1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
//===--- MetadataRequest.h - Operations for accessing metadata --*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines some types and operations for accessing type metadata.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_IRGEN_METADATAREQUEST_H
#define SWIFT_IRGEN_METADATAREQUEST_H
#include "swift/ABI/MetadataValues.h"
#include "swift/AST/Types.h"
namespace llvm {
class Constant;
class Function;
class GlobalVariable;
class PHINode;
class Type;
class Value;
}
namespace swift {
enum ForDefinition_t : bool;
namespace irgen {
class ConstantReference;
class Explosion;
struct GenericArguments;
class IRGenFunction;
class IRGenModule;
class MetadataDependencyCollector;
class MetadataResponse;
enum class OperationCost : unsigned;
enum class SymbolReferenceKind : unsigned char;
/// Given the metadata state for a generic type metadata, return the presumed
/// state of type metadata for its arguments.
inline MetadataState
getPresumedMetadataStateForTypeArgument(MetadataState typeState) {
return (typeState == MetadataState::Complete
? MetadataState::Complete
: MetadataState::Abstract);
}
/// The compile-time representation of a metadata request. There are
/// essentially three patterns of use here:
///
/// - In the first pattern, the request is static and blocking, meaning
/// that the operation which produces the metadata should not return
/// until it's able to return a metadata that's in the requested state.
/// Most places in IRGen will use blocking requests, often for complete
/// metadata, because operations like allocating a value or passing a
/// metadata off as a generic parameter (or metatype value) (1) cannot be
/// performed without the metadata in the right state but also (2) cannot
/// be suspended to await the production of the metadata.
///
/// - In the second pattern, the request is static and non-blocking, and
/// there is a dependency collector associated with the request. This is
/// used in the special case of a type metadata's initialization phase.
/// This phase can fail, but when it does so, it must report a type
/// metadata (and its requested state) that it is blocked on. The runtime
/// will then delay the initialization of that type metadata until its
/// dependency is resolved.
///
/// - In the final pattern, the request is a dynamic value. This is used
/// primarily in type metadata access functions like the global
/// access functions for generic types or the associated type access
/// functions on protocol witness tables. These functions must report
/// the actual best-known dynamic state of the metadata that they return.
/// Access functions that memoize their result must therefore suppress the
/// memoization when the metadata is not yet complete.
class DynamicMetadataRequest {
MetadataRequest StaticRequest;
llvm::Value *DynamicRequest = nullptr;
MetadataDependencyCollector *Dependencies = nullptr;
public:
/// Create a blocking request for the given metadata state.
DynamicMetadataRequest(MetadataState request)
: DynamicMetadataRequest(MetadataRequest(request)) {}
/// Create a request for the given static request.
///
/// Note that non-blocking requests will generally just propagate out
/// in the MetadataResponse, treated as statically abstract, unless
/// there's a dependency collector installed.
DynamicMetadataRequest(MetadataRequest request)
: StaticRequest(request), DynamicRequest(nullptr) {}
/// Create a request for the given dynamic request.
explicit DynamicMetadataRequest(llvm::Value *request)
: StaticRequest(), DynamicRequest(request) {}
/// If a collector is provided, create a non-blocking request that
/// will branch to the collector's destination if the response doesn't
/// satisfy the request. Otherwise, use a blocking request.
///
/// FIXME: ensure the existence of a collector in all the places that
/// need one.
static DynamicMetadataRequest
getNonBlocking(MetadataState requiredState,
MetadataDependencyCollector *collector) {
if (!collector) return requiredState;
DynamicMetadataRequest request =
MetadataRequest(requiredState, /*non-blocking*/ true);
request.Dependencies = collector;
return request;
}
bool isStatic() const { return DynamicRequest == nullptr; }
MetadataRequest getStaticRequest() const {
assert(isStatic());
return StaticRequest;
}
llvm::Value *getDynamicRequest() const {
assert(!isStatic());
return DynamicRequest;
}
MetadataDependencyCollector *getDependencyCollector() const {
return Dependencies;
}
/// If a function call taking this request returns a MetadataResponse,
/// can the status of a MetadataResponse be generally ignored?
bool canResponseStatusBeIgnored() const {
// If we have a statically satisfied request, it cannot have failed.
// If have a dependency collector, we'll have checked the result when
// first forming the MetadataResponse.
return isStaticallyAlwaysSatisfied() || Dependencies != nullptr;
}
/// Is this request statically known to yield a result that satisfies
/// the request?
bool isStaticallyAlwaysSatisfied() const {
return isStatic() &&
(StaticRequest.isBlocking() ||
StaticRequest.getState() == MetadataState::Abstract);
}
/// Is this request statically known to yield a result that's fully
/// completed?
bool isStaticallyBlockingComplete() const {
return isStatic() && StaticRequest == MetadataState::Complete;
}
/// Is this request statically known to be an abstract request?
bool isStaticallyAbstract() const {
return isStatic() && StaticRequest == MetadataState::Abstract;
}
/// Does state of the given kind definitely satisfy this request?
bool isSatisfiedBy(MetadataState state) const {
return isAtLeast(state, getStaticUpperBoundOnRequestedState());
}
/// Is the given metadata response statically known to satisfy this request?
bool isSatisfiedBy(MetadataResponse response) const;
/// Return a conservative bound on the state being requested by this
/// request.
MetadataState getStaticUpperBoundOnRequestedState() const {
return (isStatic() ? StaticRequest.getState() : MetadataState::Complete);
}
/// Return a conservative bound on the result of a MetadataResponse
/// arising from this request.
MetadataState getStaticLowerBoundOnResponseState() const {
// If we have a static request, and it's either blocking or we're
// collecting failures as dependencies immediately, then we can use
// the static request's kind.
//
// The dependency-collection rule works because the emitter is obliged
// to deal with dominance points appropriately if it's going to try to
// recover after the dependency collection.
if (isStatic() && canResponseStatusBeIgnored())
return StaticRequest.getState();
// Otherwise, the response can't be assumed to be better than abstract.
return MetadataState::Abstract;
}
/// Return this request value as an IR value.
llvm::Value *get(IRGenFunction &IGF) const;
/// Project the required state (the basic kind) of this request as
/// an IR value.
llvm::Value *getRequiredState(IRGenFunction &IGF) const;
};
/// A response to a metadata request (but see below for other ways in which
/// this type is used). In addition to a type metadata reference, the response
/// includes static and dynamic information about the state of the metadata.
///
/// A type metadata technically goes through a progression of phases. Many
/// metadata just start in the final "complete" phase, but it's important
/// to understand this phase progression in order to understand what happens
/// in the more complex cases.
///
/// - The first phase of the metadata is called "allocation", and it ensures
/// that there is exactly one metadata for a particular type. We don't
/// need to say anything else about metadata allocation here, however,
/// because a metadata object in this phase is never exposed outside of
/// the runtime (and narrow confines of the metadata allocation function).
/// This is also why MetadataState does not have an enumerator for this state.
///
/// - Once a metadata has been allocated, it is considered to be "abstract".
/// An abstract metadata only has enough structure to represent its basic
/// identity as a type: its type kind and the basic components of its
/// identity. For example, A<T> will always store the type descriptor
/// for A and the type metadata for T, but it does not necessarily have
/// anything else, like a value witness table or a superclass reference.
///
/// - A metadata is said to be "layout-complete" if it has a meaningful
/// "external layout", the principal component of which is a meaningful
/// value witness table. Such a metadata allows other types which store
/// values of the metadata's type to be laid out. However, there may still
/// be restrictions on the use of the metadata which make it unready
/// for general use.
///
/// Some types may have no observable abstract phase. For example, all
/// class types are layout-complete immediately upon allocation, as are
/// value types with a fixed layout for all instantiations.
///
/// - A metadata is said to be "complete" if it supports all possible
/// operations on the type. This includes any necessary "internal layout",
/// such as the field layout of a class type, as well as any sundry
/// initialization tasks like the registration of a class type with the
/// Objective-C runtime. This is also the first phase of a class metadata
/// that promises that it has a superclass pointer. Furthermore, some
/// types make stronger transitive guarantees about the state of their
/// stored component types when they are complete than when they are in
/// earlier stages.
///
/// --
///
/// A MetadataResponse stores two pieces of information about its state.
///
/// The first piece of information is a static lower bound (i.e. a
/// conservative estimate) on the state. This will always be at least
/// MetadataState::Abstract, since no metadata in general circulation can
/// still be undergoing allocation. It may be higher than that because of
/// static information about the request or the type being requested.
///
/// The second piece of information is the dynamic state of the metadata.
/// When metadata is fetched from the runtime, the runtime will report
/// its current known state. We cache this state and generally assume that
/// nothing in the function will cause it to change. This is okay because:
///
/// - with blocking requests, we will generally ignore the dynamic state
/// and instead just block waiting for the runtime to report that the
/// metadata has reached the requested state, whereas
///
/// - with non-blocking and dynamic requests, ephemeral staleness is
/// recoverable --- in fact, it has to be, because of course as soon as
/// the runtime has finished reporting a state, that state has become
/// potentially stale due to concurrent initialization).
///
/// Other than fetching metadata from the runtime, most of the ways that
/// we produce metadata guarantee that the metadata is complete. For example,
/// fixed-layout non-generic value types just provide complete metadata at
/// known global symbols. There are a few rare exceptions where we do need
/// pull metadata from somewhere but don't actually know its dynamic state.
/// For example, it would be unwise to try to store the dynamic state of
/// a generic type argument in the generic type's metadata; unlike the
/// arguments above, such an approach would be highly non-ephemeral and
/// create substantial staleness problems. For these situations, the
/// runtime provides a function, swift_checkMetadataState, to request (or
/// block on) the current state of a type metadata.
///
/// --
///
/// While this class is principally used to report the response to a type
/// metadata request, it does have some secondary uses.
///
/// The first secondary use is that it is sometimes used to store other
/// forms of local type data so that common code structures can work with
/// both them and type metadata. For example, concrete local type data are
/// stored in a MetadataResponse even though they aren't always type metadata.
/// When this is happening, the metadata state will always be statically
/// complete.
///
/// The second secondary use is that it's sometimes used to just store the
/// known state of a fetched metadata in a more persistent way. This is
/// because many of the places that store metadata have at least some case
/// where it's important to known either the static bound on the metadata
/// state or, more importantly, to report the actual dynamic state that was
/// reported when the metadata was first acquired. Propagating the metadata
/// as a MetadataResponse makes this straightforward.
class MetadataResponse {
llvm::Value *Metadata;
llvm::Value *DynamicState;
MetadataState StaticState;
public:
MetadataResponse() : Metadata(nullptr) {}
/// A metadata response that might not be dynamically complete.
explicit MetadataResponse(llvm::Value *metadata, llvm::Value *state,
MetadataState staticLowerBoundState)
: Metadata(metadata), DynamicState(state),
StaticState(staticLowerBoundState) {
assert(metadata && "must be valid");
}
/// A metadata response whose actual dynamic state is unknown but for
/// which we do have a static lower-bound.
static MetadataResponse forBounded(llvm::Value *metadata,
MetadataState staticLowerBoundState) {
return MetadataResponse(metadata, nullptr, staticLowerBoundState);
}
/// A metadata response that's known to be complete.
static MetadataResponse forComplete(llvm::Value *metadata) {
return MetadataResponse::forBounded(metadata, MetadataState::Complete);
}
/// An undef metadata response.
static MetadataResponse getUndef(IRGenFunction &IGF);
bool isValid() const { return Metadata != nullptr; }
explicit operator bool() const { return isValid(); }
bool isStaticallyKnownComplete() const {
assert(isValid());
return getStaticLowerBoundOnState() == MetadataState::Complete;
}
llvm::Value *getMetadata() const {
assert(isValid());
return Metadata;
}
/// Does this response have a dynamic state value?
bool hasDynamicState() const {
assert(isValid());
return DynamicState != nullptr;
}
/// Ensure that this response has a dynamic state value, by re-checking it
/// if necessary.
void ensureDynamicState(IRGenFunction &IGF) &;
llvm::Value *getDynamicState() const {
assert(isValid());
assert(hasDynamicState() && "must ensure dynamic state before fetching it");
return DynamicState;
}
/// Return the best lower bound state on the state of this metadata.
MetadataState getStaticLowerBoundOnState() const {
assert(isValid());
return StaticState;
}
static MetadataResponse handle(IRGenFunction &IGF,
DynamicMetadataRequest request,
llvm::Value *responsePair);
llvm::Value *combine(IRGenFunction &IGF) const;
/// Return a constant value representing the fully-completed state
/// (MetadataState::Complete).
static llvm::Constant *getCompletedState(IRGenModule &IGM);
};
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const MetadataResponse &MR) {
if (!MR.isValid())
return OS;
OS << MR.getMetadata();
if (MR.hasDynamicState())
OS << MR.getDynamicState();
// FIXME
// OS << MR.getStaticLowerBoundOnState();
return OS;
}
inline bool
DynamicMetadataRequest::isSatisfiedBy(MetadataResponse response) const {
return isSatisfiedBy(response.getStaticLowerBoundOnState());
}
/// A dependency that is blocking a metadata initialization from completing.
class MetadataDependency {
llvm::Value *RequiredMetadata;
llvm::Value *RequiredState;
public:
/// Construct the null dependency, i.e. the initialization is not blocked.
constexpr MetadataDependency()
: RequiredMetadata(nullptr), RequiredState(nullptr) {}
/// Construct a non-trivial dependency.
MetadataDependency(llvm::Value *requiredMetadata,
llvm::Value *requiredState)
: RequiredMetadata(requiredMetadata), RequiredState(requiredState) {
assert(requiredMetadata != nullptr);
assert(requiredState != nullptr);
}
bool isTrivial() const { return RequiredMetadata == nullptr; }
bool isNonTrivial() const { return RequiredMetadata != nullptr; }
explicit operator bool() const { return isNonTrivial(); }
/// Return the metadata that the initialization depends on.
llvm::Value *getRequiredMetadata() const {
assert(isNonTrivial());
return RequiredMetadata;
}
/// Return the state that the metadata needs to reach before the
/// initialization is unblocked.
llvm::Value *getRequiredState() const {
assert(isNonTrivial());
return RequiredState;
}
static llvm::Constant *getTrivialCombinedDependency(IRGenModule &IGM);
llvm::Value *combine(IRGenFunction &IGF) const;
};
/// A class for dynamically collecting metadata dependencies.
class MetadataDependencyCollector {
llvm::PHINode *RequiredMetadata = nullptr;
llvm::PHINode *RequiredState = nullptr;
public:
MetadataDependencyCollector() = default;
MetadataDependencyCollector(const MetadataDependencyCollector &) = delete;
MetadataDependencyCollector &operator=(const MetadataDependencyCollector &) = delete;
~MetadataDependencyCollector() {
assert(RequiredMetadata == nullptr &&
"failed to finish MetadataDependencyCollector");
}
/// Given the result of fetching metadata, check whether it creates a
/// metadata dependency, and branch if so.
///
/// This takes a metadata and state separately instead of taking a
/// MetadataResponse pair because it's quite important that we not rely on
/// anything from MetadataResponse that might assume that we've already
/// done dependency collection.
void checkDependency(IRGenFunction &IGF, DynamicMetadataRequest request,
llvm::Value *metadata, llvm::Value *state);
/// Given an optional MetadataDependency value (e.g. the result of calling
/// a dependency-returning function, in which a dependency is signalled
/// by a non-null metadata value), check whether it indicates a dependency
/// and branch if so.
void collect(IRGenFunction &IGF, llvm::Value *dependencyPair);
MetadataDependency finish(IRGenFunction &IGF);
private:
void emitCheckBranch(IRGenFunction &IGF, llvm::Value *satisfied,
llvm::Value *metadata, llvm::Value *requiredState);
};
enum class MetadataAccessStrategy {
/// There is a unique public accessor function for the given type metadata.
PublicUniqueAccessor,
/// There is a unique package accessor function for the given type metadata.
PackageUniqueAccessor,
/// There is a unique hidden accessor function for the given type metadata.
HiddenUniqueAccessor,
/// There is a unique private accessor function for the given type metadata.
PrivateAccessor,
/// The given type metadata is for a foreign type; its accessor function
/// is built as a side-effect of emitting a metadata candidate.
ForeignAccessor,
/// There is no unique accessor function for the given type metadata, but
/// one should be made automatically.
NonUniqueAccessor
};
/// Does the given access strategy rely on an accessor that's generated
/// on-demand and thus may be shared across object files?
static inline bool isAccessorLazilyGenerated(MetadataAccessStrategy strategy) {
switch (strategy) {
case MetadataAccessStrategy::PublicUniqueAccessor:
case MetadataAccessStrategy::PackageUniqueAccessor:
case MetadataAccessStrategy::HiddenUniqueAccessor:
case MetadataAccessStrategy::PrivateAccessor:
return false;
case MetadataAccessStrategy::ForeignAccessor:
case MetadataAccessStrategy::NonUniqueAccessor:
return true;
}
llvm_unreachable("bad kind");
}
/// Is non-canonical complete metadata for the given type available at a fixed
/// address?
bool isNoncanonicalCompleteTypeMetadataStaticallyAddressable(IRGenModule &IGM,
CanType type);
/// Is canonical complete metadata for the given type available at a fixed
/// address?
bool isCanonicalCompleteTypeMetadataStaticallyAddressable(IRGenModule &IGM,
CanType type);
/// Should requests for the given type's metadata be cached?
bool shouldCacheTypeMetadataAccess(IRGenModule &IGM, CanType type);
enum SpecializedMetadataUsageIsOnlyFromAccessor : bool {
/// The metadata must be accessed through an accessor function so that it can
/// be initialized.
ForUseOnlyFromAccessor = true,
/// The metadata may be accessed directly.
NotForUseOnlyFromAccessor = false
};
enum SpecializedMetadataCanonicality : bool {
/// The metadata is canonical and can be used directly (subject to
/// initialization).
CanonicalSpecializedMetadata = true,
/// The metadata is not canonical and must be canonicalized before usage.
NoncanonicalSpecializedMetadata = false
};
/// Is the address of a specialization of the generic metadata statically known?
///
/// In other words, can a specialization be formed for the specified type.
///
/// If onlyFromAccessor is ForUseOnlyFromAccessor, then metadata's address is
/// known, but access to the metadata must go through the canonical specialized
/// accessor so that initialization of the metadata can occur.
bool isSpecializedNominalTypeMetadataStaticallyAddressable(
IRGenModule &IGM, CanType type,
SpecializedMetadataCanonicality canonicality,
SpecializedMetadataUsageIsOnlyFromAccessor onlyFromAccessor);
/// Is the address of a specialization of the generic metadata which does not
/// require runtime initialization statically known?
bool isCompleteSpecializedNominalTypeMetadataStaticallyAddressable(
IRGenModule &IGM, CanType type,
SpecializedMetadataCanonicality canonicality);
/// Is the address of canonical metadata which may need to be initialized (e.g.
/// by registering it with the Objective-C runtime) statically known?
bool isCanonicalInitializableTypeMetadataStaticallyAddressable(IRGenModule &IGM,
CanType type);
/// Determine how the given type metadata should be accessed.
MetadataAccessStrategy getTypeMetadataAccessStrategy(CanType type);
/// Return the address of a function that will return type metadata
/// for the given non-dependent type.
llvm::Function *getOrCreateTypeMetadataAccessFunction(IRGenModule &IGM,
CanType type);
/// Return the type metadata access function for the given type, given that
/// some other code will be defining it.
llvm::Function *
getOtherwiseDefinedTypeMetadataAccessFunction(IRGenModule &IGM, CanType type);
/// Emit a type metadata access function that just directly accesses
/// the metadata.
llvm::Function *
createDirectTypeMetadataAccessFunction(IRGenModule &IGM, CanType type,
bool allowExistingDefinition);
using MetadataAccessGenerator =
llvm::function_ref<MetadataResponse(IRGenFunction &IGF,
DynamicMetadataRequest request,
llvm::Constant *cache)>;
enum class CacheStrategy {
/// No cache.
None,
/// A simple lazy cache.
Lazy,
/// An SingletonMetadataCache initialization cache.
SingletonInitialization,
};
/// Emit a type metadata access function using the given generator function.
llvm::Function *
createTypeMetadataAccessFunction(IRGenModule &IGM,
CanType type,
CacheStrategy cacheStrategy,
MetadataAccessGenerator generator,
bool allowExistingDefinition = false);
/// Either create or return a reference to a generic type metadata
/// access function.
///
/// Note that a generic type metadata access function is a somewhat
/// different kind of thing from an ordinary type metadata access function:
///
/// - A generic type metadata access function is associated with a type
/// object of kind `(...) -> type` --- typically, an unapplied
/// generic type (like `Dictionary`, without any type arguments).
/// It takes the concrete witnesses to the generic signature as
/// parameters and builds an appropriately instantiated type for those
/// arguments.
///
/// - An ordinary type metadata access function is associated with
/// a type object of kind `type` --- which is to say, an ordinary type
/// like `Float` or `Dictionary<String, Int>`. There may be ordinary
/// access functions for various specializations of generic types;
/// these will be created on demand.
///
/// The definitions of generic type metadata access functions currently
/// always follow the same pattern, so we don't need to take a closure to
/// define the body.
llvm::Function *
getGenericTypeMetadataAccessFunction(IRGenModule &IGM,
NominalTypeDecl *nominal,
ForDefinition_t shouldDefine);
using CacheEmitter =
llvm::function_ref<MetadataResponse(IRGenFunction &IGF, Explosion ¶ms)>;
/// Emit the body of a lazy cache access function.
void emitCacheAccessFunction(IRGenModule &IGM, llvm::Function *accessor,
llvm::Constant *cache, llvm::Type *cacheTy,
CacheStrategy cacheStrategy, CacheEmitter getValue,
bool isReadNone = true);
MetadataResponse
emitGenericTypeMetadataAccessFunction(IRGenFunction &IGF, Explosion ¶ms,
NominalTypeDecl *nominal,
GenericArguments &genericArgs);
MetadataResponse emitCanonicalSpecializedGenericTypeMetadataAccessFunction(
IRGenFunction &IGF, Explosion ¶ms, CanType theType);
/// Emit a declaration reference to a metatype object.
void emitMetatypeRef(IRGenFunction &IGF, CanMetatypeType type,
Explosion &explosion);
/// Emit a reference to a compile-time constant piece of type metadata, or
/// return a null pointer if the type's metadata cannot be represented by a
/// constant.
ConstantReference tryEmitConstantTypeMetadataRef(IRGenModule &IGM,
CanType type,
SymbolReferenceKind refKind);
/// Emit a reference to a compile-time constant piece of heap metadata, or
/// return a null pointer if the type's heap metadata cannot be represented
/// by a constant.
llvm::Constant *tryEmitConstantHeapMetadataRef(IRGenModule &IGM,
CanType type,
bool allowUninitialized);
enum class MetadataValueType { ObjCClass, TypeMetadata };
/// Emit a reference to the heap metadata for a class.
///
/// Only requests whose response status can be ignored can be used.
///
/// \returns a value of type ObjCClassPtrTy or TypeMetadataPtrTy,
/// depending on desiredType
llvm::Value *emitClassHeapMetadataRef(IRGenFunction &IGF, CanType type,
MetadataValueType desiredType,
DynamicMetadataRequest request,
bool allowUninitialized = false);
/// Emit a reference to the (initialized) ObjC heap metadata for a class.
///
/// \returns a value of type ObjCClassPtrTy
llvm::Value *emitObjCHeapMetadataRef(IRGenFunction &IGF, ClassDecl *theClass,
bool allowUninitialized = false);
/// Emit a reference to type metadata corresponding to the given
/// heap metadata. This may be ObjCWrapper metadata if the heap metadata
/// is not a class.
llvm::Value *emitObjCMetadataRefForMetadata(IRGenFunction &IGF,
llvm::Value *classPtr);
/// Given a class metadata reference, produce the appropriate heap
/// metadata reference for it.
llvm::Value *emitClassHeapMetadataRefForMetatype(IRGenFunction &IGF,
llvm::Value *metatype,
CanType type);
/// Emit a reference to a type layout record for the given type. The referenced
/// data is enough to lay out an aggregate containing a value of the type, but
/// can't uniquely represent the type or perform value witness operations on
/// it.
llvm::Value *emitTypeLayoutRef(IRGenFunction &IGF, SILType type,
MetadataDependencyCollector *collector);
/// Given type metadata that we don't know the dynamic state of,
/// fetch its dynamic state under the rules of the given request.
MetadataResponse emitGetTypeMetadataDynamicState(IRGenFunction &IGF,
DynamicMetadataRequest request,
llvm::Value *metadata);
/// Given a metadata response, ensure that it satisfies the requirements
/// of the given request.
MetadataResponse emitCheckTypeMetadataState(IRGenFunction &IGF,
DynamicMetadataRequest request,
MetadataResponse response);
/// Return the abstract operational cost of a checkTypeMetadataState operation.
OperationCost getCheckTypeMetadataStateCost(DynamicMetadataRequest request,
MetadataResponse response);
ParameterFlags getABIParameterFlags(ParameterTypeFlags flags);
} // end namespace irgen
} // end namespace swift
#endif
|