1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
|
//===--- LocalTypeData.cpp - Local type data search -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements routines for finding and caching local type data
// for a search.
//
//===----------------------------------------------------------------------===//
#include "LocalTypeData.h"
#include "Fulfillment.h"
#include "GenMeta.h"
#include "GenOpaque.h"
#include "GenPack.h"
#include "GenProto.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "MetadataRequest.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/PackConformance.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/GraphNodeWorklist.h"
#include "swift/SIL/SILModule.h"
using namespace swift;
using namespace irgen;
LocalTypeDataKey LocalTypeDataKey::getCachingKey() const {
return { Type, Kind.getCachingKind() };
}
LocalTypeDataKind LocalTypeDataKind::getCachingKind() const {
// Most local type data kinds are already canonical.
if (!isConcreteProtocolConformance()) return *this;
// Map protocol conformances to their root normal conformance.
auto conformance = getConcreteProtocolConformance();
return forConcreteProtocolWitnessTable(conformance->getRootConformance());
}
LocalTypeDataCache &IRGenFunction::getOrCreateLocalTypeData() {
// Lazily allocate it.
if (LocalTypeData) return *LocalTypeData;
LocalTypeData = new LocalTypeDataCache();
return *LocalTypeData;
}
void IRGenFunction::destroyLocalTypeData() {
delete LocalTypeData;
}
OperationCost LocalTypeDataCache::CacheEntry::cost() const {
switch (getKind()) {
case Kind::Concrete:
return cast<ConcreteCacheEntry>(this)->cost();
case Kind::Abstract:
return cast<AbstractCacheEntry>(this)->cost();
}
llvm_unreachable("bad cache entry kind");
}
OperationCost
LocalTypeDataCache::CacheEntry::costForRequest(LocalTypeDataKey key,
DynamicMetadataRequest request) const {
switch (getKind()) {
case Kind::Concrete:
return cast<ConcreteCacheEntry>(this)->costForRequest(key, request);
case Kind::Abstract:
return cast<AbstractCacheEntry>(this)->costForRequest(key, request);
}
llvm_unreachable("bad cache entry kind");
}
OperationCost
LocalTypeDataCache::ConcreteCacheEntry::costForRequest(LocalTypeDataKey key,
DynamicMetadataRequest request) const {
auto totalCost = cost();
if (!immediatelySatisfies(key, request)) {
// Use a lower cost for requests where emitCheckTypeMetadataState can just
// branch on the existing response's returned dynamic state.
totalCost += getCheckTypeMetadataStateCost(request, Value);
}
return totalCost;
}
OperationCost
LocalTypeDataCache::AbstractCacheEntry::costForRequest(LocalTypeDataKey key,
DynamicMetadataRequest request) const {
auto totalCost = cost();
if (!immediatelySatisfies(key, request)) {
totalCost += OperationCost::Call;
}
return totalCost;
}
void LocalTypeDataCache::CacheEntry::erase() const {
switch (getKind()) {
case Kind::Concrete:
delete cast<ConcreteCacheEntry>(this);
return;
case Kind::Abstract:
delete cast<AbstractCacheEntry>(this);
return;
}
llvm_unreachable("bad cache entry kind");
}
static bool immediatelySatisfies(LocalTypeDataKey key,
MetadataState storedState,
DynamicMetadataRequest request) {
assert((storedState == MetadataState::Complete ||
key.Kind.isAnyTypeMetadata()) &&
"non-metadata entry stored with incomplete state");
return request.isSatisfiedBy(storedState);
}
bool LocalTypeDataCache::CacheEntry::immediatelySatisfies(
LocalTypeDataKey key,
DynamicMetadataRequest request) const {
switch (getKind()) {
case Kind::Concrete:
return cast<ConcreteCacheEntry>(this)->immediatelySatisfies(key, request);
case Kind::Abstract:
return cast<AbstractCacheEntry>(this)->immediatelySatisfies(key, request);
}
llvm_unreachable("bad cache entry kind");
}
bool LocalTypeDataCache::ConcreteCacheEntry::immediatelySatisfies(
LocalTypeDataKey key,
DynamicMetadataRequest request) const {
return ::immediatelySatisfies(key, Value.getStaticLowerBoundOnState(),
request);
}
bool LocalTypeDataCache::AbstractCacheEntry::immediatelySatisfies(
LocalTypeDataKey key,
DynamicMetadataRequest request) const {
return ::immediatelySatisfies(key, getState(), request);
}
MetadataResponse
IRGenFunction::tryGetLocalTypeMetadataForLayout(SILType layoutType,
DynamicMetadataRequest request){
auto type = layoutType.getASTType();
// Check under the formal type first.
if (type->isLegalFormalType()) {
if (auto response = tryGetLocalTypeMetadata(type, request))
return response;
}
auto key = LocalTypeDataKey(type,
LocalTypeDataKind::forRepresentationTypeMetadata());
return tryGetLocalTypeMetadata(key, request);
}
MetadataResponse
IRGenFunction::tryGetLocalTypeMetadata(CanType type,
DynamicMetadataRequest request) {
auto key = LocalTypeDataKey(type, LocalTypeDataKind::forFormalTypeMetadata());
return tryGetLocalTypeMetadata(key, request);
}
MetadataResponse
IRGenFunction::tryGetLocalTypeMetadata(LocalTypeDataKey key,
DynamicMetadataRequest request) {
assert(key.Kind.isAnyTypeMetadata());
if (!LocalTypeData) return MetadataResponse();
return LocalTypeData->tryGet(*this, key, /*allow abstract*/ true, request);
}
/// Get local type data if it's possible to do so without emitting code.
/// Specifically, it doesn't call MetadataPath::follow, and therefore
/// it's safe to call from MetadataPath::follow.
///
/// It's okay to call this with any kind of key.
MetadataResponse
IRGenFunction::tryGetConcreteLocalTypeData(LocalTypeDataKey key,
DynamicMetadataRequest request) {
if (!LocalTypeData) return MetadataResponse();
return LocalTypeData->tryGet(*this, key, /*allow abstract*/ false, request);
}
llvm::Value *IRGenFunction::tryGetLocalTypeDataForLayout(SILType type,
LocalTypeDataKind kind) {
return tryGetLocalTypeData(LocalTypeDataKey(type.getASTType(), kind));
}
llvm::Value *IRGenFunction::tryGetLocalTypeData(CanType type,
LocalTypeDataKind kind) {
return tryGetLocalTypeData(LocalTypeDataKey(type, kind));
}
llvm::Value *IRGenFunction::tryGetLocalTypeData(LocalTypeDataKey key) {
assert(!key.Kind.isAnyTypeMetadata());
if (!LocalTypeData) return nullptr;
if (auto response = LocalTypeData->tryGet(*this, key, /*allow abstract*/ true,
MetadataState::Complete))
return response.getMetadata();
return nullptr;
}
MetadataResponse
LocalTypeDataCache::tryGet(IRGenFunction &IGF, LocalTypeDataKey key,
bool allowAbstract, DynamicMetadataRequest request) {
// Use the caching key.
key = key.getCachingKey();
auto it = Map.find(key);
if (it == Map.end()) return MetadataResponse();
auto &chain = it->second;
CacheEntry *best = nullptr;
std::optional<OperationCost> bestCost;
CacheEntry *next = chain.Root;
while (next) {
CacheEntry *cur = next;
next = cur->getNext();
// Ignore abstract entries if so requested.
if (!allowAbstract && !isa<ConcreteCacheEntry>(cur))
continue;
// Ignore unacceptable entries.
if (!IGF.isActiveDominancePointDominatedBy(cur->DefinitionPoint))
continue;
// If there's a collision, compare by cost, ignoring higher-cost entries.
if (best) {
// Compute the cost of the best entry if we haven't done so already.
// If that's zero, go ahead and short-circuit out.
if (!bestCost) {
bestCost = best->costForRequest(key, request);
if (*bestCost == OperationCost::Free) break;
}
auto curCost = cur->costForRequest(key, request);
if (curCost >= *bestCost) continue;
// Replace the best cost and fall through.
bestCost = curCost;
}
best = cur;
}
// If we didn't find anything, we're done.
if (!best) return MetadataResponse();
// Okay, we've found the best entry available.
switch (best->getKind()) {
// For concrete caches, this is easy.
case CacheEntry::Kind::Concrete: {
auto entry = cast<ConcreteCacheEntry>(best);
if (entry->immediatelySatisfies(key, request))
return entry->Value;
assert(key.Kind.isAnyTypeMetadata());
// Emit a dynamic check that the type metadata matches the request.
// TODO: we could potentially end up calling this redundantly with a
// dynamic request. Fortunately, those are used only in very narrow
// circumstances.
auto response = emitCheckTypeMetadataState(IGF, request, entry->Value);
// Add a concrete entry for the checked result.
IGF.setScopedLocalTypeData(key, response);
return response;
}
// For abstract caches, we need to follow a path.
case CacheEntry::Kind::Abstract: {
auto entry = cast<AbstractCacheEntry>(best);
// Follow the path.
auto &source = AbstractSources[entry->SourceIndex];
auto response = entry->follow(IGF, source, request);
// Following the path automatically caches at every point along it,
// including the end. If you hit the second assertion here, it's
// probably because MetadataPath::followComponent isn't updating
// sourceKey correctly to lead back to the same key you originally
// looked up.
assert(chain.Root->DefinitionPoint == IGF.getActiveDominancePoint());
assert(isa<ConcreteCacheEntry>(chain.Root));
return response;
}
}
llvm_unreachable("bad cache entry kind");
}
LocalTypeDataCache::StateAdvancement LocalTypeDataCache::advanceStateInScope(
IRGenFunction &IGF, LocalTypeDataKey key, MetadataState state) {
// Use the caching key.
key = key.getCachingKey();
auto iterator = Map.find(key);
// There's no chain of entries, so no entry which could possibly be used.
if (iterator == Map.end())
return StateAdvancement::NoEntry;
auto &chain = iterator->second;
// Scan the chain for an entry with the appropriate relationship to the active
// dominance scope, and "promote its state". The existence of a concrete
// entry whose state is already at least as complete as `state` is
// unaffected, and results in exiting early.
//
// There are two cases of interest:
//
// (1) DominancePoint(entry) dominates ActiveDominancePoint .
// (2) DominancePoint(entry) is dominated by ActiveDominancePoint .
//
// For (1), a new cache entry is created at ActiveDominancePoint.
// For (2), the state of the existing entry would be updated.
//
// Because of the order in which IRGen lowers, however, (2) can't actually
// happen: metadata whose dominance point is dominated by
// ActiveDominancePoint would not have been emitted yet.
// Find the best entry in the chain from which to produce a new entry.
CacheEntry *best = nullptr;
for (auto *link = chain.Root; link; link = link->getNext()) {
// In case (1)?
if (!IGF.isActiveDominancePointDominatedBy(link->DefinitionPoint))
continue;
switch (link->getKind()) {
case CacheEntry::Kind::Concrete: {
auto entry = cast<ConcreteCacheEntry>(link);
// If the entry is already as complete as `state`, it doesn't need to be
// used to create a new entry. In fact, no new entry needs to be created
// at all: this entry will be seen to be best if locally cached metadata
// is requested later. Stop traversal and return.
if (isAtLeast(entry->Value.getStaticLowerBoundOnState(), state))
return StateAdvancement::AlreadyAtLeast;
// Any suitable concrete entry is equally ideal.
best = entry;
break;
}
case CacheEntry::Kind::Abstract: {
// TODO: Consider the cost to materialize the abstract entry in order to
// determine which is best.
break;
}
}
}
if (!best)
return StateAdvancement::NoEntry;
switch (best->getKind()) {
case CacheEntry::Kind::Concrete: {
auto *entry = cast<ConcreteCacheEntry>(best);
// Create a new entry at the ActiveDominancePoint.
auto response =
MetadataResponse::forBounded(entry->Value.getMetadata(), state);
IGF.setScopedLocalTypeData(key, response,
/*mayEmitDebugInfo=*/false);
return StateAdvancement::Advanced;
}
case CacheEntry::Kind::Abstract:
// TODO: Advance abstract entries.
return StateAdvancement::NoEntry;
}
llvm_unreachable("covered switch!?");
}
MetadataResponse
LocalTypeDataCache::AbstractCacheEntry::follow(IRGenFunction &IGF,
AbstractSource &source,
DynamicMetadataRequest request) const {
switch (source.getKind()) {
case AbstractSource::Kind::TypeMetadata:
return Path.followFromTypeMetadata(IGF, source.getType(),
source.getValue(), request, nullptr);
case AbstractSource::Kind::ProtocolWitnessTable:
return Path.followFromWitnessTable(IGF, source.getType(),
source.getProtocolConformance(),
source.getValue(), request, nullptr);
}
llvm_unreachable("bad source kind");
}
static void maybeEmitDebugInfoForLocalTypeData(IRGenFunction &IGF,
LocalTypeDataKey key,
MetadataResponse value) {
// FIXME: This check doesn't entirely behave correctly for non-transparent
// functions that were inlined into transparent functions. Correct would be to
// check which instruction requests the type metadata and see whether its
// inlined function is transparent.
auto * DS = IGF.getDebugScope();
if (DS && DS->getInlinedFunction() &&
DS->getInlinedFunction()->isTransparent())
return;
// Only for formal type metadata.
if (key.Kind != LocalTypeDataKind::forFormalTypeMetadata())
return;
// Only for archetypes, and not for opened/opaque archetypes.
auto type = dyn_cast<ArchetypeType>(key.Type);
if (!type)
return;
if (!type->isRoot())
return;
if (!isa<PrimaryArchetypeType>(type) && !isa<PackArchetypeType>(type))
return;
auto *typeParam = type->getInterfaceType()->castTo<GenericTypeParamType>();
auto name = typeParam->getName().str();
llvm::Value *data = value.getMetadata();
if (key.Type->is<PackArchetypeType>())
data = maskMetadataPackPointer(IGF, data);
// At -O0, create an alloca to keep the type alive. Not for async functions
// though; see the comment in IRGenFunctionSIL::emitShadowCopyIfNeeded().
if (!IGF.IGM.IRGen.Opts.shouldOptimize() && !IGF.isAsync()) {
auto alloca =
IGF.createAlloca(data->getType(), IGF.IGM.getPointerAlignment(), name);
IGF.Builder.CreateStore(data, alloca);
data = alloca.getAddress();
}
// Only if debug info is enabled.
if (!IGF.IGM.DebugInfo)
return;
IGF.IGM.DebugInfo->emitTypeMetadata(IGF, data,
typeParam->getDepth(),
typeParam->getIndex(),
name);
}
void
IRGenFunction::setScopedLocalTypeMetadataForLayout(SILType type,
MetadataResponse response) {
auto key = LocalTypeDataKey(type.getASTType(),
LocalTypeDataKind::forRepresentationTypeMetadata());
setScopedLocalTypeData(key, response);
}
namespace {
void setScopedLocalTypeMetadataImpl(IRGenFunction &IGF, CanType type,
MetadataResponse response) {
auto key = LocalTypeDataKey(type, LocalTypeDataKind::forFormalTypeMetadata());
IGF.setScopedLocalTypeData(key, response);
}
/// Walks the types upon whose corresponding metadata records' completeness the
/// completeness of \p rootTy's metadata record depends. For each such type,
/// marks the corresponding locally cached metadata record, if any, complete.
class TransitiveMetadataCompletion {
IRGenFunction &IGF;
LocalTypeDataCache &cache;
CanType rootTy;
GraphNodeWorklist<CanType, 4> worklist;
public:
TransitiveMetadataCompletion(IRGenFunction &IGF, LocalTypeDataCache &cache,
CanType rootTy)
: IGF(IGF), cache(cache), rootTy(rootTy) {}
void complete();
private:
/// Marks the metadata record currently locally cached corresponding to \p ty
/// complete.
///
/// Returns whether \p ty's transitive metadata should be marked complete.
bool visit(CanType ty) {
// If it's the root type, it's already been marked complete, but we want to
// mark its transitively dependent metadata as complete.
if (ty == rootTy)
return true;
auto key = LocalTypeDataKey(ty, LocalTypeDataKind::forFormalTypeMetadata());
// The metadata record was already marked complete. When that was done, the
// records for types it has transitive completeness requirements on would
// have been marked complete, if they had already been materialized.
//
// Such records may have been materialized since then in an abstract state,
// but that is an unlikely case and scanning again would incur compile-time
// overhead.
if (cache.advanceStateInScope(IGF, key, MetadataState::Complete) ==
LocalTypeDataCache::StateAdvancement::AlreadyAtLeast)
return false;
return true;
}
};
void TransitiveMetadataCompletion::complete() {
worklist.initialize(rootTy);
while (auto ty = worklist.pop()) {
if (!visit(ty)) {
// The transitively dependent metadata of `ty` doesn't need to be marked
// complete.
continue;
}
// Walk into every type that `ty` has transitive completeness requirements
// on and mark each one transitively complete.
//
// This should mirror findAnyTransitiveMetadata: every type whose metadata
// is visited (i.e. has predicate called on it) by that function should be
// pushed onto the worklist.
if (auto ct = dyn_cast<ClassType>(ty)) {
if (auto rawSuperTy = ct->getSuperclass()) {
auto superTy = rawSuperTy->getCanonicalType();
worklist.insert(superTy);
}
} else if (auto bgt = dyn_cast<BoundGenericType>(ty)) {
if (auto ct = dyn_cast<BoundGenericClassType>(bgt)) {
if (auto rawSuperTy = ct->getSuperclass()) {
auto superTy = rawSuperTy->getCanonicalType();
worklist.insert(superTy);
}
}
for (auto arg : bgt->getExpandedGenericArgs()) {
auto childTy = arg->getCanonicalType();
worklist.insert(childTy);
}
} else if (auto tt = dyn_cast<TupleType>(ty)) {
for (auto elt : tt.getElementTypes()) {
worklist.insert(elt);
}
}
}
}
} // end anonymous namespace
void IRGenFunction::setScopedLocalTypeMetadata(CanType rootTy,
MetadataResponse response) {
setScopedLocalTypeMetadataImpl(*this, rootTy, response);
if (response.getStaticLowerBoundOnState() != MetadataState::Complete)
return;
// If the metadata record is complete, then it is _transitively_ complete.
// So every metadata record that it has transitive completeness requirements
// on must also be complete.
//
// Mark all such already materialized metadata that the given type has
// transitive completeness requirements on as complete.
TransitiveMetadataCompletion(*this, getOrCreateLocalTypeData(), rootTy)
.complete();
}
void IRGenFunction::setScopedLocalTypeData(CanType type,
LocalTypeDataKind kind,
llvm::Value *data) {
assert(!kind.isAnyTypeMetadata());
setScopedLocalTypeData(LocalTypeDataKey(type, kind),
MetadataResponse::forComplete(data));
}
void IRGenFunction::setScopedLocalTypeDataForLayout(SILType type,
LocalTypeDataKind kind,
llvm::Value *data) {
assert(!kind.isAnyTypeMetadata());
setScopedLocalTypeData(LocalTypeDataKey(type.getASTType(), kind),
MetadataResponse::forComplete(data));
}
void IRGenFunction::setScopedLocalTypeData(LocalTypeDataKey key,
MetadataResponse value,
bool mayEmitDebugInfo) {
if (mayEmitDebugInfo)
maybeEmitDebugInfoForLocalTypeData(*this, key, value);
// Register with the active ConditionalDominanceScope if necessary.
bool isConditional = isConditionalDominancePoint();
if (isConditional) {
registerConditionalLocalTypeDataKey(key);
}
getOrCreateLocalTypeData().addConcrete(getActiveDominancePoint(),
isConditional, key, value);
}
void IRGenFunction::setUnscopedLocalTypeMetadata(CanType type,
MetadataResponse response) {
LocalTypeDataKey key(type, LocalTypeDataKind::forFormalTypeMetadata());
setUnscopedLocalTypeData(key, response);
}
void IRGenFunction::setUnscopedLocalTypeData(CanType type,
LocalTypeDataKind kind,
llvm::Value *data) {
assert(!kind.isAnyTypeMetadata());
setUnscopedLocalTypeData(LocalTypeDataKey(type, kind),
MetadataResponse::forComplete(data));
}
void IRGenFunction::setUnscopedLocalTypeData(LocalTypeDataKey key,
MetadataResponse value) {
maybeEmitDebugInfoForLocalTypeData(*this, key, value);
// This is supportable, but it would require ensuring that we add the
// entry after any conditional entries; otherwise the stack discipline
// will get messed up.
assert(!isConditionalDominancePoint() &&
"adding unscoped local type data while in conditional scope");
getOrCreateLocalTypeData().addConcrete(DominancePoint::universal(),
/*conditional*/ false, key, value);
}
void IRGenFunction::bindLocalTypeDataFromTypeMetadata(CanType type,
IsExact_t isExact,
llvm::Value *metadata,
MetadataState state) {
auto response = MetadataResponse::forBounded(metadata, state);
// Remember that we have this type metadata concretely.
if (isExact) {
if (!metadata->hasName()) setTypeMetadataName(IGM, metadata, type);
setScopedLocalTypeMetadata(type, response);
}
// Don't bother adding abstract fulfillments at a conditional dominance
// point; we're too likely to throw them all away.
if (isConditionalDominancePoint())
return;
getOrCreateLocalTypeData()
.addAbstractForTypeMetadata(*this, type, isExact, response);
}
void IRGenFunction::bindLocalTypeDataFromSelfWitnessTable(
const ProtocolConformance *conformance,
llvm::Value *selfTable,
llvm::function_ref<CanType (CanType)> getTypeInContext) {
SILWitnessTable::enumerateWitnessTableConditionalConformances(
conformance,
[&](unsigned index, CanType type, ProtocolDecl *proto) {
if (auto packType = dyn_cast<PackType>(type)) {
if (auto expansion = packType.unwrapSingletonPackExpansion())
type = expansion.getPatternType();
}
type = getTypeInContext(type);
if (isa<ArchetypeType>(type)) {
WitnessIndex wIndex(privateWitnessTableIndexToTableOffset(index),
/*prefix*/ false);
auto table = loadConditionalConformance(*this ,selfTable,
wIndex.forProtocolWitnessTable());
table = Builder.CreateBitCast(table, IGM.WitnessTablePtrTy);
setProtocolWitnessTableName(IGM, table, type, proto);
setUnscopedLocalTypeData(
type,
LocalTypeDataKind::forAbstractProtocolWitnessTable(proto),
table);
}
return /*finished?*/ false;
});
}
void LocalTypeDataCache::addAbstractForTypeMetadata(IRGenFunction &IGF,
CanType type,
IsExact_t isExact,
MetadataResponse metadata) {
struct Callback : FulfillmentMap::InterestingKeysCallback {
bool isInterestingType(CanType type) const override {
return true;
}
bool hasInterestingType(CanType type) const override {
return true;
}
bool isInterestingPackExpansion(CanPackExpansionType type) const override {
return isa<PackArchetypeType>(type.getPatternType());
}
bool hasLimitedInterestingConformances(CanType type) const override {
return false;
}
GenericSignature::RequiredProtocols
getInterestingConformances(CanType type) const override {
llvm_unreachable("no limits");
}
CanType getSuperclassBound(CanType type) const override {
if (auto arch = dyn_cast<ArchetypeType>(type))
if (auto superclassTy = arch->getSuperclass())
return superclassTy->getCanonicalType();
return CanType();
}
} callbacks;
// Look for anything at all that's fulfilled by this. If we don't find
// anything, stop.
FulfillmentMap fulfillments;
if (!fulfillments.searchTypeMetadata(IGF.IGM, type, isExact,
metadata.getStaticLowerBoundOnState(),
/*source*/ 0, MetadataPath(),
callbacks)) {
return;
}
addAbstractForFulfillments(IGF, std::move(fulfillments),
[&]() -> AbstractSource {
return AbstractSource(type, metadata);
});
}
void LocalTypeDataCache::
addAbstractForFulfillments(IRGenFunction &IGF, FulfillmentMap &&fulfillments,
llvm::function_ref<AbstractSource()> createSource) {
// Add the source lazily.
std::optional<unsigned> sourceIndex;
auto getSourceIndex = [&]() -> unsigned {
if (!sourceIndex) {
AbstractSources.emplace_back(createSource());
sourceIndex = AbstractSources.size() - 1;
}
return *sourceIndex;
};
for (auto &fulfillment : fulfillments) {
CanType type = fulfillment.first.getTypeParameter();
LocalTypeDataKind localDataKind;
switch (fulfillment.first.getKind()) {
case GenericRequirement::Kind::Shape: {
localDataKind = LocalTypeDataKind::forPackShapeExpression();
break;
}
case GenericRequirement::Kind::Metadata:
case GenericRequirement::Kind::MetadataPack: {
// Ignore type metadata fulfillments for non-dependent types that
// we can produce very cheaply. We don't want to end up emitting
// the type metadata for Int by chasing through N layers of metadata
// just because that path happens to be in the cache.
if (!type->hasArchetype() &&
!shouldCacheTypeMetadataAccess(IGF.IGM, type)) {
continue;
}
localDataKind = LocalTypeDataKind::forFormalTypeMetadata();
break;
}
case GenericRequirement::Kind::WitnessTable:
case GenericRequirement::Kind::WitnessTablePack: {
// For now, ignore witness-table fulfillments when they're not for
// archetypes.
ProtocolDecl *protocol = fulfillment.first.getProtocol();
if (auto archetype = dyn_cast<ArchetypeType>(type)) {
auto conformsTo = archetype->getConformsTo();
auto it = std::find(conformsTo.begin(), conformsTo.end(), protocol);
if (it == conformsTo.end()) continue;
localDataKind = LocalTypeDataKind::forAbstractProtocolWitnessTable(*it);
} else {
continue;
}
break;
}
}
// Find the chain for the key.
auto key = getKey(type, localDataKind).getCachingKey();
auto &chain = Map[key];
// Check whether there's already an entry that's at least as good as the
// fulfillment.
std::optional<OperationCost> fulfillmentCost;
auto getFulfillmentCost = [&]() -> OperationCost {
if (!fulfillmentCost)
fulfillmentCost = fulfillment.second.Path.cost();
return *fulfillmentCost;
};
bool isConditional = IGF.isConditionalDominancePoint();
bool foundBetter = false;
for (CacheEntry *cur = chain.Root, *last = nullptr; cur;
last = cur, cur = cur->getNext()) {
// Ensure the entry is acceptable.
if (!IGF.isActiveDominancePointDominatedBy(cur->DefinitionPoint))
continue;
// Ensure that the entry isn't better than the fulfillment.
auto curCost = cur->cost();
if (curCost == OperationCost::Free || curCost <= getFulfillmentCost()) {
foundBetter = true;
break;
}
// If the entry is defined at the current point, (1) we know there
// won't be a better entry and (2) we should remove it.
if (cur->DefinitionPoint == IGF.getActiveDominancePoint() &&
!isConditional) {
// Splice it out of the chain.
assert(!cur->isConditional());
chain.eraseEntry(last, cur);
break;
}
}
if (foundBetter) continue;
// Okay, make a new entry.
// Register with the conditional dominance scope if necessary.
if (isConditional) {
IGF.registerConditionalLocalTypeDataKey(key);
}
// Allocate the new entry.
auto newEntry = new AbstractCacheEntry(IGF.getActiveDominancePoint(),
isConditional,
getSourceIndex(),
std::move(fulfillment.second.Path),
fulfillment.second.getState());
// Add it to the front of the chain.
chain.push_front(newEntry);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LocalTypeDataCache::dump() const {
auto &out = llvm::errs();
if (Map.empty()) {
out << "(empty)\n";
return;
}
for (auto &mapEntry : Map) {
mapEntry.first.print(out);
out << " => [";
if (mapEntry.second.Root) out << "\n";
for (auto cur = mapEntry.second.Root; cur; cur = cur->getNext()) {
out << " (";
if (cur->DefinitionPoint.isUniversal()) out << "universal";
else out << cur->DefinitionPoint.as<void>();
out << ") ";
if (cur->isConditional()) out << "conditional ";
switch (cur->getKind()) {
case CacheEntry::Kind::Concrete: {
auto entry = cast<ConcreteCacheEntry>(cur);
auto value = entry->Value.getMetadata();
out << "concrete: " << value << "\n ";
if (!isa<llvm::Instruction>(value)) out << " ";
value->dump();
break;
}
case CacheEntry::Kind::Abstract: {
auto entry = cast<AbstractCacheEntry>(cur);
out << "abstract: source=" << entry->SourceIndex << "\n";
break;
}
}
}
out << "]\n";
}
}
#endif
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LocalTypeDataKey::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
#endif
void LocalTypeDataKey::print(llvm::raw_ostream &out) const {
out << "(" << Type.getPointer()
<< " (" << Type << "), ";
Kind.print(out);
out << ")";
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LocalTypeDataKind::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
#endif
void LocalTypeDataKind::print(llvm::raw_ostream &out) const {
if (isConcreteProtocolConformance()) {
out << "ConcreteConformance(";
getConcreteProtocolConformance()->printName(out);
out << ")";
} else if (isAbstractProtocolConformance()) {
out << "AbstractConformance("
<< getAbstractProtocolConformance()->getName()
<< ")";
} else if (isPackProtocolConformance()) {
out << "PackConformance("
<< getPackProtocolConformance()->getType()
<< ":"
<< getPackProtocolConformance()->getProtocol()->getName()
<< ")";
} else if (Value == FormalTypeMetadata) {
out << "FormalTypeMetadata";
} else if (Value == RepresentationTypeMetadata) {
out << "RepresentationTypeMetadata";
} else if (Value == ValueWitnessTable) {
out << "ValueWitnessTable";
} else if (Value == Shape) {
out << "Shape";
} else {
assert(isSingletonKind());
if (Value >= ValueWitnessDiscriminatorBase) {
auto witness = ValueWitness(Value - ValueWitnessDiscriminatorBase);
out << "Discriminator(" << getValueWitnessName(witness) << ")";
return;
}
ValueWitness witness = ValueWitness(Value - ValueWitnessBase);
out << getValueWitnessName(witness);
}
}
IRGenFunction::ConditionalDominanceScope::~ConditionalDominanceScope() {
IGF.ConditionalDominance = OldScope;
// Remove any conditional entries from the chains that were added in this
// scope.
for (auto &key : RegisteredKeys) {
IGF.LocalTypeData->eraseConditional(key);
}
}
void LocalTypeDataCache::eraseConditional(ArrayRef<LocalTypeDataKey> keys) {
for (auto &key : keys) {
auto &chain = Map[key.getCachingKey()];
// Our ability to simply delete the front of the chain relies on an
// assumption that (1) conditional additions always go to the front of
// the chain and (2) we never add something unconditionally while in
// an unconditional scope.
assert(chain.Root);
assert(chain.Root->isConditional());
chain.eraseEntry(nullptr, chain.Root);
}
}
|