Data((static_cast<uint64_t>(offset.getValue()) << KindBits) | Static) {
assert(getStatic() == offset && "overflow");
}
bool isStatic() const { return (Data & KindMask) == Static; }
bool isDynamic() const { return (Data & KindMask) == Dynamic; }
Size getStatic() const {
assert(isStatic());
return Size(static_cast<int64_t>(Data) >> KindBits);
}
llvm::Value *getDynamic() const {
assert(isDynamic());
return reinterpret_cast<llvm::Value*>(Data & PayloadMask);
}
llvm::Value *getAsValue(IRGenFunction &IGF) const;
Offset offsetBy(IRGenFunction &IGF, Size other) const;
};
} // end namespace irgen
} // end namespace swift
#endif
|