1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985
|
//===--- IRGenSIL.cpp - Swift Per-Function IR Generation ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements basic setup and teardown for the class which
// performs IR generation for function bodies.
//
//===----------------------------------------------------------------------===//
#include "GenKeyPath.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/DiagnosticsIRGen.h"
#include "swift/AST/ExtInfo.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/Types.h"
#include "swift/Basic/ExternalUnion.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/STLExtras.h"
#include "swift/IRGen/GenericRequirement.h"
#include "swift/IRGen/Linking.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILLinkage.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/TerminatorUtils.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SaveAndRestore.h"
#include "CallEmission.h"
#include "EntryPointArgumentEmission.h"
#include "Explosion.h"
#include "GenArchetype.h"
#include "GenBuiltin.h"
#include "GenCall.h"
#include "GenCast.h"
#include "GenClass.h"
#include "GenConcurrency.h"
#include "GenConstant.h"
#include "GenDecl.h"
#include "GenEnum.h"
#include "GenExistential.h"
#include "GenFunc.h"
#include "GenHeap.h"
#include "GenIntegerLiteral.h"
#include "GenMeta.h"
#include "GenObjC.h"
#include "GenOpaque.h"
#include "GenPack.h"
#include "GenPointerAuth.h"
#include "GenPoly.h"
#include "GenProto.h"
#include "GenStruct.h"
#include "GenTuple.h"
#include "GenType.h"
#include "IRGenDebugInfo.h"
#include "IRGenModule.h"
#include "MetadataLayout.h"
#include "MetadataRequest.h"
#include "NativeConventionSchema.h"
#include "ReferenceTypeInfo.h"
#define DEBUG_TYPE "irgensil"
using namespace swift;
using namespace irgen;
namespace {
class LoweredValue;
struct DynamicallyEnforcedAddress {
Address Addr;
llvm::Value *ScratchBuffer;
};
struct CoroutineState {
Address Buffer;
llvm::Value *Continuation;
TemporarySet Temporaries;
};
/// Represents a SIL value lowered to IR, in one of these forms:
/// - an Address, corresponding to a SIL address value;
/// - an Explosion of (unmanaged) Values, corresponding to a SIL "register"; or
/// - a CallEmission for a partially-applied curried function or method.
class LoweredValue {
public:
enum class Kind {
/// The first three LoweredValue kinds correspond to a SIL address value.
/// The LoweredValue of a resilient, generic, or loadable typed alloc_stack
/// keeps an optional stackrestore point in addition to the address of the
/// allocated buffer. For all other address values the stackrestore point is
/// just null.
/// If the stackrestore point is set (currently, this might happen for
/// opaque types: generic and resilient) the deallocation of the stack must
/// reset the stack pointer to this point.
StackAddress,
/// A @box together with the address of the box value.
OwnedAddress,
/// The lowered value of a begin_access instruction using dynamic
/// enforcement.
DynamicallyEnforcedAddress,
/// A normal value, represented as an exploded array of llvm Values.
ExplosionVector,
/// The special case of a single explosion.
SingletonExplosion,
/// A value that represents a function pointer.
FunctionPointer,
/// A value that represents an Objective-C method that must be called with
/// a form of objc_msgSend.
ObjCMethod,
/// The special case of an empty explosion.
EmptyExplosion,
/// A coroutine state.
CoroutineState,
};
Kind kind;
private:
using ExplosionVector = SmallVector<llvm::Value *, 4>;
using SingletonExplosion = llvm::Value*;
using Members = ExternalUnionMembers<StackAddress,
OwnedAddress,
DynamicallyEnforcedAddress,
ExplosionVector,
SingletonExplosion,
FunctionPointer,
ObjCMethod,
CoroutineState,
void>;
static Members::Index getMemberIndexForKind(Kind kind) {
switch (kind) {
case Kind::StackAddress: return Members::indexOf<StackAddress>();
case Kind::OwnedAddress: return Members::indexOf<OwnedAddress>();
case Kind::DynamicallyEnforcedAddress: return Members::indexOf<DynamicallyEnforcedAddress>();
case Kind::ExplosionVector: return Members::indexOf<ExplosionVector>();
case Kind::SingletonExplosion: return Members::indexOf<SingletonExplosion>();
case Kind::FunctionPointer: return Members::indexOf<FunctionPointer>();
case Kind::ObjCMethod: return Members::indexOf<ObjCMethod>();
case Kind::CoroutineState: return Members::indexOf<CoroutineState>();
case Kind::EmptyExplosion: return Members::indexOf<void>();
}
llvm_unreachable("bad kind");
}
ExternalUnion<Kind, Members, getMemberIndexForKind> Storage;
explicit LoweredValue(llvm::Value *singletonValue)
: kind(Kind::SingletonExplosion) {
Storage.emplace<SingletonExplosion>(kind, singletonValue);
}
public:
/// Create an address value without a stack restore point.
LoweredValue(const Address &address)
: kind(Kind::StackAddress) {
Storage.emplace<StackAddress>(kind, address);
}
/// Create an address value with an optional stack restore point.
LoweredValue(const StackAddress &address)
: kind(Kind::StackAddress) {
Storage.emplace<StackAddress>(kind, address);
}
/// Create an address value using dynamic enforcement.
LoweredValue(const DynamicallyEnforcedAddress &address)
: kind(Kind::DynamicallyEnforcedAddress) {
Storage.emplace<DynamicallyEnforcedAddress>(kind, address);
}
LoweredValue(const FunctionPointer &fn)
: kind(Kind::FunctionPointer) {
Storage.emplace<FunctionPointer>(kind, fn);
}
LoweredValue(ObjCMethod &&objcMethod)
: kind(Kind::ObjCMethod) {
Storage.emplace<ObjCMethod>(kind, std::move(objcMethod));
}
LoweredValue(Explosion &e) {
auto elts = e.claimAll();
if (elts.empty()) {
kind = Kind::EmptyExplosion;
} else if (elts.size() == 1) {
kind = Kind::SingletonExplosion;
Storage.emplace<SingletonExplosion>(kind, elts.front());
} else {
kind = Kind::ExplosionVector;
auto &explosion = Storage.emplace<ExplosionVector>(kind);
explosion.append(elts.begin(), elts.end());
}
}
LoweredValue(const OwnedAddress &boxWithAddress)
: kind(Kind::OwnedAddress) {
Storage.emplace<OwnedAddress>(kind, boxWithAddress);
}
LoweredValue(CoroutineState &&state)
: kind(Kind::CoroutineState) {
Storage.emplace<CoroutineState>(kind, std::move(state));
}
LoweredValue(LoweredValue &&lv)
: kind(lv.kind) {
Storage.moveConstruct(kind, std::move(lv.Storage));
}
static LoweredValue forSingletonExplosion(llvm::Value *value) {
return LoweredValue(value);
}
LoweredValue &operator=(LoweredValue &&lv) {
Storage.moveAssign(kind, lv.kind, std::move(lv.Storage));
kind = lv.kind;
return *this;
}
~LoweredValue() {
Storage.destruct(kind);
}
bool isAddress() const {
return (kind == Kind::StackAddress ||
kind == Kind::DynamicallyEnforcedAddress);
}
bool isBoxWithAddress() const {
return kind == Kind::OwnedAddress;
}
const StackAddress &getStackAddress() const {
return Storage.get<StackAddress>(kind);
}
const DynamicallyEnforcedAddress &getDynamicallyEnforcedAddress() const {
return Storage.get<DynamicallyEnforcedAddress>(kind);
}
Address getAnyAddress() const {
if (kind == LoweredValue::Kind::StackAddress) {
return Storage.get<StackAddress>(kind).getAddress();
} else {
return getDynamicallyEnforcedAddress().Addr;
}
}
Address getAddressOfBox() const {
return Storage.get<OwnedAddress>(kind).getAddress();
}
ArrayRef<llvm::Value *> getKnownExplosionVector() const {
return Storage.get<ExplosionVector>(kind);
}
llvm::Value *getKnownSingletonExplosion() const {
return Storage.get<SingletonExplosion>(kind);
}
const FunctionPointer &getFunctionPointer() const {
return Storage.get<FunctionPointer>(kind);
}
const ObjCMethod &getObjCMethod() const {
return Storage.get<ObjCMethod>(kind);
}
const CoroutineState &getCoroutineState() const {
return Storage.get<CoroutineState>(kind);
}
/// Produce an explosion for this lowered value. Note that many
/// different storage kinds can be turned into an explosion.
Explosion getExplosion(IRGenFunction &IGF, SILType type) const {
Explosion e;
getExplosion(IGF, type, e);
return e;
}
void getExplosion(IRGenFunction &IGF, SILType type, Explosion &ex) const;
/// Produce an explosion which is known to be a single value.
llvm::Value *getSingletonExplosion(IRGenFunction &IGF, SILType type) const;
/// Produce a callee from this value.
Callee getCallee(IRGenFunction &IGF, llvm::Value *selfValue,
CalleeInfo &&calleeInfo) const;
};
using PHINodeVector = llvm::TinyPtrVector<llvm::PHINode*>;
/// Represents a lowered SIL basic block. This keeps track
/// of SIL branch arguments so that they can be lowered to LLVM phi nodes.
struct LoweredBB {
llvm::BasicBlock *bb;
PHINodeVector phis;
LoweredBB() = default;
explicit LoweredBB(llvm::BasicBlock *bb, PHINodeVector &&phis)
: bb(bb), phis(std::move(phis))
{}
};
/// Visits a SIL Function and generates LLVM IR.
class IRGenSILFunction :
public IRGenFunction, public SILInstructionVisitor<IRGenSILFunction>
{
public:
llvm::DenseMap<SILValue, LoweredValue> LoweredValues;
llvm::DenseMap<SILValue, StackAddress> LoweredPartialApplyAllocations;
llvm::DenseMap<SILType, LoweredValue> LoweredUndefs;
/// All alloc_ref instructions which allocate the object on the stack.
llvm::SmallPtrSet<SILInstruction *, 8> StackAllocs;
/// With closure captures it is actually possible to have two function
/// arguments that both have the same name. Until this is fixed, we need to
/// also hash the ArgNo here.
using StackSlotKey =
std::pair<unsigned, std::pair<const SILDebugScope *, StringRef>>;
/// Keeps track of the mapping of source variables to -O0 shadow copy allocas.
llvm::SmallDenseMap<StackSlotKey, Address, 8> ShadowStackSlots;
llvm::SmallDenseMap<llvm::Value *, Address, 8> TaskAllocStackSlots;
llvm::SmallDenseMap<Decl *, Identifier, 8> AnonymousVariables;
llvm::SmallDenseSet<llvm::Value *, 4> PackShapeExpressions;
/// To avoid inserting elements into ValueDomPoints twice.
llvm::SmallDenseSet<llvm::Value *, 8> ValueVariables;
/// Holds the DominancePoint of values that are storage for a source variable.
SmallVector<std::pair<llvm::Value *, DominancePoint>, 8> ValueDomPoints;
unsigned NumAnonVars = 0;
/// Accumulative amount of allocated bytes on the stack. Used to limit the
/// size for stack promoted objects.
/// We calculate it on demand, so that we don't have to do it if the
/// function does not have any stack promoted allocations.
int EstimatedStackSize = -1;
llvm::MapVector<SILBasicBlock *, LoweredBB> LoweredBBs;
// Destination basic blocks for condfail traps.
llvm::SmallVector<llvm::BasicBlock *, 8> FailBBs;
SILFunction *CurSILFn;
// If valid, the address by means of which a return--which is direct in
// SIL--is passed indirectly in IR. Such indirection is necessary when the
// value which would be returned directly cannot fit into registers.
Address IndirectReturn;
// A cached dominance analysis.
std::unique_ptr<DominanceInfo> Dominance;
#ifndef NDEBUG
/// For each instruction which might allocate pack metadata on stack, the
/// corresponding cleanup instructions.
///
/// Used to verify that every instruction on behalf of which on-stack pack
/// metadata is emitted has some corresponding cleanup instructions.
llvm::DenseMap<SILInstruction *, llvm::SmallVector<SILInstruction *, 2>>
DynamicMetadataPackDeallocs;
// A cached dead-end blocks analysis.
std::unique_ptr<DeadEndBlocks> DeadEnds;
#endif
/// For each instruction which did allocate pack metadata on-stack, the stack
/// locations at which they were allocated.
///
/// Used to emit cleanups for those allocations in
/// emitDeallocateDynamicPackMetadataAllocas.
llvm::DenseMap<SILInstruction *, llvm::SmallVector<StackPackAlloc, 2>>
StackPackAllocs;
IRGenSILFunction(IRGenModule &IGM, SILFunction *f);
~IRGenSILFunction();
/// Generate IR for the SIL Function.
void emitSILFunction();
/// Calculates EstimatedStackSize.
void estimateStackSize();
inline bool isAddress(SILValue v) const {
SILType type = v->getType();
return type.isAddress() || type.getASTType() == IGM.Context.TheRawPointerType;
}
void setLoweredValue(SILValue v, LoweredValue &&lv) {
auto inserted = LoweredValues.insert({v, std::move(lv)});
assert(inserted.second && "already had lowered value for sil value?!");
(void)inserted;
}
/// Create a new Address corresponding to the given SIL address value.
void setLoweredAddress(SILValue v, const Address &address) {
assert(isAddress(v) && "address for non-address value?!");
setLoweredValue(v, address);
}
void setLoweredStackAddress(SILValue v, const StackAddress &address) {
assert(isAddress(v) && "address for non-address value?!");
setLoweredValue(v, address);
}
void setLoweredDynamicallyEnforcedAddress(SILValue v,
const Address &address,
llvm::Value *scratch) {
assert(isAddress(v) && "address for non-address value?!");
setLoweredValue(v, DynamicallyEnforcedAddress{address, scratch});
}
/// Create a new Explosion corresponding to the given SIL value.
void setLoweredExplosion(SILValue v, Explosion &e) {
assert(v->getType().isObject() && "explosion for address value?!");
setLoweredValue(v, LoweredValue(e));
}
void setLoweredSingletonExplosion(SILValue v, llvm::Value *value) {
assert(v->getType().isObject() && "explosion for address value?!");
setLoweredValue(v, LoweredValue::forSingletonExplosion(value));
}
void setCorrespondingLoweredValues(SILInstructionResultArray results,
Explosion &allValues) {
for (SILValue result : results) {
auto resultType = result->getType();
auto &resultTI = getTypeInfo(resultType);
// If the value is indirect, the next explosion value should just be
// a pointer.
if (resultType.isAddress()) {
auto pointer = allValues.claimNext();
setLoweredAddress(result, resultTI.getAddressForPointer(pointer));
continue;
}
// Otherwise, claim out the right number of values.
Explosion resultValue;
cast<LoadableTypeInfo>(resultTI).reexplode(allValues, resultValue);
setLoweredExplosion(result, resultValue);
}
}
void setLoweredBox(SILValue v, const OwnedAddress &box) {
assert(v->getType().isObject() && "box for address value?!");
setLoweredValue(v, LoweredValue(box));
}
/// Map the given SIL value to a FunctionPointer value.
void setLoweredFunctionPointer(SILValue v, const FunctionPointer &fnPtr) {
assert(v->getType().isObject() && "function for address value?!");
assert(v->getType().is<SILFunctionType>() &&
"function for non-function value?!");
setLoweredValue(v, fnPtr);
}
/// Create a new Objective-C method corresponding to the given SIL value.
void setLoweredObjCMethod(SILValue v, SILDeclRef method) {
assert(v->getType().isObject() && "function for address value?!");
assert(v->getType().is<SILFunctionType>() &&
"function for non-function value?!");
setLoweredValue(v, ObjCMethod{method, SILType(), false});
}
/// Create a new Objective-C method corresponding to the given SIL value that
/// starts its search from the given search type.
///
/// Unlike \c setLoweredObjCMethod, which finds the method in the actual
/// runtime type of the object, this routine starts at the static type of the
/// object and searches up the class hierarchy (toward superclasses).
///
/// \param searchType The class from which the Objective-C runtime will start
/// its search for a method.
///
/// \param startAtSuper Whether we want to start at the superclass of the
/// static type (vs. the static type itself).
void setLoweredObjCMethodBounded(SILValue v, SILDeclRef method,
SILType searchType, bool startAtSuper) {
assert(v->getType().isObject() && "function for address value?!");
assert(v->getType().is<SILFunctionType>() &&
"function for non-function value?!");
setLoweredValue(v, ObjCMethod{method, searchType, startAtSuper});
}
void setLoweredCoroutine(SILValue tokenResult, CoroutineState &&state) {
setLoweredValue(tokenResult, std::move(state));
}
LoweredValue &getUndefLoweredValue(SILType t) {
auto found = LoweredUndefs.find(t);
if (found != LoweredUndefs.end())
return found->second;
auto &ti = getTypeInfo(t);
switch (t.getCategory()) {
case SILValueCategory::Address: {
Address undefAddr = ti.getAddressForPointer(
llvm::UndefValue::get(ti.getStorageType()->getPointerTo()));
LoweredUndefs.insert({t, LoweredValue(undefAddr)});
break;
}
case SILValueCategory::Object: {
auto schema = ti.getSchema();
Explosion e;
for (auto &elt : schema) {
assert(!elt.isAggregate()
&& "non-scalar element in loadable type schema?!");
e.add(llvm::UndefValue::get(elt.getScalarType()));
}
LoweredUndefs.insert({t, LoweredValue(e)});
break;
}
}
found = LoweredUndefs.find(t);
assert(found != LoweredUndefs.end());
return found->second;
}
/// Get the LoweredValue corresponding to the given SIL value, which must
/// have been lowered.
LoweredValue &getLoweredValue(SILValue v) {
if (isa<SILUndef>(v))
return getUndefLoweredValue(v->getType());
auto foundValue = LoweredValues.find(v);
assert(foundValue != LoweredValues.end() &&
"no lowered explosion for sil value!");
return foundValue->second;
}
/// Get the Address of a SIL value of address type, which must have been
/// lowered.
Address getLoweredAddress(SILValue v) {
return getLoweredValue(v).getAnyAddress();
}
StackAddress getLoweredStackAddress(SILValue v) {
return getLoweredValue(v).getStackAddress();
}
llvm::Value *getLoweredDynamicEnforcementScratchBuffer(BeginAccessInst *v) {
return getLoweredValue(v).getDynamicallyEnforcedAddress().ScratchBuffer;
}
const CoroutineState &getLoweredCoroutine(SILValue v) {
return getLoweredValue(v).getCoroutineState();
}
/// Add the unmanaged LLVM values lowered from a SIL value to an explosion.
void getLoweredExplosion(SILValue v, Explosion &e) {
getLoweredValue(v).getExplosion(*this, v->getType(), e);
}
/// Create an Explosion containing the unmanaged LLVM values lowered from a
/// SIL value.
Explosion getLoweredExplosion(SILValue v) {
return getLoweredValue(v).getExplosion(*this, v->getType());
}
/// Get the lowered value for the given value of optional type in a
/// way that allows immediate peepholing.
OptionalExplosion getLoweredOptionalExplosion(SILValue v) {
assert(v->getType().getOptionalObjectType());
if (auto enumInst = dyn_cast<EnumInst>(v)) {
if (enumInst->hasOperand()) {
assert(enumInst->getElement() == IGM.Context.getOptionalSomeDecl());
return OptionalExplosion::forSome([&](Explosion &out) {
getLoweredExplosion(enumInst->getOperand(), out);
});
} else {
assert(enumInst->getElement() == IGM.Context.getOptionalNoneDecl());
return OptionalExplosion::forNone();
}
}
return OptionalExplosion::forOptional([&](Explosion &out) {
getLoweredExplosion(v, out);
});
}
/// Return the single member of the lowered explosion for the
/// given SIL value.
llvm::Value *getLoweredSingletonExplosion(SILValue v) {
return getLoweredValue(v).getSingletonExplosion(*this, v->getType());
}
LoweredBB &getLoweredBB(SILBasicBlock *bb) {
auto foundBB = LoweredBBs.find(bb);
assert(foundBB != LoweredBBs.end() && "no llvm bb for sil bb?!");
return foundBB->second;
}
TypeExpansionContext getExpansionContext() {
return TypeExpansionContext(*CurSILFn);
}
SILType getLoweredTypeInContext(SILType ty) {
return CurSILFn->getModule()
.Types.getLoweredType(ty.getASTType(), getExpansionContext())
.getCategoryType(ty.getCategory());
}
StringRef getOrCreateAnonymousVarName(VarDecl *Decl) {
Identifier &Name = AnonymousVariables[Decl];
if (Name.empty()) {
{
llvm::SmallString<64> NameBuffer;
llvm::raw_svector_ostream S(NameBuffer);
S << "$_" << NumAnonVars++;
Name = IGM.Context.getIdentifier(NameBuffer);
}
AnonymousVariables.insert({Decl, Name});
}
return Name.str();
}
template <class DebugVarCarryingInst>
StringRef getVarName(DebugVarCarryingInst *i, bool &IsAnonymous) {
auto VarInfo = i->getVarInfo();
if (!VarInfo)
return StringRef();
StringRef Name = VarInfo->Name;
// The $match variables generated by the type checker are not
// guaranteed to be unique within their scope, but they have
// unique VarDecls.
if ((Name.empty() || Name == "$match") && i->getDecl()) {
IsAnonymous = true;
return getOrCreateAnonymousVarName(i->getDecl());
}
return Name;
}
#ifndef NDEBUG
DeadEndBlocks *getDeadEndBlocks() {
if (!DeadEnds) {
DeadEnds.reset(new DeadEndBlocks(CurSILFn));
}
return DeadEnds.get();
}
#endif
/// To make it unambiguous whether a `var` binding has been initialized,
/// zero-initialize the shadow copy alloca. LLDB uses the first pointer-sized
/// field to recognize to detect uninitialized variables. This can be
/// removed once swiftc switches to @llvm.dbg.addr() intrinsics.
void zeroInit(llvm::AllocaInst *AI) {
if (!AI)
return;
// Only do this at -Onone.
auto optAllocationSize = AI->getAllocationSizeInBits(IGM.DataLayout);
if (!optAllocationSize)
return;
uint64_t Size = *optAllocationSize / 8;
if (IGM.IRGen.Opts.shouldOptimize() || !Size)
return;
llvm::IRBuilder<> ZeroInitBuilder(AI->getNextNode());
ZeroInitBuilder.SetInsertPoint(getEarliestInsertionPoint()->getParent(),
getEarliestInsertionPoint()->getIterator());
// No debug location is how LLVM marks prologue instructions.
ZeroInitBuilder.SetCurrentDebugLocation(nullptr);
ZeroInitBuilder.CreateMemSet(
AI, llvm::ConstantInt::get(IGM.Int8Ty, 0),
Size, llvm::MaybeAlign(AI->getAlign()));
}
/// Try to emit an inline assembly gadget which extends the lifetime of
/// \p Var. Returns whether or not this was successful.
bool emitLifetimeExtendingUse(llvm::Value *Var) {
llvm::Type *ArgTys;
auto *Ty = Var->getType();
// Vectors, Pointers and Floats are expected to fit into a register.
if (Ty->isPointerTy() || Ty->isFloatingPointTy() || Ty->isVectorTy())
ArgTys = {Ty};
else {
// If this is not a scalar or vector type, we can't handle it.
if (isa<llvm::StructType>(Ty))
return false;
// The storage is guaranteed to be no larger than the register width.
// Extend the storage so it would fit into a register.
llvm::Type *IntTy;
switch (IGM.getClangASTContext().getTargetInfo().getRegisterWidth()) {
case 64:
IntTy = IGM.Int64Ty;
break;
case 32:
IntTy = IGM.Int32Ty;
break;
default:
llvm_unreachable("unsupported register width");
}
ArgTys = {IntTy};
Var = Var->getType()->getIntegerBitWidth() < IntTy->getIntegerBitWidth()
? Builder.CreateZExtOrBitCast(Var, IntTy)
: Builder.CreateTruncOrBitCast(Var, IntTy);
}
// Emit an empty inline assembler expression depending on the register.
auto *AsmFnTy = llvm::FunctionType::get(IGM.VoidTy, ArgTys, false);
auto *InlineAsm = llvm::InlineAsm::get(AsmFnTy, "", "r", true);
Builder.CreateAsmCall(InlineAsm, Var);
return true;
}
/// At -Onone, forcibly keep all LLVM values that are tracked by
/// debug variables alive by inserting an empty inline assembler
/// expression depending on the value in the blocks dominated by the
/// value.
///
/// This is used only in async functions.
void emitDebugVariableRangeExtension(const SILBasicBlock *CurBB) {
if (IGM.IRGen.Opts.shouldOptimize())
return;
for (auto &Variable : ValueDomPoints) {
llvm::Value *Var = Variable.first;
DominancePoint VarDominancePoint = Variable.second;
if (getActiveDominancePoint() == VarDominancePoint ||
isActiveDominancePointDominatedBy(VarDominancePoint)) {
bool ExtendedLifetime = emitLifetimeExtendingUse(Var);
if (!ExtendedLifetime)
continue;
// Propagate dbg.values for Var into the current basic block. Note
// that this shouldn't be necessary. LiveDebugValues should be doing
// this but can't in general because it currently only tracks register
// locations.
llvm::BasicBlock *BB =
isa<llvm::Instruction>(Var)
? cast<llvm::Instruction>(Var)->getParent()
: &cast<llvm::Argument>(Var)->getParent()->getEntryBlock();
llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
if (BB == CurBB)
// The current basic block must be a successor of the dbg.value().
continue;
llvm::SmallVector<llvm::DbgValueInst *, 4> DbgValues;
llvm::findDbgValues(DbgValues, Var);
for (auto *DVI : DbgValues)
if (DVI->getParent() == BB)
IGM.DebugInfo->getBuilder().insertDbgValueIntrinsic(
DVI->getValue(), DVI->getVariable(), DVI->getExpression(),
DVI->getDebugLoc(), &*CurBB->getFirstInsertionPt());
}
}
}
/// Account for bugs in LLVM.
///
/// - When a variable is spilled into a stack slot, LiveDebugValues fails to
/// recognize a restore of that slot for a different variable.
///
/// - The LLVM type legalizer currently doesn't update debug
/// intrinsics when a large value is split up into smaller
/// pieces. Note that this heuristic as a bit too conservative
/// on 32-bit targets as it will also fire for doubles.
///
/// - CodeGen Prepare may drop dbg.values pointing to PHI instruction.
bool needsShadowCopy(llvm::Value *Storage) {
// If we have a constant data vector, we always need a shadow copy due to
// bugs in LLVM.
if (isa<llvm::ConstantDataVector>(Storage))
return true;
return !isa<llvm::Constant>(Storage);
}
#ifndef NDEBUG
/// Check if \p Val can be stored into \p Alloca, and emit some diagnostic
/// info if it can't.
bool canAllocaStoreValue(Address Alloca, llvm::Value *Val,
SILDebugVariable VarInfo,
const SILDebugScope *Scope) {
bool canStore = Alloca.getElementType() == Val->getType();
if (canStore)
return true;
llvm::errs() << "Invalid shadow copy:\n"
<< " Value : " << *Val << "\n"
<< " Alloca: " << *Alloca.getAddress() << "\n"
<< "---\n"
<< "Previous shadow copy into " << VarInfo.Name
<< " in the same scope!\n"
<< "Scope:\n";
Scope->print(getSILModule());
return false;
}
#endif
static bool isCallToSwiftTaskAlloc(llvm::Value *val) {
auto *call = dyn_cast<llvm::CallInst>(val);
if (!call)
return false;
auto *callee = call->getCalledFunction();
if (!callee)
return false;
auto isTaskAlloc = callee->getName().equals("swift_task_alloc");
return isTaskAlloc;
}
static bool isTaskAlloc(llvm::Value *Storage) {
while (Storage) {
if (auto *LdInst = dyn_cast<llvm::LoadInst>(Storage))
Storage = LdInst->getOperand(0);
else if (auto *GEPInst = dyn_cast<llvm::GetElementPtrInst>(Storage))
Storage = GEPInst->getOperand(0);
else if (auto *BCInst = dyn_cast<llvm::BitCastInst>(Storage))
Storage = BCInst->getOperand(0);
else if (auto *CallInst = dyn_cast<llvm::CallInst>(Storage))
return isCallToSwiftTaskAlloc(CallInst);
else
break;
}
return false;
}
llvm::Value *emitTaskAllocShadowCopy(llvm::Value *Storage,
const SILDebugScope *Scope,
bool Init) {
auto getRec = [&](llvm::Instruction *Orig) {
llvm::Value *Inner =
emitTaskAllocShadowCopy(Orig->getOperand(0), Scope, Init);
if (!Init)
return Inner;
llvm::Instruction *Cloned = Orig->clone();
Cloned->setOperand(0, Inner);
Cloned->insertBefore(Orig);
return static_cast<llvm::Value *>(Cloned);
};
if (auto *LdInst = dyn_cast<llvm::LoadInst>(Storage))
return getRec(LdInst);
if (auto *GEPInst = dyn_cast<llvm::GetElementPtrInst>(Storage))
return getRec(GEPInst);
if (auto *BCInst = dyn_cast<llvm::BitCastInst>(Storage))
return getRec(BCInst);
if (auto *CallInst = dyn_cast<llvm::CallInst>(Storage)) {
assert(isTaskAlloc(CallInst));
auto Align = IGM.getPointerAlignment();
auto &Alloca = TaskAllocStackSlots[CallInst];
if (!Alloca.isValid())
Alloca = createAlloca(Storage->getType(), Align, "taskalloc.debug");
if (Init) {
zeroInit(cast<llvm::AllocaInst>(Alloca.getAddress()));
ArtificialLocation AutoRestore(Scope, IGM.DebugInfo.get(), Builder);
auto *Store =
Builder.CreateStore(Storage, Alloca.getAddress(), Align);
Store->moveAfter(CallInst);
}
return Alloca.getAddress();
}
return Storage;
}
/// Unconditionally emit a stack shadow copy of an \c llvm::Value.
Address emitShadowCopy(llvm::Value *Storage, const SILDebugScope *Scope,
SILDebugVariable VarInfo,
std::optional<Alignment> _Align, bool Init,
bool WasMoved) {
auto Align = _Align.value_or(IGM.getPointerAlignment());
unsigned ArgNo = VarInfo.ArgNo;
auto &Alloca = ShadowStackSlots[{ArgNo, {Scope, VarInfo.Name}}];
if (!Alloca.isValid())
Alloca = createAlloca(Storage->getType(), Align, VarInfo.Name + ".debug");
// If our value was ever moved, we may be reinitializing the shadow
// copy. Insert the bit cast so that the types line up and we do not get the
// duplicate shadow copy error (which triggers based off of type
// differences).
auto Address = Alloca;
if (WasMoved) {
auto nonPtrAllocaType = Alloca.getElementType();
if (nonPtrAllocaType != Storage->getType())
Address = Builder.CreateElementBitCast(Address, Storage->getType());
}
// This might happen because of non-loadable types.
if (Storage->stripPointerCasts()->getType() == Alloca.getElementType())
Storage = Storage->stripPointerCasts();
assert(canAllocaStoreValue(Address, Storage, VarInfo, Scope) &&
"bad scope?");
if (Init) {
// Zero init our bare allocation.
zeroInit(cast<llvm::AllocaInst>(Alloca.getAddress()));
ArtificialLocation AutoRestore(Scope, IGM.DebugInfo.get(), Builder);
// But store into the address with maybe bitcast.
Builder.CreateStore(Storage, Address.getAddress(), Align);
}
// If this allocation was moved at some point, we might be reinitializing a
// shadow copy. In such a case, lets insert an identity bit cast so that our
// callers will use this address with respect to the place where we
// reinit. Otherwise, callers may use the alloca's insert point. The
// optimizer will eliminate these later without issue.
return Alloca;
}
bool shouldShadowVariable(SILDebugVariable varInfo, bool isAnonymous) {
return !IGM.IRGen.Opts.DisableDebuggerShadowCopies
&& !IGM.IRGen.Opts.shouldOptimize()
&& !isAnonymous;
}
bool shouldShadowStorage(llvm::Value *Storage,
llvm::Type *StorageType) {
Storage = Storage->stripPointerCasts();
if (isa<llvm::UndefValue>(Storage))
return false;
if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Storage);
Alloca && Alloca->isStaticAlloca() &&
Alloca->getAllocatedType() == StorageType)
return false;
return needsShadowCopy(Storage);
}
/// At -Onone, emit a shadow copy of an Address in an alloca, so the
/// register allocator doesn't elide the dbg.value intrinsic when
/// register pressure is high. There is a trade-off to this: With
/// shadow copies, we lose the precise lifetime.
llvm::Value *
emitShadowCopyIfNeeded(llvm::Value *Storage, llvm::Type *StorageType,
const SILDebugScope *Scope, SILDebugVariable VarInfo,
bool IsAnonymous, bool WasMoved,
std::optional<Alignment> Align = std::nullopt) {
// Never emit shadow copies when optimizing, or if already on the stack. No
// debug info is emitted for refcounts either
// Mark variables in async functions that don't generate a shadow copy for
// lifetime extension, so they get spilled into the async context.
if (!IGM.IRGen.Opts.shouldOptimize() && CurSILFn->isAsync())
if (isa<llvm::AllocaInst>(Storage)) {
if (emitLifetimeExtendingUse(Storage))
if (ValueVariables.insert(Storage).second)
ValueDomPoints.push_back({Storage, getActiveDominancePoint()});
}
// This condition must be consistent with emitPoisonDebugValueInst to avoid
// generating extra shadow copies for debug_value [poison].
if (!shouldShadowVariable(VarInfo, IsAnonymous)
|| !shouldShadowStorage(Storage, StorageType)) {
return Storage;
}
// Emit a shadow copy.
auto shadow = emitShadowCopy(Storage, Scope, VarInfo, Align, true, WasMoved)
.getAddress();
// Mark variables in async functions for lifetime extension, so they get
// spilled into the async context.
if (!IGM.IRGen.Opts.shouldOptimize() && CurSILFn->isAsync()) {
if (emitLifetimeExtendingUse(shadow)) {
if (ValueVariables.insert(shadow).second)
ValueDomPoints.push_back({shadow, getActiveDominancePoint()});
}
}
return shadow;
}
/// Like \c emitShadowCopyIfNeeded() but takes an \c Address instead of an
/// \c llvm::Value.
llvm::Value *emitShadowCopyIfNeeded(Address Storage,
llvm::Type *StorageType,
const SILDebugScope *Scope,
SILDebugVariable VarInfo,
bool IsAnonymous, bool WasMoved) {
return emitShadowCopyIfNeeded(Storage.getAddress(), StorageType, Scope,
VarInfo, IsAnonymous, WasMoved,
Storage.getAlignment());
}
/// Like \c emitShadowCopyIfNeeded() but takes an exploded value.
void emitShadowCopyIfNeeded(SILValue &SILVal, const SILDebugScope *Scope,
SILDebugVariable VarInfo, bool IsAnonymous,
bool WasMoved,
llvm::SmallVectorImpl<llvm::Value *> ©) {
Explosion e = getLoweredExplosion(SILVal);
// Only do this at -O0.
if (!shouldShadowVariable(VarInfo, IsAnonymous)) {
auto vals = e.claimAll();
copy.append(vals.begin(), vals.end());
// Mark variables in async functions for lifetime extension, so they get
// spilled into the async context.
if (!IGM.IRGen.Opts.shouldOptimize() && CurSILFn->isAsync())
if (vals.begin() != vals.end()) {
auto Value = vals.front();
if (isa<llvm::Instruction>(Value) || isa<llvm::Argument>(Value))
if (emitLifetimeExtendingUse(Value))
if (ValueVariables.insert(Value).second)
ValueDomPoints.push_back({Value, getActiveDominancePoint()});
}
return;
}
// Single or empty values.
if (e.empty())
return;
if (e.size() == 1) {
auto &ti = getTypeInfo(SILVal->getType());
copy.push_back(emitShadowCopyIfNeeded(e.claimNext(), ti.getStorageType(),
Scope, VarInfo,
IsAnonymous, WasMoved));
return;
}
unsigned ArgNo = VarInfo.ArgNo;
auto &Alloca = ShadowStackSlots[{ArgNo, {Scope, VarInfo.Name}}];
if (Alloca.isValid()) {
(void)e.claimAll();
// Async functions use the value of the artificial address.
if (CurSILFn->isAsync()) {
auto shadow = Alloca.getAddress();
auto inst = cast<llvm::Instruction>(shadow);
llvm::IRBuilder<> builder(inst->getNextNode());
shadow =
builder.CreateLoad(Alloca.getElementType(), Alloca.getAddress());
copy.push_back(shadow);
return;
}
} else {
SILType Type = SILVal->getType();
auto <I = cast<LoadableTypeInfo>(IGM.getTypeInfo(Type));
Alloca =
LTI.allocateStack(*this, Type, VarInfo.Name + ".debug").getAddress();
zeroInit(cast<llvm::AllocaInst>(Alloca.getAddress()));
ArtificialLocation AutoRestore(Scope, IGM.DebugInfo.get(), Builder);
LTI.initialize(*this, e, Alloca, false /* isOutlined */);
auto shadow = Alloca.getAddress();
// Async functions use the value of the artificial address.
if (CurSILFn->isAsync() && emitLifetimeExtendingUse(shadow))
if (ValueVariables.insert(shadow).second)
ValueDomPoints.push_back({shadow, getActiveDominancePoint()});
}
copy.push_back(Alloca.getAddress());
}
void emitPackCountDebugVariable(llvm::Value *Shape) {
if (!PackShapeExpressions.insert(Shape).second)
return;
llvm::SmallString<8> Buf;
unsigned Position = PackShapeExpressions.size() - 1;
llvm::raw_svector_ostream(Buf) << "$pack_count_" << Position;
auto Name = IGM.Context.getIdentifier(Buf.str());
SILDebugVariable Var(Name.str(), true, 0);
Shape = emitShadowCopyIfNeeded(Shape, nullptr, getDebugScope(), Var, false,
false /*was move*/);
if (IGM.DebugInfo)
IGM.DebugInfo->emitPackCountParameter(*this, Shape, Var);
}
/// Force all archetypes referenced by the type to be bound by this point.
/// TODO: just make sure that we have a path to them that the debug info
/// can follow.
void bindArchetypes(swift::Type Ty) {
auto runtimeTy = IGM.getRuntimeReifiedType(Ty->getCanonicalType());
if (!IGM.IRGen.Opts.shouldOptimize() && runtimeTy->hasArchetype())
runtimeTy.visit([&](CanType t) {
if (auto archetype = dyn_cast<ArchetypeType>(t))
emitTypeMetadataRef(archetype);
else if (auto packArchetype = dyn_cast<PackArchetypeType>(t))
emitTypeMetadataRef(packArchetype);
else if (auto packtype = dyn_cast<SILPackType>(t)) {
llvm::Value *Shape = emitPackShapeExpression(t);
emitPackCountDebugVariable(Shape);
} else if (auto packtype = dyn_cast<PackType>(t)) {
llvm::Value *Shape = emitPackShapeExpression(t);
emitPackCountDebugVariable(Shape);
}
});
}
/// Emit debug info for a function argument or a local variable.
template <typename StorageType>
void emitDebugVariableDeclaration(
StorageType Storage, DebugTypeInfo Ty, SILType SILTy,
const SILDebugScope *DS, SILLocation VarLoc, SILDebugVariable VarInfo,
IndirectionKind Indirection,
AddrDbgInstrKind DbgInstrKind = AddrDbgInstrKind::DbgDeclare) {
assert(IGM.DebugInfo && "debug info not enabled");
if (VarInfo.ArgNo) {
PrologueLocation AutoRestore(IGM.DebugInfo.get(), Builder);
IGM.DebugInfo->emitVariableDeclaration(
Builder, Storage, Ty, DS, VarLoc, VarInfo, Indirection,
ArtificialKind::RealValue, DbgInstrKind);
return;
}
IGM.DebugInfo->emitVariableDeclaration(
Builder, Storage, Ty, DS, VarLoc, VarInfo, Indirection,
ArtificialKind::RealValue, DbgInstrKind);
}
void emitFailBB() {
if (!FailBBs.empty()) {
// Move the trap basic blocks to the end of the function.
for (auto *FailBB : FailBBs) {
CurFn->splice(CurFn->end(), CurFn, FailBB->getIterator());
}
}
}
//===--------------------------------------------------------------------===//
// SIL instruction lowering
//===--------------------------------------------------------------------===//
void visitSILBasicBlock(SILBasicBlock *BB);
void emitErrorResultVar(CanSILFunctionType FnTy,
SILResultInfo ErrorInfo,
DebugValueInst *DbgValue);
void emitPoisonDebugValueInst(DebugValueInst *i);
void emitDebugInfoForAllocStack(AllocStackInst *i, const TypeInfo &type,
llvm::Value *addr);
void visitAllocStackInst(AllocStackInst *i);
void visitAllocVectorInst(AllocVectorInst *i);
void visitAllocPackInst(AllocPackInst *i);
void visitAllocPackMetadataInst(AllocPackMetadataInst *i);
void visitAllocRefInst(AllocRefInst *i);
void visitAllocRefDynamicInst(AllocRefDynamicInst *i);
void visitAllocBoxInst(AllocBoxInst *i);
void visitProjectBoxInst(ProjectBoxInst *i);
void visitApplyInst(ApplyInst *i);
void visitTryApplyInst(TryApplyInst *i);
void visitFullApplySite(FullApplySite i);
void visitPartialApplyInst(PartialApplyInst *i);
void visitBuiltinInst(BuiltinInst *i);
void visitFunctionRefBaseInst(FunctionRefBaseInst *i);
void visitFunctionRefInst(FunctionRefInst *i);
void visitDynamicFunctionRefInst(DynamicFunctionRefInst *i);
void visitPreviousDynamicFunctionRefInst(PreviousDynamicFunctionRefInst *i);
void visitAllocGlobalInst(AllocGlobalInst *i);
void visitGlobalAddrInst(GlobalAddrInst *i);
void visitGlobalValueInst(GlobalValueInst *i);
void visitBaseAddrForOffsetInst(BaseAddrForOffsetInst *i);
void visitIntegerLiteralInst(IntegerLiteralInst *i);
void visitFloatLiteralInst(FloatLiteralInst *i);
void visitStringLiteralInst(StringLiteralInst *i);
void visitLoadInst(LoadInst *i);
void visitStoreInst(StoreInst *i);
void visitAssignInst(AssignInst *i) {
llvm_unreachable("assign is not valid in canonical SIL");
}
void visitAssignByWrapperInst(AssignByWrapperInst *i) {
llvm_unreachable("assign_by_wrapper is not valid in canonical SIL");
}
void visitAssignOrInitInst(AssignOrInitInst *i) {
llvm_unreachable("assign_or_init is not valid in canonical SIL");
}
void visitMarkUninitializedInst(MarkUninitializedInst *i) {
llvm_unreachable("mark_uninitialized is not valid in canonical SIL");
}
void visitMarkFunctionEscapeInst(MarkFunctionEscapeInst *i) {
llvm_unreachable("mark_function_escape is not valid in canonical SIL");
}
void visitLoadBorrowInst(LoadBorrowInst *i) {
llvm_unreachable("unimplemented");
}
void visitDebugValueInst(DebugValueInst *i);
void visitDebugStepInst(DebugStepInst *i);
void visitRetainValueInst(RetainValueInst *i);
void visitRetainValueAddrInst(RetainValueAddrInst *i);
void visitCopyValueInst(CopyValueInst *i);
void visitExplicitCopyValueInst(ExplicitCopyValueInst *i) {
llvm_unreachable("Valid only when ownership is enabled");
}
void visitMoveValueInst(MoveValueInst *i) {
auto e = getLoweredExplosion(i->getOperand());
setLoweredExplosion(i, e);
}
void visitDropDeinitInst(DropDeinitInst *i) {
llvm_unreachable("only valid in ownership SIL");
}
void visitMarkUnresolvedNonCopyableValueInst(
MarkUnresolvedNonCopyableValueInst *i) {
llvm_unreachable("Invalid in Lowered SIL");
}
void visitMarkUnresolvedReferenceBindingInst(
MarkUnresolvedReferenceBindingInst *i) {
llvm_unreachable("Invalid in Lowered SIL");
}
void visitCopyableToMoveOnlyWrapperValueInst(
CopyableToMoveOnlyWrapperValueInst *i) {
auto e = getLoweredExplosion(i->getOperand());
setLoweredExplosion(i, e);
}
void visitMoveOnlyWrapperToCopyableValueInst(
MoveOnlyWrapperToCopyableValueInst *i) {
auto e = getLoweredExplosion(i->getOperand());
setLoweredExplosion(i, e);
}
void
visitMoveOnlyWrapperToCopyableBoxInst(MoveOnlyWrapperToCopyableBoxInst *i) {
llvm_unreachable("OSSA instruction");
}
void
visitMoveOnlyWrapperToCopyableAddrInst(MoveOnlyWrapperToCopyableAddrInst *i) {
auto e = getLoweredExplosion(i->getOperand());
setLoweredExplosion(i, e);
}
void
visitCopyableToMoveOnlyWrapperAddrInst(CopyableToMoveOnlyWrapperAddrInst *i) {
auto e = getLoweredExplosion(i->getOperand());
setLoweredExplosion(i, e);
}
void visitReleaseValueInst(ReleaseValueInst *i);
void visitReleaseValueAddrInst(ReleaseValueAddrInst *i);
void visitDestroyValueInst(DestroyValueInst *i);
void visitAutoreleaseValueInst(AutoreleaseValueInst *i);
void visitBeginDeallocRefInst(BeginDeallocRefInst *i);
void visitEndInitLetRefInst(EndInitLetRefInst *i);
void visitObjectInst(ObjectInst *i) {
llvm_unreachable("object instruction cannot appear in a function");
}
void visitVectorInst(VectorInst *i) {
llvm_unreachable("vector instruction cannot appear in a function");
}
void visitStructInst(StructInst *i);
void visitTupleInst(TupleInst *i);
void visitEnumInst(EnumInst *i);
void visitInitEnumDataAddrInst(InitEnumDataAddrInst *i);
void visitSelectEnumInst(SelectEnumInst *i);
void visitSelectEnumAddrInst(SelectEnumAddrInst *i);
void visitUncheckedEnumDataInst(UncheckedEnumDataInst *i);
void visitUncheckedTakeEnumDataAddrInst(UncheckedTakeEnumDataAddrInst *i);
void visitInjectEnumAddrInst(InjectEnumAddrInst *i);
void visitObjCProtocolInst(ObjCProtocolInst *i);
void visitMetatypeInst(MetatypeInst *i);
void visitValueMetatypeInst(ValueMetatypeInst *i);
void visitExistentialMetatypeInst(ExistentialMetatypeInst *i);
void visitTupleExtractInst(TupleExtractInst *i);
void visitDestructureTupleInst(DestructureTupleInst *i) {
llvm_unreachable("unimplemented");
}
void visitDestructureStructInst(DestructureStructInst *i) {
llvm_unreachable("unimplemented");
}
void visitTupleElementAddrInst(TupleElementAddrInst *i);
void visitStructExtractInst(StructExtractInst *i);
void visitStructElementAddrInst(StructElementAddrInst *i);
void visitRefElementAddrInst(RefElementAddrInst *i);
void visitRefTailAddrInst(RefTailAddrInst *i);
void visitClassMethodInst(ClassMethodInst *i);
void visitSuperMethodInst(SuperMethodInst *i);
void visitObjCMethodInst(ObjCMethodInst *i);
void visitObjCSuperMethodInst(ObjCSuperMethodInst *i);
void visitWitnessMethodInst(WitnessMethodInst *i);
void visitOpenExistentialAddrInst(OpenExistentialAddrInst *i);
void visitOpenExistentialMetatypeInst(OpenExistentialMetatypeInst *i);
void visitOpenExistentialRefInst(OpenExistentialRefInst *i);
void visitOpenExistentialValueInst(OpenExistentialValueInst *i);
void visitInitExistentialAddrInst(InitExistentialAddrInst *i);
void visitInitExistentialValueInst(InitExistentialValueInst *i);
void visitInitExistentialMetatypeInst(InitExistentialMetatypeInst *i);
void visitInitExistentialRefInst(InitExistentialRefInst *i);
void visitDeinitExistentialAddrInst(DeinitExistentialAddrInst *i);
void visitDeinitExistentialValueInst(DeinitExistentialValueInst *i);
void visitAllocExistentialBoxInst(AllocExistentialBoxInst *i);
void visitOpenExistentialBoxInst(OpenExistentialBoxInst *i);
void visitOpenExistentialBoxValueInst(OpenExistentialBoxValueInst *i);
void visitProjectExistentialBoxInst(ProjectExistentialBoxInst *i);
void visitDeallocExistentialBoxInst(DeallocExistentialBoxInst *i);
void visitPackLengthInst(PackLengthInst *i);
void visitOpenPackElementInst(OpenPackElementInst *i);
void visitDynamicPackIndexInst(DynamicPackIndexInst *i);
void visitPackPackIndexInst(PackPackIndexInst *i);
void visitScalarPackIndexInst(ScalarPackIndexInst *i);
void visitPackElementGetInst(PackElementGetInst *i);
void visitPackElementSetInst(PackElementSetInst *i);
void visitTuplePackElementAddrInst(TuplePackElementAddrInst *i);
void visitTuplePackExtractInst(TuplePackExtractInst *i);
void visitProjectBlockStorageInst(ProjectBlockStorageInst *i);
void visitInitBlockStorageHeaderInst(InitBlockStorageHeaderInst *i);
void visitFixLifetimeInst(FixLifetimeInst *i);
void visitEndLifetimeInst(EndLifetimeInst *i) {
llvm_unreachable("unimplemented");
}
void
visitUncheckedOwnershipConversionInst(UncheckedOwnershipConversionInst *i) {
llvm_unreachable("unimplemented");
}
void visitBeginBorrowInst(BeginBorrowInst *i) {
llvm_unreachable("unimplemented");
}
void visitEndBorrowInst(EndBorrowInst *i) {
llvm_unreachable("unimplemented");
}
void visitStoreBorrowInst(StoreBorrowInst *i) {
llvm_unreachable("unimplemented");
}
void visitBeginAccessInst(BeginAccessInst *i);
void visitEndAccessInst(EndAccessInst *i);
void visitBeginUnpairedAccessInst(BeginUnpairedAccessInst *i);
void visitEndUnpairedAccessInst(EndUnpairedAccessInst *i);
void visitUnmanagedRetainValueInst(UnmanagedRetainValueInst *i) {
llvm_unreachable("unimplemented");
}
void visitUnmanagedReleaseValueInst(UnmanagedReleaseValueInst *i) {
llvm_unreachable("unimplemented");
}
void visitUnmanagedAutoreleaseValueInst(UnmanagedAutoreleaseValueInst *i) {
llvm_unreachable("unimplemented");
}
void visitMarkDependenceInst(MarkDependenceInst *i);
void visitCopyBlockInst(CopyBlockInst *i);
void visitCopyBlockWithoutEscapingInst(CopyBlockWithoutEscapingInst *i) {
llvm_unreachable("not valid in canonical SIL");
}
void visitStrongRetainInst(StrongRetainInst *i);
void visitStrongReleaseInst(StrongReleaseInst *i);
void visitIsUniqueInst(IsUniqueInst *i);
void visitBeginCOWMutationInst(BeginCOWMutationInst *i);
void visitEndCOWMutationInst(EndCOWMutationInst *i);
void visitIsEscapingClosureInst(IsEscapingClosureInst *i);
void visitDeallocStackInst(DeallocStackInst *i);
void visitDeallocStackRefInst(DeallocStackRefInst *i);
void visitDeallocPackInst(DeallocPackInst *i);
void visitDeallocPackMetadataInst(DeallocPackMetadataInst *i);
void visitDeallocBoxInst(DeallocBoxInst *i);
void visitDeallocRefInst(DeallocRefInst *i);
void visitDeallocPartialRefInst(DeallocPartialRefInst *i);
void visitCopyAddrInst(CopyAddrInst *i);
void visitExplicitCopyAddrInst(ExplicitCopyAddrInst *i);
void visitMarkUnresolvedMoveAddrInst(MarkUnresolvedMoveAddrInst *mai) {
llvm_unreachable("Valid only when ownership is enabled");
}
void visitTupleAddrConstructorInst(TupleAddrConstructorInst *i) {
llvm_unreachable("Valid only in raw SIL");
}
void visitDestroyAddrInst(DestroyAddrInst *i);
void visitBindMemoryInst(BindMemoryInst *i);
void visitRebindMemoryInst(RebindMemoryInst *i);
void visitCondFailInst(CondFailInst *i);
void visitIncrementProfilerCounterInst(IncrementProfilerCounterInst *I);
void visitConvertFunctionInst(ConvertFunctionInst *i);
void visitConvertEscapeToNoEscapeInst(ConvertEscapeToNoEscapeInst *i);
void visitUpcastInst(UpcastInst *i);
void visitAddressToPointerInst(AddressToPointerInst *i);
void visitPointerToAddressInst(PointerToAddressInst *i);
void visitUncheckedRefCastInst(UncheckedRefCastInst *i);
void visitUncheckedRefCastAddrInst(UncheckedRefCastAddrInst *i);
void visitUncheckedAddrCastInst(UncheckedAddrCastInst *i);
void visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *i);
void visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *i);
void visitUncheckedValueCastInst(UncheckedValueCastInst *i) {
llvm_unreachable("Should never be seen in Lowered SIL");
}
void visitRefToRawPointerInst(RefToRawPointerInst *i);
void visitRawPointerToRefInst(RawPointerToRefInst *i);
void visitThinToThickFunctionInst(ThinToThickFunctionInst *i);
void visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *i);
void visitObjCToThickMetatypeInst(ObjCToThickMetatypeInst *i);
void visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *i);
void visitUnconditionalCheckedCastAddrInst(UnconditionalCheckedCastAddrInst *i);
void visitObjCMetatypeToObjectInst(ObjCMetatypeToObjectInst *i);
void visitObjCExistentialMetatypeToObjectInst(
ObjCExistentialMetatypeToObjectInst *i);
void visitRefToBridgeObjectInst(RefToBridgeObjectInst *i);
void visitClassifyBridgeObjectInst(ClassifyBridgeObjectInst *i);
void visitBridgeObjectToRefInst(BridgeObjectToRefInst *i);
void visitBridgeObjectToWordInst(BridgeObjectToWordInst *i);
void visitValueToBridgeObjectInst(ValueToBridgeObjectInst *i);
void visitIndexAddrInst(IndexAddrInst *i);
void visitTailAddrInst(TailAddrInst *i);
void visitIndexRawPointerInst(IndexRawPointerInst *i);
void visitBeginApplyInst(BeginApplyInst *i);
void visitEndApplyInst(EndApplyInst *i);
void visitAbortApplyInst(AbortApplyInst *i);
void visitEndApply(BeginApplyInst *i, bool isAbort);
void visitUnreachableInst(UnreachableInst *i);
void visitBranchInst(BranchInst *i);
void visitCondBranchInst(CondBranchInst *i);
void visitReturnInst(ReturnInst *i);
void visitThrowInst(ThrowInst *i);
void visitThrowAddrInst(ThrowAddrInst *i);
void visitUnwindInst(UnwindInst *i);
void visitYieldInst(YieldInst *i);
void visitSwitchValueInst(SwitchValueInst *i);
void visitSwitchEnumInst(SwitchEnumInst *i);
void visitSwitchEnumAddrInst(SwitchEnumAddrInst *i);
void visitDynamicMethodBranchInst(DynamicMethodBranchInst *i);
void visitCheckedCastBranchInst(CheckedCastBranchInst *i);
void visitCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *i);
void visitGetAsyncContinuationInst(GetAsyncContinuationInst *i);
void visitGetAsyncContinuationAddrInst(GetAsyncContinuationAddrInst *i);
void visitAwaitAsyncContinuationInst(AwaitAsyncContinuationInst *i);
void visitHopToExecutorInst(HopToExecutorInst *i);
void visitExtractExecutorInst(ExtractExecutorInst *i) {
llvm_unreachable("extract_executor should never be seen in Lowered SIL");
}
void visitFunctionExtractIsolationInst(FunctionExtractIsolationInst *i);
void visitKeyPathInst(KeyPathInst *I);
void visitDifferentiableFunctionInst(DifferentiableFunctionInst *i);
void visitLinearFunctionInst(LinearFunctionInst *i);
void
visitDifferentiableFunctionExtractInst(DifferentiableFunctionExtractInst *i);
void visitLinearFunctionExtractInst(LinearFunctionExtractInst *i);
void visitDifferentiabilityWitnessFunctionInst(
DifferentiabilityWitnessFunctionInst *i);
void visitSpecifyTestInst(SpecifyTestInst *i) {
llvm_unreachable("test-only instruction in Lowered SIL?!");
}
void visitHasSymbolInst(HasSymbolInst *i);
void visitWeakCopyValueInst(swift::WeakCopyValueInst *i);
void visitUnownedCopyValueInst(swift::UnownedCopyValueInst *i);
#define LOADABLE_REF_STORAGE_HELPER(Name) \
void visitRefTo##Name##Inst(RefTo##Name##Inst *i); \
void visit##Name##ToRefInst(Name##ToRefInst *i);
#define COPYABLE_STORAGE_HELPER(Name) \
void visitStrongCopy##Name##ValueInst(StrongCopy##Name##ValueInst *i);
#define LOADABLE_STORAGE_HELPER(Name) \
void visitLoad##Name##Inst(Load##Name##Inst *i); \
void visitStore##Name##Inst(Store##Name##Inst *i);
#define NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
LOADABLE_STORAGE_HELPER(Name) \
COPYABLE_STORAGE_HELPER(Name)
#define RETAINABLE_STORAGE_HELPER(Name) \
void visitStrongRetain##Name##Inst(StrongRetain##Name##Inst *i); \
void visit##Name##RetainInst(Name##RetainInst *i); \
void visit##Name##ReleaseInst(Name##ReleaseInst *i);
#define ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
LOADABLE_REF_STORAGE_HELPER(Name) \
RETAINABLE_STORAGE_HELPER(Name)
#define SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
LOADABLE_STORAGE_HELPER(Name) \
COPYABLE_STORAGE_HELPER(Name) \
LOADABLE_REF_STORAGE_HELPER(Name) \
RETAINABLE_STORAGE_HELPER(Name)
#define UNCHECKED_REF_STORAGE(Name, ...) \
COPYABLE_STORAGE_HELPER(Name) \
LOADABLE_REF_STORAGE_HELPER(Name)
#include "swift/AST/ReferenceStorage.def"
#undef LOADABLE_REF_STORAGE_HELPER
#undef LOADABLE_STORAGE_HELPER
#undef COPYABLE_STORAGE_HELPER
#undef RETAINABLE_STORAGE_HELPER
};
} // end anonymous namespace
static AsyncContextLayout getAsyncContextLayout(IRGenSILFunction &IGF) {
return getAsyncContextLayout(IGF.IGM, IGF.CurSILFn);
}
namespace {
class SyncEntryPointArgumentEmission
: public virtual EntryPointArgumentEmission {
protected:
IRGenSILFunction &IGF;
SILBasicBlock &entry;
Explosion &allParamValues;
SyncEntryPointArgumentEmission(IRGenSILFunction &IGF, SILBasicBlock &entry,
Explosion &allParamValues)
: IGF(IGF), entry(entry), allParamValues(allParamValues){};
public:
bool requiresIndirectResult(SILType retType) override {
auto &schema =
IGF.IGM.getTypeInfo(retType).nativeReturnValueSchema(IGF.IGM);
return schema.requiresIndirect();
}
llvm::Value *getIndirectResultForFormallyDirectResult() override {
return allParamValues.claimNext();
}
llvm::Value *getIndirectResult(unsigned index) override {
return allParamValues.claimNext();
};
llvm::Value *
getNextPolymorphicParameter(GenericRequirement &requirement) override {
return allParamValues.claimNext();
}
llvm::Value *getNextPolymorphicParameterAsMetadata() override {
return allParamValues.claimNext();
}
};
class AsyncEntryPointArgumentEmission
: public virtual EntryPointArgumentEmission {
protected:
IRGenSILFunction &IGF;
SILBasicBlock &entry;
Explosion &allParamValues;
AsyncEntryPointArgumentEmission(IRGenSILFunction &IGF, SILBasicBlock &entry,
Explosion &allParamValues)
: IGF(IGF), entry(entry), allParamValues(allParamValues){};
};
class COrObjCEntryPointArgumentEmission
: public virtual EntryPointArgumentEmission {};
class SyncCOrObjCEntryPointArgumentEmission
: public SyncEntryPointArgumentEmission,
public COrObjCEntryPointArgumentEmission {
public:
SyncCOrObjCEntryPointArgumentEmission(IRGenSILFunction &_IGF,
SILBasicBlock &_entry,
Explosion &_allParamValues)
: SyncEntryPointArgumentEmission(_IGF, _entry, _allParamValues){};
};
class SyncNativeCCEntryPointArgumentEmission final
: public NativeCCEntryPointArgumentEmission,
public SyncEntryPointArgumentEmission {
public:
SyncNativeCCEntryPointArgumentEmission(IRGenSILFunction &_IGF,
SILBasicBlock &_entry,
Explosion &_allParamValues)
: SyncEntryPointArgumentEmission(_IGF, _entry, _allParamValues){};
llvm::Value *getCallerErrorResultArgument() override {
return allParamValues.takeLast();
}
llvm::Value *getCallerTypedErrorResultArgument() override {
return allParamValues.takeLast();
}
void mapAsyncParameters() override{/* nothing to map*/};
llvm::Value *getContext() override { return allParamValues.takeLast(); }
Explosion getArgumentExplosion(unsigned index, unsigned size) override {
assert(size > 0);
Explosion result;
allParamValues.transferInto(result, size);
return result;
}
llvm::Value *getSelfWitnessTable() override {
return allParamValues.takeLast();
}
llvm::Value *getSelfMetadata() override { return allParamValues.takeLast(); }
llvm::Value *getCoroutineBuffer() override {
return allParamValues.claimNext();
}
Explosion
explosionForObject(IRGenFunction &IGF, unsigned index, SILArgument *param,
SILType paramTy, const LoadableTypeInfo &loadableParamTI,
const LoadableTypeInfo &loadableArgTI,
std::function<Explosion(unsigned index, unsigned size)>
explosionForArgument) override {
Explosion paramValues;
// If the explosion must be passed indirectly, load the value from the
// indirect address.
auto &nativeSchema = loadableArgTI.nativeParameterValueSchema(IGF.IGM);
if (nativeSchema.requiresIndirect()) {
Explosion paramExplosion = explosionForArgument(index, 1);
Address paramAddr =
loadableParamTI.getAddressForPointer(paramExplosion.claimNext());
if (loadableParamTI.getStorageType() != loadableArgTI.getStorageType())
paramAddr =
loadableArgTI.getAddressForPointer(IGF.Builder.CreateBitCast(
paramAddr.getAddress(),
loadableArgTI.getStorageType()->getPointerTo()));
loadableArgTI.loadAsTake(IGF, paramAddr, paramValues);
} else {
if (!nativeSchema.empty()) {
// Otherwise, we map from the native convention to the type's explosion
// schema.
Explosion nativeParam;
unsigned size = nativeSchema.size();
Explosion paramExplosion = explosionForArgument(index, size);
paramExplosion.transferInto(nativeParam, size);
paramValues = nativeSchema.mapFromNative(IGF.IGM, IGF, nativeParam,
param->getType());
} else {
assert(loadableParamTI.getSchema().empty());
}
}
return paramValues;
};
public:
using SyncEntryPointArgumentEmission::requiresIndirectResult;
using SyncEntryPointArgumentEmission::getIndirectResultForFormallyDirectResult;
using SyncEntryPointArgumentEmission::getIndirectResult;
using SyncEntryPointArgumentEmission::getNextPolymorphicParameterAsMetadata;
using SyncEntryPointArgumentEmission::getNextPolymorphicParameter;
};
class AsyncNativeCCEntryPointArgumentEmission final
: public NativeCCEntryPointArgumentEmission,
public AsyncEntryPointArgumentEmission {
llvm::Value *context = nullptr;
/*const*/ AsyncContextLayout layout;
Address dataAddr;
Explosion loadExplosion(ElementLayout layout) {
Address addr = layout.project(IGF, dataAddr, /*offsets*/ std::nullopt);
auto &ti = cast<LoadableTypeInfo>(layout.getType());
Explosion explosion;
ti.loadAsTake(IGF, addr, explosion);
return explosion;
}
llvm::Value *loadValue(ElementLayout layout) {
auto explosion = loadExplosion(layout);
return explosion.claimNext();
}
public:
AsyncNativeCCEntryPointArgumentEmission(IRGenSILFunction &IGF,
SILBasicBlock &entry,
Explosion &allParamValues)
: AsyncEntryPointArgumentEmission(IGF, entry, allParamValues),
layout(getAsyncContextLayout(IGF)){};
void mapAsyncParameters() override {
context = allParamValues.claimNext();
dataAddr = layout.emitCastTo(IGF, context);
};
llvm::Value *getCallerErrorResultArgument() override {
llvm_unreachable("should not be used");
}
llvm::Value *getCallerTypedErrorResultArgument() override {
return allParamValues.takeLast();
}
llvm::Value *getContext() override { return allParamValues.takeLast(); }
Explosion getArgumentExplosion(unsigned index, unsigned size) override {
assert(size > 0);
Explosion result;
allParamValues.transferInto(result, size);
return result;
}
bool requiresIndirectResult(SILType retType) override {
auto &schema =
IGF.IGM.getTypeInfo(retType).nativeReturnValueSchema(IGF.IGM);
return schema.requiresIndirect();
}
llvm::Value *getIndirectResultForFormallyDirectResult() override {
return allParamValues.claimNext();
}
llvm::Value *
getNextPolymorphicParameter(GenericRequirement &requirement) override {
return allParamValues.claimNext();
}
llvm::Value *getNextPolymorphicParameterAsMetadata() override {
return allParamValues.claimNext();
}
llvm::Value *getIndirectResult(unsigned index) override {
return allParamValues.claimNext();
};
llvm::Value *getSelfWitnessTable() override {
return allParamValues.takeLast();
}
llvm::Value *getSelfMetadata() override { return allParamValues.takeLast(); }
llvm::Value *getCoroutineBuffer() override {
llvm_unreachable(
"async functions do not use a fixed size coroutine buffer");
}
Explosion
explosionForObject(IRGenFunction &IGF, unsigned index, SILArgument *param,
SILType paramTy, const LoadableTypeInfo &loadableParamTI,
const LoadableTypeInfo &loadableArgTI,
std::function<Explosion(unsigned index, unsigned size)>
explosionForArgument) override {
Explosion paramValues;
// If the explosion must be passed indirectly, load the value from the
// indirect address.
auto &nativeSchema = loadableArgTI.nativeParameterValueSchema(IGF.IGM);
if (nativeSchema.requiresIndirect()) {
Explosion paramExplosion = explosionForArgument(index, 1);
Address paramAddr =
loadableParamTI.getAddressForPointer(paramExplosion.claimNext());
if (loadableParamTI.getStorageType() != loadableArgTI.getStorageType())
paramAddr =
loadableArgTI.getAddressForPointer(IGF.Builder.CreateBitCast(
paramAddr.getAddress(),
loadableArgTI.getStorageType()->getPointerTo()));
loadableArgTI.loadAsTake(IGF, paramAddr, paramValues);
} else {
if (!nativeSchema.empty()) {
// Otherwise, we map from the native convention to the type's explosion
// schema.
Explosion nativeParam;
unsigned size = nativeSchema.size();
Explosion paramExplosion = explosionForArgument(index, size);
paramExplosion.transferInto(nativeParam, size);
paramValues = nativeSchema.mapFromNative(IGF.IGM, IGF, nativeParam,
param->getType());
} else {
assert(loadableParamTI.getSchema().empty());
}
}
return paramValues;
};
};
std::unique_ptr<NativeCCEntryPointArgumentEmission>
getNativeCCEntryPointArgumentEmission(IRGenSILFunction &IGF,
SILBasicBlock &entry,
Explosion &allParamValues) {
if (IGF.CurSILFn->isAsync()) {
return std::make_unique<AsyncNativeCCEntryPointArgumentEmission>(
IGF, entry, allParamValues);
} else {
return std::make_unique<SyncNativeCCEntryPointArgumentEmission>(
IGF, entry, allParamValues);
}
}
std::unique_ptr<COrObjCEntryPointArgumentEmission>
getCOrObjCEntryPointArgumentEmission(IRGenSILFunction &IGF,
SILBasicBlock &entry,
Explosion &allParamValues) {
if (IGF.CurSILFn->isAsync()) {
llvm_unreachable("unsupported");
} else {
return std::make_unique<SyncCOrObjCEntryPointArgumentEmission>(
IGF, entry, allParamValues);
}
}
} // end anonymous namespace
void LoweredValue::getExplosion(IRGenFunction &IGF, SILType type,
Explosion &ex) const {
switch (kind) {
case Kind::StackAddress:
ex.add(Storage.get<StackAddress>(kind).getAddressPointer());
return;
case Kind::DynamicallyEnforcedAddress:
case Kind::CoroutineState:
llvm_unreachable("not a value");
case Kind::ExplosionVector:
ex.add(Storage.get<ExplosionVector>(kind));
return;
case Kind::SingletonExplosion:
ex.add(Storage.get<SingletonExplosion>(kind));
return;
case Kind::EmptyExplosion:
return;
case Kind::OwnedAddress:
ex.add(Storage.get<OwnedAddress>(kind).getOwner());
return;
case Kind::FunctionPointer:
ex.add(Storage.get<FunctionPointer>(kind)
.getExplosionValue(IGF, type.castTo<SILFunctionType>()));
return;
case Kind::ObjCMethod:
ex.add(Storage.get<ObjCMethod>(kind).getExplosionValue(IGF));
return;
}
llvm_unreachable("bad kind");
}
llvm::Value *LoweredValue::getSingletonExplosion(IRGenFunction &IGF,
SILType type) const {
switch (kind) {
case Kind::StackAddress:
case Kind::DynamicallyEnforcedAddress:
case Kind::CoroutineState:
llvm_unreachable("not a value");
case Kind::EmptyExplosion:
case Kind::ExplosionVector:
llvm_unreachable("not a singleton explosion");
case Kind::SingletonExplosion:
return Storage.get<SingletonExplosion>(kind);
case Kind::OwnedAddress:
return Storage.get<OwnedAddress>(kind).getOwner();
case Kind::FunctionPointer:
return Storage.get<FunctionPointer>(kind)
.getExplosionValue(IGF, type.castTo<SILFunctionType>());
case Kind::ObjCMethod:
return Storage.get<ObjCMethod>(kind).getExplosionValue(IGF);
}
llvm_unreachable("bad kind");
}
IRGenSILFunction::IRGenSILFunction(IRGenModule &IGM, SILFunction *f)
: IRGenFunction(IGM,
IGM.getAddrOfSILFunction(f, ForDefinition,
f->isDynamicallyReplaceable()),
f->isPerformanceConstraint(),
f->getOptimizationMode(), f->getDebugScope(),
f->getLocation()),
CurSILFn(f) {
// Apply sanitizer attributes to the function.
// TODO: Check if the function is supposed to be excluded from ASan either by
// being in the external file or via annotations.
if (IGM.IRGen.Opts.Sanitizers & SanitizerKind::Address)
CurFn->addFnAttr(llvm::Attribute::SanitizeAddress);
if (IGM.IRGen.Opts.Sanitizers & SanitizerKind::Thread) {
auto declContext = f->getDeclContext();
if (isa_and_nonnull<DestructorDecl>(declContext)) {
// Do not report races in deinit and anything called from it
// because TSan does not observe synchronization between retain
// count dropping to '0' and the object deinitialization.
CurFn->addFnAttr("sanitize_thread_no_checking_at_run_time");
} else {
CurFn->addFnAttr(llvm::Attribute::SanitizeThread);
}
}
// If we have @_semantics("use_frame_pointer"), force the use of a
// frame pointer for this function.
if (f->hasSemanticsAttr(semantics::USE_FRAME_POINTER))
CurFn->addFnAttr("frame-pointer", "all");
// Disable inlining of coroutine functions until we split.
if (f->getLoweredFunctionType()->isCoroutine()) {
CurFn->addFnAttr(llvm::Attribute::NoInline);
}
// Mark as 'nounwind' to avoid referencing exception personality symbols, this
// is okay even with C++ interop on because the landinpads are trapping.
if (IGM.Context.LangOpts.hasFeature(Feature::Embedded)) {
CurFn->addFnAttr(llvm::Attribute::NoUnwind);
}
auto optMode = f->getOptimizationMode();
if (optMode != OptimizationMode::NotSet &&
optMode != f->getModule().getOptions().OptMode) {
if (optMode == OptimizationMode::NoOptimization) {
CurFn->addFnAttr(llvm::Attribute::OptimizeNone);
// LLVM requires noinline attribute along with optnone
CurFn->addFnAttr(llvm::Attribute::NoInline);
}
if (optMode == OptimizationMode::ForSize) {
CurFn->addFnAttr(llvm::Attribute::OptimizeForSize);
}
// LLVM doesn't have an attribute for -O
}
// Emit the thunk that calls the previous implementation if this is a dynamic
// replacement.
if (f->getDynamicallyReplacedFunction()) {
IGM.emitDynamicReplacementOriginalFunctionThunk(f);
}
if (f->isDynamicallyReplaceable() && !f->isAsync()) {
IGM.createReplaceableProlog(*this, f);
}
}
IRGenSILFunction::~IRGenSILFunction() {
assert(Builder.hasPostTerminatorIP() && "did not terminate BB?!");
// Emit the fail BB if we have one.
if (!FailBBs.empty())
emitFailBB();
LLVM_DEBUG(CurFn->print(llvm::dbgs()));
}
template<typename ValueVector>
static void emitPHINodesForType(IRGenSILFunction &IGF, SILType type,
const TypeInfo &ti, unsigned predecessors,
ValueVector &phis) {
if (type.isAddress()) {
phis.push_back(IGF.Builder.CreatePHI(ti.getStorageType()->getPointerTo(),
predecessors));
} else {
// PHIs are always emitted with maximal explosion.
ExplosionSchema schema = ti.getSchema();
for (auto &elt : schema) {
if (elt.isScalar())
phis.push_back(
IGF.Builder.CreatePHI(elt.getScalarType(), predecessors));
else
phis.push_back(
IGF.Builder.CreatePHI(elt.getAggregateType()->getPointerTo(),
predecessors));
}
}
}
static PHINodeVector
emitPHINodesForBBArgs(IRGenSILFunction &IGF,
SILBasicBlock *silBB,
llvm::BasicBlock *llBB) {
PHINodeVector phis;
unsigned predecessors = std::distance(silBB->pred_begin(), silBB->pred_end());
IGF.Builder.SetInsertPoint(llBB);
if (IGF.IGM.DebugInfo) {
// Use the location of the first instruction in the basic block
// for the φ-nodes.
if (!silBB->empty()) {
SILInstruction &I = *silBB->begin();
auto DS = I.getDebugScope();
assert(DS);
IGF.IGM.DebugInfo->setCurrentLoc(IGF.Builder, DS, I.getLoc());
}
}
for (SILArgument *arg : make_range(silBB->args_begin(), silBB->args_end())) {
size_t first = phis.size();
const TypeInfo &ti = IGF.getTypeInfo(arg->getType());
emitPHINodesForType(IGF, arg->getType(), ti, predecessors, phis);
if (arg->getType().isAddress()) {
IGF.setLoweredAddress(arg,
ti.getAddressForPointer(phis.back()));
} else {
Explosion argValue;
for (llvm::PHINode *phi :
swift::make_range(phis.begin()+first, phis.end()))
argValue.add(phi);
IGF.setLoweredExplosion(arg, argValue);
}
}
// Since we return to the entry of the function, reset the location.
if (IGF.IGM.DebugInfo)
IGF.IGM.DebugInfo->clearLoc(IGF.Builder);
return phis;
}
static void addIncomingExplosionToPHINodes(IRGenSILFunction &IGF,
LoweredBB &lbb,
unsigned &phiIndex,
Explosion &argValue);
// TODO: Handle this during SIL AddressLowering.
static ArrayRef<SILArgument *> emitEntryPointIndirectReturn(
EntryPointArgumentEmission &emission, IRGenSILFunction &IGF,
SILBasicBlock *entry, CanSILFunctionType funcTy,
llvm::function_ref<bool(SILType)> requiresIndirectResult) {
// Map an indirect return for a type SIL considers loadable but still
// requires an indirect return at the IR level.
SILFunctionConventions fnConv(funcTy, IGF.getSILModule());
SILType directResultType = IGF.CurSILFn->mapTypeIntoContext(
fnConv.getSILResultType(IGF.IGM.getMaximalTypeExpansionContext()));
if (requiresIndirectResult(directResultType)) {
auto ¶mTI = IGF.IGM.getTypeInfo(directResultType);
auto &retTI =
IGF.IGM.getTypeInfo(IGF.getLoweredTypeInContext(directResultType));
auto ptr = emission.getIndirectResultForFormallyDirectResult();
if (paramTI.getStorageType() != retTI.getStorageType()) {
assert(directResultType.getASTType()->hasOpaqueArchetype());
ptr = IGF.Builder.CreateBitCast(ptr,
retTI.getStorageType()->getPointerTo());
}
IGF.IndirectReturn = retTI.getAddressForPointer(ptr);
}
auto bbargs = entry->getArguments();
// Map the indirect returns if present.
unsigned numIndirectResults = fnConv.getNumIndirectSILResults();
unsigned idx = 0;
for (auto indirectResultType : fnConv.getIndirectSILResultTypes(
IGF.IGM.getMaximalTypeExpansionContext())) {
SILArgument *ret = bbargs[idx];
auto inContextResultType =
IGF.CurSILFn->mapTypeIntoContext(indirectResultType);
auto &retTI = IGF.IGM.getTypeInfo(ret->getType());
auto ¶mTI = IGF.IGM.getTypeInfo(inContextResultType);
// The parameter's type might be different due to looking through opaque
// archetypes or for non-fixed types (llvm likes to do type based analysis
// for sret arguments and so we use opaque storage types for them).
llvm::Value *ptr = emission.getIndirectResult(idx);
bool isFixedSize = isa<FixedTypeInfo>(paramTI);
if (paramTI.getStorageType() != retTI.getStorageType() || !isFixedSize) {
assert(!isFixedSize ||
inContextResultType.getASTType()->hasOpaqueArchetype());
ptr = IGF.Builder.CreateBitCast(ptr,
retTI.getStorageType()->getPointerTo());
}
auto addr = retTI.getAddressForPointer(ptr);
IGF.setLoweredAddress(ret, addr);
++idx;
}
assert(numIndirectResults == idx);
return bbargs.slice(numIndirectResults);
}
template <typename ExplosionForArgument>
static void bindParameter(IRGenSILFunction &IGF,
NativeCCEntryPointArgumentEmission &emission,
unsigned index, SILArgument *param, SILType paramTy,
ExplosionForArgument explosionForArgument) {
// Pull out the parameter value and its formal type.
auto ¶mTI = IGF.getTypeInfo(IGF.CurSILFn->mapTypeIntoContext(paramTy));
auto &argTI = IGF.getTypeInfo(param->getType());
// If the SIL parameter isn't passed indirectly, we need to map it
// to an explosion.
if (param->getType().isObject()) {
auto &loadableParamTI = cast<LoadableTypeInfo>(paramTI);
auto &loadableArgTI = cast<LoadableTypeInfo>(argTI);
auto paramValues =
emission.explosionForObject(IGF, index, param, paramTy, loadableParamTI,
loadableArgTI, explosionForArgument);
IGF.setLoweredExplosion(param, paramValues);
return;
}
// Okay, the type is passed indirectly in SIL, so we need to map
// it to an address.
// FIXME: that doesn't mean we should physically pass it
// indirectly at this resilience expansion. An @in or @in_guaranteed parameter
// could be passed by value in the right resilience domain.
Explosion paramExplosion = explosionForArgument(index, 1);
auto ptr = paramExplosion.claimNext();
if (paramTI.getStorageType() != argTI.getStorageType()) {
ptr =
IGF.Builder.CreateBitCast(ptr, argTI.getStorageType()->getPointerTo());
}
Address paramAddr = argTI.getAddressForPointer(ptr);
IGF.setLoweredAddress(param, paramAddr);
}
/// Emit entry point arguments for a SILFunction with the Swift calling
/// convention.
static void emitEntryPointArgumentsNativeCC(IRGenSILFunction &IGF,
SILBasicBlock *entry,
Explosion &allParamValues) {
auto emission =
getNativeCCEntryPointArgumentEmission(IGF, *entry, allParamValues);
auto funcTy = IGF.CurSILFn->getLoweredFunctionType();
// Map the indirect return if present.
ArrayRef<SILArgument *> params = emitEntryPointIndirectReturn(
*emission, IGF, entry, funcTy, [&](SILType retType) -> bool {
return emission->requiresIndirectResult(retType);
});
// Map the async context parameters if present.
emission->mapAsyncParameters();
// The witness method CC passes Self as a final argument.
WitnessMetadata witnessMetadata;
if (funcTy->getRepresentation() == SILFunctionTypeRepresentation::WitnessMethod) {
collectTrailingWitnessMetadata(IGF, *IGF.CurSILFn, *emission,
witnessMetadata);
}
// The coroutine context should be the first parameter.
switch (funcTy->getCoroutineKind()) {
case SILCoroutineKind::None:
break;
case SILCoroutineKind::YieldOnce:
emitYieldOnceCoroutineEntry(IGF, funcTy, *emission);
break;
case SILCoroutineKind::YieldMany:
emitYieldManyCoroutineEntry(IGF, funcTy, *emission);
break;
}
SILFunctionConventions fnConv(funcTy, IGF.getSILModule());
if (funcTy->isAsync()) {
emitAsyncFunctionEntry(IGF, getAsyncContextLayout(IGF.IGM, IGF.CurSILFn),
LinkEntity::forSILFunction(IGF.CurSILFn),
Signature::forAsyncEntry(
IGF.IGM, funcTy,
FunctionPointerKind::defaultAsync())
.getAsyncContextIndex());
if (IGF.CurSILFn->isDynamicallyReplaceable()) {
IGF.IGM.createReplaceableProlog(IGF, IGF.CurSILFn);
// Remap the entry block.
IGF.LoweredBBs[&*IGF.CurSILFn->begin()] = LoweredBB(IGF.Builder.GetInsertBlock(), {});
}
}
// Bind the error result by popping it off the parameter list.
if (funcTy->hasErrorResult()) {
auto errorType =
fnConv.getSILErrorType(IGF.IGM.getMaximalTypeExpansionContext());
auto inContextErrorType =
IGF.CurSILFn->mapTypeIntoContext(errorType);
bool isTypedError = fnConv.isTypedError();
bool isIndirectError = fnConv.hasIndirectSILErrorResults();
if (isTypedError && !isIndirectError) {
auto &errorTI = cast<FixedTypeInfo>(IGF.getTypeInfo(errorType));
IGF.setCallerTypedErrorResultSlot(Address(
emission->getCallerTypedErrorResultArgument(),
errorTI.getStorageType(),
errorTI.getFixedAlignment()));
} else if (isTypedError && isIndirectError) {
auto &errorTI = IGF.getTypeInfo(inContextErrorType);
auto ptr = emission->getCallerTypedErrorResultArgument();
auto addr = errorTI.getAddressForPointer(ptr);
auto indirectErrorArgIdx = fnConv.getNumIndirectSILResults();
auto errorArg = entry->getArguments()[indirectErrorArgIdx];
IGF.setLoweredAddress(errorArg, addr);
params = params.slice(1);
}
if (!funcTy->isAsync()) {
auto &errorTI = IGF.getTypeInfo(inContextErrorType);
IGF.setCallerErrorResultSlot(
Address(emission->getCallerErrorResultArgument(),
isTypedError ? IGF.IGM.Int8PtrTy :
cast<FixedTypeInfo>(errorTI).getStorageType(),
IGF.IGM.getPointerAlignment()));
}
}
SILFunctionConventions conv(funcTy, IGF.getSILModule());
// The 'self' argument might be in the context position, which is
// now the end of the parameter list. Bind it now.
if (hasSelfContextParameter(funcTy)) {
SILArgument *selfParam = params.back();
params = params.drop_back();
bindParameter(
IGF, *emission, 0, selfParam,
conv.getSILArgumentType(conv.getNumSILArguments() - 1,
IGF.IGM.getMaximalTypeExpansionContext()),
[&](unsigned startIndex, unsigned size) {
assert(size == 1);
Explosion selfTemp;
selfTemp.add(emission->getContext());
return selfTemp;
});
// Even if we don't have a 'self', if we have an error result, we
// should have a placeholder argument here.
//
// For async functions, there will be a thick context within the async
// context whenever there is no self context.
} else if ((!funcTy->isAsync() && funcTy->hasErrorResult()) ||
funcTy->getRepresentation() ==
SILFunctionTypeRepresentation::Thick) {
llvm::Value *contextPtr = emission->getContext();
(void)contextPtr;
assert(contextPtr->getType() == IGF.IGM.RefCountedPtrTy);
} else if (isKeyPathAccessorRepresentation(funcTy->getRepresentation())) {
auto genericEnv = IGF.CurSILFn->getGenericEnvironment();
SmallVector<GenericRequirement, 4> requirements;
CanGenericSignature genericSig;
if (genericEnv) {
genericSig = IGF.CurSILFn->getGenericSignature().getCanonicalSignature();
enumerateGenericSignatureRequirements(genericSig,
[&](GenericRequirement reqt) { requirements.push_back(reqt); });
}
unsigned baseIndexOfIndicesArguments;
unsigned numberOfIndicesArguments;
switch (funcTy->getRepresentation()) {
case SILFunctionTypeRepresentation::KeyPathAccessorGetter:
baseIndexOfIndicesArguments = 1;
numberOfIndicesArguments = 1;
break;
case SILFunctionTypeRepresentation::KeyPathAccessorSetter:
baseIndexOfIndicesArguments = 2;
numberOfIndicesArguments = 1;
break;
case SILFunctionTypeRepresentation::KeyPathAccessorEquals:
baseIndexOfIndicesArguments = 0;
numberOfIndicesArguments = 2;
break;
case SILFunctionTypeRepresentation::KeyPathAccessorHash:
baseIndexOfIndicesArguments = 0;
numberOfIndicesArguments = 1;
break;
default:
llvm_unreachable("unhandled keypath accessor representation");
}
llvm::Value *componentArgsBufSize = allParamValues.takeLast();
llvm::Value *componentArgsBuf;
bool hasSubscriptIndices = params.size() > baseIndexOfIndicesArguments;
// Bind the indices arguments if present.
if (hasSubscriptIndices) {
assert(baseIndexOfIndicesArguments + numberOfIndicesArguments == params.size());
for (unsigned i = 0; i < numberOfIndicesArguments; ++i) {
SILArgument *indicesArg = params[baseIndexOfIndicesArguments + i];
componentArgsBuf = allParamValues.takeLast();
bindParameter(
IGF, *emission, baseIndexOfIndicesArguments + i, indicesArg,
conv.getSILArgumentType(baseIndexOfIndicesArguments + i,
IGF.IGM.getMaximalTypeExpansionContext()),
[&](unsigned startIndex, unsigned size) {
assert(size == 1);
Explosion indicesTemp;
auto castedIndices = IGF.Builder.CreateBitCast(
componentArgsBuf, IGF.getTypeInfo(indicesArg->getType())
.getStorageType()
->getPointerTo());
indicesTemp.add(castedIndices);
return indicesTemp;
});
}
params = params.drop_back(numberOfIndicesArguments);
} else {
// Discard the trailing unbound LLVM IR arguments.
for (unsigned i = 0; i < numberOfIndicesArguments; ++i) {
componentArgsBuf = allParamValues.takeLast();
}
}
bindPolymorphicArgumentsFromComponentIndices(
IGF, genericEnv, requirements, componentArgsBuf, componentArgsBufSize,
hasSubscriptIndices);
}
// Map the remaining SIL parameters to LLVM parameters.
unsigned i = 0;
for (SILArgument *param : params) {
auto argIdx = conv.getSILArgIndexOfFirstParam() + i;
bindParameter(IGF, *emission, i, param,
conv.getSILArgumentType(
argIdx, IGF.IGM.getMaximalTypeExpansionContext()),
[&](unsigned index, unsigned size) {
return emission->getArgumentExplosion(index, size);
});
++i;
}
// Bind polymorphic arguments. This can only be done after binding
// all the value parameters.
// Polymorphic parameters in KeyPath accessors are already bound above
if (hasPolymorphicParameters(funcTy) &&
!isKeyPathAccessorRepresentation(funcTy->getRepresentation())) {
emitPolymorphicParameters(
IGF, *IGF.CurSILFn, *emission, &witnessMetadata,
[&](unsigned paramIndex) -> llvm::Value * {
SILValue parameter =
IGF.CurSILFn->getArgumentsWithoutIndirectResults()[paramIndex];
return IGF.getLoweredSingletonExplosion(parameter);
});
}
assert(allParamValues.empty() && "didn't claim all parameters!");
}
/// Emit entry point arguments for the parameters of a C function, or the
/// method parameters of an ObjC method.
static void emitEntryPointArgumentsCOrObjC(IRGenSILFunction &IGF,
SILBasicBlock *entry,
Explosion ¶ms,
CanSILFunctionType funcTy) {
auto emission = getCOrObjCEntryPointArgumentEmission(IGF, *entry, params);
// First, lower the method type.
ForeignFunctionInfo foreignInfo = IGF.IGM.getForeignFunctionInfo(funcTy);
assert(foreignInfo.ClangInfo);
auto &FI = *foreignInfo.ClangInfo;
// Okay, start processing the parameters explosion.
// First, claim all the indirect results.
ArrayRef<SILArgument *> args = emitEntryPointIndirectReturn(
*emission, IGF, entry, funcTy, [&](SILType directResultType) -> bool {
// Indirect at the IR level but direct at the SIL level.
return FI.getReturnInfo().isIndirect() &&
!funcTy->hasIndirectFormalResults();
});
unsigned nextArgTyIdx = 0;
// Handle the arguments of an ObjC method.
if (IGF.CurSILFn->getRepresentation() ==
SILFunctionTypeRepresentation::ObjCMethod) {
// Claim the self argument from the end of the formal arguments.
SILArgument *selfArg = args.back();
args = args.slice(0, args.size() - 1);
// Set the lowered explosion for the self argument.
auto &selfTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(selfArg->getType()));
auto selfSchema = selfTI.getSchema();
assert(selfSchema.size() == 1 && "Expected self to be a single element!");
auto *selfValue = params.claimNext();
auto *bodyType = selfSchema.begin()->getScalarType();
if (selfValue->getType() != bodyType)
selfValue = IGF.coerceValue(selfValue, bodyType, IGF.IGM.DataLayout);
Explosion self;
self.add(selfValue);
IGF.setLoweredExplosion(selfArg, self);
// Discard the implicit _cmd argument.
params.claimNext();
// We've handled the self and _cmd arguments, so when we deal with
// generating explosions for the remaining arguments we can skip
// these.
nextArgTyIdx = 2;
}
assert(args.size() == (FI.arg_size() - nextArgTyIdx) &&
"Number of arguments not equal to number of argument types!");
// Generate lowered explosions for each explicit argument.
for (auto i : indices(args)) {
SILArgument *arg = args[i];
auto argTyIdx = i + nextArgTyIdx;
auto &argTI = IGF.getTypeInfo(arg->getType());
// Bitcast indirect argument pointers to the right storage type.
if (arg->getType().isAddress()) {
llvm::Value *ptr = params.claimNext();
ptr = IGF.Builder.CreateBitCast(ptr,
argTI.getStorageType()->getPointerTo());
IGF.setLoweredAddress(arg, Address(ptr, argTI.getStorageType(),
argTI.getBestKnownAlignment()));
continue;
}
auto &loadableArgTI = cast<LoadableTypeInfo>(argTI);
Explosion argExplosion;
emitForeignParameter(IGF, params, foreignInfo, argTyIdx, arg->getType(),
loadableArgTI, argExplosion, false);
IGF.setLoweredExplosion(arg, argExplosion);
}
assert(params.empty() && "didn't claim all parameters!");
// emitPolymorphicParameters() may create function calls, so we need
// to initialize the debug location here.
ArtificialLocation Loc(IGF.getDebugScope(), IGF.IGM.DebugInfo.get(),
IGF.Builder);
// Bind polymorphic arguments. This can only be done after binding
// all the value parameters, and must be done even for non-polymorphic
// functions because of imported Objective-C generics.
emitPolymorphicParameters(
IGF, *IGF.CurSILFn, *emission, nullptr,
[&](unsigned paramIndex) -> llvm::Value * {
SILValue parameter = entry->getArguments()[paramIndex];
return IGF.getLoweredSingletonExplosion(parameter);
});
}
/// Get metadata for the dynamic Self type if we have it.
static void emitDynamicSelfMetadata(IRGenSILFunction &IGF) {
if (!IGF.CurSILFn->hasDynamicSelfMetadata())
return;
const SILArgument *selfArg = IGF.CurSILFn->getDynamicSelfMetadata();
auto selfTy = selfArg->getType().getASTType();
CanMetatypeType metaTy =
dyn_cast<MetatypeType>(selfTy);
IRGenFunction::DynamicSelfKind selfKind;
if (!metaTy)
selfKind = IRGenFunction::ObjectReference;
else {
selfTy = metaTy.getInstanceType();
switch (metaTy->getRepresentation()) {
case MetatypeRepresentation::Thin:
assert(selfTy.isForeignReferenceType() &&
"Only foreign reference metatypes are allowed to be thin");
selfKind = IRGenFunction::ObjectReference;
break;
case MetatypeRepresentation::Thick:
selfKind = IRGenFunction::SwiftMetatype;
break;
case MetatypeRepresentation::ObjC:
selfKind = IRGenFunction::ObjCMetatype;
break;
}
}
llvm::Value *value = IGF.getLoweredExplosion(selfArg).claimNext();
if (auto dynSelfTy = dyn_cast<DynamicSelfType>(selfTy))
selfTy = dynSelfTy.getSelfType();
// Specify the exact Self type if we know it, either because the class
// is final, or because the function we're emitting is a method with the
// [exact_self_class] attribute set on it during the SIL pipeline.
bool isExact = selfTy->getClassOrBoundGenericClass()->isFinal()
|| IGF.CurSILFn->isExactSelfClass();
IGF.setDynamicSelfMetadata(selfTy, isExact, value, selfKind);
}
/// Emit the definition for the given SIL constant.
void IRGenModule::emitSILFunction(SILFunction *f) {
if (f->isExternalDeclaration())
return;
if (Context.LangOpts.hasFeature(Feature::Embedded) &&
f->getLoweredFunctionType()->isPolymorphic())
return;
// Do not emit bodies of public_external or package_external functions.
if (hasPublicOrPackageVisibility(f->getLinkage(),
f->getASTContext().SILOpts.EnableSerializePackage) &&
f->isAvailableExternally())
return;
PrettyStackTraceSILFunction stackTrace("emitting IR", f);
IRGenSILFunction(*this, f).emitSILFunction();
}
void IRGenSILFunction::emitSILFunction() {
LLVM_DEBUG(llvm::dbgs() << "emitting SIL function: ";
CurSILFn->printName(llvm::dbgs());
llvm::dbgs() << '\n';
CurSILFn->print(llvm::dbgs()));
assert(!CurSILFn->empty() && "function has no basic blocks?!");
if (CurSILFn->getDynamicallyReplacedFunction())
IGM.IRGen.addDynamicReplacement(CurSILFn);
if (CurSILFn->getLinkage() == SILLinkage::Shared) {
if (CurSILFn->markedAsAlwaysEmitIntoClient() &&
CurSILFn->hasOpaqueResultTypeWithAvailabilityConditions()) {
auto *V = CurSILFn->getLocation().castToASTNode<ValueDecl>();
auto *opaqueResult = V->getOpaqueResultTypeDecl();
// `@_alwaysEmitIntoClient` declaration with opaque result
// has to emit opaque type descriptor into client module
// when it has availability conditions because the underlying
// type in such cases is unknown until runtime.
IGM.maybeEmitOpaqueTypeDecl(opaqueResult);
}
}
auto funcTy = CurSILFn->getLoweredFunctionType();
bool isAsyncFn = funcTy->isAsync();
if (isAsyncFn && funcTy->getLanguage() == SILFunctionLanguage::Swift) {
emitAsyncFunctionPointer(IGM,
CurFn,
LinkEntity::forSILFunction(CurSILFn),
getAsyncContextLayout(*this).getSize());
}
if (isAsyncFn) {
IGM.noteSwiftAsyncFunctionDef();
}
if (CurSILFn->isRuntimeAccessible())
IGM.addAccessibleFunction(
AccessibleFunction::forSILFunction(IGM, CurSILFn));
// Emit distributed accessor, and mark the thunk as accessible
// by name at runtime through it.
if (CurSILFn->isDistributed() && CurSILFn->isThunk() == IsThunk) {
IGM.emitDistributedTargetAccessor(CurSILFn);
}
// Configure the dominance resolver.
// TODO: consider re-using a dom analysis from the PassManager
// TODO: consider using a cheaper analysis at -O0
setDominanceResolver([](IRGenFunction &IGF_,
DominancePoint activePoint,
DominancePoint dominatingPoint) -> bool {
IRGenSILFunction &IGF = static_cast<IRGenSILFunction&>(IGF_);
if (!IGF.Dominance) {
IGF.Dominance.reset(new DominanceInfo(IGF.CurSILFn));
}
return IGF.Dominance->dominates(dominatingPoint.as<SILBasicBlock>(),
activePoint.as<SILBasicBlock>());
});
if (IGM.DebugInfo)
IGM.DebugInfo->emitFunction(*CurSILFn, CurFn);
if (!CurSILFn->useStackForPackMetadata())
packMetadataStackPromotionDisabled = true;
// Map the entry bb.
LoweredBBs[&*CurSILFn->begin()] = LoweredBB(&CurFn->back(), {});
// Create LLVM basic blocks for the other bbs.
for (auto bi = std::next(CurSILFn->begin()), be = CurSILFn->end(); bi != be;
++bi) {
// FIXME: Use the SIL basic block's name.
llvm::BasicBlock *llBB = llvm::BasicBlock::Create(IGM.getLLVMContext());
auto phis = emitPHINodesForBBArgs(*this, &*bi, llBB);
CurFn->insert(CurFn->end(), llBB);
LoweredBBs[&*bi] = LoweredBB(llBB, std::move(phis));
}
auto entry = LoweredBBs.begin();
Builder.SetInsertPoint(entry->second.bb);
// Map the LLVM arguments to arguments on the entry point BB.
Explosion params = collectParameters();
switch (funcTy->getLanguage()) {
case SILFunctionLanguage::Swift:
emitEntryPointArgumentsNativeCC(*this, entry->first, params);
break;
case SILFunctionLanguage::C:
emitEntryPointArgumentsCOrObjC(*this, entry->first, params, funcTy);
break;
}
emitDynamicSelfMetadata(*this);
assert(params.empty() && "did not map all llvm params to SIL params?!");
#ifndef NDEBUG
for (auto &BB : *CurSILFn) {
for (auto &I : BB) {
if (auto *DPMI = dyn_cast<DeallocPackMetadataInst>(&I)) {
DynamicMetadataPackDeallocs[DPMI->getIntroducer()].push_back(DPMI);
continue;
}
if (auto *DSI = dyn_cast<DeallocStackInst>(&I)) {
auto *I = DSI->getOperand()->getDefiningInstruction();
if (!I)
continue;
auto *PAI = dyn_cast<PartialApplyInst>(I);
if (!PAI || !PAI->isOnStack())
continue;
DynamicMetadataPackDeallocs[PAI].push_back(DSI);
}
}
}
#endif
// It's really nice to be able to assume that we've already emitted
// all the values from dominating blocks --- it makes simple
// peepholing more powerful and allows us to avoid the need for
// nasty "forward-declared" values. We can do this by emitting
// blocks using a simple walk through the successor graph.
//
// We do want to preserve the original source order, but that's done
// by having previously added all the primary blocks to the LLVM
// function in their original order. As long as any secondary
// blocks are inserted after the current IP instead of at the end
// of the function, we're fine.
// Invariant: for every block in the work queue, we have visited all
// of its dominators.
// Start with the entry block, for which the invariant trivially holds.
BasicBlockWorklist workQueue(&*CurSILFn->getEntryBlock());
while (SILBasicBlock *bb = workQueue.pop()) {
// Emit the block.
visitSILBasicBlock(bb);
#ifndef NDEBUG
// Assert that the current IR IP (if valid) is immediately prior
// to the initial IR block for the next primary SIL block.
// It's not semantically necessary to preserve SIL block order,
// but we really should.
if (auto curBB = Builder.GetInsertBlock()) {
auto next = std::next(SILFunction::iterator(bb));
if (next != CurSILFn->end()) {
auto nextBB = LoweredBBs[&*next].bb;
assert(&*std::next(curBB->getIterator()) == nextBB &&
"lost source SIL order?");
}
}
#endif
// The immediate dominator of a successor of this block needn't be
// this block, but it has to be something which dominates this
// block. In either case, we've visited it.
//
// Therefore the invariant holds of all the successors, and we can
// queue them up if we haven't already visited them.
for (auto *succBB : bb->getSuccessorBlocks()) {
workQueue.pushIfNotVisited(succBB);
}
}
// If there are dead blocks in the SIL function, we might have left
// invalid blocks in the IR. Do another pass and kill them off.
for (SILBasicBlock &bb : *CurSILFn)
if (!workQueue.isVisited(&bb))
LoweredBBs[&bb].bb->eraseFromParent();
}
void IRGenSILFunction::estimateStackSize() {
if (EstimatedStackSize >= 0)
return;
// TODO: as soon as we generate alloca instructions with accurate lifetimes
// we should also do a better stack size calculation here. Currently we
// add all stack sizes even if life ranges do not overlap.
for (SILBasicBlock &BB : *CurSILFn) {
for (SILInstruction &I : BB) {
if (auto *ASI = dyn_cast<AllocStackInst>(&I)) {
const TypeInfo &type = getTypeInfo(ASI->getElementType());
if (llvm::Constant *SizeConst = type.getStaticSize(IGM)) {
auto *SizeInt = cast<llvm::ConstantInt>(SizeConst);
EstimatedStackSize += (int)SizeInt->getSExtValue();
}
}
}
}
}
void IRGenSILFunction::visitSILBasicBlock(SILBasicBlock *BB) {
// Insert into the lowered basic block.
llvm::BasicBlock *llBB = getLoweredBB(BB).bb;
Builder.SetInsertPoint(llBB);
bool InEntryBlock = BB->pred_empty();
// Set this block as the dominance point. This implicitly communicates
// with the dominance resolver configured in emitSILFunction.
DominanceScope dominance(*this, InEntryBlock ? DominancePoint::universal()
: DominancePoint(BB));
// Generate the body.
bool InCleanupBlock = false;
bool KeepCurrentLocation = false;
for (auto &I : *BB) {
if (IGM.DebugInfo) {
// Set the debug info location for I, if applicable.
auto DS = I.getDebugScope();
SILLocation ILoc = I.getLoc();
// Handle cleanup locations.
if (ILoc.is<CleanupLocation>()) {
// Cleanup locations point to the decl of the value that is
// being destroyed (for diagnostic generation). As far as
// the linetable is concerned, cleanups at the end of a
// lexical scope should point to the cleanup location, which
// is the location of the last instruction in the basic block.
if (!InCleanupBlock) {
InCleanupBlock = true;
// Scan ahead to see if this is the final cleanup block in
// this basic block.
auto It = I.getIterator();
do ++It; while (It != BB->end() &&
It->getLoc().is<CleanupLocation>());
// We are still in the middle of a basic block?
if (It != BB->end() && !isa<TermInst>(It))
KeepCurrentLocation = true;
}
// Assign the cleanup location to this instruction.
if (!KeepCurrentLocation) {
assert(BB->getTerminator());
ILoc = BB->getTerminator()->getLoc();
DS = BB->getTerminator()->getDebugScope();
}
} else if (InCleanupBlock) {
KeepCurrentLocation = false;
InCleanupBlock = false;
}
// Until SILDebugScopes are properly serialized, bare functions
// are allowed to not have a scope.
if (!DS) {
if (CurSILFn->isBare())
DS = CurSILFn->getDebugScope();
assert(maybeScopeless(I) && "instruction has location, but no scope");
}
// Set the builder's debug location.
if (DS && !KeepCurrentLocation)
IGM.DebugInfo->setCurrentLoc(Builder, DS, ILoc);
else {
// Reuse the last scope for an easier-to-read line table.
auto Prev = --I.getIterator();
if (Prev != BB->end())
DS = Prev->getDebugScope();
// Use an artificial (line 0) location, to indicate we'd like to
// reuse the last debug loc.
IGM.DebugInfo->setCurrentLoc(
Builder, DS, RegularLocation::getAutoGeneratedLocation());
}
if (isa<TermInst>(&I))
emitDebugVariableRangeExtension(BB);
}
#ifdef CHECK_RUNTIME_EFFECT_ANALYSIS
IGM.effectOfRuntimeFuncs = RuntimeEffect::NoEffect;
IGM.emittedRuntimeFuncs.clear();
#endif
assert(OutstandingStackPackAllocs.empty());
visit(&I);
#ifndef NDEBUG
if (!OutstandingStackPackAllocs.empty()) {
auto iter = DynamicMetadataPackDeallocs.find(&I);
if ((iter == DynamicMetadataPackDeallocs.end() ||
iter->getSecond().size() == 0) &&
!getDeadEndBlocks()->isDeadEnd(I.getParent())) {
llvm::errs()
<< "Instruction missing on-stack pack metadata cleanups!\n";
I.print(llvm::errs());
llvm::errs() << "\n In function:\n";
CurSILFn->print(llvm::errs());
llvm::errs() << "Allocated the following on-stack pack metadata:\n";
for (auto pair : OutstandingStackPackAllocs) {
StackAddress addr;
llvm::Value *shape;
uint8_t kind;
std::tie(addr, shape, kind) = pair;
switch ((GenericRequirement::Kind)kind) {
case GenericRequirement::Kind::MetadataPack:
llvm::errs() << "- Metadata Pack: ";
break;
case GenericRequirement::Kind::WitnessTablePack:
llvm::errs() << "- Witness Table Pack: ";
break;
default:
llvm_unreachable("bad requirement in stack pack alloc");
}
addr.getAddressPointer()->print(llvm::errs());
llvm::errs() << "\n";
}
CurFn->print(llvm::errs());
llvm::report_fatal_error(
"Instruction resulted in on-stack pack metadata emission but no "
"cleanup instructions were added");
// The markers which indicate where on-stack pack metadata should be
// deallocated were not inserted for I. To fix this, add I's opcode to
// SILInstruction::mayRequirePackMetadata subject to the appropriate
// checks.
}
}
#endif
// Record the on-stack pack allocations emitted on behalf of this SIL
// instruction. They will be cleaned up when visiting the corresponding
// cleanup markers.
for (auto pair : OutstandingStackPackAllocs) {
StackPackAllocs[&I].push_back(pair);
}
OutstandingStackPackAllocs.clear();
#ifdef CHECK_RUNTIME_EFFECT_ANALYSIS
if (!isa<DebugValueInst>(&I)) {
SILType impactType;
RuntimeEffect silImpact = getRuntimeEffect(&I, impactType);
if ((unsigned)IGM.effectOfRuntimeFuncs & ~(unsigned)silImpact) {
llvm::errs() << "Missing runtime impact " << (unsigned)silImpact
<< ", expected: " << (unsigned)IGM.effectOfRuntimeFuncs
<< "\n in " << I
<< "emitted runtime functions:\n";
for (const char *funcName : IGM.emittedRuntimeFuncs) {
llvm::errs() << " " << funcName << "()\n";
}
llvm_unreachable("wrong runtime impact definition");
}
}
#endif
}
assert(Builder.hasPostTerminatorIP() && "SIL bb did not terminate block?!");
}
void IRGenSILFunction::visitDifferentiableFunctionInst(
DifferentiableFunctionInst *i) {
auto origFnExp = getLoweredExplosion(i->getOriginalFunction());
Explosion e;
e.add(origFnExp.claimAll());
// TODO(TF-1211): Uncomment assertions after upstreaming differentiation
// transform.
// The mandatory differentiation transform canonicalizes
// `differentiable_function` instructions and ensures that derivative operands
// are populated.
/*
assert(i->hasDerivativeFunctions());
for (auto &derivFnOperand : i->getDerivativeFunctionArray())
e.add(getLoweredExplosion(derivFnOperand.get()).claimAll());
setLoweredExplosion(i, e);
*/
// Note: code below is a temporary measure until TF-1211. Derivative function
// operands should always exist after the differentiation transform.
auto getDerivativeExplosion = [&](AutoDiffDerivativeFunctionKind kind) {
// If the derivative value exists, get its explosion.
if (i->hasDerivativeFunctions())
return getLoweredExplosion(i->getDerivativeFunction(kind));
// Otherwise, create an undef explosion.
auto origFnType =
i->getOriginalFunction()->getType().castTo<SILFunctionType>();
auto derivativeFnType = origFnType->getAutoDiffDerivativeFunctionType(
i->getParameterIndices(), i->getResultIndices(), kind,
i->getModule().Types,
LookUpConformanceInModule(i->getModule().getSwiftModule()));
auto *undef = SILUndef::get(
i->getFunction(), SILType::getPrimitiveObjectType(derivativeFnType));
return getLoweredExplosion(undef);
};
auto jvpExp = getDerivativeExplosion(AutoDiffDerivativeFunctionKind::JVP);
e.add(jvpExp.claimAll());
auto vjpExp = getDerivativeExplosion(AutoDiffDerivativeFunctionKind::VJP);
e.add(vjpExp.claimAll());
setLoweredExplosion(i, e);
}
void IRGenSILFunction::
visitLinearFunctionInst(LinearFunctionInst *i) {
auto origExp = getLoweredExplosion(i->getOriginalFunction());
Explosion e;
e.add(origExp.claimAll());
assert(i->hasTransposeFunction());
e.add(getLoweredExplosion(i->getTransposeFunction()).claimAll());
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitDifferentiableFunctionExtractInst(
DifferentiableFunctionExtractInst *i) {
unsigned structFieldOffset = i->getExtractee().rawValue;
unsigned fieldSize = 1;
auto fnRepr = i->getOperand()->getType().getFunctionRepresentation();
if (fnRepr == SILFunctionTypeRepresentation::Thick) {
structFieldOffset *= 2;
fieldSize = 2;
}
auto diffFnExp = getLoweredExplosion(i->getOperand());
assert(diffFnExp.size() == fieldSize * 3);
Explosion e;
e.add(diffFnExp.getRange(structFieldOffset, structFieldOffset + fieldSize));
(void)diffFnExp.claimAll();
setLoweredExplosion(i, e);
}
void IRGenSILFunction::
visitLinearFunctionExtractInst(LinearFunctionExtractInst *i) {
unsigned structFieldOffset = i->getExtractee().rawValue;
unsigned fieldSize = 1;
auto fnRepr = i->getOperand()->getType().getFunctionRepresentation();
if (fnRepr == SILFunctionTypeRepresentation::Thick) {
structFieldOffset *= 2;
fieldSize = 2;
}
auto diffFnExp = getLoweredExplosion(i->getOperand());
assert(diffFnExp.size() == fieldSize * 2);
Explosion e;
e.add(diffFnExp.getRange(structFieldOffset, structFieldOffset + fieldSize));
(void)diffFnExp.claimAll();
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitDifferentiabilityWitnessFunctionInst(
DifferentiabilityWitnessFunctionInst *i) {
llvm::Value *diffWitness =
IGM.getAddrOfDifferentiabilityWitness(i->getWitness());
unsigned offset = 0;
switch (i->getWitnessKind()) {
case DifferentiabilityWitnessFunctionKind::JVP:
offset = 0;
break;
case DifferentiabilityWitnessFunctionKind::VJP:
offset = 1;
break;
case DifferentiabilityWitnessFunctionKind::Transpose:
llvm_unreachable("Not yet implemented");
}
diffWitness = Builder.CreateStructGEP(IGM.DifferentiabilityWitnessTy,
diffWitness, offset);
diffWitness = Builder.CreateLoad(
Address(diffWitness, IGM.Int8PtrTy, IGM.getPointerAlignment()));
auto fnType = cast<SILFunctionType>(i->getType().getASTType());
Signature signature = IGM.getSignature(fnType);
diffWitness =
Builder.CreateBitCast(diffWitness, signature.getType()->getPointerTo());
setLoweredFunctionPointer(
i, FunctionPointer::createUnsigned(fnType, diffWitness, signature, true));
}
void IRGenSILFunction::visitHasSymbolInst(HasSymbolInst *i) {
auto fn = IGM.emitHasSymbolFunction(i->getDecl());
llvm::CallInst *call = Builder.CreateCall(fn->getFunctionType(), fn, {});
Explosion e;
e.add(call);
setLoweredValue(i, e);
}
FunctionPointer::Kind irgen::classifyFunctionPointerKind(SILFunction *fn) {
using SpecialKind = FunctionPointer::SpecialKind;
// Check for some special cases, which are currently all async:
if (fn->isAsync()) {
auto name = fn->getName();
if (name.equals("swift_task_future_wait"))
return SpecialKind::TaskFutureWait;
if (name.equals("swift_task_future_wait_throwing"))
return SpecialKind::TaskFutureWaitThrowing;
if (name.equals("swift_asyncLet_wait"))
return SpecialKind::AsyncLetWait;
if (name.equals("swift_asyncLet_wait_throwing"))
return SpecialKind::AsyncLetWaitThrowing;
if (name.equals("swift_asyncLet_get"))
return SpecialKind::AsyncLetGet;
if (name.equals("swift_asyncLet_get_throwing"))
return SpecialKind::AsyncLetGetThrowing;
if (name.equals("swift_asyncLet_finish"))
return SpecialKind::AsyncLetFinish;
if (name.equals("swift_taskGroup_wait_next_throwing"))
return SpecialKind::TaskGroupWaitNext;
if (name.equals("swift_taskGroup_waitAll"))
return SpecialKind::TaskGroupWaitAll;
if (name.equals("swift_distributed_execute_target"))
return SpecialKind::DistributedExecuteTarget;
}
if (isKeyPathAccessorRepresentation(fn->getRepresentation())) {
return SpecialKind::KeyPathAccessor;
}
return fn->getLoweredFunctionType();
}
// Async functions that end up with weak_odr or linkonce_odr linkage may not be
// directly called because we need to preserve the connection between the
// function's implementation and the function's context size in the async
// function pointer data structure.
static bool mayDirectlyCallAsync(SILFunction *fn) {
switch (fn->getLinkage()) {
case SILLinkage::PublicNonABI:
case SILLinkage::PackageNonABI:
case SILLinkage::Shared:
return false;
case SILLinkage::Public:
case SILLinkage::Package:
case SILLinkage::Hidden:
case SILLinkage::Private:
case SILLinkage::PublicExternal:
case SILLinkage::PackageExternal:
case SILLinkage::HiddenExternal:
return true;
}
llvm_unreachable("Invalid SIL linkage");
}
void IRGenSILFunction::visitFunctionRefBaseInst(FunctionRefBaseInst *i) {
auto fn = i->getInitiallyReferencedFunction();
auto fnType = fn->getLoweredFunctionType();
auto fpKind = irgen::classifyFunctionPointerKind(fn);
const clang::CXXConstructorDecl *cxxCtorDecl = nullptr;
if (auto *clangFnDecl = fn->getClangDecl())
cxxCtorDecl = dyn_cast<clang::CXXConstructorDecl>(clangFnDecl);
auto sig =
IGM.getSignature(fnType, fpKind, true /*forStaticCall*/, cxxCtorDecl);
// Note that the pointer value returned by getAddrOfSILFunction doesn't
// necessarily have element type sig.getType(), e.g. if it's imported.
// FIXME: should we also be using this for dynamic async functions?
// We seem to completely ignore this in the standard async FP path below.
auto *fnPtr = IGM.getAddrOfSILFunction(
fn, NotForDefinition, false /*isDynamicallyReplaceableImplementation*/,
isa<PreviousDynamicFunctionRefInst>(i));
// For ordinary async functions, produce both the async FP and the
// direct address of the function. In the common case where we
// directly call the function, we'll want to call the latter rather
// than indirecting through the async FP.
llvm::Constant *value;
llvm::Constant *secondaryValue;
bool useSignature = false;
if (fpKind.isAsyncFunctionPointer()) {
value = IGM.getAddrOfAsyncFunctionPointer(fn);
value = llvm::ConstantExpr::getBitCast(value, fnPtr->getType());
secondaryValue = mayDirectlyCallAsync(fn) ?
IGM.getAddrOfSILFunction(fn, NotForDefinition) : nullptr;
if (!secondaryValue)
useSignature = true;
// For ordinary sync functions and special async functions, produce
// only the direct address of the function. The runtime does not
// define async FP symbols for the special async functions it defines.
} else {
value = fnPtr;
secondaryValue = nullptr;
}
FunctionPointer fp =
FunctionPointer::forDirect(fpKind, value, secondaryValue, sig, useSignature);
// Update the foreign no-throw information if needed.
if (auto *cd = fn->getClangDecl()) {
if (auto *cfd = dyn_cast<clang::FunctionDecl>(cd)) {
if (IGM.isCxxNoThrow(const_cast<clang::FunctionDecl *>(cfd)))
fp.setForeignNoThrow();
}
if (IGM.emittedForeignFunctionThunksWithExceptionTraps.count(fnPtr))
fp.setForeignCallCatchesExceptionInThunk();
}
// Store the function as a FunctionPointer so we can avoid bitcasting
// or thunking if we don't need to.
setLoweredFunctionPointer(i, fp);
}
void IRGenSILFunction::visitFunctionRefInst(FunctionRefInst *i) {
visitFunctionRefBaseInst(i);
}
void IRGenSILFunction::visitDynamicFunctionRefInst(DynamicFunctionRefInst *i) {
visitFunctionRefBaseInst(i);
}
void IRGenSILFunction::visitPreviousDynamicFunctionRefInst(
PreviousDynamicFunctionRefInst *i) {
if (UseBasicDynamicReplacement) {
IGM.unimplemented(i->getLoc().getSourceLoc(),
": calling the original implementation of a dynamic function is not "
"supported with -Xllvm -basic-dynamic-replacement");
}
visitFunctionRefBaseInst(i);
}
void IRGenSILFunction::visitAllocGlobalInst(AllocGlobalInst *i) {
SILGlobalVariable *var = i->getReferencedGlobal();
SILType loweredTy = var->getLoweredType();
auto &ti = getTypeInfo(loweredTy);
auto expansion = IGM.getResilienceExpansionForLayout(var);
// If the global is fixed-size in all resilience domains that can see it,
// we allocated storage for it statically, and there's nothing to do.
if (ti.isFixedSize(expansion))
return;
// Otherwise, the static storage for the global consists of a fixed-size
// buffer.
Address addr = IGM.getAddrOfSILGlobalVariable(var, ti,
NotForDefinition);
emitAllocateValueInBuffer(*this, loweredTy, addr);
}
void IRGenSILFunction::visitGlobalAddrInst(GlobalAddrInst *i) {
SILGlobalVariable *var = i->getReferencedGlobal();
SILType loweredTy = var->getLoweredType();
auto &ti = getTypeInfo(loweredTy);
auto expansion = IGM.getResilienceExpansionForLayout(var);
// If the variable is empty in all resilience domains that can see it,
// don't actually emit a symbol for the global at all, just return undef.
if (ti.isKnownEmpty(expansion)) {
setLoweredAddress(i, ti.getUndefAddress());
return;
}
Address addr = IGM.getAddrOfSILGlobalVariable(var, ti,
NotForDefinition);
// Get the address of the type in context.
auto getAddressInContext = [this, &var](auto addr) -> Address {
SILType loweredTyInContext =
var->getLoweredTypeInContext(getExpansionContext());
auto &tiInContext = getTypeInfo(loweredTyInContext);
auto ptr = Builder.CreateBitOrPointerCast(
addr.getAddress(), tiInContext.getStorageType()->getPointerTo());
addr = Address(ptr, tiInContext.getStorageType(),
tiInContext.getBestKnownAlignment());
return addr;
};
// If the global is fixed-size in all resilience domains that can see it,
// we allocated storage for it statically, and there's nothing to do.
if (ti.isFixedSize(expansion)) {
addr = getAddressInContext(addr);
setLoweredAddress(i, addr);
return;
}
// Otherwise, the static storage for the global consists of a fixed-size
// buffer; project it.
addr = emitProjectValueInBuffer(*this, loweredTy, addr);
addr = getAddressInContext(addr);
setLoweredAddress(i, addr);
}
void IRGenSILFunction::visitGlobalValueInst(GlobalValueInst *i) {
SILGlobalVariable *var = i->getReferencedGlobal();
assert(var->isInitializedObject() &&
"global_value only supported for statically initialized objects");
SILType loweredTy = var->getLoweredType();
assert(loweredTy == i->getType());
auto &ti = getTypeInfo(loweredTy);
assert(ti.isFixedSize(IGM.getResilienceExpansionForLayout(var)));
llvm::Value *Ref = IGM.getAddrOfSILGlobalVariable(var, ti,
NotForDefinition).getAddress();
// We don't need to initialize the global object if it's never used for
// something which can access the object header.
if (!i->isBare() && !IGM.canMakeStaticObjectReadOnly(var->getLoweredType())) {
auto ClassType = loweredTy.getASTType();
llvm::Value *Metadata =
emitClassHeapMetadataRef(*this, ClassType, MetadataValueType::TypeMetadata,
MetadataState::Complete);
llvm::Value *CastAddr = Builder.CreateBitCast(Ref, IGM.RefCountedPtrTy);
llvm::Value *InitRef = emitInitStaticObjectCall(Metadata, CastAddr, "staticref");
Ref = Builder.CreateBitCast(InitRef, Ref->getType());
}
Explosion e;
e.add(Ref);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitBaseAddrForOffsetInst(BaseAddrForOffsetInst *i) {
auto storagePtrTy = IGM.getStoragePointerType(i->getType());
auto storageTy = IGM.getStorageType(i->getType());
llvm::Value *addr = llvm::ConstantPointerNull::get(storagePtrTy);
setLoweredAddress(i, Address(addr, storageTy, Alignment()));
}
void IRGenSILFunction::visitMetatypeInst(swift::MetatypeInst *i) {
auto metaTy = i->getType().castTo<MetatypeType>();
Explosion e;
emitMetatypeRef(*this, metaTy, e);
setLoweredExplosion(i, e);
}
static llvm::Value *getClassBaseValue(IRGenSILFunction &IGF,
SILValue v) {
if (v->getType().isAddress()) {
auto addr = IGF.getLoweredAddress(v);
return IGF.Builder.CreateLoad(addr);
}
Explosion e = IGF.getLoweredExplosion(v);
return e.claimNext();
}
void IRGenSILFunction::visitValueMetatypeInst(swift::ValueMetatypeInst *i) {
SILType instanceTy = i->getOperand()->getType();
auto metaTy = i->getType().castTo<MetatypeType>();
if (metaTy->getRepresentation() == MetatypeRepresentation::Thin) {
Explosion empty;
setLoweredExplosion(i, empty);
return;
}
Explosion e;
if (instanceTy.getClassOrBoundGenericClass()) {
e.add(emitDynamicTypeOfHeapObject(*this,
getClassBaseValue(*this, i->getOperand()),
metaTy->getRepresentation(), instanceTy,
CurSILFn->getGenericSignature()));
} else if (auto arch = instanceTy.getAs<ArchetypeType>()) {
if (arch->requiresClass()) {
e.add(emitDynamicTypeOfHeapObject(*this,
getClassBaseValue(*this, i->getOperand()),
metaTy->getRepresentation(), instanceTy,
CurSILFn->getGenericSignature()));
} else {
Address base = getLoweredAddress(i->getOperand());
e.add(emitDynamicTypeOfOpaqueArchetype(*this, base,
i->getOperand()->getType()));
// FIXME: We need to convert this back to an ObjC class for an
// ObjC metatype representation.
if (metaTy->getRepresentation() == MetatypeRepresentation::ObjC)
unimplemented(i->getLoc().getSourceLoc(),
"objc metatype of non-class-bounded archetype");
}
} else {
emitMetatypeRef(*this, metaTy, e);
}
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitExistentialMetatypeInst(
swift::ExistentialMetatypeInst *i) {
Explosion result;
SILValue op = i->getOperand();
SILType opType = op->getType();
switch (opType.getPreferredExistentialRepresentation()) {
case ExistentialRepresentation::Metatype: {
Explosion existential = getLoweredExplosion(op);
emitMetatypeOfMetatype(*this, existential, opType, result);
break;
}
case ExistentialRepresentation::Class: {
Explosion existential = getLoweredExplosion(op);
emitMetatypeOfClassExistential(*this, existential, i->getType(),
opType, CurSILFn->getGenericSignature(),
result);
break;
}
case ExistentialRepresentation::Boxed: {
Explosion existential = getLoweredExplosion(op);
emitMetatypeOfBoxedExistential(*this, existential, opType, result);
break;
}
case ExistentialRepresentation::Opaque: {
Address existential = getLoweredAddress(op);
emitMetatypeOfOpaqueExistential(*this, existential, opType, result);
break;
}
case ExistentialRepresentation::None:
llvm_unreachable("Bad existential representation");
}
setLoweredExplosion(i, result);
}
static void emitApplyArgument(IRGenSILFunction &IGF,
SILValue arg,
SILType paramType,
Explosion &out) {
bool isSubstituted = (arg->getType() != paramType);
// For indirect arguments, we just need to pass a pointer.
if (paramType.isAddress()) {
// This address is of the substituted type.
auto addr = IGF.getLoweredAddress(arg);
// If a substitution is in play, just bitcast the address.
if (isSubstituted) {
auto origType = IGF.IGM.getStorageType(paramType);
addr = IGF.Builder.CreateElementBitCast(addr, origType);
}
out.add(addr.getAddress());
return;
}
// Otherwise, it's an explosion, which we may need to translate,
// both in terms of explosion level and substitution levels.
assert(arg->getType().isObject());
// Fast path: avoid an unnecessary temporary explosion.
if (!isSubstituted) {
IGF.getLoweredExplosion(arg, out);
return;
}
Explosion temp = IGF.getLoweredExplosion(arg);
reemitAsUnsubstituted(IGF, paramType, arg->getType(),
temp, out);
}
static llvm::Value *getObjCClassForValue(IRGenFunction &IGF,
llvm::Value *selfValue,
CanAnyMetatypeType selfType) {
// If we have a Swift metatype, map it to the heap metadata, which
// will be the Class for an ObjC type.
switch (selfType->getRepresentation()) {
case swift::MetatypeRepresentation::ObjC:
return selfValue;
case swift::MetatypeRepresentation::Thick:
// Convert thick metatype to Objective-C metatype.
return emitClassHeapMetadataRefForMetatype(IGF, selfValue,
selfType.getInstanceType());
case swift::MetatypeRepresentation::Thin:
llvm_unreachable("Cannot convert Thin metatype to ObjC metatype");
}
llvm_unreachable("bad metatype representation");
}
static llvm::Value *
emitWitnessTableForLoweredCallee(IRGenSILFunction &IGF,
CanSILFunctionType substCalleeType) {
// This use of getSelfInstanceType() assumes that the instance type is
// always a meaningful formal type.
auto substSelfType = substCalleeType->getSelfInstanceType(
IGF.IGM.getSILModule(), IGF.IGM.getMaximalTypeExpansionContext());
auto substConformance =
substCalleeType->getWitnessMethodConformanceOrInvalid();
llvm::Value *argMetadata = IGF.emitTypeMetadataRef(substSelfType);
llvm::Value *wtable =
emitWitnessTableRef(IGF, substSelfType, &argMetadata, substConformance);
return wtable;
}
Callee LoweredValue::getCallee(IRGenFunction &IGF,
llvm::Value *selfValue,
CalleeInfo &&calleeInfo) const {
switch (kind) {
case Kind::FunctionPointer: {
auto &fn = getFunctionPointer();
if (calleeInfo.OrigFnType->getRepresentation() ==
SILFunctionTypeRepresentation::ObjCMethod) {
return getObjCDirectMethodCallee(std::move(calleeInfo), fn, selfValue);
}
return Callee(std::move(calleeInfo), fn, selfValue);
}
case Kind::ObjCMethod: {
const auto &objcMethod = getObjCMethod();
assert(selfValue);
// Convert a metatype 'self' argument to the ObjC class pointer.
// FIXME: why on earth is this not correctly represented in SIL?
if (auto metatype = dyn_cast<AnyMetatypeType>(
calleeInfo.OrigFnType->getSelfParameter().getArgumentType(
IGF.IGM.getSILModule(), calleeInfo.OrigFnType,
IGF.IGM.getMaximalTypeExpansionContext()))) {
selfValue = getObjCClassForValue(IGF, selfValue, metatype);
}
return getObjCMethodCallee(IGF, objcMethod, selfValue,
std::move(calleeInfo));
}
case Kind::SingletonExplosion: {
auto functionValue = getKnownSingletonExplosion();
switch (calleeInfo.OrigFnType->getRepresentation()) {
case SILFunctionType::Representation::Block:
assert(!selfValue && "block function with self?");
return getBlockPointerCallee(IGF, functionValue, std::move(calleeInfo));
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::CXXMethod:
case SILFunctionType::Representation::Thick:
llvm_unreachable("unexpected function with singleton representation");
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::KeyPathAccessorGetter:
case SILFunctionType::Representation::KeyPathAccessorSetter:
case SILFunctionType::Representation::KeyPathAccessorEquals:
case SILFunctionType::Representation::KeyPathAccessorHash:
return getSwiftFunctionPointerCallee(IGF, functionValue, selfValue,
std::move(calleeInfo), false, false);
case SILFunctionType::Representation::Closure:
return getSwiftFunctionPointerCallee(IGF, functionValue, selfValue,
std::move(calleeInfo), false, true);
case SILFunctionType::Representation::CFunctionPointer:
assert(!selfValue && "C function pointer has self?");
return getCFunctionPointerCallee(IGF, functionValue,
std::move(calleeInfo));
}
llvm_unreachable("bad kind");
}
case Kind::ExplosionVector: {
auto vector = getKnownExplosionVector();
assert(calleeInfo.OrigFnType->getRepresentation()
== SILFunctionType::Representation::Thick);
assert(!selfValue && "thick function pointer with self?");
assert(vector.size() == 2 && "thick function pointer with size != 2");
llvm::Value *functionValue = vector[0];
llvm::Value *contextValue = vector[1];
bool castToRefcountedContext = calleeInfo.OrigFnType->isNoEscape();
return getSwiftFunctionPointerCallee(IGF, functionValue, contextValue,
std::move(calleeInfo),
castToRefcountedContext, true);
}
case LoweredValue::Kind::EmptyExplosion:
case LoweredValue::Kind::OwnedAddress:
case LoweredValue::Kind::StackAddress:
case LoweredValue::Kind::DynamicallyEnforcedAddress:
case LoweredValue::Kind::CoroutineState:
llvm_unreachable("not a valid callee");
}
llvm_unreachable("bad kind");
}
static std::unique_ptr<CallEmission> getCallEmissionForLoweredValue(
IRGenSILFunction &IGF, CanSILFunctionType origCalleeType,
CanSILFunctionType substCalleeType, const LoweredValue &lv,
llvm::Value *selfValue, SubstitutionMap substitutions,
WitnessMetadata *witnessMetadata) {
Callee callee = lv.getCallee(IGF, selfValue,
CalleeInfo(origCalleeType, substCalleeType,
substitutions));
switch (origCalleeType->getRepresentation()) {
case SILFunctionType::Representation::WitnessMethod: {
auto wtable = emitWitnessTableForLoweredCallee(IGF, substCalleeType);
witnessMetadata->SelfWitnessTable = wtable;
break;
}
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::CXXMethod:
case SILFunctionType::Representation::Thick:
case SILFunctionType::Representation::Block:
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::Closure:
case SILFunctionType::Representation::KeyPathAccessorGetter:
case SILFunctionType::Representation::KeyPathAccessorSetter:
case SILFunctionType::Representation::KeyPathAccessorEquals:
case SILFunctionType::Representation::KeyPathAccessorHash:
break;
}
auto callEmission = getCallEmission(IGF, selfValue, std::move(callee));
if (IGF.CurSILFn->isThunk())
callEmission->addFnAttribute(llvm::Attribute::NoInline);
return callEmission;
}
/// Get the size passed to stackAlloc().
static llvm::Value *getStackAllocationSize(IRGenSILFunction &IGF,
SILValue vCapacity,
SILValue vStride,
SourceLoc loc) {
auto &Diags = IGF.IGM.Context.Diags;
// Check for a negative capacity, which is invalid.
auto capacity = IGF.getLoweredSingletonExplosion(vCapacity);
std::optional<int64_t> capacityValue;
if (auto capacityConst = dyn_cast<llvm::ConstantInt>(capacity)) {
capacityValue = capacityConst->getSExtValue();
if (*capacityValue < 0) {
Diags.diagnose(loc, diag::temporary_allocation_size_negative);
}
}
// Check for a negative stride, which should never occur because the caller
// should always be using MemoryLayout<T>.stride to produce this value.
auto stride = IGF.getLoweredSingletonExplosion(vStride);
std::optional<int64_t> strideValue;
if (auto strideConst = dyn_cast<llvm::ConstantInt>(stride)) {
strideValue = strideConst->getSExtValue();
if (*strideValue < 0) {
llvm_unreachable("Builtin.stackAlloc() caller passed an invalid stride");
}
}
// Get the byte count (the product of capacity and stride.)
llvm::Value *result = nullptr;
if (capacityValue && strideValue) {
int64_t byteCount = 0;
auto overflow = llvm::MulOverflow(*capacityValue, *strideValue, byteCount);
if (overflow) {
Diags.diagnose(loc, diag::temporary_allocation_size_overflow);
} else {
// For architectures narrower than 64 bits, check if the byte count fits
// in a (signed) size value.
auto maxByteCount = llvm::APInt::getSignedMaxValue(
IGF.IGM.SizeTy->getBitWidth()).getSExtValue();
if (byteCount > maxByteCount) {
Diags.diagnose(loc, diag::temporary_allocation_size_overflow);
}
}
result = llvm::ConstantInt::get(IGF.IGM.SizeTy, byteCount);
} else {
// If either value is not known at compile-time, preconditions must be
// tested at runtime by Builtin.stackAlloc()'s caller. See
// _byteCountForTemporaryAllocation(of:capacity:).
result = IGF.Builder.CreateMul(capacity, stride);
}
// If the caller requests a zero-byte allocation, allocate one byte instead
// to ensure that the resulting pointer is valid and unique on the stack.
return IGF.Builder.CreateIntrinsicCall(llvm::Intrinsic::umax,
{IGF.IGM.SizeTy}, {llvm::ConstantInt::get(IGF.IGM.SizeTy, 1), result});
}
/// Get the alignment passed to stackAlloc() as a compile-time constant.
///
/// If the specified alignment is not known at compile time or is not valid,
/// the default maximum alignment is substituted.
static Alignment getStackAllocationAlignment(IRGenSILFunction &IGF,
SILValue v,
SourceLoc loc) {
auto &Diags = IGF.IGM.Context.Diags;
// Check for a non-positive alignment, which is invalid.
auto align = IGF.getLoweredSingletonExplosion(v);
if (auto alignConst = dyn_cast<llvm::ConstantInt>(align)) {
auto alignValue = alignConst->getSExtValue();
if (alignValue <= 0) {
Diags.diagnose(loc, diag::temporary_allocation_alignment_not_positive);
} else if (!llvm::isPowerOf2_64(alignValue)) {
Diags.diagnose(loc, diag::temporary_allocation_alignment_not_power_of_2);
} else {
return Alignment(alignValue);
}
}
// If the alignment is not known at compile-time, preconditions must be tested
// at runtime by Builtin.stackAlloc()'s caller. See
// _isStackAllocationSafe(byteCount:alignment:).
return Alignment(MaximumAlignment);
}
static void emitBuiltinStackAlloc(IRGenSILFunction &IGF,
swift::BuiltinInst *i) {
// Stack-allocate a buffer with the specified size/alignment.
auto loc = i->getLoc().getSourceLoc();
auto size = getStackAllocationSize(
IGF, i->getOperand(0), i->getOperand(1), loc);
auto align = getStackAllocationAlignment(IGF, i->getOperand(2), loc);
auto stackAddress = IGF.emitDynamicAlloca(IGF.IGM.Int8Ty, size, align,
false, "temp_alloc");
IGF.setLoweredStackAddress(i, stackAddress);
}
static void emitBuiltinStackDealloc(IRGenSILFunction &IGF,
swift::BuiltinInst *i) {
// Deallocate a stack address previously allocated with the StackAlloc
// builtin above.
auto address = i->getOperand(0);
auto stackAddress = IGF.getLoweredStackAddress(address);
if (stackAddress.getAddress().isValid()) {
IGF.emitDeallocateDynamicAlloca(stackAddress, false);
}
}
static void emitBuiltinCreateAsyncTask(IRGenSILFunction &IGF,
swift::BuiltinInst *i) {
assert(i->getOperandValues().size() == 6 &&
"createAsyncTask needs 6 operands");
auto flags = IGF.getLoweredSingletonExplosion(i->getOperand(0));
auto serialExecutor = IGF.getLoweredOptionalExplosion(i->getOperand(1));
auto taskGroup = IGF.getLoweredOptionalExplosion(i->getOperand(2));
auto taskExecutorUnowned = IGF.getLoweredOptionalExplosion(i->getOperand(3));
auto taskExecutorOwned = IGF.getLoweredOptionalExplosion(i->getOperand(4));
Explosion taskFunction = IGF.getLoweredExplosion(i->getOperand(5));
auto taskAndContext =
emitTaskCreate(IGF, flags, serialExecutor, taskGroup,
taskExecutorUnowned, taskExecutorOwned,
taskFunction, i->getSubstitutions());
Explosion out;
out.add(taskAndContext.first);
out.add(taskAndContext.second);
IGF.setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitBuiltinInst(swift::BuiltinInst *i) {
const BuiltinInfo &builtin = getSILModule().getBuiltinInfo(i->getName());
// Handle some builtins specially.
switch (builtin.ID) {
case BuiltinValueKind::StackAlloc:
case BuiltinValueKind::UnprotectedStackAlloc:
return emitBuiltinStackAlloc(*this, i);
case BuiltinValueKind::StackDealloc:
return emitBuiltinStackDealloc(*this, i);
case BuiltinValueKind::CreateAsyncTask:
return emitBuiltinCreateAsyncTask(*this, i);
default:
break;
}
// Otherwise, collect all the values into a single explosion and forward
// over to the general path.
auto argValues = i->getArguments();
Explosion args;
SmallVector<SILType, 4> argTypes;
for (auto idx : indices(argValues)) {
auto argValue = argValues[idx];
// Builtin arguments should never be substituted, so use the value's type
// as the parameter type.
emitApplyArgument(*this, argValue, argValue->getType(), args);
argTypes.push_back(argValue->getType());
}
Explosion result;
emitBuiltinCall(*this, builtin, i, argTypes, args, result);
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitApplyInst(swift::ApplyInst *i) {
visitFullApplySite(i);
}
void IRGenSILFunction::visitTryApplyInst(swift::TryApplyInst *i) {
visitFullApplySite(i);
}
void IRGenSILFunction::visitFullApplySite(FullApplySite site) {
auto origCalleeType = site.getOrigCalleeType();
auto substCalleeType = site.getSubstCalleeType();
if (site.getOrigCalleeType()->isDifferentiable()) {
origCalleeType = origCalleeType->getWithoutDifferentiability();
substCalleeType = substCalleeType->getWithoutDifferentiability();
}
// If the callee is a differentiable function, we extract the original
// function because we want to call the original function.
std::optional<LoweredValue> diffCalleeOrigFnLV;
if (site.getOrigCalleeType()->isDifferentiable()) {
auto diffFnExplosion = getLoweredExplosion(site.getCallee());
Explosion origFnExplosion;
unsigned fieldSize = 1;
if (origCalleeType->getRepresentation() ==
SILFunctionTypeRepresentation::Thick) {
fieldSize = 2;
}
origFnExplosion.add(diffFnExplosion.getRange(0, 0 + fieldSize));
(void)diffFnExplosion.claimAll();
diffCalleeOrigFnLV = LoweredValue(origFnExplosion);
}
const LoweredValue &calleeLV =
diffCalleeOrigFnLV ? *diffCalleeOrigFnLV :
getLoweredValue(site.getCallee());
auto args = site.getArguments();
SILFunctionConventions origConv(origCalleeType, getSILModule());
assert(origConv.getNumSILArguments() == args.size());
// Extract 'self' if it needs to be passed as the context parameter.
llvm::Value *selfValue = nullptr;
if (hasSelfContextParameter(origCalleeType)) {
SILValue selfArg = args.back();
args = args.drop_back();
if (selfArg->getType().isObject()) {
selfValue = getLoweredSingletonExplosion(selfArg);
} else {
selfValue = getLoweredAddress(selfArg).getAddress();
}
}
Explosion llArgs;
WitnessMetadata witnessMetadata;
auto emission = getCallEmissionForLoweredValue(
*this, origCalleeType, substCalleeType, calleeLV, selfValue,
site.getSubstitutionMap(), &witnessMetadata);
emission->begin();
// Lower the arguments and return value in the callee's generic context.
GenericContextScope scope(IGM, origCalleeType->getInvocationGenericSignature());
// Allocate space for the coroutine buffer.
std::optional<Address> coroutineBuffer;
switch (origCalleeType->getCoroutineKind()) {
case SILCoroutineKind::None:
break;
case SILCoroutineKind::YieldOnce:
coroutineBuffer = emitAllocYieldOnceCoroutineBuffer(*this);
break;
case SILCoroutineKind::YieldMany:
coroutineBuffer = emitAllocYieldManyCoroutineBuffer(*this);
break;
}
if (coroutineBuffer) {
llArgs.add(coroutineBuffer->getAddress());
}
// Lower the SIL arguments to IR arguments.
// Turn the formal SIL parameters into IR-gen things.
for (auto index : indices(args)) {
if (origConv.hasIndirectSILErrorResults() &&
index == origConv.getNumIndirectSILResults()) {
auto addr = getLoweredAddress(args[index]);
emission->setIndirectTypedErrorResultSlot(addr.getAddress());
continue;
}
emitApplyArgument(*this, args[index], emission->getParameterType(index),
llArgs);
}
auto &calleeFP = emission->getCallee().getFunctionPointer();
// Pass the generic arguments.
if (hasPolymorphicParameters(origCalleeType) &&
!calleeFP.shouldSuppressPolymorphicArguments()) {
SubstitutionMap subMap = site.getSubstitutionMap();
emitPolymorphicArguments(*this, origCalleeType,
subMap, &witnessMetadata, llArgs);
}
if (calleeFP.shouldPassContinuationDirectly()) {
llArgs.add(emission->getResumeFunctionPointer());
llArgs.add(emission->getAsyncContext());
}
// Add all those arguments.
emission->setArgs(llArgs, false, &witnessMetadata);
SILInstruction *i = site.getInstruction();
Explosion result;
emission->emitToExplosion(result, false);
// For a simple apply, just bind the apply result to the result of the call.
if (auto apply = dyn_cast<ApplyInst>(i)) {
setLoweredExplosion(apply, result);
emission->end();
// For begin_apply, we have to destructure the call.
} else if (auto beginApply = dyn_cast<BeginApplyInst>(i)) {
// Grab the continuation pointer. This will still be an i8*.
auto continuation = result.claimNext();
setLoweredCoroutine(
beginApply->getTokenResult(),
{*coroutineBuffer, continuation, emission->claimTemporaries()});
setCorrespondingLoweredValues(beginApply->getYieldedValues(), result);
emission->end();
} else {
auto tryApplyInst = cast<TryApplyInst>(i);
// Load the error value.
SILFunctionConventions substConv(substCalleeType, getSILModule());
SILType errorType =
substConv.getSILErrorType(IGM.getMaximalTypeExpansionContext());
Address calleeErrorSlot = emission->getCalleeErrorSlot(
errorType, /*isCalleeAsync=*/site.getOrigCalleeType()->isAsync());
auto errorValue = Builder.CreateLoad(calleeErrorSlot);
emission->end();
auto &normalDest = getLoweredBB(tryApplyInst->getNormalBB());
auto &errorDest = getLoweredBB(tryApplyInst->getErrorBB());
// Zero the error slot to maintain the invariant that it always
// contains null. This will frequently become a dead store.
auto nullError = llvm::Constant::getNullValue(errorValue->getType());
if (!tryApplyInst->getErrorBB()->getSinglePredecessorBlock()) {
// Only do that here if we can't move the store to the error block.
// See below.
Builder.CreateStore(nullError, calleeErrorSlot);
}
auto hasTypedDirectError = substConv.isTypedError() &&
!substConv.hasIndirectSILErrorResults();
llvm::BasicBlock *typedErrorLoadBB = nullptr;
if (hasTypedDirectError) {
typedErrorLoadBB = createBasicBlock("typed.error.load");
}
// If the error value is non-null, branch to the error destination.
auto hasError = Builder.CreateICmpNE(errorValue, nullError);
// Create a dummy use of 'errorValue' in the catch BB to workaround an
// LLVM miscompile that ends up taking the wrong branch if there are no
// uses of 'errorValue' in the catch block.
// FIXME: Remove this when the following radar is fixed: rdar://116636601
Builder.CreatePtrToInt(errorValue, IGM.IntPtrTy);
Builder.CreateCondBr(hasError,
typedErrorLoadBB ? typedErrorLoadBB : errorDest.bb,
normalDest.bb);
// Set up the PHI nodes on the normal edge.
unsigned firstIndex = 0;
addIncomingExplosionToPHINodes(*this, normalDest, firstIndex, result);
assert(firstIndex == normalDest.phis.size());
// Set up the PHI nodes on the error edge.
if (!typedErrorLoadBB) {
assert(errorDest.phis.size() == 1 ||
(substConv.hasIndirectSILErrorResults() &&
errorDest.phis.empty()));
if (errorDest.phis.size() == 1)
errorDest.phis[0]->addIncoming(errorValue, Builder.GetInsertBlock());
} else {
Builder.emitBlock(typedErrorLoadBB);
auto &ti = cast<LoadableTypeInfo>(IGM.getTypeInfo(errorType));
Explosion errorValue;
ti.loadAsTake(*this, getCalleeTypedErrorResultSlot(errorType), errorValue);
for (unsigned i = 0, e = errorDest.phis.size(); i != e; ++i) {
errorDest.phis[i]->addIncoming(errorValue.claimNext(), Builder.GetInsertBlock());
}
Builder.CreateBr(errorDest.bb);
}
if (tryApplyInst->getErrorBB()->getSinglePredecessorBlock()) {
// Zeroing out the error slot only in the error block increases the chance
// that it will become a dead store.
auto origBB = Builder.GetInsertBlock();
Builder.SetInsertPoint(errorDest.bb);
Builder.CreateStore(nullError, calleeErrorSlot);
Builder.SetInsertPoint(origBB);
}
}
}
/// If the value is a @convention(witness_method) function, the context
/// is the witness table that must be passed to the call.
///
/// \param v A value of possibly-polymorphic SILFunctionType.
/// \param subs This is the set of substitutions that we are going to be
/// applying to 'v'.
static std::tuple<FunctionPointer, llvm::Value*, CanSILFunctionType>
getPartialApplicationFunction(IRGenSILFunction &IGF, SILValue v,
SubstitutionMap subs,
CanSILFunctionType substFnType) {
LoweredValue &lv = IGF.getLoweredValue(v);
auto fnType = v->getType().castTo<SILFunctionType>();
switch (lv.kind) {
case LoweredValue::Kind::StackAddress:
case LoweredValue::Kind::DynamicallyEnforcedAddress:
case LoweredValue::Kind::OwnedAddress:
case LoweredValue::Kind::EmptyExplosion:
case LoweredValue::Kind::CoroutineState:
llvm_unreachable("not a valid function");
case LoweredValue::Kind::ObjCMethod:
llvm_unreachable("objc method partial application shouldn't get here");
case LoweredValue::Kind::FunctionPointer: {
llvm::Value *context = nullptr;
switch (fnType->getRepresentation()) {
case SILFunctionTypeRepresentation::CFunctionPointer:
case SILFunctionTypeRepresentation::Block:
case SILFunctionTypeRepresentation::ObjCMethod:
case SILFunctionTypeRepresentation::CXXMethod:
llvm_unreachable("partial_apply of foreign functions not implemented");
case SILFunctionTypeRepresentation::WitnessMethod:
context = emitWitnessTableForLoweredCallee(IGF, substFnType);
break;
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::Closure:
case SILFunctionTypeRepresentation::KeyPathAccessorGetter:
case SILFunctionTypeRepresentation::KeyPathAccessorSetter:
case SILFunctionTypeRepresentation::KeyPathAccessorEquals:
case SILFunctionTypeRepresentation::KeyPathAccessorHash:
break;
}
auto fn = lv.getFunctionPointer();
return std::make_tuple(fn, context, fnType);
}
case LoweredValue::Kind::SingletonExplosion: {
llvm::Value *fnPtr = lv.getKnownSingletonExplosion();
auto fn = FunctionPointer::forExplosionValue(IGF, fnPtr, fnType);
llvm::Value *context = nullptr;
auto repr = fnType->getRepresentation();
assert(repr != SILFunctionType::Representation::Block &&
"partial apply of block not implemented");
if (repr == SILFunctionType::Representation::WitnessMethod) {
context = emitWitnessTableForLoweredCallee(IGF, substFnType);
}
return std::make_tuple(fn, context, fnType);
}
case LoweredValue::Kind::ExplosionVector: {
assert(fnType->getRepresentation()
== SILFunctionType::Representation::Thick);
Explosion ex = lv.getExplosion(IGF, v->getType());
llvm::Value *fnPtr = ex.claimNext();
auto fn = FunctionPointer::forExplosionValue(IGF, fnPtr, fnType);
llvm::Value *context = ex.claimNext();
return std::make_tuple(fn, context, fnType);
}
}
llvm_unreachable("bad kind");
}
// A "simple" partial_apply is one where the argument can be directly
// adopted as the context of the result closure.
static bool isSimplePartialApply(IRGenFunction &IGF, PartialApplyInst *i) {
// The callee type must use the `method` convention.
auto calleeTy = i->getCallee()->getType().castTo<SILFunctionType>();
auto resultTy = i->getFunctionType();
if (calleeTy->getRepresentation() != SILFunctionTypeRepresentation::Method)
return false;
// Partially applying a polymorphic function entails capturing its generic
// arguments (it is not legal to leave any polymorphic arguments unbound)
// which means that both self and those generic arguments would need to be
// captured.
if (calleeTy->isPolymorphic())
return false;
// There should be one applied argument.
// (This is a bit stricter than necessary, because empty arguments could be
// ignored, and for noescape closures, any amount of data less than a pointer
// in size can be blobbed into a single context word, but those will be
// handled by a simplification pass in SIL.)
if (i->getNumArguments() != 1)
return false;
// The closure application is going to expect to pass the context in swiftself
// only methods where the call to `hasSelfContextParameter` returns true will
// use swiftself for the self parameter.
if (!hasSelfContextParameter(calleeTy))
return false;
auto appliedParam = calleeTy->getParameters().back();
if (resultTy->isNoEscape()) {
// A trivial closure accepts an unowned or guaranteed argument, possibly
// direct or indirect.
switch (appliedParam.getConvention()) {
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Indirect_InoutAliasable:
// Indirect arguments are trivially word sized.
return true;
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Direct_Unowned: {
// Is the direct argument a single word-sized value?
auto argSchema = IGF.IGM.getTypeInfo(i->getArgument(0)->getType())
.getSchema();
if (argSchema.size() != 1)
return false;
if (argSchema[0].getScalarType()->getPrimitiveSizeInBits()
!= IGF.IGM.getPointerSize().getValueInBits())
return false;
return true;
}
default:
return false;
}
} else {
// An escaping closure argument's convention should match the callee
// convention of the result.
if (resultTy->getCalleeConvention() != appliedParam.getConvention()) {
return false;
}
assert(!isIndirectFormalParameter(resultTy->getCalleeConvention()));
auto &argInfo = IGF.IGM.getTypeInfo(i->getArgument(0)->getType());
if (!argInfo.isSingleSwiftRetainablePointer(ResilienceExpansion::Maximal))
return false;
return true;
}
}
void IRGenSILFunction::visitPartialApplyInst(swift::PartialApplyInst *i) {
SILValue v(i);
if (isSimplePartialApply(*this, i)) {
Explosion function;
auto &ti = IGM.getTypeInfo(v->getType());
auto schema = ti.getSchema();
assert(schema.size() == 2);
auto calleeTy = schema[0].getScalarType();
auto contextTy = schema[1].getScalarType();
auto callee = getLoweredExplosion(i->getCallee());
auto calleeValue = callee.claimNext();
assert(callee.empty());
calleeValue = Builder.CreateBitOrPointerCast(calleeValue, calleeTy);
// Re-sign the implementation pointer as a closure entry point.
auto calleeFn = FunctionPointer::forExplosionValue(*this, calleeValue,
i->getOrigCalleeType());
function.add(calleeFn.getExplosionValue(*this, i->getFunctionType()));
Explosion context;
for (auto arg : i->getArguments()) {
auto &value = getLoweredValue(arg);
if (value.isAddress()) {
context.add(value.getAnyAddress().getAddress());
} else {
getLoweredExplosion(arg, context);
}
}
auto contextValue = context.claimNext();
assert(context.empty());
contextValue = Builder.CreateBitOrPointerCast(contextValue, contextTy);
function.add(contextValue);
setLoweredExplosion(v, function);
return;
}
// NB: We collect the arguments under the substituted type.
auto args = i->getArguments();
auto calleeTy = i->getSubstCalleeType();
auto params = calleeTy->getParameters();
params = params.slice(params.size() - args.size(), args.size());
Explosion llArgs;
auto &lv = getLoweredValue(i->getCallee());
// Lower the parameters in the callee's generic context.
{
GenericContextScope scope(IGM,
i->getOrigCalleeType()->getSubstGenericSignature());
for (auto index : indices(args)) {
auto paramTy = IGM.silConv.getSILType(
params[index], calleeTy, IGM.getMaximalTypeExpansionContext());
assert(args[index]->getType() == paramTy);
emitApplyArgument(*this, args[index], paramTy, llArgs);
}
}
if (lv.kind == LoweredValue::Kind::ObjCMethod) {
// Objective-C partial applications require a different path. There's no
// actual function pointer to capture, and we semantically can't cache
// dispatch, so we need to perform the message send in the partial
// application thunk.
auto &objcMethod = lv.getObjCMethod();
assert(i->getArguments().size() == 1 &&
"only partial application of objc method to self implemented");
assert(llArgs.size() == 1 &&
"objc partial_apply argument is not a single retainable pointer?!");
llvm::Value *selfVal = llArgs.claimNext();
Explosion function;
emitObjCPartialApplication(*this,
objcMethod,
i->getOrigCalleeType(),
i->getType().castTo<SILFunctionType>(),
selfVal,
i->getArguments()[0]->getType(),
function);
setLoweredExplosion(i, function);
return;
}
// Get the function value.
auto result = getPartialApplicationFunction(*this, i->getCallee(),
i->getSubstitutionMap(),
i->getSubstCalleeType());
FunctionPointer calleeFn = std::get<0>(result);
llvm::Value *innerContext = std::get<1>(result);
CanSILFunctionType origCalleeTy = std::get<2>(result);
// Create the thunk and function value.
Explosion function;
auto closureStackAddr = emitFunctionPartialApplication(
*this, *CurSILFn, calleeFn, innerContext, llArgs, params,
i->getSubstitutionMap(), origCalleeTy, i->getSubstCalleeType(),
i->getType().castTo<SILFunctionType>(), function, false);
setLoweredExplosion(v, function);
if (closureStackAddr) {
assert(i->isOnStack());
LoweredPartialApplyAllocations[v] = *closureStackAddr;
}
}
void IRGenSILFunction::visitIntegerLiteralInst(swift::IntegerLiteralInst *i) {
Explosion e;
if (i->getType().is<BuiltinIntegerLiteralType>()) {
auto pair = emitConstantIntegerLiteral(IGM, i);
e.add(pair.Data);
e.add(pair.Flags);
} else {
llvm::Value *constant = emitConstantInt(IGM, i);
e.add(constant);
}
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitFloatLiteralInst(swift::FloatLiteralInst *i) {
llvm::Value *constant = emitConstantFP(IGM, i);
Explosion e;
e.add(constant);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitStringLiteralInst(swift::StringLiteralInst *i) {
llvm::Value *addr;
// Emit a load of a selector.
if (i->getEncoding() == swift::StringLiteralInst::Encoding::ObjCSelector)
addr = emitObjCSelectorRefLoad(i->getValue());
else
addr = emitAddrOfConstantString(IGM, i);
Explosion e;
e.add(addr);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitUnreachableInst(swift::UnreachableInst *i) {
if (isAsync()) {
emitCoroutineOrAsyncExit();
return;
}
Builder.CreateUnreachable();
}
void IRGenFunction::emitCoroutineOrAsyncExit() {
// The LLVM coroutine representation demands that there be a
// unique call to llvm.coro.end.
// If the coroutine exit block already exists, just branch to it.
if (auto coroEndBB = CoroutineExitBlock) {
Builder.CreateBr(coroEndBB);
return;
}
// Otherwise, create it and branch to it.
auto coroEndBB = createBasicBlock("coro.end");
CoroutineExitBlock = coroEndBB;
Builder.CreateBr(coroEndBB);
// Emit the block.
Builder.emitBlock(coroEndBB);
auto handle = getCoroutineHandle();
if (isAsync())
Builder.CreateIntrinsicCall(llvm::Intrinsic::coro_end_async,
{handle,
/*is unwind*/ Builder.getFalse()});
else
Builder.CreateIntrinsicCall(llvm::Intrinsic::coro_end,
{handle,
/*is unwind*/ Builder.getFalse()});
Builder.CreateUnreachable();
}
static void emitReturnInst(IRGenSILFunction &IGF,
SILType resultTy,
Explosion &result,
CanSILFunctionType fnType) {
// If we're generating a coroutine, just call coro.end.
if (IGF.isCoroutine() && !IGF.isAsync()) {
assert(result.empty() &&
"coroutines do not currently support non-void returns");
IGF.emitCoroutineOrAsyncExit();
return;
}
SILFunctionConventions conv(IGF.CurSILFn->getLoweredFunctionType(),
IGF.getSILModule());
auto getNullErrorValue = [&] () -> llvm::Value* {
if (!conv.isTypedError()) {
auto errorResultType = IGF.CurSILFn->mapTypeIntoContext(
conv.getSILErrorType(IGF.IGM.getMaximalTypeExpansionContext()));
auto errorType =
cast<llvm::PointerType>(IGF.IGM.getStorageType(errorResultType));
return llvm::ConstantPointerNull::get(errorType);
}
return llvm::ConstantPointerNull::get(IGF.IGM.Int8PtrTy);
};
// The invariant on the out-parameter is that it's always zeroed, so
// there's nothing to do here.
// Even if SIL has a direct return, the IR-level calling convention may
// require an indirect return.
if (IGF.IndirectReturn.isValid()) {
auto &retTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(resultTy));
retTI.initialize(IGF, result, IGF.IndirectReturn, false);
auto asyncLayout = getAsyncContextLayout(IGF);
if (!IGF.isAsync()) {
IGF.Builder.CreateRetVoid();
return;
} else {
if (fnType->hasErrorResult()) {
SmallVector<llvm::Value *, 16> nativeResultsStorage;
nativeResultsStorage.push_back(getNullErrorValue());
return emitAsyncReturn(
IGF, asyncLayout, fnType,
std::optional<llvm::ArrayRef<llvm::Value *>>(nativeResultsStorage));
}
return emitAsyncReturn(IGF, asyncLayout, fnType, std::nullopt);
}
}
auto funcResultType = IGF.CurSILFn->mapTypeIntoContext(
conv.getSILResultType(IGF.IGM.getMaximalTypeExpansionContext()));
if (IGF.isAsync()) {
// If we're generating an async function, store the result into the buffer.
auto asyncLayout = getAsyncContextLayout(IGF);
Explosion error;
if (fnType->hasErrorResult()) {
error.add(getNullErrorValue());
}
emitAsyncReturn(IGF, asyncLayout, funcResultType, fnType, result, error);
} else {
auto funcLang = IGF.CurSILFn->getLoweredFunctionType()->getLanguage();
auto swiftCCReturn = funcLang == SILFunctionLanguage::Swift;
assert(swiftCCReturn ||
funcLang == SILFunctionLanguage::C && "Need to handle all cases");
IGF.emitScalarReturn(resultTy, funcResultType, result, swiftCCReturn,
false);
}
}
void IRGenSILFunction::visitReturnInst(swift::ReturnInst *i) {
Explosion result = getLoweredExplosion(i->getOperand());
// Implicitly autorelease the return value if the function's result
// convention is autoreleased.
auto fnConv = CurSILFn->getConventions();
if (fnConv.getNumDirectSILResults() == 1
&& (fnConv.getDirectSILResults().begin()->getConvention()
== ResultConvention::Autoreleased)) {
Explosion temp;
temp.add(emitObjCAutoreleaseReturnValue(*this, result.claimNext()));
result = std::move(temp);
}
emitReturnInst(*this, i->getOperand()->getType(), result,
i->getFunction()->getLoweredFunctionType());
}
void IRGenSILFunction::visitThrowInst(swift::ThrowInst *i) {
SILFunctionConventions conv(CurSILFn->getLoweredFunctionType(),
getSILModule());
assert(!conv.hasIndirectSILErrorResults());
if (!isAsync()) {
if (conv.isTypedError()) {
llvm::Constant *flag = llvm::ConstantInt::get(IGM.IntPtrTy, 1);
flag = llvm::ConstantExpr::getIntToPtr(flag, IGM.Int8PtrTy);
Explosion errorResult = getLoweredExplosion(i->getOperand());
auto &ti = cast<LoadableTypeInfo>(IGM.getTypeInfo(conv.getSILErrorType(
IGM.getMaximalTypeExpansionContext())));
ti.initialize(*this, errorResult, getCallerTypedErrorResultSlot(), false);
Builder.CreateStore(flag, getCallerErrorResultSlot());
} else {
Explosion errorResult = getLoweredExplosion(i->getOperand());
Builder.CreateStore(errorResult.claimNext(), getCallerErrorResultSlot());
}
// Create a normal return, but leaving the return value undefined.
auto fnTy = CurFn->getFunctionType();
auto retTy = fnTy->getReturnType();
if (retTy->isVoidTy()) {
Builder.CreateRetVoid();
} else {
Builder.CreateRet(llvm::UndefValue::get(retTy));
}
// Async functions just return to the continuation.
} else {
// Store the exception to the error slot.
auto exn = getLoweredExplosion(i->getOperand());
auto layout = getAsyncContextLayout(*this);
auto funcResultType = CurSILFn->mapTypeIntoContext(
conv.getSILResultType(IGM.getMaximalTypeExpansionContext()));
if (conv.isTypedError()) {
auto &ti = cast<LoadableTypeInfo>(IGM.getTypeInfo(conv.getSILErrorType(
IGM.getMaximalTypeExpansionContext())));
ti.initialize(*this, exn, getCallerTypedErrorResultSlot(), false);
llvm::Constant *flag = llvm::ConstantInt::get(IGM.IntPtrTy, 1);
flag = llvm::ConstantExpr::getIntToPtr(flag, IGM.Int8PtrTy);
assert(exn.empty() && "Unclaimed typed error results");
exn.reset();
exn.add(flag);
}
Explosion empty;
emitAsyncReturn(*this, layout, funcResultType,
i->getFunction()->getLoweredFunctionType(), empty, exn);
}
}
void IRGenSILFunction::visitThrowAddrInst(swift::ThrowAddrInst *i) {
SILFunctionConventions conv(CurSILFn->getLoweredFunctionType(),
getSILModule());
assert(conv.isTypedError());
assert(conv.hasIndirectSILErrorResults());
if (!isAsync()) {
llvm::Constant *flag = llvm::ConstantInt::get(IGM.IntPtrTy, 1);
flag = llvm::ConstantExpr::getIntToPtr(flag, IGM.Int8PtrTy);
Builder.CreateStore(flag, getCallerErrorResultSlot());
// Create a normal return, but leaving the return value undefined.
auto fnTy = CurFn->getFunctionType();
auto retTy = fnTy->getReturnType();
if (retTy->isVoidTy()) {
Builder.CreateRetVoid();
} else {
Builder.CreateRet(llvm::UndefValue::get(retTy));
}
// Async functions just return to the continuation.
} else {
auto layout = getAsyncContextLayout(*this);
auto funcResultType = CurSILFn->mapTypeIntoContext(
conv.getSILResultType(IGM.getMaximalTypeExpansionContext()));
llvm::Constant *flag = llvm::ConstantInt::get(IGM.IntPtrTy, 1);
flag = llvm::ConstantExpr::getIntToPtr(flag, IGM.Int8PtrTy);
Explosion exn;
exn.add(flag);
Explosion empty;
emitAsyncReturn(*this, layout, funcResultType,
i->getFunction()->getLoweredFunctionType(), empty, exn);
}
}
void IRGenSILFunction::visitUnwindInst(swift::UnwindInst *i) {
// Just call coro.end; there's no need to distinguish 'unwind'
// and 'return' at the LLVM level.
emitCoroutineOrAsyncExit();
}
void IRGenSILFunction::visitYieldInst(swift::YieldInst *i) {
auto coroutineType = CurSILFn->getLoweredFunctionType();
SILFunctionConventions coroConv(coroutineType, getSILModule());
GenericContextScope scope(IGM, coroutineType->getInvocationGenericSignature());
// Collect all the yielded values.
Explosion values;
auto yieldedValues = i->getYieldedValues();
auto yields = coroutineType->getYields();
assert(yieldedValues.size() == yields.size());
for (auto idx : indices(yieldedValues)) {
SILValue value = yieldedValues[idx];
SILParameterInfo yield = yields[idx];
emitApplyArgument(
*this, value,
coroConv.getSILType(yield, IGM.getMaximalTypeExpansionContext()),
values);
}
// Emit the yield intrinsic.
auto isUnwind = emitYield(*this, coroutineType, values);
// Branch to the appropriate destination.
auto unwindBB = getLoweredBB(i->getUnwindBB()).bb;
auto resumeBB = getLoweredBB(i->getResumeBB()).bb;
Builder.CreateCondBr(isUnwind, unwindBB, resumeBB);
}
void IRGenSILFunction::visitBeginApplyInst(BeginApplyInst *i) {
visitFullApplySite(i);
}
void IRGenSILFunction::visitEndApplyInst(EndApplyInst *i) {
visitEndApply(i->getBeginApply(), false);
}
void IRGenSILFunction::visitAbortApplyInst(AbortApplyInst *i) {
visitEndApply(i->getBeginApply(), true);
}
void IRGenSILFunction::visitEndApply(BeginApplyInst *i, bool isAbort) {
const auto &coroutine = getLoweredCoroutine(i->getTokenResult());
auto sig = Signature::forCoroutineContinuation(IGM, i->getOrigCalleeType());
// Cast the continuation pointer to the right function pointer type.
auto continuation = coroutine.Continuation;
continuation = Builder.CreateBitCast(continuation,
sig.getType()->getPointerTo());
auto schemaAndEntity =
getCoroutineResumeFunctionPointerAuth(IGM, i->getOrigCalleeType());
auto pointerAuth = PointerAuthInfo::emit(*this, schemaAndEntity.first,
coroutine.Buffer.getAddress(),
schemaAndEntity.second);
auto callee = FunctionPointer::createSigned(i->getOrigCalleeType(),
continuation, pointerAuth, sig);
Builder.CreateCall(callee, {
coroutine.Buffer.getAddress(),
llvm::ConstantInt::get(IGM.Int1Ty, isAbort)
});
coroutine.Temporaries.destroyAll(*this);
emitDeallocYieldOnceCoroutineBuffer(*this, coroutine.Buffer);
}
static llvm::BasicBlock *emitBBMapForSwitchValue(
IRGenSILFunction &IGF,
SmallVectorImpl<std::pair<SILValue, llvm::BasicBlock*>> &dests,
SwitchValueInst *inst) {
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
auto casePair = inst->getCase(i);
dests.push_back({casePair.first, IGF.getLoweredBB(casePair.second).bb});
}
llvm::BasicBlock *defaultDest = nullptr;
if (inst->hasDefault())
defaultDest = IGF.getLoweredBB(inst->getDefaultBB()).bb;
return defaultDest;
}
static llvm::ConstantInt *
getSwitchCaseValue(IRGenFunction &IGF, SILValue val) {
auto *IL = cast<IntegerLiteralInst>(val);
return cast<llvm::ConstantInt>(emitConstantInt(IGF.IGM, IL));
}
static void
emitSwitchValueDispatch(IRGenSILFunction &IGF,
SILType ty,
Explosion &value,
ArrayRef<std::pair<SILValue, llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) {
// Create an unreachable block for the default if the original SIL
// instruction had none.
bool unreachableDefault = false;
if (!defaultDest) {
unreachableDefault = true;
defaultDest = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
}
if (ty.is<BuiltinIntegerType>()) {
auto *discriminator = value.claimNext();
auto *i = IGF.Builder.CreateSwitch(discriminator, defaultDest,
dests.size());
for (auto &dest : dests)
i->addCase(getSwitchCaseValue(IGF, dest.first), dest.second);
} else {
// Get the value we're testing, which is a function.
llvm::Value *val;
llvm::BasicBlock *nextTest = nullptr;
if (ty.is<SILFunctionType>()) {
val = value.claimNext(); // Function pointer.
//values.claimNext(); // Ignore the data pointer.
} else {
llvm_unreachable("switch_value operand has an unknown type");
}
for (int i = 0, e = dests.size(); i < e; ++i) {
auto casePair = dests[i];
llvm::Value *caseval;
auto casevalue = IGF.getLoweredExplosion(casePair.first);
if (casePair.first->getType().is<SILFunctionType>()) {
caseval = casevalue.claimNext(); // Function pointer.
//values.claimNext(); // Ignore the data pointer.
} else {
llvm_unreachable("switch_value operand has an unknown type");
}
// Compare operand with a case tag value.
llvm::Value *cond = IGF.Builder.CreateICmp(llvm::CmpInst::ICMP_EQ,
val, caseval);
if (i == e -1 && !unreachableDefault) {
nextTest = nullptr;
IGF.Builder.CreateCondBr(cond, casePair.second, defaultDest);
} else {
nextTest = IGF.createBasicBlock("next-test");
IGF.Builder.CreateCondBr(cond, casePair.second, nextTest);
IGF.Builder.emitBlock(nextTest);
IGF.Builder.SetInsertPoint(nextTest);
}
}
if (nextTest) {
IGF.Builder.CreateBr(defaultDest);
}
}
if (unreachableDefault) {
IGF.Builder.emitBlock(defaultDest);
IGF.Builder.CreateUnreachable();
}
}
void IRGenSILFunction::visitSwitchValueInst(SwitchValueInst *inst) {
Explosion value = getLoweredExplosion(inst->getOperand());
// Map the SIL dest bbs to their LLVM bbs.
SmallVector<std::pair<SILValue, llvm::BasicBlock*>, 4> dests;
auto *defaultDest = emitBBMapForSwitchValue(*this, dests, inst);
emitSwitchValueDispatch(*this, inst->getOperand()->getType(),
value, dests, defaultDest);
}
// Bind an incoming explosion value to an explosion of LLVM phi node(s).
static void addIncomingExplosionToPHINodes(IRGenSILFunction &IGF,
ArrayRef<llvm::Value*> phis,
Explosion &argValue) {
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
unsigned phiIndex = 0;
while (!argValue.empty())
cast<llvm::PHINode>(phis[phiIndex++])
->addIncoming(argValue.claimNext(), curBB);
assert(phiIndex == phis.size() && "explosion doesn't match number of phis");
}
// Bind an incoming explosion value to a SILArgument's LLVM phi node(s).
static void addIncomingExplosionToPHINodes(IRGenSILFunction &IGF,
LoweredBB &lbb,
unsigned &phiIndex,
Explosion &argValue) {
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
while (!argValue.empty())
lbb.phis[phiIndex++]->addIncoming(argValue.claimNext(), curBB);
}
// Bind an incoming address value to a SILArgument's LLVM phi node(s).
static void addIncomingAddressToPHINodes(IRGenSILFunction &IGF,
ArrayRef<llvm::Value*> phis,
Address argValue) {
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
assert(phis.size() == 1 && "more than one phi for address?!");
cast<llvm::PHINode>(phis[0])->addIncoming(argValue.getAddress(), curBB);
}
// Bind an incoming address value to a SILArgument's LLVM phi node(s).
static void addIncomingAddressToPHINodes(IRGenSILFunction &IGF,
LoweredBB &lbb,
unsigned &phiIndex,
Address argValue) {
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
lbb.phis[phiIndex++]->addIncoming(argValue.getAddress(), curBB);
}
// Add branch arguments to destination phi nodes.
static void addIncomingSILArgumentsToPHINodes(IRGenSILFunction &IGF,
LoweredBB &lbb,
OperandValueArrayRef args) {
unsigned phiIndex = 0;
for (SILValue arg : args) {
if (arg->getType().isAddress()) {
addIncomingAddressToPHINodes(IGF, lbb, phiIndex,
IGF.getLoweredAddress(arg));
continue;
}
Explosion argValue = IGF.getLoweredExplosion(arg);
addIncomingExplosionToPHINodes(IGF, lbb, phiIndex, argValue);
}
}
static llvm::BasicBlock *emitBBMapForSwitchEnum(
IRGenSILFunction &IGF,
SmallVectorImpl<std::pair<EnumElementDecl *, llvm::BasicBlock *>> &dests,
SwitchEnumTermInst inst) {
for (unsigned i = 0, e = inst.getNumCases(); i < e; ++i) {
auto casePair = inst.getCase(i);
// If the destination BB accepts the case argument, set up a waypoint BB so
// we can feed the values into the argument's PHI node(s).
//
// FIXME: This is cheesy when the destination BB has only the switch
// as a predecessor.
if (!casePair.second->args_empty())
dests.push_back({casePair.first,
llvm::BasicBlock::Create(IGF.IGM.getLLVMContext())});
else
dests.push_back({casePair.first, IGF.getLoweredBB(casePair.second).bb});
}
llvm::BasicBlock *defaultDest = nullptr;
if (inst.hasDefault())
defaultDest = IGF.getLoweredBB(inst.getDefaultBB()).bb;
return defaultDest;
}
void IRGenSILFunction::visitSwitchEnumInst(SwitchEnumInst *inst) {
Explosion value = getLoweredExplosion(inst->getOperand());
// Map the SIL dest bbs to their LLVM bbs.
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
llvm::BasicBlock *defaultDest
= emitBBMapForSwitchEnum(*this, dests, inst);
// Emit the dispatch.
auto &EIS = getEnumImplStrategy(IGM, inst->getOperand()->getType());
EIS.emitValueSwitch(*this, value, dests, defaultDest);
// Bind arguments for cases that want them.
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
auto casePair = inst->getCase(i);
if (!casePair.second->args_empty()) {
auto waypointBB = dests[i].second;
auto &destLBB = getLoweredBB(casePair.second);
Builder.emitBlock(waypointBB);
Explosion inValue = getLoweredExplosion(inst->getOperand());
Explosion projected;
emitProjectLoadableEnum(*this, inst->getOperand()->getType(),
inValue, casePair.first, projected);
unsigned phiIndex = 0;
addIncomingExplosionToPHINodes(*this, destLBB, phiIndex, projected);
Builder.CreateBr(destLBB.bb);
}
}
}
void
IRGenSILFunction::visitSwitchEnumAddrInst(SwitchEnumAddrInst *inst) {
Address value = getLoweredAddress(inst->getOperand());
// Map the SIL dest bbs to their LLVM bbs.
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
llvm::BasicBlock *defaultDest
= emitBBMapForSwitchEnum(*this, dests, inst);
// Emit the dispatch.
emitSwitchAddressOnlyEnumDispatch(*this, inst->getOperand()->getType(),
value, dests, defaultDest);
}
// FIXME: We could lower select_enum directly to LLVM select in a lot of cases.
// For now, just emit a switch and phi nodes, like a chump.
static llvm::BasicBlock *emitBBMapForSelect(
IRGenSILFunction &IGF, Explosion &resultPHI,
SmallVectorImpl<std::pair<EnumElementDecl *, llvm::BasicBlock *>> &BBs,
llvm::BasicBlock *&defaultBB, SelectEnumOperation inst) {
auto origBB = IGF.Builder.GetInsertBlock();
// Set up a continuation BB and phi nodes to receive the result value.
llvm::BasicBlock *contBB = IGF.createBasicBlock("select_enum");
IGF.Builder.SetInsertPoint(contBB);
// Emit an explosion of phi node(s) to receive the value.
SmallVector<llvm::Value*, 4> phis;
auto &ti = IGF.getTypeInfo(inst->getType());
emitPHINodesForType(IGF, inst->getType(), ti,
inst.getNumCases() + inst.hasDefault(), phis);
resultPHI.add(phis);
IGF.Builder.SetInsertPoint(origBB);
auto addIncoming = [&](SILValue value) {
if (value->getType().isAddress()) {
addIncomingAddressToPHINodes(IGF, resultPHI.getAll(),
IGF.getLoweredAddress(value));
} else {
Explosion ex = IGF.getLoweredExplosion(value);
addIncomingExplosionToPHINodes(IGF, resultPHI.getAll(), ex);
}
};
for (unsigned i = 0, e = inst.getNumCases(); i < e; ++i) {
auto casePair = inst.getCase(i);
// Create a basic block destination for this case.
llvm::BasicBlock *destBB = IGF.createBasicBlock("");
IGF.Builder.emitBlock(destBB);
// Feed the corresponding result into the phi nodes.
addIncoming(casePair.second);
// Jump immediately to the continuation.
IGF.Builder.CreateBr(contBB);
BBs.push_back(std::make_pair(casePair.first, destBB));
}
if (inst.hasDefault()) {
defaultBB = IGF.createBasicBlock("");
IGF.Builder.emitBlock(defaultBB);
addIncoming(inst.getDefaultResult());
IGF.Builder.CreateBr(contBB);
} else {
defaultBB = nullptr;
}
IGF.Builder.emitBlock(contBB);
IGF.Builder.SetInsertPoint(origBB);
return contBB;
}
// Try to map the value of a select_enum directly to an int type with a simple
// cast from the tag value to the result type. Optionally also by adding a
// constant offset.
// This is useful, e.g. for rawValue or hashValue of C-like enums.
static llvm::Value *
mapTriviallyToInt(IRGenSILFunction &IGF, const EnumImplStrategy &EIS, SelectEnumInst *inst) {
// All cases must be covered
if (inst->hasDefault())
return nullptr;
auto &ti = IGF.getTypeInfo(inst->getType());
ExplosionSchema schema = ti.getSchema();
// Check if the select_enum's result is a single integer scalar.
if (schema.size() != 1)
return nullptr;
if (!schema[0].isScalar())
return nullptr;
llvm::Type *type = schema[0].getScalarType();
auto *resultType = dyn_cast<llvm::IntegerType>(type);
if (!resultType)
return nullptr;
// Check if the case values directly map to the tag values, maybe with a
// constant offset.
APInt commonOffset;
bool offsetValid = false;
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
auto casePair = inst->getCase(i);
int64_t index = EIS.getDiscriminatorIndex(casePair.first);
if (index < 0)
return nullptr;
auto *intLit = dyn_cast<IntegerLiteralInst>(casePair.second);
if (!intLit)
return nullptr;
APInt caseValue = intLit->getValue();
APInt offset = caseValue - index;
if (offsetValid) {
if (offset != commonOffset)
return nullptr;
} else {
commonOffset = offset;
offsetValid = true;
}
}
// Ask the enum implementation strategy to extract the enum tag as an integer
// value.
Explosion enumValue = IGF.getLoweredExplosion(inst->getEnumOperand());
llvm::Value *result = EIS.emitExtractDiscriminator(IGF, enumValue);
if (!result) {
(void)enumValue.claimAll();
return nullptr;
}
// Cast to the result type.
result = IGF.Builder.CreateIntCast(result, resultType, false);
if (commonOffset != 0) {
// The offset, if any.
auto *offsetConst = llvm::ConstantInt::get(resultType, commonOffset);
result = IGF.Builder.CreateAdd(result, offsetConst);
}
return result;
}
static LoweredValue getLoweredValueForSelect(IRGenSILFunction &IGF,
Explosion &result,
SelectEnumOperation inst) {
if (inst->getType().isAddress())
// FIXME: Loses potentially better alignment info we might have.
return LoweredValue(Address(
result.claimNext(), IGF.getTypeInfo(inst->getType()).getStorageType(),
IGF.getTypeInfo(inst->getType()).getBestKnownAlignment()));
return LoweredValue(result);
}
static void emitSingleEnumMemberSelectResult(IRGenSILFunction &IGF,
SelectEnumOperation seo,
llvm::Value *isTrue,
Explosion &result) {
assert((seo.getNumCases() == 1 && seo.hasDefault()) ||
(seo.getNumCases() == 2 && !seo.hasDefault()));
// Extract the true values.
auto trueValue = seo.getCase(0).second;
SmallVector<llvm::Value*, 4> TrueValues;
if (trueValue->getType().isAddress()) {
TrueValues.push_back(IGF.getLoweredAddress(trueValue).getAddress());
} else {
Explosion ex = IGF.getLoweredExplosion(trueValue);
while (!ex.empty())
TrueValues.push_back(ex.claimNext());
}
// Extract the false values.
auto falseValue =
seo.hasDefault() ? seo.getDefaultResult() : seo.getCase(1).second;
SmallVector<llvm::Value*, 4> FalseValues;
if (falseValue->getType().isAddress()) {
FalseValues.push_back(IGF.getLoweredAddress(falseValue).getAddress());
} else {
Explosion ex = IGF.getLoweredExplosion(falseValue);
while (!ex.empty())
FalseValues.push_back(ex.claimNext());
}
assert(TrueValues.size() == FalseValues.size() &&
"explosions didn't produce same element count?");
for (unsigned i = 0, e = FalseValues.size(); i != e; ++i) {
auto *TV = TrueValues[i], *FV = FalseValues[i];
// It is pretty common to select between zero and 1 as the result of the
// select. Instead of emitting an obviously dumb select, emit nothing or
// a zext.
if (auto *TC = dyn_cast<llvm::ConstantInt>(TV))
if (auto *FC = dyn_cast<llvm::ConstantInt>(FV))
if (TC->isOne() && FC->isZero()) {
result.add(IGF.Builder.CreateZExtOrBitCast(isTrue, TV->getType()));
continue;
}
result.add(IGF.Builder.CreateSelect(isTrue, TV, FalseValues[i]));
}
}
void IRGenSILFunction::visitSelectEnumInst(SelectEnumInst *inst) {
auto &EIS = getEnumImplStrategy(IGM, inst->getEnumOperand()->getType());
auto seo = SelectEnumOperation(inst);
Explosion result;
if (llvm::Value *R = mapTriviallyToInt(*this, EIS, inst)) {
result.add(R);
} else if ((inst->getNumCases() == 1 && inst->hasDefault()) ||
(inst->getNumCases() == 2 && !inst->hasDefault())) {
// If this is testing for one case, do simpler codegen. This is
// particularly common when testing optionals.
Explosion value = getLoweredExplosion(inst->getEnumOperand());
auto isTrue = EIS.emitValueCaseTest(*this, value, inst->getCase(0).first);
emitSingleEnumMemberSelectResult(*this, SelectEnumOperation(inst), isTrue,
result);
} else {
Explosion value = getLoweredExplosion(inst->getEnumOperand());
// Map the SIL dest bbs to their LLVM bbs.
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
llvm::BasicBlock *defaultDest;
llvm::BasicBlock *contBB =
emitBBMapForSelect(*this, result, dests, defaultDest, seo);
// Emit the dispatch.
EIS.emitValueSwitch(*this, value, dests, defaultDest);
// emitBBMapForSelectEnum set up a continuation block and phi nodes to
// receive the result.
Builder.SetInsertPoint(contBB);
}
setLoweredValue(inst, getLoweredValueForSelect(*this, result, seo));
}
void IRGenSILFunction::visitSelectEnumAddrInst(SelectEnumAddrInst *inst) {
Address value = getLoweredAddress(inst->getEnumOperand());
auto seo = SelectEnumOperation(inst);
Explosion result;
if ((inst->getNumCases() == 1 && inst->hasDefault()) ||
(inst->getNumCases() == 2 && !inst->hasDefault())) {
auto &EIS = getEnumImplStrategy(IGM, inst->getEnumOperand()->getType());
// If this is testing for one case, do simpler codegen. This is
// particularly common when testing optionals.
const auto &TI = IGM.getTypeInfo(inst->getEnumOperand()->getType());
auto isTrue = EIS.emitIndirectCaseTest(*this,
inst->getEnumOperand()->getType(),
value, inst->getCase(0).first,
shouldOutlineEnumValueOperation(TI,
IGM)
/*noLoad*/);
emitSingleEnumMemberSelectResult(*this, SelectEnumOperation(inst), isTrue,
result);
} else {
// Map the SIL dest bbs to their LLVM bbs.
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
llvm::BasicBlock *defaultDest;
llvm::BasicBlock *contBB =
emitBBMapForSelect(*this, result, dests, defaultDest, seo);
// Emit the dispatch.
emitSwitchAddressOnlyEnumDispatch(*this, inst->getEnumOperand()->getType(),
value, dests, defaultDest);
// emitBBMapForSelectEnum set up a phi node to receive the result.
Builder.SetInsertPoint(contBB);
}
setLoweredValue(inst, getLoweredValueForSelect(*this, result, seo));
}
void IRGenSILFunction::visitDynamicMethodBranchInst(DynamicMethodBranchInst *i){
LoweredBB &hasMethodBB = getLoweredBB(i->getHasMethodBB());
LoweredBB &noMethodBB = getLoweredBB(i->getNoMethodBB());
// Emit the respondsToSelector: call.
StringRef selector;
llvm::SmallString<64> selectorBuffer;
if (auto fnDecl = dyn_cast<FuncDecl>(i->getMember().getDecl()))
selector = fnDecl->getObjCSelector().getString(selectorBuffer);
else if (auto var = dyn_cast<AbstractStorageDecl>(i->getMember().getDecl()))
selector = var->getObjCGetterSelector().getString(selectorBuffer);
else
llvm_unreachable("Unhandled dynamic method branch query");
llvm::Value *object = getLoweredExplosion(i->getOperand()).claimNext();
if (object->getType() != IGM.ObjCPtrTy)
object = Builder.CreateBitCast(object, IGM.ObjCPtrTy);
llvm::Value *loadSel = emitObjCSelectorRefLoad(selector);
llvm::Value *respondsToSelector
= emitObjCSelectorRefLoad("respondsToSelector:");
llvm::Constant *messenger = IGM.getObjCMsgSendFn();
llvm::Type *argTys[] = {
IGM.ObjCPtrTy,
IGM.Int8PtrTy,
IGM.Int8PtrTy,
};
auto respondsToSelectorTy = llvm::FunctionType::get(IGM.Int1Ty, argTys,
/*isVarArg*/ false);
messenger = llvm::ConstantExpr::getBitCast(
messenger, respondsToSelectorTy->getPointerTo());
llvm::CallInst *call = Builder.CreateCall(
respondsToSelectorTy, messenger, {object, respondsToSelector, loadSel});
call->setDoesNotThrow();
// FIXME: Assume (probably safely) that the hasMethodBB has only us as a
// predecessor, and cannibalize its bb argument so we can represent is as an
// ObjCMethod lowered value. This is hella gross but saves us having to
// implement ObjCMethod-to-Explosion lowering and creating a thunk we don't
// want.
assert(std::next(i->getHasMethodBB()->pred_begin())
== i->getHasMethodBB()->pred_end()
&& "lowering dynamic_method_br with multiple preds for destination "
"not implemented");
// Kill the existing lowered value for the bb arg and its phi nodes.
SILValue methodArg = i->getHasMethodBB()->args_begin()[0];
Explosion formerLLArg = getLoweredExplosion(methodArg);
for (llvm::Value *val : formerLLArg.claimAll()) {
auto phi = cast<llvm::PHINode>(val);
assert(phi->getNumIncomingValues() == 0 && "phi already used");
phi->removeFromParent();
delete phi;
}
LoweredValues.erase(methodArg);
// Replace the lowered value with an ObjCMethod lowering.
setLoweredObjCMethod(methodArg, i->getMember());
// Create the branch.
Builder.CreateCondBr(call, hasMethodBB.bb, noMethodBB.bb);
}
void IRGenSILFunction::visitBranchInst(swift::BranchInst *i) {
LoweredBB &lbb = getLoweredBB(i->getDestBB());
addIncomingSILArgumentsToPHINodes(*this, lbb, i->getArgs());
Builder.CreateBr(lbb.bb);
}
void IRGenSILFunction::visitCondBranchInst(swift::CondBranchInst *i) {
LoweredBB &trueBB = getLoweredBB(i->getTrueBB());
LoweredBB &falseBB = getLoweredBB(i->getFalseBB());
llvm::Value *condValue =
getLoweredExplosion(i->getCondition()).claimNext();
addIncomingSILArgumentsToPHINodes(*this, trueBB, i->getTrueArgs());
addIncomingSILArgumentsToPHINodes(*this, falseBB, i->getFalseArgs());
llvm::MDNode *Weights = nullptr;
auto TrueBBCount = i->getTrueBBCount();
auto FalseBBCount = i->getFalseBBCount();
if (TrueBBCount || FalseBBCount)
Weights = IGM.createProfileWeights(TrueBBCount ? TrueBBCount.getValue() : 0,
FalseBBCount ? FalseBBCount.getValue() : 0);
Builder.CreateCondBr(condValue, trueBB.bb, falseBB.bb, Weights);
}
void IRGenSILFunction::visitRetainValueInst(swift::RetainValueInst *i) {
assert(!i->getOperand()->getType().isMoveOnly());
Explosion in = getLoweredExplosion(i->getOperand());
Explosion out;
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType()))
.copy(*this, in, out, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
(void)out.claimAll();
}
void IRGenSILFunction::visitRetainValueAddrInst(swift::RetainValueAddrInst *i) {
SILValue operandValue = i->getOperand();
assert(!operandValue->getType().isMoveOnly());
Address addr = getLoweredAddress(operandValue);
SILType addrTy = operandValue->getType();
SILType objectT = addrTy.getObjectType();
llvm::Type *llvmType = addr.getAddress()->getType();
const TypeInfo &addrTI = getTypeInfo(addrTy);
auto atomicity = i->isAtomic() ? Atomicity::Atomic : Atomicity::NonAtomic;
auto *outlinedF = cast<llvm::Function>(
IGM.getOrCreateRetainFunction(addrTI, objectT, llvmType, atomicity));
llvm::Value *args[] = {addr.getAddress()};
llvm::CallInst *call =
Builder.CreateCall(outlinedF->getFunctionType(), outlinedF, args);
call->setCallingConv(IGM.DefaultCC);
}
void IRGenSILFunction::visitCopyValueInst(swift::CopyValueInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
Explosion out;
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType()))
.copy(*this, in, out, getDefaultAtomicity());
setLoweredExplosion(i, out);
}
// TODO: Implement this more generally for arbitrary values. Currently the
// SIL verifier restricts it to single-refcounted-pointer types.
void IRGenSILFunction::visitAutoreleaseValueInst(swift::AutoreleaseValueInst *i)
{
Explosion in = getLoweredExplosion(i->getOperand());
auto val = in.claimNext();
emitObjCAutoreleaseCall(val);
}
void IRGenSILFunction::visitBeginDeallocRefInst(BeginDeallocRefInst *i) {
Explosion lowered = getLoweredExplosion(i->getReference());
llvm::Value *ref = *lowered.begin();
setLoweredExplosion(i, lowered);
AllocRefInst *ARI = dyn_cast<AllocRefInst>(i->getAllocation());
if (ARI && StackAllocs.count(ARI)) {
if (ARI->isBare())
return;
// A small peep-hole optimization: If the operand is allocated on stack and
// there is no "significant" code between the set_deallocating and the final
// dealloc_ref, the set_deallocating is not required.
// %0 = alloc_ref [stack]
// ...
// set_deallocating %0 // not needed
// // code which does not depend on the RC_DEALLOCATING_FLAG flag.
// dealloc_ref %0 // stems from the inlined deallocator
// ...
// dealloc_stack_ref %0
SILBasicBlock::iterator Iter(i);
SILBasicBlock::iterator End = i->getParent()->end();
for (++Iter; Iter != End; ++Iter) {
SILInstruction *I = &*Iter;
if (auto *DRI = dyn_cast<DeallocRefInst>(I)) {
if (DRI->getOperand() == i) {
// The set_deallocating is followed by a dealloc_ref -> we can ignore
// it.
return;
}
}
// Assume that any instruction with side-effects may depend on the
// RC_DEALLOCATING_FLAG flag.
if (I->mayHaveSideEffects())
break;
}
}
emitNativeSetDeallocating(ref);
}
void IRGenSILFunction::visitEndInitLetRefInst(EndInitLetRefInst *i) {
Explosion v = getLoweredExplosion(i->getOperand());
setLoweredExplosion(i, v);
}
void IRGenSILFunction::visitReleaseValueInst(swift::ReleaseValueInst *i) {
auto operand = i->getOperand();
auto ty = operand->getType();
Explosion in = getLoweredExplosion(operand);
cast<LoadableTypeInfo>(getTypeInfo(ty))
.consume(*this, in, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic,
ty);
}
void IRGenSILFunction::visitReleaseValueAddrInst(
swift::ReleaseValueAddrInst *i) {
SILValue operandValue = i->getOperand();
Address addr = getLoweredAddress(operandValue);
SILType addrTy = operandValue->getType();
SILType objectT = addrTy.getObjectType();
if (tryEmitDestroyUsingDeinit(*this, addr, addrTy)) {
return;
}
const TypeInfo &addrTI = getTypeInfo(addrTy);
auto atomicity = i->isAtomic() ? Atomicity::Atomic : Atomicity::NonAtomic;
addrTI.callOutlinedRelease(*this, addr, objectT, atomicity);
}
void IRGenSILFunction::visitDestroyValueInst(swift::DestroyValueInst *i) {
auto operand = i->getOperand();
auto ty = operand->getType();
Explosion in = getLoweredExplosion(operand);
cast<LoadableTypeInfo>(getTypeInfo(ty))
.consume(*this, in, getDefaultAtomicity(), ty);
}
void IRGenSILFunction::visitStructInst(swift::StructInst *i) {
Explosion out;
for (SILValue elt : i->getElements())
out.add(getLoweredExplosion(elt).claimAll());
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitTupleInst(swift::TupleInst *i) {
Explosion out;
for (SILValue elt : i->getElements())
out.add(getLoweredExplosion(elt).claimAll());
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitEnumInst(swift::EnumInst *i) {
Explosion data = (i->hasOperand())
? getLoweredExplosion(i->getOperand())
: Explosion();
Explosion out;
emitInjectLoadableEnum(*this, i->getType(), i->getElement(), data, out);
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitInitEnumDataAddrInst(swift::InitEnumDataAddrInst *i) {
Address enumAddr = getLoweredAddress(i->getOperand());
Address dataAddr = emitProjectEnumAddressForStore(*this,
i->getOperand()->getType(),
enumAddr,
i->getElement());
setLoweredAddress(i, dataAddr);
}
void IRGenSILFunction::visitUncheckedEnumDataInst(swift::UncheckedEnumDataInst *i) {
Explosion enumVal = getLoweredExplosion(i->getOperand());
Explosion data;
emitProjectLoadableEnum(*this, i->getOperand()->getType(),
enumVal, i->getElement(), data);
setLoweredExplosion(i, data);
}
void IRGenSILFunction::visitUncheckedTakeEnumDataAddrInst(swift::UncheckedTakeEnumDataAddrInst *i) {
Address enumAddr = getLoweredAddress(i->getOperand());
Address dataAddr = emitDestructiveProjectEnumAddressForLoad(*this,
i->getOperand()->getType(),
enumAddr,
i->getElement());
setLoweredAddress(i, dataAddr);
}
void IRGenSILFunction::visitInjectEnumAddrInst(swift::InjectEnumAddrInst *i) {
Address enumAddr = getLoweredAddress(i->getOperand());
emitStoreEnumTagToAddress(*this, i->getOperand()->getType(),
enumAddr, i->getElement());
}
void IRGenSILFunction::visitTupleExtractInst(swift::TupleExtractInst *i) {
Explosion fullTuple = getLoweredExplosion(i->getOperand());
Explosion output;
SILType baseType = i->getOperand()->getType();
projectTupleElementFromExplosion(*this,
baseType,
fullTuple,
i->getFieldIndex(),
output);
(void)fullTuple.claimAll();
setLoweredExplosion(i, output);
}
void IRGenSILFunction::visitTupleElementAddrInst(swift::TupleElementAddrInst *i)
{
Address base = getLoweredAddress(i->getOperand());
SILType baseType = i->getOperand()->getType();
Address field = projectTupleElementAddress(*this, base, baseType,
i->getFieldIndex());
setLoweredAddress(i, field);
}
void IRGenSILFunction::visitStructExtractInst(swift::StructExtractInst *i) {
Explosion operand = getLoweredExplosion(i->getOperand());
Explosion lowered;
SILType baseType = i->getOperand()->getType();
projectPhysicalStructMemberFromExplosion(*this,
baseType,
operand,
i->getField(),
lowered);
(void)operand.claimAll();
setLoweredExplosion(i, lowered);
}
void IRGenSILFunction::visitStructElementAddrInst(
swift::StructElementAddrInst *i) {
Address base = getLoweredAddress(i->getOperand());
SILType baseType = i->getOperand()->getType();
Address field = projectPhysicalStructMemberAddress(*this, base, baseType,
i->getField());
setLoweredAddress(i, field);
}
void IRGenSILFunction::visitRefElementAddrInst(swift::RefElementAddrInst *i) {
Explosion base = getLoweredExplosion(i->getOperand());
llvm::Value *value = base.claimNext();
SILType baseTy = i->getOperand()->getType();
auto fnSig = CurSILFn->getGenericSignature();
Address field = projectPhysicalClassMemberAddress(*this, value, baseTy,
i->getType(), i->getField(),
fnSig)
.getAddress();
setLoweredAddress(i, field);
}
void IRGenSILFunction::visitRefTailAddrInst(RefTailAddrInst *i) {
SILValue Ref = i->getOperand();
llvm::Value *RefValue = getLoweredExplosion(Ref).claimNext();
Address TailAddr = emitTailProjection(*this, RefValue, Ref->getType(),
i->getTailType(),
CurSILFn->getGenericSignature());
setLoweredAddress(i, TailAddr);
}
static bool isInvariantAddress(SILValue v) {
SILValue accessedAddress = getTypedAccessAddress(v);
if (auto *ptrRoot = dyn_cast<PointerToAddressInst>(accessedAddress)) {
return ptrRoot->isInvariant();
}
// TODO: We could be more aggressive about considering addresses based on
// `let` variables as invariant when the type of the address is known not to
// have any shareably-mutable interior storage (in other words, no weak refs,
// atomics, etc.). However, this currently miscompiles some programs.
// if (accessedAddress->getType().isAddress() && isLetAddress(accessedAddress)) {
// return true;
// }
return false;
}
void IRGenSILFunction::visitLoadInst(swift::LoadInst *i) {
Explosion lowered;
Address source = getLoweredAddress(i->getOperand());
SILType objType = i->getType().getObjectType();
const auto &typeInfo = cast<LoadableTypeInfo>(getTypeInfo(objType));
switch (i->getOwnershipQualifier()) {
case LoadOwnershipQualifier::Unqualified:
case LoadOwnershipQualifier::Trivial:
case LoadOwnershipQualifier::Take:
typeInfo.loadAsTake(*this, source, lowered);
break;
case LoadOwnershipQualifier::Copy:
typeInfo.loadAsCopy(*this, source, lowered);
break;
}
if (isInvariantAddress(i->getOperand())) {
// It'd be better to push this down into `loadAs` methods, perhaps...
for (auto value : lowered.getAll())
if (auto load = dyn_cast<llvm::LoadInst>(value))
setInvariantLoad(load);
}
setLoweredExplosion(i, lowered);
}
void IRGenSILFunction::visitStoreInst(swift::StoreInst *i) {
Explosion source = getLoweredExplosion(i->getSrc());
Address dest = getLoweredAddress(i->getDest());
SILType objType = i->getSrc()->getType().getObjectType();
const auto &typeInfo = cast<LoadableTypeInfo>(getTypeInfo(objType));
switch (i->getOwnershipQualifier()) {
case StoreOwnershipQualifier::Unqualified:
case StoreOwnershipQualifier::Init:
case StoreOwnershipQualifier::Trivial:
typeInfo.initialize(*this, source, dest, false);
break;
case StoreOwnershipQualifier::Assign:
typeInfo.assign(*this, source, dest, false, objType);
break;
}
}
/// Emit the artificial error result argument.
void IRGenSILFunction::emitErrorResultVar(CanSILFunctionType FnTy,
SILResultInfo ErrorInfo,
DebugValueInst *DbgValue) {
// We don't need a shadow error variable for debugging on ABI's that return
// swifterror in a register.
if (IGM.ShouldUseSwiftError)
return;
auto ErrorResultSlot = getCalleeErrorResultSlot(IGM.silConv.getSILType(
ErrorInfo, FnTy, IGM.getMaximalTypeExpansionContext()), false);
auto Var = DbgValue->getVarInfo();
assert(Var && "error result without debug info");
auto Storage =
emitShadowCopyIfNeeded(ErrorResultSlot.getAddress(), nullptr, getDebugScope(),
*Var, false, false /*was move*/);
if (!IGM.DebugInfo)
return;
auto DbgTy = DebugTypeInfo::getErrorResult(
ErrorInfo.getReturnValueType(IGM.getSILModule(), FnTy,
IGM.getMaximalTypeExpansionContext()),IGM);
IGM.DebugInfo->emitVariableDeclaration(Builder, Storage, DbgTy,
getDebugScope(), {}, *Var,
IndirectValue, ArtificialValue);
}
void IRGenSILFunction::emitPoisonDebugValueInst(DebugValueInst *i) {
auto varInfo = i->getVarInfo();
assert(varInfo && "debug_value without debug info");
bool isAnonymous = false;
varInfo->Name = getVarName(i, isAnonymous);
SILValue silVal = i->getOperand();
SILType silTy = silVal->getType();
SILType unwrappedTy = silTy.unwrapOptionalType();
CanType refTy = unwrappedTy.getASTType();
// TODO: Handling nontrivial aggregates requires implementing poisonRefs
// within TypeInfo. However, this could inflate code size for large types.
assert(refTy->isAnyClassReferenceType() && "type can't handle poison");
Explosion e = getLoweredExplosion(silVal);
llvm::Value *storage = e.claimNext();
auto storageTy = storage->getType();
// Safeguard: don't try to poison an non-word sized value. Not sure how this
// could ever happen.
if (!storageTy->isPointerTy() && storageTy != IGM.SizeTy)
return;
// Only the first word of the value is poisoned.
//
// TODO: This assumes that only class references are poisoned (as guaranteed
// by MandatoryCopyPropagation). And it assumes the reference is the first
// value (class existential witnesses are laid out after the class reference).
bool singleValueExplosion = e.empty();
(void)e.claimAll();
// Only poison shadow references if this storage is purely used as a shadow
// copy--poison should never affect program behavior. Also filter everything
// not handled by emitShadowCopyIfNeeded to avoid extra shadow copies.
if (!shouldShadowVariable(*varInfo, isAnonymous)
|| !shouldShadowStorage(storage, nullptr)) {
return;
}
// The original decl scope.
const SILDebugScope *scope = i->getDebugScope();
// Shadow allocas are pointer aligned.
auto ptrAlign = IGM.getPointerAlignment();
// Emit or recover the unique shadow copy.
//
// FIXME: To limit perturbing original source, this follows the strange
// emitShadowCopyIfNeeded logic that has separate paths for single-value
// vs. multi-value explosions.
Address shadowAddress;
if (singleValueExplosion) {
shadowAddress = emitShadowCopy(storage, scope, *varInfo, ptrAlign, false,
false /*was moved*/);
} else {
assert(refTy->isClassExistentialType() && "unknown multi-value explosion");
// FIXME: Handling Optional existentials requires TypeInfo
// support. Otherwise we would need to assume the layout of the reference
// and bitcast everything below to scalar integers.
if (silTy != unwrappedTy)
return;
unsigned argNo = varInfo->ArgNo;
auto &alloca = ShadowStackSlots[{argNo, {scope, varInfo->Name}}];
if (!alloca.isValid()) {
auto <i = cast<LoadableTypeInfo>(IGM.getTypeInfo(silTy));
alloca =
lti.allocateStack(*this, silTy, varInfo->Name + ".debug").getAddress();
}
shadowAddress = emitClassExistentialValueAddress(*this, alloca, silTy);
}
Size::int_type poisonInt = IGM.TargetInfo.ReferencePoisonDebugValue;
assert((poisonInt & IGM.TargetInfo.PointerSpareBits.asAPInt()) == 0);
llvm::Value *poisonedVal = llvm::ConstantInt::get(IGM.SizeTy, poisonInt);
// If the current value is nil (Optional's extra inhabitant), then don't
// overwrite it with poison. This way, lldb will correctly display
// Optional.None rather than telling the user that an object was
// deinitialized, when there was no object to begin with. This could also be
// done with a spare-bits mask to handle arbitrary enums but extra inhabitants
// are tricky.
if (!storageTy->isPointerTy()) {
assert(storageTy == IGM.SizeTy && "can't handle non-word values");
llvm::Value *currentBits =
Builder.CreateBitOrPointerCast(storage, IGM.SizeTy);
llvm::Value *zeroWord = llvm::ConstantInt::get(IGM.SizeTy, 0);
llvm::Value *isNil = Builder.CreateICmpEQ(currentBits, zeroWord);
poisonedVal = Builder.CreateSelect(isNil, currentBits, poisonedVal);
}
llvm::Value *newShadowVal =
Builder.CreateBitOrPointerCast(poisonedVal, storageTy);
assert(canAllocaStoreValue(shadowAddress, newShadowVal, *varInfo, scope) &&
"shadow copy can't handle poison");
// The poison stores have an artificial location within the original variable
// declaration's scope.
ArtificialLocation autoRestore(scope, IGM.DebugInfo.get(), Builder);
Builder.CreateStore(newShadowVal, shadowAddress.getAddress(), ptrAlign);
}
/// Determine whether the debug-info-carrying instruction \c i belongs to an
/// async function and thus may get allocated in the coroutine context. These
/// variables need to be marked with the Coro flag, so LLVM's CoroSplit pass can
/// recognize them.
static bool InCoroContext(SILFunction &f, SILInstruction &i) {
return f.isAsync() && !i.getDebugScope()->InlinedCallSite;
}
void IRGenSILFunction::visitDebugValueInst(DebugValueInst *i) {
auto SILVal = i->getOperand();
bool IsAddrVal = SILVal->getType().isAddress();
if (i->poisonRefs()) {
assert(!IsAddrVal &&
"SIL values with address type should not have poison");
emitPoisonDebugValueInst(i);
return;
}
if (i->getDebugScope()->getInlinedFunction()->isTransparent())
return;
auto VarInfo = i->getVarInfo();
assert(VarInfo && "debug_value without debug info");
if (isa<SILUndef>(SILVal) && VarInfo->Name == "$error") {
// We cannot track the location of inlined error arguments because it has no
// representation in SIL.
if (!IsAddrVal && !i->getDebugScope()->InlinedCallSite) {
auto funcTy = CurSILFn->getLoweredFunctionType();
emitErrorResultVar(funcTy, funcTy->getErrorResult(), i);
}
// If we were not moved return early. If this SILUndef was moved, then we
// need to let it through so we can ensure the debug info invalidated.
if (!i->usesMoveableValueDebugInfo())
return;
}
bool IsInCoro = InCoroContext(*CurSILFn, *i);
bool IsAnonymous = false;
VarInfo->Name = getVarName(i, IsAnonymous);
DebugTypeInfo DbgTy;
SILType SILTy;
if (auto MaybeSILTy = VarInfo->Type) {
// If there is auxiliary type info, use it
SILTy = *MaybeSILTy;
} else {
SILTy = SILVal->getType();
}
auto RealTy = SILTy.getASTType();
if (IsAddrVal && IsInCoro)
if (auto *PBI = dyn_cast<ProjectBoxInst>(i->getOperand())) {
// Usually debug info only ever describes the *result* of a projectBox
// call. To allow the debugger to display a boxed parameter of an async
// continuation object, however, the debug info can only describe the box
// itself and thus also needs to emit a box type for it so the debugger
// knows to call into Remote Mirrors to unbox the value.
RealTy = PBI->getOperand()->getType().getASTType();
assert(isa<SILBoxType>(RealTy));
}
VarDecl *VD = i->getDecl();
if (!VD) {
// The source location of a DebugValueInst inserted by the SIL optimizer is
// not necessarily the VarDecl, as it can be the source location of the
// update point this DebugValueInst represents.
VD = VarInfo->getDecl();
}
// Figure out the debug variable type
if (VD) {
DbgTy = DebugTypeInfo::getLocalVariable(VD, RealTy, getTypeInfo(SILTy),
IGM);
} else if (!SILTy.hasArchetype() && !VarInfo->Name.empty()) {
// Handle the cases that read from a SIL file
DbgTy = DebugTypeInfo::getFromTypeInfo(RealTy, getTypeInfo(SILTy), IGM);
} else
return;
// Since debug_value is expressing indirection explicitly via op_deref,
// we're not using either IndirectValue or CoroIndirectValue here.
IndirectionKind Indirection = IsInCoro? CoroDirectValue : DirectValue;
// Put the value into a shadow-copy stack slot at -Onone.
llvm::SmallVector<llvm::Value *, 8> Copy;
if (IsAddrVal) {
auto &ti = getTypeInfo(SILVal->getType());
Copy.emplace_back(emitShadowCopyIfNeeded(
getLoweredAddress(SILVal).getAddress(), ti.getStorageType(),
i->getDebugScope(), *VarInfo, IsAnonymous,
i->usesMoveableValueDebugInfo()));
} else {
emitShadowCopyIfNeeded(SILVal, i->getDebugScope(), *VarInfo, IsAnonymous,
i->usesMoveableValueDebugInfo(), Copy);
}
bindArchetypes(DbgTy.getType());
if (!IGM.DebugInfo)
return;
emitDebugVariableDeclaration(
Copy, DbgTy, SILTy, i->getDebugScope(), i->getLoc(), *VarInfo,
Indirection, AddrDbgInstrKind(i->usesMoveableValueDebugInfo()));
}
void IRGenSILFunction::visitDebugStepInst(DebugStepInst *i) {
// Unfortunately there is no LLVM-equivalent of a debug_step instruction.
// Also LLVM doesn't provide a plain NOP instruction.
// Therefore we have to solve this with inline assembly.
// Strictly speaking, this is not architecture independent. But there are
// probably few assembly languages which don't use "nop" for nop instructions.
auto *AsmFnTy = llvm::FunctionType::get(IGM.VoidTy, {}, false);
auto *InlineAsm = llvm::InlineAsm::get(AsmFnTy, "nop", "", true);
Builder.CreateAsmCall(InlineAsm, {});
}
void IRGenSILFunction::visitFixLifetimeInst(swift::FixLifetimeInst *i) {
if (i->getOperand()->getType().isAddress()) {
// Just pass in the address to fix lifetime if we have one. We will not do
// anything to it so nothing bad should happen.
emitFixLifetime(getLoweredAddress(i->getOperand()).getAddress());
return;
}
// Handle objects.
Explosion in = getLoweredExplosion(i->getOperand());
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType()))
.fixLifetime(*this, in);
}
void IRGenSILFunction::visitMarkDependenceInst(swift::MarkDependenceInst *i) {
// Dependency-marking is purely for SIL. Just forward the input as
// the result.
SILValue value = i->getValue();
if (value->getType().isAddress()) {
setLoweredAddress(i, getLoweredAddress(value));
} else {
Explosion temp = getLoweredExplosion(value);
setLoweredExplosion(i, temp);
}
}
void IRGenSILFunction::visitCopyBlockInst(CopyBlockInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
llvm::Value *copied = emitBlockCopyCall(lowered.claimNext());
Explosion result;
result.add(copied);
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitStrongRetainInst(swift::StrongRetainInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
auto &ti = cast<ReferenceTypeInfo>(getTypeInfo(i->getOperand()->getType()));
ti.strongRetain(*this, lowered, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
}
void IRGenSILFunction::visitStrongReleaseInst(swift::StrongReleaseInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
auto &ti = cast<ReferenceTypeInfo>(getTypeInfo(i->getOperand()->getType()));
ti.strongRelease(*this, lowered, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
}
/// Given a SILType which is a ReferenceStorageType, return the type
/// info for the underlying reference type.
static const ReferenceTypeInfo &getReferentTypeInfo(IRGenFunction &IGF,
SILType silType) {
auto type = silType.castTo<ReferenceStorageType>().getReferentType();
if (auto ty = type->getOptionalObjectType())
type = ty->getCanonicalType();
return cast<ReferenceTypeInfo>(IGF.getTypeInfoForLowered(type));
}
void IRGenSILFunction::visitStrongCopyWeakValueInst(
swift::StrongCopyWeakValueInst *i) {
llvm::report_fatal_error(
"strong_copy_weak_value not lowered by AddressLowering!?");
}
void IRGenSILFunction::visitWeakCopyValueInst(swift::WeakCopyValueInst *i) {
llvm::report_fatal_error("weak_copy_value not lowered by AddressLowering!?");
}
void IRGenSILFunction::visitUnownedCopyValueInst(
swift::UnownedCopyValueInst *i) {
llvm::report_fatal_error(
"unowned_copy_value not lowered by AddressLowering!?");
}
#define NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
void IRGenSILFunction::visitLoad##Name##Inst(swift::Load##Name##Inst *i) { \
Address source = getLoweredAddress(i->getOperand()); \
auto silTy = i->getOperand()->getType(); \
auto ty = cast<Name##StorageType>(silTy.getASTType()); \
auto isOptional = bool(ty.getReferentType()->getOptionalObjectType()); \
auto &ti = getReferentTypeInfo(*this, silTy); \
Explosion result; \
if (i->isTake()) { \
ti.name##TakeStrong(*this, source, result, isOptional); \
} else { \
ti.name##LoadStrong(*this, source, result, isOptional); \
} \
setLoweredExplosion(i, result); \
} \
void IRGenSILFunction::visitStore##Name##Inst(swift::Store##Name##Inst *i) { \
Explosion source = getLoweredExplosion(i->getSrc()); \
Address dest = getLoweredAddress(i->getDest()); \
auto silTy = i->getDest()->getType(); \
auto ty = cast<Name##StorageType>(silTy.getASTType()); \
auto isOptional = bool(ty.getReferentType()->getOptionalObjectType()); \
auto &ti = getReferentTypeInfo(*this, silTy); \
if (i->isInitializationOfDest()) { \
ti.name##Init(*this, source, dest, isOptional); \
} else { \
ti.name##Assign(*this, source, dest, isOptional); \
} \
}
#define ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
void IRGenSILFunction::visitStrongRetain##Name##Inst( \
swift::StrongRetain##Name##Inst *i) { \
Explosion lowered = getLoweredExplosion(i->getOperand()); \
auto &ti = getReferentTypeInfo(*this, i->getOperand()->getType()); \
ti.strongRetain##Name(*this, lowered, \
i->isAtomic() ? irgen::Atomicity::Atomic \
: irgen::Atomicity::NonAtomic); \
} \
void IRGenSILFunction::visit##Name##RetainInst(swift::Name##RetainInst *i) { \
Explosion lowered = getLoweredExplosion(i->getOperand()); \
auto &ti = getReferentTypeInfo(*this, i->getOperand()->getType()); \
ti.name##Retain(*this, lowered, \
i->isAtomic() ? irgen::Atomicity::Atomic \
: irgen::Atomicity::NonAtomic); \
} \
void IRGenSILFunction::visit##Name##ReleaseInst( \
swift::Name##ReleaseInst *i) { \
Explosion lowered = getLoweredExplosion(i->getOperand()); \
auto &ti = getReferentTypeInfo(*this, i->getOperand()->getType()); \
ti.name##Release(*this, lowered, \
i->isAtomic() ? irgen::Atomicity::Atomic \
: irgen::Atomicity::NonAtomic); \
} \
void IRGenSILFunction::visitStrongCopy##Name##ValueInst( \
swift::StrongCopy##Name##ValueInst *i) { \
Explosion in = getLoweredExplosion(i->getOperand()); \
auto silTy = i->getOperand()->getType(); \
auto ty = cast<Name##StorageType>(silTy.getASTType()); \
auto isOptional = bool(ty.getReferentType()->getOptionalObjectType()); \
auto &ti = getReferentTypeInfo(*this, silTy); \
ti.strongRetain##Name(*this, in, irgen::Atomicity::Atomic); \
/* Semantically we are just passing through the input parameter but as a \
*/ \
/* strong reference... at LLVM IR level these type differences don't */ \
/* matter. So just set the lowered explosion appropriately. */ \
Explosion output = getLoweredExplosion(i->getOperand()); \
if (isOptional) { \
auto values = output.claimAll(); \
output.reset(); \
for (auto value : values) { \
output.add(Builder.CreatePtrToInt(value, IGM.IntPtrTy)); \
} \
} \
setLoweredExplosion(i, output); \
}
#define SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, name, "...") \
ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, name, "...")
#define UNCHECKED_REF_STORAGE(Name, name, ...) \
void IRGenSILFunction::visitStrongCopy##Name##ValueInst( \
swift::StrongCopy##Name##ValueInst *i) { \
Explosion in = getLoweredExplosion(i->getOperand()); \
auto silTy = i->getOperand()->getType(); \
auto ty = cast<Name##StorageType>(silTy.getASTType()); \
auto isOptional = bool(ty.getReferentType()->getOptionalObjectType()); \
auto &ti = getReferentTypeInfo(*this, silTy); \
/* Since we are unchecked, we just use strong retain here. We do not \
* perform any checks */ \
ti.strongRetain(*this, in, irgen::Atomicity::Atomic); \
/* Semantically we are just passing through the input parameter but as a \
*/ \
/* strong reference... at LLVM IR level these type differences don't */ \
/* matter. So just set the lowered explosion appropriately. */ \
Explosion output = getLoweredExplosion(i->getOperand()); \
if (isOptional) { \
auto values = output.claimAll(); \
output.reset(); \
for (auto value : values) { \
output.add(Builder.CreatePtrToInt(value, IGM.IntPtrTy)); \
} \
} \
setLoweredExplosion(i, output); \
}
#include "swift/AST/ReferenceStorage.def"
#undef COMMON_CHECKED_REF_STORAGE
static bool hasReferenceSemantics(IRGenSILFunction &IGF,
SILType silType) {
auto operType = silType.getASTType();
auto valueType = operType->getOptionalObjectType();
auto objType = valueType ? valueType : operType;
return (objType->mayHaveSuperclass()
|| objType->isClassExistentialType()
|| objType->is<BuiltinNativeObjectType>()
|| objType->is<BuiltinBridgeObjectType>());
}
static llvm::Value *emitIsUnique(IRGenSILFunction &IGF, SILValue operand,
SourceLoc loc) {
if (!hasReferenceSemantics(IGF, operand->getType())) {
IGF.emitTrap("isUnique called for a non-reference", /*EmitUnreachable=*/false);
return llvm::UndefValue::get(IGF.IGM.Int1Ty);
}
auto &operTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(operand->getType()));
LoadedRef ref =
operTI.loadRefcountedPtr(IGF, loc, IGF.getLoweredAddress(operand));
return
IGF.emitIsUniqueCall(ref.getValue(), ref.getStyle(), loc, ref.isNonNull());
}
void IRGenSILFunction::visitIsUniqueInst(swift::IsUniqueInst *i) {
llvm::Value *result = emitIsUnique(*this, i->getOperand(),
i->getLoc().getSourceLoc());
Explosion out;
out.add(result);
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitBeginCOWMutationInst(BeginCOWMutationInst *i) {
SILValue ref = i->getOperand();
Explosion bufferEx = getLoweredExplosion(ref);
llvm::Value *buffer = *bufferEx.begin();
setLoweredExplosion(i->getBufferResult(), bufferEx);
Explosion isUnique;
if (hasReferenceSemantics(*this, ref->getType())) {
if (i->getUniquenessResult()->use_empty()) {
// No need to call isUnique if the result is not used.
isUnique.add(llvm::UndefValue::get(IGM.Int1Ty));
} else {
ReferenceCounting style = cast<ReferenceTypeInfo>(
getTypeInfo(ref->getType())).getReferenceCountingType();
if (i->isNative())
style = ReferenceCounting::Native;
llvm::Value *castBuffer =
Builder.CreateBitCast(buffer, IGM.getReferenceType(style));
isUnique.add(emitIsUniqueCall(castBuffer, style, i->getLoc().getSourceLoc(),
/*isNonNull*/ true));
}
} else {
emitTrap("beginCOWMutation called for a non-reference",
/*EmitUnreachable=*/false);
isUnique.add(llvm::UndefValue::get(IGM.Int1Ty));
}
setLoweredExplosion(i->getUniquenessResult(), isUnique);
}
void IRGenSILFunction::visitEndCOWMutationInst(EndCOWMutationInst *i) {
Explosion v = getLoweredExplosion(i->getOperand());
setLoweredExplosion(i, v);
}
void IRGenSILFunction::visitIsEscapingClosureInst(
swift::IsEscapingClosureInst *i) {
// The closure operand is allowed to be an optional closure.
auto operandType = i->getOperand()->getType();
if (operandType.getOptionalObjectType())
operandType = operandType.getOptionalObjectType();
auto fnType = operandType.getAs<SILFunctionType>();
assert(fnType->getExtInfo().hasContext() && "Must have a closure operand");
(void)fnType;
// This code relies on that an optional<()->()>'s tag fits in the function
// pointer.
auto &TI = cast<LoadableTypeInfo>(getTypeInfo(operandType));
assert(TI.mayHaveExtraInhabitants(IGM) &&
"Must have extra inhabitants to be able to handle the optional "
"closure case");
(void)TI;
Explosion closure = getLoweredExplosion(i->getOperand());
auto func = closure.claimNext();
(void)func;
auto context = closure.claimNext();
assert(closure.empty());
if (context->getType()->isIntegerTy())
context = Builder.CreateIntToPtr(context, IGM.RefCountedPtrTy);
auto result = emitIsEscapingClosureCall(context, i->getLoc().getSourceLoc(),
i->getVerificationType());
Explosion out;
out.add(result);
setLoweredExplosion(i, out);
}
void IRGenSILFunction::emitDebugInfoForAllocStack(AllocStackInst *i,
const TypeInfo &type,
llvm::Value *addr) {
auto VarInfo = i->getVarInfo();
if (!VarInfo)
return;
VarDecl *Decl = i->getDecl();
// Describe the underlying alloca. This way an llvm.dbg.declare intrinsic
// is used, which is valid for the entire lifetime of the alloca.
if (auto *BitCast = dyn_cast<llvm::BitCastInst>(addr)) {
auto *Op0 = BitCast->getOperand(0);
if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Op0))
addr = Alloca;
else if (auto *CoroAllocaGet = dyn_cast<llvm::IntrinsicInst>(Op0)) {
if (CoroAllocaGet->getIntrinsicID() == llvm::Intrinsic::coro_alloca_get)
addr = CoroAllocaGet;
} else if (auto *call = dyn_cast<llvm::CallInst>(Op0)) {
addr = call;
bool isTaskAlloc = isCallToSwiftTaskAlloc(call);
assert(isTaskAlloc && "expecting call to swift_task_alloc");
(void)isTaskAlloc;
}
}
auto DS = i->getDebugScope();
if (!DS)
return;
if (i->getDebugScope()->getInlinedFunction()->isTransparent())
return;
bool IsAnonymous = false;
VarInfo->Name = getVarName(i, IsAnonymous);
// At this point addr must be an alloca or an undef.
assert(isa<llvm::AllocaInst>(addr) || isa<llvm::UndefValue>(addr) ||
isa<llvm::IntrinsicInst>(addr) || isCallToSwiftTaskAlloc(addr));
auto Indirection = DirectValue;
if (InCoroContext(*CurSILFn, *i))
Indirection =
isCallToSwiftTaskAlloc(addr) ? CoroIndirectValue : CoroDirectValue;
if (!IGM.IRGen.Opts.DisableDebuggerShadowCopies &&
!IGM.IRGen.Opts.shouldOptimize())
if (auto *Alloca = dyn_cast<llvm::AllocaInst>(addr))
if (!Alloca->isStaticAlloca()) {
// Store the address of the dynamic alloca on the stack.
addr = emitShadowCopy(addr, DS, *VarInfo, IGM.getPointerAlignment(),
/*init*/ true, i->usesMoveableValueDebugInfo())
.getAddress();
Indirection =
InCoroContext(*CurSILFn, *i) ? CoroIndirectValue : IndirectValue;
}
// Ignore compiler-generated patterns but not optional bindings.
if (Decl) {
if (auto *Pattern = Decl->getParentPattern()) {
if (Pattern->isImplicit() &&
Pattern->getKind() != PatternKind::OptionalSome)
return;
}
}
SILType SILTy;
if (auto MaybeSILTy = VarInfo->Type) {
// If there is auxiliary type info, use it
SILTy = *MaybeSILTy;
} else {
SILTy = i->getType();
}
auto RealType = SILTy.getASTType();
DebugTypeInfo DbgTy;
if (Decl) {
DbgTy = DebugTypeInfo::getLocalVariable(Decl, RealType, type, IGM);
} else if (i->getFunction()->isBare() && !SILTy.hasArchetype() &&
!VarInfo->Name.empty()) {
DbgTy = DebugTypeInfo::getFromTypeInfo(RealType, getTypeInfo(SILTy), IGM);
} else
return;
bindArchetypes(DbgTy.getType());
if (IGM.DebugInfo) {
emitDebugVariableDeclaration(
addr, DbgTy, SILTy, DS, i->getLoc(), *VarInfo, Indirection,
AddrDbgInstrKind(i->usesMoveableValueDebugInfo()));
}
}
void IRGenSILFunction::visitAllocStackInst(swift::AllocStackInst *i) {
const TypeInfo &type = getTypeInfo(i->getElementType());
// Derive name from SIL location.
StringRef dbgname;
VarDecl *Decl = i->getDecl();
# ifndef NDEBUG
// If this is a DEBUG build, use pretty names for the LLVM IR.
bool IsAnonymous = false;
dbgname = getVarName(i, IsAnonymous);
# endif
auto stackAddr = type.allocateStack(*this, i->getElementType(), dbgname);
setLoweredStackAddress(i, stackAddr);
Address addr = stackAddr.getAddress();
// Generate Debug Info.
if (!i->getVarInfo())
return;
if (Decl) {
Type Ty = Decl->getTypeInContext();
if (Ty->getClassOrBoundGenericClass() ||
Ty->getStructOrBoundGenericStruct())
zeroInit(dyn_cast<llvm::AllocaInst>(addr.getAddress()));
}
emitDebugInfoForAllocStack(i, type, addr.getAddress());
}
void IRGenSILFunction::visitAllocVectorInst(AllocVectorInst *i) {
const TypeInfo &type = getTypeInfo(i->getElementType());
Explosion capacity = getLoweredExplosion(i->getCapacity());
auto stackAddr = type.allocateVector(*this, i->getElementType(),
capacity.claimNext(), StringRef());
setLoweredStackAddress(i, stackAddr);
}
void IRGenSILFunction::visitAllocPackInst(swift::AllocPackInst *i) {
auto addr = allocatePack(*this, i->getPackType());
setLoweredStackAddress(i, addr);
}
void IRGenSILFunction::visitAllocPackMetadataInst(AllocPackMetadataInst *i) {}
static void
buildTailArrays(IRGenSILFunction &IGF,
SmallVectorImpl<std::pair<SILType, llvm::Value *>> &TailArrays,
AllocRefInstBase *ARI) {
auto Types = ARI->getTailAllocatedTypes();
auto Counts = ARI->getTailAllocatedCounts();
for (unsigned Idx = 0, NumTypes = Types.size(); Idx < NumTypes; ++Idx) {
Explosion ElemCount = IGF.getLoweredExplosion(Counts[Idx].get());
TailArrays.push_back({Types[Idx], ElemCount.claimNext()});
}
}
void IRGenSILFunction::visitAllocRefInst(swift::AllocRefInst *i) {
int StackAllocSize = -1;
if (i->canAllocOnStack()) {
estimateStackSize();
// Is there enough space for stack allocation?
StackAllocSize = IGM.IRGen.Opts.StackPromotionSizeLimit - EstimatedStackSize;
}
SmallVector<std::pair<SILType, llvm::Value *>, 4> TailArrays;
buildTailArrays(*this, TailArrays, i);
llvm::Value *alloced = emitClassAllocation(*this, i->getType(), i->isObjC(), i->isBare(),
StackAllocSize, TailArrays);
if (StackAllocSize >= 0) {
// Remember that this alloc_ref allocates the object on the stack.
StackAllocs.insert(i);
EstimatedStackSize += StackAllocSize;
}
Explosion e;
e.add(alloced);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitAllocRefDynamicInst(swift::AllocRefDynamicInst *i) {
int StackAllocSize = -1;
if (i->canAllocOnStack()) {
assert(i->isDynamicTypeDeinitAndSizeKnownEquivalentToBaseType());
estimateStackSize();
// Is there enough space for stack allocation?
StackAllocSize = IGM.IRGen.Opts.StackPromotionSizeLimit - EstimatedStackSize;
}
SmallVector<std::pair<SILType, llvm::Value *>, 4> TailArrays;
buildTailArrays(*this, TailArrays, i);
Explosion metadata = getLoweredExplosion(i->getMetatypeOperand());
auto metadataValue = metadata.claimNext();
llvm::Value *alloced = emitClassAllocationDynamic(*this, metadataValue,
i->getType(), i->isObjC(),
StackAllocSize,
TailArrays);
if (StackAllocSize >= 0) {
// Remember that this alloc_ref_dynamic allocates the object on the stack.
StackAllocs.insert(i);
EstimatedStackSize += StackAllocSize;
}
Explosion e;
e.add(alloced);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitDeallocStackInst(swift::DeallocStackInst *i) {
if (auto *closure = dyn_cast<PartialApplyInst>(i->getOperand())) {
assert(closure->isOnStack());
auto stackAddr = LoweredPartialApplyAllocations[i->getOperand()];
emitDeallocateDynamicAlloca(stackAddr);
return;
}
auto allocatedType = i->getOperand()->getType();
const TypeInfo &allocatedTI = getTypeInfo(allocatedType);
StackAddress stackAddr = getLoweredStackAddress(i->getOperand());
allocatedTI.deallocateStack(*this, stackAddr, allocatedType);
}
void IRGenSILFunction::visitDeallocStackRefInst(DeallocStackRefInst *i) {
Explosion self = getLoweredExplosion(i->getOperand());
auto selfValue = self.claimNext();
auto *ARI = i->getAllocRef();
if (StackAllocs.count(ARI)) {
if (IGM.IRGen.Opts.EmitStackPromotionChecks) {
selfValue = Builder.CreateBitCast(selfValue, IGM.RefCountedPtrTy);
emitVerifyEndOfLifetimeCall(selfValue);
} else {
// This has two purposes:
// 1. Tell LLVM the lifetime of the allocated stack memory.
// 2. Avoid tail-call optimization which may convert the call to the final
// release to a jump, which is done after the stack frame is
// destructed.
Builder.CreateLifetimeEnd(selfValue);
}
}
}
void IRGenSILFunction::visitDeallocPackInst(swift::DeallocPackInst *i) {
auto allocatedType = cast<SILPackType>(i->getOperand()->getType().getASTType());
StackAddress stackAddr = getLoweredStackAddress(i->getOperand());
deallocatePack(*this, stackAddr, allocatedType);
}
void IRGenSILFunction::visitDeallocPackMetadataInst(
DeallocPackMetadataInst *i) {
auto iter = StackPackAllocs.find(i->getIntroducer());
if (iter == StackPackAllocs.end())
return;
cleanupStackAllocPacks(*this, iter->getSecond());
}
void IRGenSILFunction::visitDeallocRefInst(swift::DeallocRefInst *i) {
// Lower the operand.
Explosion self = getLoweredExplosion(i->getOperand());
auto selfValue = self.claimNext();
SILValue op = i->getOperand();
if (auto *beginDealloc = dyn_cast<BeginDeallocRefInst>(op))
op = beginDealloc->getAllocation();
auto *ARI = dyn_cast<AllocRefInstBase>(op);
if (ARI && StackAllocs.count(ARI)) {
// We can ignore dealloc_refs for stack allocated objects.
//
// %0 = alloc_ref [stack]
// ...
// dealloc_ref %0 // not needed (stems from the inlined deallocator)
// ...
// dealloc_stack_ref %0
return;
}
auto classType = i->getOperand()->getType();
emitClassDeallocation(*this, classType, selfValue,
CurSILFn->getGenericSignature());
}
void IRGenSILFunction::visitDeallocPartialRefInst(swift::DeallocPartialRefInst *i) {
Explosion self = getLoweredExplosion(i->getInstance());
auto selfValue = self.claimNext();
Explosion metadata = getLoweredExplosion(i->getMetatype());
auto metadataValue = metadata.claimNext();
auto classType = i->getInstance()->getType();
emitPartialClassDeallocation(*this, classType, selfValue, metadataValue,
CurSILFn->getGenericSignature());
}
void IRGenSILFunction::visitDeallocBoxInst(swift::DeallocBoxInst *i) {
Explosion owner = getLoweredExplosion(i->getOperand());
llvm::Value *ownerPtr = owner.claimNext();
auto boxTy = i->getOperand()->getType().castTo<SILBoxType>();
emitDeallocateBox(*this, ownerPtr, boxTy);
}
void IRGenSILFunction::visitAllocBoxInst(swift::AllocBoxInst *i) {
assert(i->getBoxType()->getLayout()->getFields().size() == 1
&& "multi field boxes not implemented yet");
const TypeInfo &type = getTypeInfo(
getSILBoxFieldType(IGM.getMaximalTypeExpansionContext(), i->getBoxType(),
IGM.getSILModule().Types, 0));
// Derive name from SIL location.
bool IsAnonymous = false;
VarDecl *Decl = i->getDecl();
StringRef Name = getVarName(i, IsAnonymous);
StringRef DbgName =
# ifndef NDEBUG
// If this is a DEBUG build, use pretty names for the LLVM IR.
Name;
# else
"";
# endif
auto boxTy = i->getType().castTo<SILBoxType>();
OwnedAddress boxWithAddr = emitAllocateBox(*this, boxTy,
CurSILFn->getGenericEnvironment(),
DbgName);
setLoweredBox(i, boxWithAddr);
if (i->getDebugScope()->getInlinedFunction()->isTransparent())
return;
if (!Decl)
return;
// FIXME: This is a workaround to not produce local variables for
// capture list arguments like "[weak self]". The better solution
// would be to require all variables to be described with a
// SILDebugValue(Addr) and then not describe capture list
// arguments.
if (Name == IGM.Context.Id_self.str())
return;
assert(i->getBoxType()->getLayout()->getFields().size() == 1 &&
"box for a local variable should only have one field");
auto SILTy = getSILBoxFieldType(
IGM.getMaximalTypeExpansionContext(),
i->getBoxType(), IGM.getSILModule().Types, 0);
auto RealType = SILTy.getASTType();
auto DbgTy =
DebugTypeInfo::getLocalVariable(Decl, RealType, type, IGM);
auto VarInfo = i->getVarInfo();
if (!VarInfo)
return;
auto &ti = getTypeInfo(SILTy);
auto Storage =
emitShadowCopyIfNeeded(boxWithAddr.getAddress(), ti.getStorageType(),
i->getDebugScope(),
*VarInfo, IsAnonymous, false /*was moved*/);
if (!IGM.DebugInfo)
return;
IGM.DebugInfo->emitVariableDeclaration(
Builder, Storage, DbgTy, i->getDebugScope(), i->getLoc(), *VarInfo,
InCoroContext(*CurSILFn, *i) ? CoroIndirectValue : IndirectValue);
}
void IRGenSILFunction::visitProjectBoxInst(swift::ProjectBoxInst *i) {
auto boxTy = i->getOperand()->getType().castTo<SILBoxType>();
const LoweredValue &val = getLoweredValue(i->getOperand());
if (val.isBoxWithAddress()) {
// The operand is an alloc_box. We can directly reuse the address.
setLoweredAddress(i, val.getAddressOfBox());
} else {
// The slow-path: we have to emit code to get from the box to it's
// value address.
Explosion box = val.getExplosion(*this, i->getOperand()->getType());
auto addr = emitProjectBox(*this, box.claimNext(), boxTy);
setLoweredAddress(i, addr);
}
}
static ExclusivityFlags getExclusivityAction(SILAccessKind kind) {
switch (kind) {
case SILAccessKind::Read:
return ExclusivityFlags::Read;
case SILAccessKind::Modify:
return ExclusivityFlags::Modify;
case SILAccessKind::Init:
case SILAccessKind::Deinit:
llvm_unreachable("init/deinit access should not use dynamic enforcement");
}
llvm_unreachable("bad access kind");
}
static ExclusivityFlags getExclusivityFlags(SILModule &M,
SILAccessKind kind,
bool noNestedConflict) {
auto flags = getExclusivityAction(kind);
if (!noNestedConflict)
flags |= ExclusivityFlags::Tracking;
return flags;
}
static SILAccessEnforcement getEffectiveEnforcement(IRGenFunction &IGF,
BeginAccessInst *access) {
auto enforcement = access->getEnforcement();
// Don't use dynamic enforcement for known-empty types; there's no
// actual memory there, and the address may not be valid and unique.
// This is really a hack; we don't necessarily know that all clients
// will agree whether a type is empty. On the other hand, the situations
// where IRGen generates a meaningless address should always be a subset
// of cases where this triggers, because of the restrictions on abstracting
// over addresses and the fact that we use static enforcement on inouts.
if (enforcement == SILAccessEnforcement::Dynamic &&
IGF.IGM.getTypeInfo(access->getSource()->getType())
.isKnownEmpty(ResilienceExpansion::Maximal)) {
enforcement = SILAccessEnforcement::Unsafe;
}
return enforcement;
}
template <class BeginAccessInst>
static ExclusivityFlags getExclusivityFlags(BeginAccessInst *i) {
return getExclusivityFlags(i->getModule(), i->getAccessKind(),
i->hasNoNestedConflict());
}
void IRGenSILFunction::visitBeginAccessInst(BeginAccessInst *access) {
Address addr = getLoweredAddress(access->getOperand());
switch (getEffectiveEnforcement(*this, access)) {
case SILAccessEnforcement::Unknown:
llvm_unreachable("unknown access enforcement in IRGen!");
case SILAccessEnforcement::Static:
case SILAccessEnforcement::Unsafe:
// nothing to do
setLoweredAddress(access, addr);
return;
case SILAccessEnforcement::Dynamic: {
llvm::Value *scratch = createAlloca(IGM.getFixedBufferTy(),
IGM.getPointerAlignment(),
"access-scratch").getAddress();
Builder.CreateLifetimeStart(scratch);
llvm::Value *pointer =
Builder.CreateBitCast(addr.getAddress(), IGM.Int8PtrTy);
llvm::Value *flags =
llvm::ConstantInt::get(IGM.SizeTy, uint64_t(getExclusivityFlags(access)));
llvm::Value *pc = llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
auto call = Builder.CreateCall(IGM.getBeginAccessFunctionPointer(),
{pointer, scratch, flags, pc});
call->setDoesNotThrow();
setLoweredDynamicallyEnforcedAddress(access, addr, scratch);
return;
}
case SILAccessEnforcement::Signed: {
auto &ti = getTypeInfo(access->getType());
auto *sea = cast<StructElementAddrInst>(access->getOperand());
auto *Int64PtrTy = llvm::Type::getInt64PtrTy(IGM.getLLVMContext());
auto *Int64PtrPtrTy = Int64PtrTy->getPointerTo();
if (access->getAccessKind() == SILAccessKind::Read) {
// When we see a signed read access, generate code to:
// authenticate the signed pointer if non-null, and store the
// authenticated value to a shadow stack location. Set the lowered address
// of the access to this stack location.
auto pointerAuthQual = sea->getField()->getPointerAuthQualifier();
auto *pointerToSignedFptr = getLoweredAddress(sea).getAddress();
auto *pointerToIntPtr =
Builder.CreateBitCast(pointerToSignedFptr, Int64PtrPtrTy);
auto *signedFptr = Builder.CreateLoad(pointerToIntPtr, Int64PtrTy,
IGM.getPointerAlignment());
// Create a stack temporary.
auto temp = ti.allocateStack(*this, access->getType(), "ptrauth.temp");
auto *tempAddressToIntPtr =
Builder.CreateBitCast(temp.getAddressPointer(), Int64PtrPtrTy);
// Branch based on pointer is null or not.
llvm::Value *cond = Builder.CreateICmpNE(
signedFptr, llvm::ConstantPointerNull::get(Int64PtrTy));
auto *resignNonNull = createBasicBlock("resign-nonnull");
auto *resignNull = createBasicBlock("resign-null");
auto *resignCont = createBasicBlock("resign-cont");
Builder.CreateCondBr(cond, resignNonNull, resignNull);
// Resign if non-null.
Builder.emitBlock(resignNonNull);
auto oldAuthInfo =
PointerAuthInfo::emit(*this, pointerAuthQual, pointerToSignedFptr);
// ClangImporter imports the c function pointer as an optional type.
PointerAuthEntity entity(
sea->getType().getOptionalObjectType().getAs<SILFunctionType>());
auto newAuthInfo = PointerAuthInfo::emit(
*this, IGM.getOptions().PointerAuth.FunctionPointers,
pointerToSignedFptr, entity);
auto *resignedFptr =
emitPointerAuthResign(*this, signedFptr, oldAuthInfo, newAuthInfo);
Builder.CreateStore(resignedFptr, tempAddressToIntPtr,
IGM.getPointerAlignment());
Builder.CreateBr(resignCont);
// If null, no need to resign.
Builder.emitBlock(resignNull);
Builder.CreateStore(signedFptr, tempAddressToIntPtr,
IGM.getPointerAlignment());
Builder.CreateBr(resignCont);
Builder.emitBlock(resignCont);
setLoweredAddress(access, temp.getAddress());
return;
}
if (access->getAccessKind() == SILAccessKind::Modify ||
access->getAccessKind() == SILAccessKind::Init) {
// When we see a signed modify access, create a shadow stack location and
// set the lowered address of the access to this stack location.
auto temp = ti.allocateStack(*this, access->getType(), "ptrauth.temp");
setLoweredAddress(access, temp.getAddress());
return;
}
llvm_unreachable("Incompatible access kind with begin_access [signed]");
}
}
llvm_unreachable("bad access enforcement");
}
static bool hasBeenInlined(BeginUnpairedAccessInst *access) {
// Check to see if the buffer is defined locally.
return isa<AllocStackInst>(access->getBuffer());
}
void IRGenSILFunction::visitBeginUnpairedAccessInst(
BeginUnpairedAccessInst *access) {
Address addr = getLoweredAddress(access->getSource());
switch (access->getEnforcement()) {
case SILAccessEnforcement::Unknown:
llvm_unreachable("unknown access enforcement in IRGen!");
case SILAccessEnforcement::Static:
case SILAccessEnforcement::Unsafe:
case SILAccessEnforcement::Signed:
// nothing to do
return;
case SILAccessEnforcement::Dynamic: {
llvm::Value *scratch = getLoweredAddress(access->getBuffer()).getAddress();
llvm::Value *pointer =
Builder.CreateBitCast(addr.getAddress(), IGM.Int8PtrTy);
llvm::Value *flags =
llvm::ConstantInt::get(IGM.SizeTy, uint64_t(getExclusivityFlags(access)));
// Compute the effective PC of the access.
// Since begin_unpaired_access is designed for materializeForSet, our
// heuristic here is as well: we've either been inlined, in which case
// we should use the current PC (i.e. pass null), or we haven't,
// in which case we should use the caller, which is generally ok because
// materializeForSet can't usually be thunked.
llvm::Value *pc;
// Wasm doesn't have returnaddress because it can't access call frame
// for security purposes
if (IGM.Triple.isWasm() || hasBeenInlined(access)) {
pc = llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
} else {
pc =
Builder.CreateIntrinsicCall(llvm::Intrinsic::returnaddress,
{llvm::ConstantInt::get(IGM.Int32Ty, 0)});
}
auto call = Builder.CreateCall(IGM.getBeginAccessFunctionPointer(),
{pointer, scratch, flags, pc});
call->setDoesNotThrow();
return;
}
}
llvm_unreachable("bad access enforcement");
}
void IRGenSILFunction::visitEndAccessInst(EndAccessInst *i) {
auto access = i->getBeginAccess();
switch (getEffectiveEnforcement(*this, access)) {
case SILAccessEnforcement::Unknown:
llvm_unreachable("unknown access enforcement in IRGen!");
case SILAccessEnforcement::Static:
case SILAccessEnforcement::Unsafe:
// nothing to do
return;
case SILAccessEnforcement::Dynamic: {
if (access->hasNoNestedConflict())
return;
auto scratch = getLoweredDynamicEnforcementScratchBuffer(access);
auto call =
Builder.CreateCall(IGM.getEndAccessFunctionPointer(), {scratch});
call->setDoesNotThrow();
Builder.CreateLifetimeEnd(scratch);
return;
}
case SILAccessEnforcement::Signed: {
if (access->getAccessKind() != SILAccessKind::Modify &&
access->getAccessKind() != SILAccessKind::Init) {
// nothing to do.
return;
}
// When we see a signed modify access, get the lowered address of the
// access which is the shadow stack slot, sign the value if non-null and
// write back to the struct field.
auto *sea = cast<StructElementAddrInst>(access->getOperand());
auto *Int64PtrTy = llvm::Type::getInt64PtrTy(IGM.getLLVMContext());
auto *Int64PtrPtrTy = Int64PtrTy->getPointerTo();
auto pointerAuthQual = cast<StructElementAddrInst>(access->getOperand())
->getField()
->getPointerAuthQualifier();
auto *pointerToSignedFptr =
getLoweredAddress(access->getOperand()).getAddress();
auto *pointerToIntPtr =
Builder.CreateBitCast(pointerToSignedFptr, Int64PtrPtrTy);
auto tempAddress = getLoweredAddress(access);
auto *tempAddressToIntPtr =
Builder.CreateBitCast(tempAddress.getAddress(), Int64PtrPtrTy);
auto *tempAddressValue = Builder.CreateLoad(tempAddressToIntPtr, Int64PtrTy,
IGM.getPointerAlignment());
// Branch based on value is null or not.
llvm::Value *cond = Builder.CreateICmpNE(
tempAddressValue, llvm::ConstantPointerNull::get(Int64PtrTy));
auto *resignNonNull = createBasicBlock("resign-nonnull");
auto *resignNull = createBasicBlock("resign-null");
auto *resignCont = createBasicBlock("resign-cont");
Builder.CreateCondBr(cond, resignNonNull, resignNull);
Builder.emitBlock(resignNonNull);
// If non-null, resign
// ClangImporter imports the c function pointer as an optional type.
PointerAuthEntity entity(
sea->getType().getOptionalObjectType().getAs<SILFunctionType>());
auto oldAuthInfo = PointerAuthInfo::emit(
*this, IGM.getOptions().PointerAuth.FunctionPointers,
tempAddress.getAddress(), entity);
auto newAuthInfo =
PointerAuthInfo::emit(*this, pointerAuthQual, pointerToSignedFptr);
auto *signedFptr = emitPointerAuthResign(*this, tempAddressValue,
oldAuthInfo, newAuthInfo);
Builder.CreateStore(signedFptr, pointerToIntPtr, IGM.getPointerAlignment());
Builder.CreateBr(resignCont);
// If null, no need to resign
Builder.emitBlock(resignNull);
Builder.CreateStore(tempAddressValue, pointerToIntPtr, IGM.getPointerAlignment());
Builder.CreateBr(resignCont);
Builder.emitBlock(resignCont);
return;
}
}
llvm_unreachable("bad access enforcement");
}
void IRGenSILFunction::visitEndUnpairedAccessInst(EndUnpairedAccessInst *i) {
switch (i->getEnforcement()) {
case SILAccessEnforcement::Unknown:
llvm_unreachable("unknown access enforcement in IRGen!");
case SILAccessEnforcement::Static:
case SILAccessEnforcement::Unsafe:
case SILAccessEnforcement::Signed:
// nothing to do
return;
case SILAccessEnforcement::Dynamic: {
auto scratch = getLoweredAddress(i->getBuffer()).getAddress();
auto call =
Builder.CreateCall(IGM.getEndAccessFunctionPointer(), {scratch});
call->setDoesNotThrow();
return;
}
}
llvm_unreachable("bad access enforcement");
}
void IRGenSILFunction::visitConvertFunctionInst(swift::ConvertFunctionInst *i) {
auto &lv = getLoweredValue(i->getOperand());
if (lv.kind == LoweredValue::Kind::ObjCMethod) {
// LoadableByAddress lowering will insert convert_function instructions to
// change the type of a partial_apply instruction involving a objc_method
// convention, to change the partial_apply's SIL type (rewriting large types
// to @in_guaranteed/@out). This is important for pointer authentication.
// The convert_function instruction will carry the desired SIL type.
// Here we just forward the objective-c method.
auto &objcMethod = lv.getObjCMethod();
setLoweredObjCMethod(i, objcMethod.getMethod());
return;
}
// This instruction is specified to be a no-op.
Explosion temp = getLoweredExplosion(i->getOperand());
auto fnType = i->getType().castTo<SILFunctionType>();
if (temp.size() == 1 &&
fnType->getRepresentation() != SILFunctionType::Representation::Block) {
auto *fn = temp.claimNext();
Explosion res;
auto sig = IGM.getSignature(fnType);
res.add(Builder.CreateBitCast(fn, sig.getType()->getPointerTo()));
setLoweredExplosion(i, res);
return;
}
setLoweredExplosion(i, temp);
}
void IRGenSILFunction::visitConvertEscapeToNoEscapeInst(
swift::ConvertEscapeToNoEscapeInst *i) {
// This instruction makes the context trivial.
Explosion in = getLoweredExplosion(i->getOperand());
Explosion out;
// Differentiable functions contain multiple pairs of fn and ctx pointer.
for (unsigned index : range(in.size() / 2)) {
(void)index;
llvm::Value *fn = in.claimNext();
llvm::Value *ctx = in.claimNext();
out.add(fn);
out.add(Builder.CreateBitCast(ctx, IGM.OpaquePtrTy));
}
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitAddressToPointerInst(swift::AddressToPointerInst *i)
{
Explosion to;
llvm::Value *addrValue = getLoweredAddress(i->getOperand()).getAddress();
if (addrValue->getType() != IGM.Int8PtrTy)
addrValue = Builder.CreateBitCast(addrValue, IGM.Int8PtrTy);
to.add(addrValue);
setLoweredExplosion(i, to);
}
// Ignores the isStrict flag because Swift TBAA is not lowered into LLVM IR.
void IRGenSILFunction::visitPointerToAddressInst(swift::PointerToAddressInst *i)
{
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *ptrValue = from.claimNext();
auto &ti = getTypeInfo(i->getType());
llvm::Type *destType = ti.getStorageType()->getPointerTo();
ptrValue = Builder.CreateBitCast(ptrValue, destType);
if (i->alignment())
setLoweredAddress(i, Address(ptrValue, ti.getStorageType(),
Alignment(i->alignment()->value())));
else
setLoweredAddress(i, ti.getAddressForPointer(ptrValue));
}
static void emitPointerCastInst(IRGenSILFunction &IGF,
SILValue src,
SILValue dest,
const TypeInfo &ti) {
Explosion from = IGF.getLoweredExplosion(src);
llvm::Value *ptrValue = from.claimNext();
// The input may have witness tables or other additional data, but the class
// reference is always first.
(void)from.claimAll();
auto schema = ti.getSchema();
assert(schema.size() == 1
&& schema[0].isScalar()
&& "pointer schema is not a single scalar?!");
auto castToType = schema[0].getScalarType();
// A retainable pointer representation may be wrapped in an optional, so we
// need to provide inttoptr/ptrtoint in addition to bitcast.
ptrValue = IGF.Builder.CreateBitOrPointerCast(ptrValue, castToType);
Explosion to;
to.add(ptrValue);
IGF.setLoweredExplosion(dest, to);
}
void IRGenSILFunction::visitUncheckedRefCastInst(
swift::UncheckedRefCastInst *i) {
auto &ti = getTypeInfo(i->getType());
emitPointerCastInst(*this, i->getOperand(), i, ti);
}
// TODO: Although runtime checks are not required, we get them anyway when
// asking the runtime to perform this cast. If this is a performance impact, we
// can add a CheckedCastMode::Unchecked.
void IRGenSILFunction::
visitUncheckedRefCastAddrInst(swift::UncheckedRefCastAddrInst *i) {
Address dest = getLoweredAddress(i->getDest());
Address src = getLoweredAddress(i->getSrc());
emitCheckedCast(*this,
src, i->getSourceFormalType(),
dest, i->getTargetFormalType(),
CastConsumptionKind::TakeAlways,
CheckedCastMode::Unconditional);
}
void IRGenSILFunction::visitUncheckedAddrCastInst(
swift::UncheckedAddrCastInst *i) {
auto addr = getLoweredAddress(i->getOperand());
auto &ti = getTypeInfo(i->getType());
auto result = Builder.CreateElementBitCast(addr, ti.getStorageType());
setLoweredAddress(i, result);
}
static bool isStructurallySame(const llvm::Type *T1, const llvm::Type *T2) {
if (T1 == T2) return true;
if (auto *S1 = dyn_cast<llvm::StructType>(T1))
if (auto *S2 = dyn_cast<llvm::StructType>(T2))
return S1->isLayoutIdentical(const_cast<llvm::StructType*>(S2));
return false;
}
// Emit a trap in the event a type does not match expected layout constraints.
//
// We can hit this case in specialized functions even for correct user code.
// If the user dynamically checks for correct type sizes in the generic
// function, a specialized function can contain the (not executed) bitcast
// with mismatching fixed sizes.
// Usually llvm can eliminate this code again because the user's safety
// check should be constant foldable on llvm level.
static void emitTrapAndUndefValue(IRGenSILFunction &IGF,
Explosion &in,
Explosion &out,
const LoadableTypeInfo &outTI) {
llvm::BasicBlock *failBB =
llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
IGF.Builder.CreateBr(failBB);
IGF.FailBBs.push_back(failBB);
IGF.Builder.emitBlock(failBB);
IGF.emitTrap("mismatching type layouts", /*EmitUnreachable=*/true);
llvm::BasicBlock *contBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
IGF.Builder.emitBlock(contBB);
(void)in.claimAll();
for (auto schema : outTI.getSchema())
out.add(llvm::UndefValue::get(schema.getScalarType()));
}
static void emitUncheckedValueBitCast(IRGenSILFunction &IGF,
SourceLoc loc,
Explosion &in,
const LoadableTypeInfo &inTI,
Explosion &out,
const LoadableTypeInfo &outTI) {
// If the transfer is doable bitwise, and if the elements of the explosion are
// the same type, then just transfer the elements.
if (inTI.isBitwiseTakable(ResilienceExpansion::Maximal) &&
outTI.isBitwiseTakable(ResilienceExpansion::Maximal) &&
isStructurallySame(inTI.getStorageType(), outTI.getStorageType())) {
in.transferInto(out, in.size());
return;
}
// TODO: We could do bitcasts entirely in the value domain in some cases, but
// for simplicity, let's just always go through the stack for now.
// Create the allocation.
auto inStorage = IGF.createAlloca(inTI.getStorageType(),
std::max(inTI.getFixedAlignment(),
outTI.getFixedAlignment()),
"bitcast");
auto maxSize = std::max(inTI.getFixedSize(), outTI.getFixedSize());
IGF.Builder.CreateLifetimeStart(inStorage, maxSize);
// Store the 'in' value.
inTI.initialize(IGF, in, inStorage, false);
// Load the 'out' value as the destination type.
auto outStorage =
IGF.Builder.CreateElementBitCast(inStorage, outTI.getStorageType());
outTI.loadAsTake(IGF, outStorage, out);
IGF.Builder.CreateLifetimeEnd(inStorage, maxSize);
return;
}
static void emitValueBitwiseCast(IRGenSILFunction &IGF,
SourceLoc loc,
Explosion &in,
const LoadableTypeInfo &inTI,
Explosion &out,
const LoadableTypeInfo &outTI) {
// Unfortunately, we can't check this invariant until we get to IRGen, since
// the AST and SIL don't know anything about type layout.
if (inTI.getFixedSize() < outTI.getFixedSize()) {
emitTrapAndUndefValue(IGF, in, out, outTI);
return;
}
emitUncheckedValueBitCast(IGF, loc, in, inTI, out, outTI);
}
void IRGenSILFunction::visitUncheckedTrivialBitCastInst(
swift::UncheckedTrivialBitCastInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
Explosion out;
emitValueBitwiseCast(*this, i->getLoc().getSourceLoc(),
in, cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType())),
out, cast<LoadableTypeInfo>(getTypeInfo(i->getType())));
setLoweredExplosion(i, out);
}
void IRGenSILFunction::
visitUncheckedBitwiseCastInst(swift::UncheckedBitwiseCastInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
Explosion out;
emitValueBitwiseCast(*this, i->getLoc().getSourceLoc(),
in, cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType())),
out, cast<LoadableTypeInfo>(getTypeInfo(i->getType())));
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitRefToRawPointerInst(
swift::RefToRawPointerInst *i) {
auto &ti = getTypeInfo(i->getType());
emitPointerCastInst(*this, i->getOperand(), i, ti);
}
void IRGenSILFunction::visitRawPointerToRefInst(swift::RawPointerToRefInst *i) {
auto &ti = getTypeInfo(i->getType());
emitPointerCastInst(*this, i->getOperand(), i, ti);
}
// SIL scalar conversions which never change the IR type.
// FIXME: Except for optionals, which get bit-packed into an integer.
static void trivialRefConversion(IRGenSILFunction &IGF,
SILValue input,
SILValue result) {
Explosion temp = IGF.getLoweredExplosion(input);
auto &inputTI = IGF.getTypeInfo(input->getType());
auto &resultTI = IGF.getTypeInfo(result->getType());
// If the types are the same, forward the existing value.
if (inputTI.getStorageType() == resultTI.getStorageType()) {
IGF.setLoweredExplosion(result, temp);
return;
}
auto schema = resultTI.getSchema();
Explosion out;
for (auto schemaElt : schema) {
auto resultTy = schemaElt.getScalarType();
llvm::Value *value = temp.claimNext();
if (value->getType() == resultTy) {
// Nothing to do. This happens with the unowned conversions.
} else if (resultTy->isPointerTy()) {
value = IGF.Builder.CreateIntToPtr(value, resultTy);
} else {
value = IGF.Builder.CreatePtrToInt(value, resultTy);
}
out.add(value);
}
IGF.setLoweredExplosion(result, out);
}
// SIL scalar conversions which never change the IR type.
// FIXME: Except for optionals, which get bit-packed into an integer.
#define NOOP_CONVERSION(KIND) \
void IRGenSILFunction::visit##KIND##Inst(swift::KIND##Inst *i) { \
::trivialRefConversion(*this, i->getOperand(), i); \
}
#define LOADABLE_REF_STORAGE(Name, ...) \
NOOP_CONVERSION(Name##ToRef) \
NOOP_CONVERSION(RefTo##Name)
#include "swift/AST/ReferenceStorage.def"
#undef NOOP_CONVERSION
void IRGenSILFunction::visitThinToThickFunctionInst(
swift::ThinToThickFunctionInst *i) {
// Take the incoming function pointer and add a null context pointer to it.
Explosion from = getLoweredExplosion(i->getOperand());
Explosion to;
to.add(Builder.CreateBitCast(from.claimNext(), IGM.FunctionPtrTy));
if (i->getType().castTo<SILFunctionType>()->isNoEscape())
to.add(llvm::ConstantPointerNull::get(IGM.OpaquePtrTy));
else
to.add(IGM.RefCountedNull);
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *i){
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *swiftMeta = from.claimNext();
// Claim any conformances.
(void)from.claimAll();
CanType instanceType(i->getType().castTo<AnyMetatypeType>().getInstanceType());
Explosion to;
llvm::Value *classPtr =
emitClassHeapMetadataRefForMetatype(*this, swiftMeta, instanceType);
to.add(Builder.CreateBitCast(classPtr, IGM.ObjCClassPtrTy));
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitObjCToThickMetatypeInst(
ObjCToThickMetatypeInst *i) {
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *classPtr = from.claimNext();
// Fetch the metadata for that class.
Explosion to;
auto metadata = emitObjCMetadataRefForMetadata(*this, classPtr);
to.add(metadata);
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitUnconditionalCheckedCastInst(
swift::UnconditionalCheckedCastInst *i) {
Explosion value = getLoweredExplosion(i->getOperand());
Explosion ex;
emitScalarCheckedCast(*this, value,
i->getSourceLoweredType(),
i->getSourceFormalType(),
i->getTargetLoweredType(),
i->getTargetFormalType(),
CheckedCastMode::Unconditional,
CurSILFn->getGenericSignature(),
ex);
setLoweredExplosion(i, ex);
}
void IRGenSILFunction::visitObjCMetatypeToObjectInst(
ObjCMetatypeToObjectInst *i){
// Bitcast the @objc metatype reference, which is already an ObjC object, to
// the destination type.
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *value = from.claimNext();
value = Builder.CreateBitCast(value, IGM.UnknownRefCountedPtrTy);
Explosion to;
to.add(value);
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitObjCExistentialMetatypeToObjectInst(
ObjCExistentialMetatypeToObjectInst *i){
// Bitcast the @objc metatype reference, which is already an ObjC object, to
// the destination type. The metatype may carry additional witness tables we
// can drop.
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *value = from.claimNext();
(void)from.claimAll();
value = Builder.CreateBitCast(value, IGM.UnknownRefCountedPtrTy);
Explosion to;
to.add(value);
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitObjCProtocolInst(ObjCProtocolInst *i) {
// Get the protocol reference.
llvm::Value *protoRef = emitReferenceToObjCProtocol(*this, i->getProtocol());
// Bitcast it to the class reference type.
protoRef = Builder.CreateBitCast(protoRef,
getTypeInfo(i->getType()).getStorageType());
Explosion ex;
ex.add(protoRef);
setLoweredExplosion(i, ex);
}
void IRGenSILFunction::visitRefToBridgeObjectInst(
swift::RefToBridgeObjectInst *i) {
Explosion refEx = getLoweredExplosion(i->getOperand(0));
llvm::Value *ref = refEx.claimNext();
Explosion bitsEx = getLoweredExplosion(i->getBitsOperand());
llvm::Value *bits = bitsEx.claimNext();
// Mask the bits into the pointer representation.
llvm::Value *val = Builder.CreatePtrToInt(ref, IGM.SizeTy);
val = Builder.CreateOr(val, bits);
val = Builder.CreateIntToPtr(val, IGM.BridgeObjectPtrTy);
Explosion resultEx;
resultEx.add(val);
setLoweredExplosion(i, resultEx);
}
void IRGenSILFunction::
visitClassifyBridgeObjectInst(ClassifyBridgeObjectInst *i) {
Explosion boEx = getLoweredExplosion(i->getOperand());
llvm::Value *bridgeVal = boEx.claimNext();
bridgeVal = Builder.CreatePtrToInt(bridgeVal, IGM.SizeTy);
// This returns two bits, the first of which is "is Objective-C object", the
// second is "is Objective-C Tagged Pointer". Each of these bits is computed
// by checking to see if some other bits are non-zero in the BridgeObject.
auto bitsNonZero = [&](const SpareBitVector &bits) -> llvm::Value* {
// If this target doesn't have the specified field, just produce false.
if (!bits.any())
return Builder.getInt1(0);
llvm::Value *bitsValue =
Builder.CreateAnd(bridgeVal, Builder.getInt(bits.asAPInt()));
return
Builder.CreateICmpNE(bitsValue, llvm::ConstantInt::get(IGM.SizeTy, 0));
};
Explosion wordEx;
wordEx.add(bitsNonZero(IGM.TargetInfo.IsObjCPointerBit));
wordEx.add(bitsNonZero(IGM.TargetInfo.ObjCPointerReservedBits));
setLoweredExplosion(i, wordEx);
}
void IRGenSILFunction::visitValueToBridgeObjectInst(
ValueToBridgeObjectInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
Explosion out;
emitValueBitwiseCast(
*this, i->getLoc().getSourceLoc(), in,
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType())), out,
cast<LoadableTypeInfo>(getTypeInfo(i->getType())));
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitBridgeObjectToRefInst(
swift::BridgeObjectToRefInst *i) {
Explosion boEx = getLoweredExplosion(i->getOperand());
llvm::Value *bo = boEx.claimNext();
Explosion resultEx;
auto &refTI = getTypeInfo(i->getType());
llvm::Type *refType = refTI.getSchema()[0].getScalarType();
// If the value is an ObjC tagged pointer, pass it through verbatim.
llvm::BasicBlock *taggedCont = nullptr,
*tagged = nullptr,
*notTagged = nullptr;
llvm::Value *taggedRef = nullptr;
llvm::Value *boBits = nullptr;
ClassDecl *Cl = i->getType().getClassOrBoundGenericClass();
if (IGM.TargetInfo.hasObjCTaggedPointers() &&
(!Cl || !isKnownNotTaggedPointer(IGM, Cl))) {
boBits = Builder.CreatePtrToInt(bo, IGM.SizeTy);
APInt maskValue = IGM.TargetInfo.ObjCPointerReservedBits.asAPInt();
llvm::Value *mask = Builder.getInt(maskValue);
llvm::Value *reserved = Builder.CreateAnd(boBits, mask);
llvm::Value *cond = Builder.CreateICmpEQ(reserved,
llvm::ConstantInt::get(IGM.SizeTy, 0));
tagged = createBasicBlock("tagged-pointer"),
notTagged = createBasicBlock("not-tagged-pointer");
taggedCont = createBasicBlock("tagged-cont");
Builder.CreateCondBr(cond, notTagged, tagged);
Builder.emitBlock(tagged);
taggedRef = Builder.CreateBitCast(bo, refType);
Builder.CreateBr(taggedCont);
// If it's not a tagged pointer, mask off the spare bits.
Builder.emitBlock(notTagged);
}
// Mask off the spare bits (if they exist).
auto &spareBits = IGM.getHeapObjectSpareBits();
llvm::Value *result;
if (spareBits.any()) {
APInt maskValue = ~spareBits.asAPInt();
if (!boBits)
boBits = Builder.CreatePtrToInt(bo, IGM.SizeTy);
llvm::Value *mask = llvm::ConstantInt::get(IGM.getLLVMContext(), maskValue);
llvm::Value *masked = Builder.CreateAnd(boBits, mask);
result = Builder.CreateIntToPtr(masked, refType);
} else {
result = Builder.CreateBitCast(bo, refType);
}
if (taggedCont) {
Builder.CreateBr(taggedCont);
Builder.emitBlock(taggedCont);
auto phi = Builder.CreatePHI(refType, 2);
phi->addIncoming(taggedRef, tagged);
phi->addIncoming(result, notTagged);
result = phi;
}
resultEx.add(result);
setLoweredExplosion(i, resultEx);
}
void IRGenSILFunction::visitBridgeObjectToWordInst(
swift::BridgeObjectToWordInst *i) {
Explosion boEx = getLoweredExplosion(i->getOperand());
llvm::Value *val = boEx.claimNext();
val = Builder.CreatePtrToInt(val, IGM.SizeTy);
Explosion wordEx;
wordEx.add(val);
setLoweredExplosion(i, wordEx);
}
void IRGenSILFunction::visitUnconditionalCheckedCastAddrInst(
swift::UnconditionalCheckedCastAddrInst *i) {
Address dest = getLoweredAddress(i->getDest());
Address src = getLoweredAddress(i->getSrc());
emitCheckedCast(*this,
src, i->getSourceFormalType(),
dest, i->getTargetFormalType(),
CastConsumptionKind::TakeAlways,
CheckedCastMode::Unconditional);
}
void IRGenSILFunction::visitCheckedCastBranchInst(
swift::CheckedCastBranchInst *i) {
FailableCastResult castResult;
Explosion ex;
if (i->isExact()) {
auto operand = i->getOperand();
Explosion source = getLoweredExplosion(operand);
castResult = emitClassIdenticalCast(*this, source.claimNext(),
i->getSourceLoweredType(),
i->getTargetLoweredType(),
CurSILFn->getGenericSignature());
} else {
Explosion value = getLoweredExplosion(i->getOperand());
emitScalarCheckedCast(*this, value,
i->getSourceLoweredType(),
i->getSourceFormalType(),
i->getTargetLoweredType(),
i->getTargetFormalType(),
CheckedCastMode::Conditional,
CurSILFn->getGenericSignature(),
ex);
auto val = ex.claimNext();
castResult.casted = val;
llvm::Value *nil =
llvm::ConstantPointerNull::get(cast<llvm::PointerType>(val->getType()));
castResult.succeeded = Builder.CreateICmpNE(val, nil);
}
// Branch on the success of the cast.
// All cast operations currently return null on failure.
auto &successBB = getLoweredBB(i->getSuccessBB());
llvm::Type *toTy = IGM.getTypeInfo(i->getTargetLoweredType()).getStorageType();
if (toTy->isPointerTy())
castResult.casted = Builder.CreateBitCast(castResult.casted, toTy);
Builder.CreateCondBr(castResult.succeeded,
successBB.bb,
getLoweredBB(i->getFailureBB()).bb);
// Feed the cast result into the nonnull branch.
unsigned phiIndex = 0;
Explosion ex2;
ex2.add(castResult.casted);
ex2.add(ex.claimAll());
addIncomingExplosionToPHINodes(*this, successBB, phiIndex, ex2);
}
void IRGenSILFunction::visitCheckedCastAddrBranchInst(
swift::CheckedCastAddrBranchInst *i) {
Address dest = getLoweredAddress(i->getDest());
Address src = getLoweredAddress(i->getSrc());
llvm::Value *castSucceeded =
emitCheckedCast(*this,
src, i->getSourceFormalType(),
dest, i->getTargetFormalType(),
i->getConsumptionKind(), CheckedCastMode::Conditional);
Builder.CreateCondBr(castSucceeded,
getLoweredBB(i->getSuccessBB()).bb,
getLoweredBB(i->getFailureBB()).bb);
}
void IRGenSILFunction::visitHopToExecutorInst(HopToExecutorInst *i) {
assert(i->getTargetExecutor()->getType().getOptionalObjectType()
.is<BuiltinExecutorType>());
llvm::Value *resumeFn = Builder.CreateIntrinsicCall(
llvm::Intrinsic::coro_async_resume, {});
Explosion executor;
getLoweredExplosion(i->getOperand(), executor);
emitSuspensionPoint(executor, resumeFn);
}
void IRGenSILFunction::visitFunctionExtractIsolationInst(
FunctionExtractIsolationInst *i) {
Explosion fnValue;
getLoweredExplosion(i->getFunction(), fnValue);
assert(fnValue.size() == 2);
// Ignore the function pointer and claim the closure value.
(void) fnValue.claimNext();
auto fnContext = fnValue.claimNext();
Explosion result;
emitExtractFunctionIsolation(*this, fnContext, result);
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitKeyPathInst(swift::KeyPathInst *I) {
auto pattern = IGM.getAddrOfKeyPathPattern(I->getPattern(), I->getLoc());
// Build up the argument vector to instantiate the pattern here.
std::optional<StackAddress> dynamicArgsBuf;
llvm::Value *args;
if (!I->getSubstitutions().empty() || !I->getAllOperands().empty()) {
auto sig = I->getPattern()->getGenericSignature();
SubstitutionMap subs = I->getSubstitutions();
SmallVector<GenericRequirement, 4> requirements;
enumerateGenericSignatureRequirements(sig,
[&](GenericRequirement reqt) { requirements.push_back(reqt); });
llvm::Value *argsBufSize;
llvm::Value *argsBufAlign;
if (!I->getSubstitutions().empty()) {
argsBufSize = llvm::ConstantInt::get(IGM.SizeTy,
IGM.getPointerSize().getValue() * requirements.size());
argsBufAlign = llvm::ConstantInt::get(IGM.SizeTy,
IGM.getPointerAlignment().getMaskValue());
} else {
argsBufSize = llvm::ConstantInt::get(IGM.SizeTy, 0);
argsBufAlign = llvm::ConstantInt::get(IGM.SizeTy, 0);
}
SmallVector<llvm::Value *, 4> operandOffsets;
for (unsigned i : indices(I->getAllOperands())) {
auto operand = I->getAllOperands()[i].get();
auto &ti = getTypeInfo(operand->getType());
auto ty = operand->getType();
auto alignMask = ti.getAlignmentMask(*this, ty);
if (i != 0) {
auto notAlignMask = Builder.CreateNot(alignMask);
argsBufSize = Builder.CreateAdd(argsBufSize, alignMask);
argsBufSize = Builder.CreateAnd(argsBufSize, notAlignMask);
}
operandOffsets.push_back(argsBufSize);
auto size = ti.getSize(*this, ty);
argsBufSize = Builder.CreateAdd(argsBufSize, size);
argsBufAlign = Builder.CreateOr(argsBufAlign, alignMask);
}
dynamicArgsBuf = emitDynamicAlloca(IGM.Int8Ty, argsBufSize, Alignment(16));
Address argsBuf = dynamicArgsBuf->getAddress();
if (!I->getSubstitutions().empty()) {
emitInitOfGenericRequirementsBuffer(*this, requirements, argsBuf,
MetadataState::Complete, subs);
}
for (unsigned i : indices(I->getAllOperands())) {
auto operand = I->getAllOperands()[i].get();
auto &ti = getTypeInfo(operand->getType());
auto ptr = Builder.CreateInBoundsGEP(IGM.Int8Ty, argsBuf.getAddress(),
operandOffsets[i]);
auto addr = ti.getAddressForPointer(
Builder.CreateBitCast(ptr, ti.getStorageType()->getPointerTo()));
if (operand->getType().isAddress()) {
ti.initializeWithTake(*this, addr, getLoweredAddress(operand),
operand->getType(), false);
} else {
Explosion operandValue = getLoweredExplosion(operand);
cast<LoadableTypeInfo>(ti).initialize(*this, operandValue, addr, false);
}
}
args = argsBuf.getAddress();
} else {
// No arguments necessary, so the argument ought to be ignored by any
// callbacks in the pattern.
assert(I->getAllOperands().empty() && "indices not implemented");
args = llvm::UndefValue::get(IGM.Int8PtrTy);
}
auto patternPtr = llvm::ConstantExpr::getBitCast(pattern, IGM.Int8PtrTy);
auto call = Builder.CreateCall(IGM.getGetKeyPathFunctionPointer(),
{patternPtr, args});
call->setDoesNotThrow();
if (dynamicArgsBuf) {
emitDeallocateDynamicAlloca(*dynamicArgsBuf);
}
auto loweredKeyPathTy = IGM.getLoweredType(I->getKeyPathType());
auto resultStorageTy = IGM.getTypeInfo(loweredKeyPathTy).getStorageType();
Explosion e;
e.add(Builder.CreateBitCast(call, resultStorageTy));
setLoweredExplosion(I, e);
}
void IRGenSILFunction::visitUpcastInst(swift::UpcastInst *i) {
auto toTy = getTypeInfo(i->getType()).getSchema()[0].getScalarType();
Explosion from = getLoweredExplosion(i->getOperand());
Explosion to;
assert(from.size() == 1 && "class should explode to single value");
llvm::Value *fromValue = from.claimNext();
to.add(Builder.CreateBitCast(fromValue, toTy));
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitIndexAddrInst(swift::IndexAddrInst *i) {
Address base = getLoweredAddress(i->getBase());
Explosion indexValues = getLoweredExplosion(i->getIndex());
llvm::Value *index = indexValues.claimNext();
auto baseTy = i->getBase()->getType();
auto &ti = getTypeInfo(baseTy);
Address dest = ti.indexArray(*this, base, index, baseTy);
setLoweredAddress(i, dest);
}
void IRGenSILFunction::visitTailAddrInst(swift::TailAddrInst *i) {
Address base = getLoweredAddress(i->getBase());
Explosion indexValues = getLoweredExplosion(i->getIndex());
llvm::Value *index = indexValues.claimNext();
SILType baseTy = i->getBase()->getType();
const TypeInfo &baseTI = getTypeInfo(baseTy);
Address dest = baseTI.indexArray(*this, base, index, baseTy);
const TypeInfo &TailTI = getTypeInfo(i->getTailType());
dest = TailTI.roundUpToTypeAlignment(*this, dest, i->getTailType());
llvm::Type *destType = TailTI.getStorageType();
dest = Builder.CreateElementBitCast(dest, destType);
setLoweredAddress(i, dest);
}
void IRGenSILFunction::visitIndexRawPointerInst(swift::IndexRawPointerInst *i) {
Explosion baseValues = getLoweredExplosion(i->getBase());
llvm::Value *base = baseValues.claimNext();
Explosion indexValues = getLoweredExplosion(i->getIndex());
llvm::Value *index = indexValues.claimNext();
// We don't expose a non-inbounds GEP operation.
llvm::Value *destValue = Builder.CreateInBoundsGEP(IGM.Int8Ty, base, index);
Explosion result;
result.add(destValue);
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitInitExistentialAddrInst(swift::InitExistentialAddrInst *i) {
Address container = getLoweredAddress(i->getOperand());
SILType destType = i->getOperand()->getType();
emitOpaqueExistentialContainerInit(
*this, container, destType, i->getFormalConcreteType(),
i->getLoweredConcreteType(), i->getConformances());
auto srcType = i->getLoweredConcreteType();
// Allocate a COW box for the value if necessary.
auto *genericEnv = CurSILFn->getGenericEnvironment();
setLoweredAddress(
i, emitAllocateBoxedOpaqueExistentialBuffer(
*this, destType, srcType, container, genericEnv, false));
}
void IRGenSILFunction::visitInitExistentialValueInst(
swift::InitExistentialValueInst *i) {
llvm_unreachable("unsupported instruction during IRGen");
}
void IRGenSILFunction::visitInitExistentialMetatypeInst(
InitExistentialMetatypeInst *i) {
Explosion metatype = getLoweredExplosion(i->getOperand());
Explosion result;
emitExistentialMetatypeContainer(*this,
result, i->getType(),
metatype.claimNext(),
i->getOperand()->getType(),
i->getConformances());
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitInitExistentialRefInst(InitExistentialRefInst *i) {
Explosion instance = getLoweredExplosion(i->getOperand());
Explosion result;
emitClassExistentialContainer(*this,
result, i->getType(),
instance.claimNext(),
i->getFormalConcreteType(),
i->getOperand()->getType(),
i->getConformances());
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitDeinitExistentialAddrInst(
swift::DeinitExistentialAddrInst *i) {
Address container = getLoweredAddress(i->getOperand());
// Deallocate the COW box for the value if necessary.
emitDeallocateBoxedOpaqueExistentialBuffer(*this, i->getOperand()->getType(),
container);
}
void IRGenSILFunction::visitDeinitExistentialValueInst(
swift::DeinitExistentialValueInst *i) {
llvm_unreachable("unsupported instruction during IRGen");
}
void IRGenSILFunction::visitOpenExistentialAddrInst(OpenExistentialAddrInst *i) {
SILType baseTy = i->getOperand()->getType();
Address base = getLoweredAddress(i->getOperand());
auto openedArchetype = i->getType().castTo<ArchetypeType>();
// Insert a copy of the boxed value for COW semantics if necessary.
auto accessKind = i->getAccessKind();
Address object = emitOpaqueBoxedExistentialProjection(
*this, accessKind, base, baseTy, openedArchetype,
CurSILFn->getGenericSignature());
setLoweredAddress(i, object);
}
void IRGenSILFunction::visitOpenExistentialRefInst(OpenExistentialRefInst *i) {
SILType baseTy = i->getOperand()->getType();
Explosion base = getLoweredExplosion(i->getOperand());
auto openedArchetype = i->getType().castTo<ArchetypeType>();
Explosion result;
llvm::Value *instance
= emitClassExistentialProjection(*this, base, baseTy,
openedArchetype,
CurSILFn->getGenericSignature());
result.add(instance);
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitOpenExistentialMetatypeInst(
OpenExistentialMetatypeInst *i) {
SILType baseTy = i->getOperand()->getType();
Explosion base = getLoweredExplosion(i->getOperand());
auto openedTy = i->getType().getASTType();
llvm::Value *metatype =
emitExistentialMetatypeProjection(*this, base, baseTy, openedTy);
Explosion result;
result.add(metatype);
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitOpenExistentialValueInst(
OpenExistentialValueInst *i) {
llvm_unreachable("unsupported instruction during IRGen");
}
void IRGenSILFunction::visitPackLengthInst(PackLengthInst *i) {
auto length = emitPackShapeExpression(i->getPackType());
setLoweredSingletonExplosion(i, length);
}
void IRGenSILFunction::visitDynamicPackIndexInst(DynamicPackIndexInst *i) {
// At the IRGen level, this is just a type change.
auto index = getLoweredSingletonExplosion(i->getOperand());
setLoweredSingletonExplosion(i, index);
}
void IRGenSILFunction::visitPackPackIndexInst(PackPackIndexInst *i) {
auto startIndexOfSlice =
emitIndexOfStructuralPackComponent(*this, i->getIndexedPackType(),
i->getComponentStartIndex());
auto indexWithinSlice =
getLoweredSingletonExplosion(i->getSliceIndexOperand());
auto index = Builder.CreateAdd(startIndexOfSlice, indexWithinSlice);
setLoweredSingletonExplosion(i, index);
}
void IRGenSILFunction::visitScalarPackIndexInst(ScalarPackIndexInst *i) {
auto index =
emitIndexOfStructuralPackComponent(*this, i->getIndexedPackType(),
i->getComponentIndex());
setLoweredSingletonExplosion(i, index);
}
void IRGenSILFunction::visitOpenPackElementInst(swift::OpenPackElementInst *i) {
llvm::Value *index = getLoweredSingletonExplosion(i->getIndexOperand());
auto *env = i->getOpenedGenericEnvironment();
bindOpenedElementArchetypesAtIndex(*this, env, index);
// The result is just used for type dependencies.
}
void IRGenSILFunction::visitPackElementGetInst(PackElementGetInst *i) {
Address pack = getLoweredAddress(i->getPack());
llvm::Value *index = getLoweredSingletonExplosion(i->getIndex());
auto elementType = i->getElementType();
auto &elementTI = getTypeInfo(elementType);
auto elementStorageAddr = emitStorageAddressOfPackElement(
*this, pack, index, elementType, i->getPackType());
assert(elementType.isAddress() &&
i->getPackType()->isElementAddress() &&
"direct packs not currently supported");
auto ptr = Builder.CreateLoad(elementStorageAddr);
auto elementAddr = elementTI.getAddressForPointer(ptr);
setLoweredAddress(i, elementAddr);
}
void IRGenSILFunction::visitPackElementSetInst(PackElementSetInst *i) {
Address pack = getLoweredAddress(i->getPack());
llvm::Value *index = getLoweredSingletonExplosion(i->getIndex());
auto elementType = i->getElementType();
auto elementStorageAddress = emitStorageAddressOfPackElement(
*this, pack, index, elementType, i->getPackType());
assert(elementType.isAddress() &&
i->getPackType()->isElementAddress() &&
"direct packs not currently supported");
auto elementValue = getLoweredAddress(i->getValue());
Builder.CreateStore(elementValue.getAddress(), elementStorageAddress);
}
void IRGenSILFunction::visitTuplePackElementAddrInst(
TuplePackElementAddrInst *i) {
Address tuple = getLoweredAddress(i->getTuple());
llvm::Value *index = getLoweredSingletonExplosion(i->getIndex());
auto elementType = i->getElementType();
auto elementAddr =
projectTupleElementAddressByDynamicIndex(*this, tuple,
i->getTuple()->getType(),
index, elementType);
setLoweredAddress(i, elementAddr);
}
void IRGenSILFunction::visitTuplePackExtractInst(TuplePackExtractInst *i) {
llvm::report_fatal_error(
"tuple_pack_extract not lowered by AddressLowering!?");
}
void IRGenSILFunction::visitProjectBlockStorageInst(ProjectBlockStorageInst *i){
// TODO
Address block = getLoweredAddress(i->getOperand());
Address capture = projectBlockStorageCapture(*this, block,
i->getOperand()->getType().castTo<SILBlockStorageType>());
setLoweredAddress(i, capture);
}
void IRGenSILFunction::visitInitBlockStorageHeaderInst(
InitBlockStorageHeaderInst *i) {
auto addr = getLoweredAddress(i->getBlockStorage());
// We currently only support static invoke functions.
auto &invokeVal = getLoweredValue(i->getInvokeFunction());
llvm::Constant *invokeFn = nullptr;
ForeignFunctionInfo foreignInfo;
if (invokeVal.kind != LoweredValue::Kind::FunctionPointer) {
IGM.unimplemented(i->getLoc().getSourceLoc(),
"non-static block invoke function");
} else {
auto &fn = invokeVal.getFunctionPointer();
invokeFn = fn.getDirectPointer();
foreignInfo = fn.getForeignInfo();
}
assert(foreignInfo.ClangInfo && "no clang info for block function?");
// Initialize the header.
emitBlockHeader(*this, addr,
i->getBlockStorage()->getType().castTo<SILBlockStorageType>(),
invokeFn, i->getInvokeFunction()->getType().castTo<SILFunctionType>(),
foreignInfo);
// Cast the storage to the block type to produce the result value.
llvm::Value *asBlock = Builder.CreateBitCast(addr.getAddress(),
IGM.ObjCBlockPtrTy);
Explosion e;
e.add(asBlock);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitAllocExistentialBoxInst(AllocExistentialBoxInst *i){
OwnedAddress boxWithAddr =
emitBoxedExistentialContainerAllocation(*this, i->getExistentialType(),
i->getFormalConcreteType(),
i->getConformances(),
CurSILFn->getGenericSignature());
setLoweredBox(i, boxWithAddr);
}
void IRGenSILFunction::visitDeallocExistentialBoxInst(
DeallocExistentialBoxInst *i) {
Explosion box = getLoweredExplosion(i->getOperand());
emitBoxedExistentialContainerDeallocation(*this, box,
i->getOperand()->getType(),
i->getConcreteType());
}
void IRGenSILFunction::visitOpenExistentialBoxInst(OpenExistentialBoxInst *i) {
Explosion box = getLoweredExplosion(i->getOperand());
auto openedArchetype = i->getType().castTo<ArchetypeType>();
auto addr = emitOpenExistentialBox(*this, box, i->getOperand()->getType(),
openedArchetype);
setLoweredAddress(i, addr);
}
void IRGenSILFunction::visitOpenExistentialBoxValueInst(
OpenExistentialBoxValueInst *i) {
llvm_unreachable("unsupported instruction during IRGen");
}
void
IRGenSILFunction::visitProjectExistentialBoxInst(ProjectExistentialBoxInst *i) {
const LoweredValue &val = getLoweredValue(i->getOperand());
if (val.isBoxWithAddress()) {
// The operand is an alloc_existential_box.
// We can directly reuse the address.
setLoweredAddress(i, val.getAddressOfBox());
} else {
Explosion box = getLoweredExplosion(i->getOperand());
auto caddr = emitBoxedExistentialProjection(*this, box,
i->getOperand()->getType(),
i->getType().getASTType());
setLoweredAddress(i, caddr.getAddress());
}
}
void IRGenSILFunction::visitWitnessMethodInst(swift::WitnessMethodInst *i) {
CanType baseTy = i->getLookupType();
ProtocolConformanceRef conformance = i->getConformance();
SILDeclRef member = i->getMember();
auto fnType = IGM.getSILTypes().getConstantFunctionType(
IGM.getMaximalTypeExpansionContext(), member);
assert(member.requiresNewWitnessTableEntry());
bool shouldUseDispatchThunk = false;
if (IGM.isResilient(conformance.getRequirement(), ResilienceExpansion::Maximal)) {
shouldUseDispatchThunk = true;
} else if (IGM.getOptions().WitnessMethodElimination) {
// For WME, use a thunk if the target protocol is defined in another module.
// This way, we guarantee all wmethod call sites are visible to the LLVM VFE
// optimization in GlobalDCE.
auto protoDecl = cast<ProtocolDecl>(member.getDecl()->getDeclContext());
shouldUseDispatchThunk = protoDecl->getModuleContext() != IGM.getSwiftModule();
}
if (shouldUseDispatchThunk) {
llvm::Constant *fnPtr = IGM.getAddrOfDispatchThunk(member, NotForDefinition);
llvm::Constant *secondaryValue = nullptr;
if (fnType->isAsync()) {
secondaryValue = fnPtr;
auto *fnPtrType = fnPtr->getType();
fnPtr = IGM.getAddrOfAsyncFunctionPointer(
LinkEntity::forDispatchThunk(member));
fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, fnPtrType);
}
auto sig = IGM.getSignature(fnType);
auto fn = FunctionPointer::forDirect(fnType, fnPtr, secondaryValue, sig, true);
setLoweredFunctionPointer(i, fn);
return;
}
// It would be nice if this weren't discarded.
llvm::Value *baseMetadataCache = nullptr;
auto fn = emitWitnessMethodValue(*this, baseTy, &baseMetadataCache, member,
conformance);
setLoweredFunctionPointer(i, fn);
}
void IRGenSILFunction::visitCopyAddrInst(swift::CopyAddrInst *i) {
SILType addrTy = i->getSrc()->getType();
const TypeInfo &addrTI = getTypeInfo(addrTy);
Address src = getLoweredAddress(i->getSrc());
// See whether we have a deferred fixed-size buffer initialization.
auto &loweredDest = getLoweredValue(i->getDest());
Address dest = loweredDest.getAnyAddress();
if (i->isInitializationOfDest()) {
if (i->isTakeOfSrc()) {
addrTI.initializeWithTake(*this, dest, src, addrTy, false);
} else {
addrTI.initializeWithCopy(*this, dest, src, addrTy, false);
}
} else {
if (i->isTakeOfSrc()) {
addrTI.assignWithTake(*this, dest, src, addrTy, false);
} else {
addrTI.assignWithCopy(*this, dest, src, addrTy, false);
}
}
}
void IRGenSILFunction::visitExplicitCopyAddrInst(
swift::ExplicitCopyAddrInst *i) {
SILType addrTy = i->getSrc()->getType();
const TypeInfo &addrTI = getTypeInfo(addrTy);
Address src = getLoweredAddress(i->getSrc());
// See whether we have a deferred fixed-size buffer initialization.
auto &loweredDest = getLoweredValue(i->getDest());
Address dest = loweredDest.getAnyAddress();
if (i->isInitializationOfDest()) {
if (i->isTakeOfSrc()) {
addrTI.initializeWithTake(*this, dest, src, addrTy, false);
} else {
addrTI.initializeWithCopy(*this, dest, src, addrTy, false);
}
} else {
if (i->isTakeOfSrc()) {
addrTI.assignWithTake(*this, dest, src, addrTy, false);
} else {
addrTI.assignWithCopy(*this, dest, src, addrTy, false);
}
}
}
// bind_memory and rebind_memory are no-ops because Swift TBAA info is not
// lowered to LLVM IR TBAA, and the output token is ignored except for
// verification.
void IRGenSILFunction::visitBindMemoryInst(swift::BindMemoryInst *i) {
LoweredValue &token = getUndefLoweredValue(i->getType());
setLoweredValue(i, std::move(token));
}
void IRGenSILFunction::visitRebindMemoryInst(swift::RebindMemoryInst *i) {
LoweredValue &token = getUndefLoweredValue(i->getType());
setLoweredValue(i, std::move(token));
}
void IRGenSILFunction::visitDestroyAddrInst(swift::DestroyAddrInst *i) {
SILType addrTy = i->getOperand()->getType();
const TypeInfo &addrTI = getTypeInfo(addrTy);
Address base = getLoweredAddress(i->getOperand());
addrTI.destroy(*this, base, addrTy, false /*isOutlined*/);
}
void IRGenSILFunction::visitCondFailInst(swift::CondFailInst *i) {
Explosion e = getLoweredExplosion(i->getOperand());
llvm::Value *cond = e.claimNext();
// The condition should be false, or we die.
auto expectedCond = Builder.CreateExpect(cond,
llvm::ConstantInt::get(IGM.Int1Ty, 0));
// Emit individual fail blocks so that we can map the failure back to a source
// line.
auto origInsertionPoint = Builder.GetInsertBlock();
llvm::BasicBlock *failBB = llvm::BasicBlock::Create(IGM.getLLVMContext());
llvm::BasicBlock *contBB = llvm::BasicBlock::Create(IGM.getLLVMContext());
Builder.CreateCondBr(expectedCond, failBB, contBB);
Builder.SetInsertPoint(&CurFn->back());
Builder.emitBlock(failBB);
if (IGM.DebugInfo)
// If we are emitting DWARF, this does nothing. Otherwise the ``llvm.trap``
// instruction emitted from ``Builtin.condfail`` should have an inlined
// debug location. This is because zero is not an artificial line location
// in CodeView.
IGM.DebugInfo->setInlinedTrapLocation(Builder, i->getDebugScope());
emitTrap(i->getMessage(), /*EmitUnreachable=*/true);
Builder.SetInsertPoint(origInsertionPoint);
Builder.emitBlock(contBB);
FailBBs.push_back(failBB);
}
void IRGenSILFunction::visitIncrementProfilerCounterInst(
IncrementProfilerCounterInst *i) {
// If we import profiling intrinsics from a swift module but profiling is
// not enabled, ignore the increment.
if (!getSILModule().getOptions().GenerateProfile)
return;
// Retrieve the global variable that stores the PGO function name, creating it
// if needed.
auto funcName = i->getPGOFuncName();
auto varLinkage = llvm::GlobalValue::LinkOnceAnyLinkage;
auto *nameVar = IGM.Module.getNamedGlobal(
llvm::getPGOFuncNameVarName(funcName, varLinkage));
if (!nameVar)
nameVar = llvm::createPGOFuncNameVar(IGM.Module, varLinkage, funcName);
// We need to GEP the function name global to point to the first character of
// the string.
llvm::SmallVector<llvm::Value *, 2> indices;
indices.append(2, llvm::ConstantInt::get(IGM.SizeTy, 0));
auto *nameGEP = llvm::ConstantExpr::getGetElementPtr(
nameVar->getValueType(), nameVar, llvm::ArrayRef(indices));
// Emit the call to the 'llvm.instrprof.increment' LLVM intrinsic.
llvm::Value *args[] = {
nameGEP,
llvm::ConstantInt::get(IGM.Int64Ty, i->getPGOFuncHash()),
llvm::ConstantInt::get(IGM.Int32Ty, i->getNumCounters()),
llvm::ConstantInt::get(IGM.Int32Ty, i->getCounterIndex())
};
Builder.CreateIntrinsicCall(llvm::Intrinsic::instrprof_increment, args);
}
void IRGenSILFunction::visitSuperMethodInst(swift::SuperMethodInst *i) {
assert(!i->getMember().isForeign);
auto base = getLoweredExplosion(i->getOperand());
auto baseType = i->getOperand()->getType();
llvm::Value *baseValue = base.claimNext();
auto method = i->getMember().getOverriddenVTableEntry();
auto methodType = i->getType().castTo<SILFunctionType>();
auto *classDecl = cast<ClassDecl>(method.getDecl()->getDeclContext());
// If the class defining the vtable entry is resilient, we cannot assume
// its offset since methods can be re-ordered resiliently. Instead, we call
// the class method lookup function, passing in a reference to the
// method descriptor.
if (IGM.hasResilientMetadata(classDecl, ResilienceExpansion::Maximal)) {
// Load the superclass of the static type of the 'self' value.
llvm::Value *superMetadata;
auto instanceTy = CanType(baseType.getASTType()->getMetatypeInstanceType());
if (!IGM.hasResilientMetadata(instanceTy.getClassOrBoundGenericClass(),
ResilienceExpansion::Maximal)) {
// It's still possible that the static type of 'self' is not resilient, in
// which case we can assume its superclass.
//
// An example is the following hierarchy, where ModuleA is resilient and
// we're inside ModuleB:
//
// ModuleA.Base <-- defines method
// |
// \- ModuleB.Middle
// |
// \- ModuleB.Derived <-- static type of 'self'
//
// It's OK to know that the superclass of Derived is Middle, but the
// method requires using a resilient access pattern.
auto superTy = instanceTy->getSuperclass();
superMetadata = emitClassHeapMetadataRef(*this, superTy->getCanonicalType(),
MetadataValueType::TypeMetadata,
MetadataState::Complete);
} else {
// Otherwise, we're in the most general case; the superclass might change,
// so we have to load it dynamically from the metadata of the static type
// of 'self'.
auto *metadata = emitClassHeapMetadataRef(*this, instanceTy,
MetadataValueType::TypeMetadata,
MetadataState::Complete);
auto superField = emitAddressOfSuperclassRefInClassMetadata(*this, metadata);
superMetadata = Builder.CreateLoad(superField);
}
// Get the method descriptor.
auto *methodDescriptor =
IGM.getAddrOfMethodDescriptor(method, NotForDefinition);
// Get the method lookup function for the class defining the method.
auto *lookupFn = IGM.getAddrOfMethodLookupFunction(classDecl,
NotForDefinition);
// Call the lookup function.
llvm::Value *fnPtr =
Builder.CreateCall(lookupFn->getFunctionType(), lookupFn,
{superMetadata, methodDescriptor});
// The function returns an i8*; cast it to the correct type.
auto sig = IGM.getSignature(methodType);
fnPtr = Builder.CreateBitCast(fnPtr, sig.getType()->getPointerTo());
auto &schema = methodType->isAsync()
? getOptions().PointerAuth.AsyncSwiftClassMethodPointers
: getOptions().PointerAuth.SwiftClassMethodPointers;
auto authInfo =
PointerAuthInfo::emit(*this, schema, /*storageAddress=*/nullptr, method);
auto fn = FunctionPointer::createSigned(methodType, fnPtr, authInfo, sig, true);
setLoweredFunctionPointer(i, fn);
return;
}
// Non-resilient case.
auto fn =
emitVirtualMethodValue(*this, baseValue, baseType, method, methodType,
CurSILFn->getGenericSignature(),
/*useSuperVTable*/ true);
setLoweredFunctionPointer(i, fn);
}
void IRGenSILFunction::visitObjCSuperMethodInst(swift::ObjCSuperMethodInst *i) {
assert(i->getMember().isForeign);
setLoweredObjCMethodBounded(i, i->getMember(),
i->getOperand()->getType(),
/*startAtSuper=*/true);
}
void IRGenSILFunction::visitClassMethodInst(swift::ClassMethodInst *i) {
assert(!i->getMember().isForeign);
Explosion base = getLoweredExplosion(i->getOperand());
llvm::Value *baseValue = base.claimNext();
SILDeclRef method = i->getMember().getOverriddenVTableEntry();
auto methodType = i->getType().castTo<SILFunctionType>();
auto *classDecl = cast<ClassDecl>(method.getDecl()->getDeclContext());
bool shouldUseDispatchThunk = false;
if (IGM.hasResilientMetadata(classDecl, ResilienceExpansion::Maximal)) {
shouldUseDispatchThunk = true;
} else if (IGM.getOptions().VirtualFunctionElimination) {
// For VFE, use a thunk if the target class is in another module. This
// enables VFE (which scans function bodies for used type identifiers) to
// work across modules by relying on:
//
// (1) virtual call sites are in thunks in the same module as the class,
// therefore they are always visible to VFE,
// (2) if a thunk symbol is unused by any other module, we can safely
// eliminate it.
//
// See the virtual-function-elimination-two-modules.swift testcase for an
// example of how cross-module VFE can be effectively used.
shouldUseDispatchThunk =
classDecl->getModuleContext() != IGM.getSwiftModule();
}
if (shouldUseDispatchThunk) {
llvm::Constant *fnPtr = IGM.getAddrOfDispatchThunk(method, NotForDefinition);
if (methodType->isAsync()) {
auto *fnPtrType = fnPtr->getType();
fnPtr = IGM.getAddrOfAsyncFunctionPointer(
LinkEntity::forDispatchThunk(method));
fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, fnPtrType);
}
auto fnType = IGM.getSILTypes().getConstantFunctionType(
IGM.getMaximalTypeExpansionContext(), method);
auto sig = IGM.getSignature(fnType);
auto fn = FunctionPointer::createUnsigned(methodType, fnPtr, sig, true);
setLoweredFunctionPointer(i, fn);
return;
}
// For Swift classes, get the method implementation from the vtable.
// FIXME: better explosion kind, map as static.
FunctionPointer fn = emitVirtualMethodValue(
*this, baseValue, i->getOperand()->getType(), method, methodType,
CurSILFn->getGenericSignature(),
/*useSuperVTable*/ false);
setLoweredFunctionPointer(i, fn);
}
void IRGenSILFunction::visitObjCMethodInst(swift::ObjCMethodInst *i) {
// For Objective-C classes we need to arrange for a msgSend
// to happen when the method is called.
assert(i->getMember().isForeign);
setLoweredObjCMethod(i, i->getMember());
}
void IRGenSILFunction::visitGetAsyncContinuationInst(
GetAsyncContinuationInst *i) {
Explosion out;
emitGetAsyncContinuation(i->getLoweredResumeType(), StackAddress(), out,
i->throws());
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitGetAsyncContinuationAddrInst(
GetAsyncContinuationAddrInst *i) {
auto resultAddr = getLoweredStackAddress(i->getOperand());
Explosion out;
emitGetAsyncContinuation(i->getLoweredResumeType(), resultAddr, out,
i->throws());
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitAwaitAsyncContinuationInst(
AwaitAsyncContinuationInst *i) {
Explosion resumeResult;
bool isIndirect = i->getResumeBB()->args_empty();
SILType resumeTy;
if (!isIndirect)
resumeTy = (*i->getResumeBB()->args_begin())->getType();
auto &normalDest = getLoweredBB(i->getResumeBB());
auto *normalDestBB = normalDest.bb;
bool hasError = i->getErrorBB() != nullptr;
auto *errorDestBB = hasError ? getLoweredBB(i->getErrorBB()).bb : nullptr;
auto *errorPhi = hasError ? getLoweredBB(i->getErrorBB()).phis[0] : nullptr;
assert(!hasError || getLoweredBB(i->getErrorBB()).phis.size() == 1 &&
"error basic block should only expect one value");
emitAwaitAsyncContinuation(resumeTy, isIndirect, resumeResult,
normalDestBB, errorPhi, errorDestBB);
if (!isIndirect) {
unsigned firstIndex = 0;
addIncomingExplosionToPHINodes(*this, normalDest, firstIndex, resumeResult);
assert(firstIndex == normalDest.phis.size());
}
}
|