1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
|
//===--- IRGenFunction.cpp - Swift Per-Function IR Generation -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements basic setup and teardown for the class which
// performs IR generation for function bodies.
//
//===----------------------------------------------------------------------===//
#include "swift/ABI/MetadataValues.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/Basic/SourceLoc.h"
#include "swift/IRGen/Linking.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/BinaryFormat/MachO.h"
#include "Callee.h"
#include "Explosion.h"
#include "GenPointerAuth.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
using namespace swift;
using namespace irgen;
static llvm::cl::opt<bool> EnableTrapDebugInfo(
"enable-trap-debug-info", llvm::cl::init(true), llvm::cl::Hidden,
llvm::cl::desc("Generate failure-message functions in the debug info"));
IRGenFunction::IRGenFunction(IRGenModule &IGM, llvm::Function *Fn,
bool isPerformanceConstraint,
OptimizationMode OptMode,
const SILDebugScope *DbgScope,
std::optional<SILLocation> DbgLoc)
: IGM(IGM), Builder(IGM.getLLVMContext(),
IGM.DebugInfo && !IGM.Context.LangOpts.DebuggerSupport),
OptMode(OptMode), isPerformanceConstraint(isPerformanceConstraint),
CurFn(Fn), DbgScope(DbgScope) {
// Make sure the instructions in this function are attached its debug scope.
if (IGM.DebugInfo) {
// Functions, especially artificial thunks and closures, are often
// generated on-the-fly while we are in the middle of another
// function. Be nice and preserve the current debug location until
// after we're done with this function.
IGM.DebugInfo->pushLoc();
}
emitPrologue();
}
IRGenFunction::~IRGenFunction() {
emitEpilogue();
// Restore the debug location.
if (IGM.DebugInfo) IGM.DebugInfo->popLoc();
// Tear down any side-table data structures.
if (LocalTypeData) destroyLocalTypeData();
// All dynamically allocated metadata should have been cleaned up.
}
OptimizationMode IRGenFunction::getEffectiveOptimizationMode() const {
if (OptMode != OptimizationMode::NotSet)
return OptMode;
return IGM.getOptions().OptMode;
}
bool IRGenFunction::canStackPromotePackMetadata() const {
return IGM.getSILModule().getOptions().EnablePackMetadataStackPromotion &&
!packMetadataStackPromotionDisabled;
}
bool IRGenFunction::outliningCanCallValueWitnesses() const {
if (!IGM.getOptions().UseTypeLayoutValueHandling)
return false;
return !isPerformanceConstraint && !IGM.Context.LangOpts.hasFeature(Feature::Embedded);
}
ModuleDecl *IRGenFunction::getSwiftModule() const {
return IGM.getSwiftModule();
}
SILModule &IRGenFunction::getSILModule() const {
return IGM.getSILModule();
}
Lowering::TypeConverter &IRGenFunction::getSILTypes() const {
return IGM.getSILTypes();
}
const IRGenOptions &IRGenFunction::getOptions() const {
return IGM.getOptions();
}
// Returns the default atomicity of the module.
Atomicity IRGenFunction::getDefaultAtomicity() {
return getSILModule().isDefaultAtomic() ? Atomicity::Atomic : Atomicity::NonAtomic;
}
/// Call the llvm.memcpy intrinsic. The arguments need not already
/// be of i8* type.
void IRGenFunction::emitMemCpy(llvm::Value *dest, llvm::Value *src,
Size size, Alignment align) {
emitMemCpy(dest, src, IGM.getSize(size), align);
}
void IRGenFunction::emitMemCpy(llvm::Value *dest, llvm::Value *src,
llvm::Value *size, Alignment align) {
Builder.CreateMemCpy(dest, llvm::MaybeAlign(align.getValue()), src,
llvm::MaybeAlign(align.getValue()), size);
}
void IRGenFunction::emitMemCpy(Address dest, Address src, Size size) {
emitMemCpy(dest, src, IGM.getSize(size));
}
void IRGenFunction::emitMemCpy(Address dest, Address src, llvm::Value *size) {
// Map over to the inferior design of the LLVM intrinsic.
emitMemCpy(dest.getAddress(), src.getAddress(), size,
std::min(dest.getAlignment(), src.getAlignment()));
}
static llvm::Value *emitAllocatingCall(IRGenFunction &IGF, FunctionPointer fn,
ArrayRef<llvm::Value *> args,
const llvm::Twine &name) {
auto allocAttrs = IGF.IGM.getAllocAttrs();
llvm::CallInst *call =
IGF.Builder.CreateCall(fn, llvm::ArrayRef(args.begin(), args.size()));
call->setAttributes(allocAttrs);
return call;
}
/// Emit a 'raw' allocation, which has no heap pointer and is
/// not guaranteed to be zero-initialized.
llvm::Value *IRGenFunction::emitAllocRawCall(llvm::Value *size,
llvm::Value *alignMask,
const llvm::Twine &name) {
// For now, all we have is swift_slowAlloc.
return emitAllocatingCall(*this, IGM.getSlowAllocFunctionPointer(),
{size, alignMask}, name);
}
/// Emit a heap allocation.
llvm::Value *IRGenFunction::emitAllocObjectCall(llvm::Value *metadata,
llvm::Value *size,
llvm::Value *alignMask,
const llvm::Twine &name) {
// For now, all we have is swift_allocObject.
return emitAllocatingCall(*this, IGM.getAllocObjectFunctionPointer(),
{metadata, size, alignMask}, name);
}
llvm::Value *IRGenFunction::emitInitStackObjectCall(llvm::Value *metadata,
llvm::Value *object,
const llvm::Twine &name) {
llvm::CallInst *call = Builder.CreateCall(
IGM.getInitStackObjectFunctionPointer(), {metadata, object}, name);
call->setDoesNotThrow();
return call;
}
llvm::Value *IRGenFunction::emitInitStaticObjectCall(llvm::Value *metadata,
llvm::Value *object,
const llvm::Twine &name) {
llvm::CallInst *call = Builder.CreateCall(
IGM.getInitStaticObjectFunctionPointer(), {metadata, object}, name);
call->setDoesNotThrow();
return call;
}
llvm::Value *IRGenFunction::emitVerifyEndOfLifetimeCall(llvm::Value *object,
const llvm::Twine &name) {
llvm::CallInst *call = Builder.CreateCall(
IGM.getVerifyEndOfLifetimeFunctionPointer(), {object}, name);
call->setDoesNotThrow();
return call;
}
void IRGenFunction::emitAllocBoxCall(llvm::Value *typeMetadata,
llvm::Value *&box,
llvm::Value *&valueAddress) {
llvm::CallInst *call =
Builder.CreateCall(IGM.getAllocBoxFunctionPointer(), typeMetadata);
call->addFnAttr(llvm::Attribute::NoUnwind);
box = Builder.CreateExtractValue(call, 0);
valueAddress = Builder.CreateExtractValue(call, 1);
}
void IRGenFunction::emitMakeBoxUniqueCall(llvm::Value *box,
llvm::Value *typeMetadata,
llvm::Value *alignMask,
llvm::Value *&outBox,
llvm::Value *&outValueAddress) {
llvm::CallInst *call = Builder.CreateCall(
IGM.getMakeBoxUniqueFunctionPointer(), {box, typeMetadata, alignMask});
call->addFnAttr(llvm::Attribute::NoUnwind);
outBox = Builder.CreateExtractValue(call, 0);
outValueAddress = Builder.CreateExtractValue(call, 1);
}
void IRGenFunction::emitDeallocBoxCall(llvm::Value *box,
llvm::Value *typeMetadata) {
llvm::CallInst *call =
Builder.CreateCall(IGM.getDeallocBoxFunctionPointer(), box);
call->setCallingConv(IGM.DefaultCC);
call->addFnAttr(llvm::Attribute::NoUnwind);
}
llvm::Value *IRGenFunction::emitProjectBoxCall(llvm::Value *box,
llvm::Value *typeMetadata) {
llvm::CallInst *call =
Builder.CreateCall(IGM.getProjectBoxFunctionPointer(), box);
call->setCallingConv(IGM.DefaultCC);
call->addFnAttr(llvm::Attribute::NoUnwind);
return call;
}
llvm::Value *IRGenFunction::emitAllocEmptyBoxCall() {
llvm::CallInst *call =
Builder.CreateCall(IGM.getAllocEmptyBoxFunctionPointer(), {});
call->setCallingConv(IGM.DefaultCC);
call->addFnAttr(llvm::Attribute::NoUnwind);
return call;
}
static void emitDeallocatingCall(IRGenFunction &IGF, FunctionPointer fn,
std::initializer_list<llvm::Value *> args) {
llvm::CallInst *call =
IGF.Builder.CreateCall(fn, llvm::ArrayRef(args.begin(), args.size()));
call->setDoesNotThrow();
}
/// Emit a 'raw' deallocation, which has no heap pointer and is not
/// guaranteed to be zero-initialized.
void IRGenFunction::emitDeallocRawCall(llvm::Value *pointer,
llvm::Value *size,
llvm::Value *alignMask) {
// For now, all we have is swift_slowDealloc.
return emitDeallocatingCall(*this, IGM.getSlowDeallocFunctionPointer(),
{pointer, size, alignMask});
}
void IRGenFunction::emitTSanInoutAccessCall(llvm::Value *address) {
auto fn = IGM.getTSanInoutAccessFunctionPointer();
llvm::Value *castAddress = Builder.CreateBitCast(address, IGM.Int8PtrTy);
// Passing 0 as the caller PC causes compiler-rt to get our PC.
llvm::Value *callerPC = llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
// A magic number agreed upon with compiler-rt to indicate a modifying
// access.
const unsigned kExternalTagSwiftModifyingAccess = 0x1;
llvm::Value *tagValue =
llvm::ConstantInt::get(IGM.SizeTy, kExternalTagSwiftModifyingAccess);
llvm::Value *castTag = Builder.CreateIntToPtr(tagValue, IGM.Int8PtrTy);
Builder.CreateCall(fn, {castAddress, callerPC, castTag});
}
// This is shamelessly copied from clang's codegen. We need to get the clang
// functionality into a shared header so that platforms only
// needs to be updated in one place.
static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
switch (TT.getOS()) {
case llvm::Triple::Darwin:
case llvm::Triple::MacOSX:
return llvm::MachO::PLATFORM_MACOS;
case llvm::Triple::IOS:
return llvm::MachO::PLATFORM_IOS;
case llvm::Triple::TvOS:
return llvm::MachO::PLATFORM_TVOS;
case llvm::Triple::WatchOS:
return llvm::MachO::PLATFORM_WATCHOS;
case llvm::Triple::XROS:
return llvm::MachO::PLATFORM_XROS;
default:
return /*Unknown platform*/ 0;
}
}
llvm::Value *
IRGenFunction::emitTargetOSVersionAtLeastCall(llvm::Value *major,
llvm::Value *minor,
llvm::Value *patch) {
auto fn = IGM.getPlatformVersionAtLeastFunctionPointer();
llvm::Value *platformID =
llvm::ConstantInt::get(IGM.Int32Ty, getBaseMachOPlatformID(IGM.Triple));
return Builder.CreateCall(fn, {platformID, major, minor, patch});
}
/// Initialize a relative indirectable pointer to the given value.
/// This always leaves the value in the direct state; if it's not a
/// far reference, it's the caller's responsibility to ensure that the
/// pointer ranges are sufficient.
void IRGenFunction::emitStoreOfRelativeIndirectablePointer(llvm::Value *value,
Address addr,
bool isFar) {
value = Builder.CreatePtrToInt(value, IGM.IntPtrTy);
auto addrAsInt =
Builder.CreatePtrToInt(addr.getAddress(), IGM.IntPtrTy);
auto difference = Builder.CreateSub(value, addrAsInt);
if (!isFar) {
difference = Builder.CreateTrunc(difference, IGM.RelativeAddressTy);
}
Builder.CreateStore(difference, addr);
}
llvm::Value *
IRGenFunction::emitLoadOfRelativePointer(Address addr, bool isFar,
llvm::Type *expectedPointedToType,
const llvm::Twine &name) {
llvm::Value *value = Builder.CreateLoad(addr);
assert(value->getType() ==
(isFar ? IGM.FarRelativeAddressTy : IGM.RelativeAddressTy));
if (!isFar) {
value = Builder.CreateSExt(value, IGM.IntPtrTy);
}
auto *addrInt = Builder.CreatePtrToInt(addr.getAddress(), IGM.IntPtrTy);
auto *uncastPointerInt = Builder.CreateAdd(addrInt, value);
auto *uncastPointer = Builder.CreateIntToPtr(uncastPointerInt, IGM.Int8PtrTy);
auto uncastPointerAddress =
Address(uncastPointer, IGM.Int8Ty, IGM.getPointerAlignment());
auto pointer =
Builder.CreateElementBitCast(uncastPointerAddress, expectedPointedToType);
return pointer.getAddress();
}
llvm::Value *IRGenFunction::emitLoadOfCompactFunctionPointer(
Address addr, bool isFar, llvm::Type *expectedPointedToType,
const llvm::Twine &name) {
if (IGM.getOptions().CompactAbsoluteFunctionPointer) {
llvm::Value *value = Builder.CreateLoad(addr);
auto *uncastPointer = Builder.CreateIntToPtr(value, IGM.Int8PtrTy);
auto pointer = Builder.CreateElementBitCast(
Address(uncastPointer, IGM.Int8Ty, IGM.getPointerAlignment()),
expectedPointedToType);
return pointer.getAddress();
} else {
return emitLoadOfRelativePointer(addr, isFar, expectedPointedToType, name);
}
}
void IRGenFunction::emitFakeExplosion(const TypeInfo &type,
Explosion &explosion) {
if (!isa<LoadableTypeInfo>(type)) {
explosion.add(llvm::UndefValue::get(type.getStorageType()->getPointerTo()));
return;
}
ExplosionSchema schema = cast<LoadableTypeInfo>(type).getSchema();
for (auto &element : schema) {
llvm::Type *elementType;
if (element.isAggregate()) {
elementType = element.getAggregateType()->getPointerTo();
} else {
elementType = element.getScalarType();
}
explosion.add(llvm::UndefValue::get(elementType));
}
}
void IRGenFunction::unimplemented(SourceLoc Loc, StringRef Message) {
return IGM.unimplemented(Loc, Message);
}
// Debug output for Explosions.
void Explosion::print(llvm::raw_ostream &OS) {
for (auto value : llvm::ArrayRef(Values).slice(NextValue)) {
value->print(OS);
OS << '\n';
}
}
void Explosion::dump() {
print(llvm::errs());
}
llvm::Value *Offset::getAsValue(IRGenFunction &IGF) const {
if (isStatic()) {
return IGF.IGM.getSize(getStatic());
} else {
return getDynamic();
}
}
Offset Offset::offsetBy(IRGenFunction &IGF, Size other) const {
if (isStatic()) {
return Offset(getStatic() + other);
}
auto otherVal = llvm::ConstantInt::get(IGF.IGM.SizeTy, other.getValue());
return Offset(IGF.Builder.CreateAdd(getDynamic(), otherVal));
}
Address IRGenFunction::emitAddressAtOffset(llvm::Value *base, Offset offset,
llvm::Type *objectTy,
Alignment objectAlignment,
const llvm::Twine &name) {
// Use a slightly more obvious IR pattern if it's a multiple of the type
// size. I'll confess that this is partly just to avoid updating tests.
if (offset.isStatic()) {
auto byteOffset = offset.getStatic();
Size objectSize(IGM.DataLayout.getTypeAllocSize(objectTy));
if (byteOffset.isMultipleOf(objectSize)) {
// Cast to T*.
auto objectPtrTy = objectTy->getPointerTo();
base = Builder.CreateBitCast(base, objectPtrTy);
// GEP to the slot, computing the index as a signed number.
auto scaledIndex =
int64_t(byteOffset.getValue()) / int64_t(objectSize.getValue());
auto indexValue = IGM.getSize(Size(scaledIndex));
auto slotPtr = Builder.CreateInBoundsGEP(objectTy, base, indexValue);
return Address(slotPtr, objectTy, objectAlignment);
}
}
// GEP to the slot.
auto offsetValue = offset.getAsValue(*this);
auto slotPtr = emitByteOffsetGEP(base, offsetValue, objectTy);
return Address(slotPtr, objectTy, objectAlignment);
}
llvm::CallInst *IRBuilder::CreateNonMergeableTrap(IRGenModule &IGM,
StringRef failureMsg) {
if (IGM.IRGen.Opts.shouldOptimize()) {
// Emit unique side-effecting inline asm calls in order to eliminate
// the possibility that an LLVM optimization or code generation pass
// will merge these blocks back together again. We emit an empty asm
// string with the side-effect flag set, and with a unique integer
// argument for each cond_fail we see in the function.
llvm::IntegerType *asmArgTy = IGM.Int32Ty;
llvm::Type *argTys = {asmArgTy};
llvm::FunctionType *asmFnTy =
llvm::FunctionType::get(IGM.VoidTy, argTys, false /* = isVarArg */);
llvm::InlineAsm *inlineAsm =
llvm::InlineAsm::get(asmFnTy, "", "n", true /* = SideEffects */);
CreateAsmCall(inlineAsm,
llvm::ConstantInt::get(asmArgTy, NumTrapBarriers++));
}
// Emit the trap instruction.
llvm::Function *trapIntrinsic =
llvm::Intrinsic::getDeclaration(&IGM.Module, llvm::Intrinsic::trap);
if (EnableTrapDebugInfo && IGM.DebugInfo && !failureMsg.empty()) {
IGM.DebugInfo->addFailureMessageToCurrentLoc(*this, failureMsg);
}
auto Call = IRBuilderBase::CreateCall(trapIntrinsic, {});
setCallingConvUsingCallee(Call);
if (!IGM.IRGen.Opts.TrapFuncName.empty()) {
auto A = llvm::Attribute::get(getContext(), "trap-func-name",
IGM.IRGen.Opts.TrapFuncName);
Call->addFnAttr(A);
}
return Call;
}
void IRGenFunction::emitTrap(StringRef failureMessage, bool EmitUnreachable) {
Builder.CreateNonMergeableTrap(IGM, failureMessage);
if (EmitUnreachable)
Builder.CreateUnreachable();
}
Address IRGenFunction::emitTaskAlloc(llvm::Value *size, Alignment alignment) {
auto *call = Builder.CreateCall(IGM.getTaskAllocFunctionPointer(), {size});
call->setDoesNotThrow();
call->setCallingConv(IGM.SwiftCC);
auto address = Address(call, IGM.Int8Ty, alignment);
return address;
}
void IRGenFunction::emitTaskDealloc(Address address) {
auto *call = Builder.CreateCall(IGM.getTaskDeallocFunctionPointer(),
{address.getAddress()});
call->setDoesNotThrow();
call->setCallingConv(IGM.SwiftCC);
}
llvm::Value *IRGenFunction::alignUpToMaximumAlignment(llvm::Type *sizeTy, llvm::Value *val) {
auto *alignMask = llvm::ConstantInt::get(sizeTy, MaximumAlignment - 1);
auto *invertedMask = Builder.CreateNot(alignMask);
return Builder.CreateAnd(Builder.CreateAdd(val, alignMask), invertedMask);
}
/// Returns the current task \p currTask as a Builtin.RawUnsafeContinuation at +1.
static llvm::Value *unsafeContinuationFromTask(IRGenFunction &IGF,
llvm::Value *currTask) {
auto &IGM = IGF.IGM;
auto &Builder = IGF.Builder;
auto &rawPointerTI = IGM.getRawUnsafeContinuationTypeInfo();
return Builder.CreateBitOrPointerCast(currTask, rawPointerTI.getStorageType());
}
static llvm::Value *emitLoadOfResumeContextFromTask(IRGenFunction &IGF,
llvm::Value *task) {
// Task.ResumeContext is at field index 8 within SwiftTaskTy. The offset comes
// from 7 pointers (two within the single RefCountedStructTy) and 2 Int32
// fields.
const unsigned taskResumeContextIndex = 8;
const Size taskResumeContextOffset = (7 * IGF.IGM.getPointerSize()) + Size(8);
auto addr = Address(task, IGF.IGM.SwiftTaskTy, IGF.IGM.getPointerAlignment());
auto resumeContextAddr = IGF.Builder.CreateStructGEP(
addr, taskResumeContextIndex, taskResumeContextOffset);
llvm::Value *resumeContext = IGF.Builder.CreateLoad(resumeContextAddr);
if (auto &schema = IGF.getOptions().PointerAuth.TaskResumeContext) {
auto info = PointerAuthInfo::emit(IGF, schema,
resumeContextAddr.getAddress(),
PointerAuthEntity());
resumeContext = emitPointerAuthAuth(IGF, resumeContext, info);
}
return resumeContext;
}
static Address emitLoadOfContinuationContext(IRGenFunction &IGF,
llvm::Value *continuation) {
auto ptr = emitLoadOfResumeContextFromTask(IGF, continuation);
ptr = IGF.Builder.CreateBitCast(ptr, IGF.IGM.ContinuationAsyncContextPtrTy);
return Address(ptr, IGF.IGM.ContinuationAsyncContextTy,
IGF.IGM.getAsyncContextAlignment());
}
static Address emitAddrOfContinuationNormalResultPointer(IRGenFunction &IGF,
Address context) {
assert(context.getType() == IGF.IGM.ContinuationAsyncContextPtrTy);
auto offset = 5 * IGF.IGM.getPointerSize();
return IGF.Builder.CreateStructGEP(context, 4, offset);
}
static Address emitAddrOfContinuationErrorResultPointer(IRGenFunction &IGF,
Address context) {
assert(context.getType() == IGF.IGM.ContinuationAsyncContextPtrTy);
auto offset = 4 * IGF.IGM.getPointerSize();
return IGF.Builder.CreateStructGEP(context, 3, offset);
}
void IRGenFunction::emitGetAsyncContinuation(SILType resumeTy,
StackAddress resultAddr,
Explosion &out,
bool canThrow) {
// A continuation is just a reference to the current async task,
// parked with a special context:
//
// struct ContinuationAsyncContext : AsyncContext {
// std::atomic<size_t> awaitSynchronization;
// SwiftError *errResult;
// Result *result;
// SerialExecutorRef resumeExecutor;
// };
//
// We need fill out this context essentially as if we were calling
// something.
// Create and setup the continuation context.
auto continuationContext =
createAlloca(IGM.ContinuationAsyncContextTy,
IGM.getAsyncContextAlignment());
AsyncCoroutineCurrentContinuationContext = continuationContext.getAddress();
// TODO: add lifetime with matching lifetime in await_async_continuation
// We're required to initialize three fields in the continuation
// context before calling swift_continuation_init:
// - Parent, the parent context pointer, which we initialize to
// the current context.
auto contextBase = Builder.CreateStructGEP(continuationContext, 0, Size(0));
auto parentContextAddr = Builder.CreateStructGEP(contextBase, 0, Size(0));
llvm::Value *asyncContextValue =
Builder.CreateBitCast(getAsyncContext(), IGM.SwiftContextPtrTy);
if (auto schema = IGM.getOptions().PointerAuth.AsyncContextParent) {
auto authInfo = PointerAuthInfo::emit(*this, schema,
parentContextAddr.getAddress(),
PointerAuthEntity());
asyncContextValue = emitPointerAuthSign(*this, asyncContextValue, authInfo);
}
Builder.CreateStore(asyncContextValue, parentContextAddr);
// - NormalResult, the pointer to the normal result, which we initialize
// to the result address that we were given, or else a temporary slot.
// TODO: emit lifetime.start for this temporary, paired with a
// lifetime.end within the await after we take from the slot.
auto normalResultAddr =
emitAddrOfContinuationNormalResultPointer(*this, continuationContext);
if (!resultAddr.getAddress().isValid()) {
auto &resumeTI = getTypeInfo(resumeTy);
resultAddr =
resumeTI.allocateStack(*this, resumeTy, "async.continuation.result");
}
Builder.CreateStore(Builder.CreateBitOrPointerCast(
resultAddr.getAddress().getAddress(),
IGM.OpaquePtrTy),
normalResultAddr);
// - ResumeParent, the continuation function pointer, which we initialize
// with the result of a new call to @llvm.coro.async.resume; we'll pair
// this with a suspend point when we emit the corresponding
// await_async_continuation.
auto coroResume =
Builder.CreateIntrinsicCall(llvm::Intrinsic::coro_async_resume, {});
auto resumeFunctionAddr =
Builder.CreateStructGEP(contextBase, 1, IGM.getPointerSize());
llvm::Value *coroResumeValue =
Builder.CreateBitOrPointerCast(coroResume,
IGM.TaskContinuationFunctionPtrTy);
if (auto schema = IGM.getOptions().PointerAuth.AsyncContextResume) {
auto authInfo = PointerAuthInfo::emit(*this, schema,
resumeFunctionAddr.getAddress(),
PointerAuthEntity());
coroResumeValue = emitPointerAuthSign(*this, coroResumeValue, authInfo);
}
Builder.CreateStore(coroResumeValue, resumeFunctionAddr);
// Save the resume intrinsic call for await_async_continuation.
assert(AsyncCoroutineCurrentResume == nullptr &&
"Don't support nested get_async_continuation");
AsyncCoroutineCurrentResume = coroResume;
AsyncContinuationFlags flags;
if (canThrow) flags.setCanThrow(true);
// Call the swift_continuation_init runtime function to initialize
// the rest of the continuation and return the task pointer back to us.
auto task = Builder.CreateCall(IGM.getContinuationInitFunctionPointer(),
{continuationContext.getAddress(),
IGM.getSize(Size(flags.getOpaqueValue()))});
task->setCallingConv(IGM.SwiftCC);
// TODO: if we have a better idea of what executor to return to than
// the current executor, overwrite the ResumeToExecutor field.
auto unsafeContinuation = unsafeContinuationFromTask(*this, task);
out.add(unsafeContinuation);
}
static bool shouldUseContinuationAwait(IRGenModule &IGM) {
auto &ctx = IGM.Context;
auto module = ctx.getLoadedModule(ctx.Id_Concurrency);
assert(module && "building async code without concurrency library");
SmallVector<ValueDecl *, 1> results;
module->lookupValue(ctx.getIdentifier("_abiEnableAwaitContinuation"),
NLKind::UnqualifiedLookup, results);
assert(results.size() <= 1);
return !results.empty();
}
void IRGenFunction::emitAwaitAsyncContinuation(
SILType resumeTy, bool isIndirectResult,
Explosion &outDirectResult, llvm::BasicBlock *&normalBB,
llvm::PHINode *&optionalErrorResult, llvm::BasicBlock *&optionalErrorBB) {
assert(AsyncCoroutineCurrentContinuationContext && "no active continuation");
Address continuationContext(AsyncCoroutineCurrentContinuationContext,
IGM.ContinuationAsyncContextTy,
IGM.getAsyncContextAlignment());
// Call swift_continuation_await to check whether the continuation
// has already been resumed.
bool useContinuationAwait = shouldUseContinuationAwait(IGM);
// As a temporary hack for compatibility with SDKs that don't provide
// swift_continuation_await, emit the old inline sequence. This can
// be removed as soon as we're sure that such SDKs don't exist.
if (!useContinuationAwait) {
auto contAwaitSyncAddr =
Builder.CreateStructGEP(continuationContext, 2,
3 * IGM.getPointerSize()).getAddress();
auto pendingV = llvm::ConstantInt::get(
IGM.SizeTy, unsigned(ContinuationStatus::Pending));
auto awaitedV = llvm::ConstantInt::get(
IGM.SizeTy, unsigned(ContinuationStatus::Awaited));
auto results = Builder.CreateAtomicCmpXchg(
contAwaitSyncAddr, pendingV, awaitedV, llvm::MaybeAlign(),
llvm::AtomicOrdering::Release /*success ordering*/,
llvm::AtomicOrdering::Acquire /* failure ordering */,
llvm::SyncScope::System);
auto firstAtAwait = Builder.CreateExtractValue(results, 1);
auto contBB = createBasicBlock("await.async.resume");
auto abortBB = createBasicBlock("await.async.abort");
Builder.CreateCondBr(firstAtAwait, abortBB, contBB);
Builder.emitBlock(abortBB);
{
// We were the first to the sync point. "Abort" (return from the
// coroutine partial function, without making a tail call to anything)
// because the continuation result is not available yet. When the
// continuation is later resumed, the task will get scheduled
// starting from the suspension point.
emitCoroutineOrAsyncExit();
}
Builder.emitBlock(contBB);
}
{
// Set up the suspend point.
SmallVector<llvm::Value *, 8> arguments;
unsigned swiftAsyncContextIndex = 0;
arguments.push_back(IGM.getInt32(swiftAsyncContextIndex)); // context index
arguments.push_back(AsyncCoroutineCurrentResume);
auto resumeProjFn = getOrCreateResumePrjFn();
arguments.push_back(
Builder.CreateBitOrPointerCast(resumeProjFn, IGM.Int8PtrTy));
llvm::Constant *awaitFnPtr;
if (useContinuationAwait) {
awaitFnPtr = IGM.getAwaitAsyncContinuationFn();
} else {
auto resumeFnPtr =
getFunctionPointerForResumeIntrinsic(AsyncCoroutineCurrentResume);
awaitFnPtr = createAsyncDispatchFn(resumeFnPtr, {IGM.Int8PtrTy});
}
arguments.push_back(
Builder.CreateBitOrPointerCast(awaitFnPtr, IGM.Int8PtrTy));
if (useContinuationAwait) {
arguments.push_back(continuationContext.getAddress());
} else {
arguments.push_back(AsyncCoroutineCurrentResume);
arguments.push_back(Builder.CreateBitOrPointerCast(
continuationContext.getAddress(), IGM.Int8PtrTy));
}
auto resultTy =
llvm::StructType::get(IGM.getLLVMContext(), {IGM.Int8PtrTy}, false /*packed*/);
emitSuspendAsyncCall(swiftAsyncContextIndex, resultTy, arguments);
}
// If there's an error destination (i.e. if the continuation is throwing),
// load the error value out and check whether it's null. If so, branch
// to the error destination.
if (optionalErrorBB) {
auto normalContBB = createBasicBlock("await.async.normal");
auto contErrResultAddr =
emitAddrOfContinuationErrorResultPointer(*this, continuationContext);
auto errorRes = Builder.CreateLoad(contErrResultAddr);
auto nullError = llvm::Constant::getNullValue(errorRes->getType());
auto hasError = Builder.CreateICmpNE(errorRes, nullError);
optionalErrorResult->addIncoming(errorRes, Builder.GetInsertBlock());
Builder.CreateCondBr(hasError, optionalErrorBB, normalContBB);
Builder.emitBlock(normalContBB);
}
// We're now on the normal-result path. If we didn't have an indirect
// result slot, load from the temporary we created during
// get_async_continuation.
if (!isIndirectResult) {
auto contResultAddrAddr =
emitAddrOfContinuationNormalResultPointer(*this, continuationContext);
auto resultAddrVal =
Builder.CreateLoad(contResultAddrAddr);
// Take the result.
auto &resumeTI = cast<LoadableTypeInfo>(getTypeInfo(resumeTy));
auto resultStorageTy = resumeTI.getStorageType();
auto resultAddr =
Address(Builder.CreateBitOrPointerCast(resultAddrVal,
resultStorageTy->getPointerTo()),
resultStorageTy, resumeTI.getFixedAlignment());
resumeTI.loadAsTake(*this, resultAddr, outDirectResult);
}
Builder.CreateBr(normalBB);
AsyncCoroutineCurrentResume = nullptr;
AsyncCoroutineCurrentContinuationContext = nullptr;
}
void IRGenFunction::emitResumeAsyncContinuationReturning(
llvm::Value *continuation, llvm::Value *srcPtr,
SILType valueTy, bool throwing) {
continuation = Builder.CreateBitCast(continuation, IGM.SwiftTaskPtrTy);
auto &valueTI = getTypeInfo(valueTy);
Address srcAddr = valueTI.getAddressForPointer(srcPtr);
// Extract the destination value pointer and cast it from an opaque
// pointer type.
Address context = emitLoadOfContinuationContext(*this, continuation);
auto destPtrAddr = emitAddrOfContinuationNormalResultPointer(*this, context);
auto destPtr = Builder.CreateBitCast(Builder.CreateLoad(destPtrAddr),
valueTI.getStorageType()->getPointerTo());
Address destAddr = valueTI.getAddressForPointer(destPtr);
valueTI.initializeWithTake(*this, destAddr, srcAddr, valueTy,
/*outlined*/ false);
auto call = Builder.CreateCall(
throwing ? IGM.getContinuationThrowingResumeFunctionPointer()
: IGM.getContinuationResumeFunctionPointer(),
{continuation});
call->setCallingConv(IGM.SwiftCC);
}
void IRGenFunction::emitResumeAsyncContinuationThrowing(
llvm::Value *continuation, llvm::Value *error) {
continuation = Builder.CreateBitCast(continuation, IGM.SwiftTaskPtrTy);
auto call = Builder.CreateCall(
IGM.getContinuationThrowingResumeWithErrorFunctionPointer(),
{continuation, error});
call->setCallingConv(IGM.SwiftCC);
}
|