1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
|
//===--- TypeInfo.h - Abstract primitive operations on values ---*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface used to perform primitive
// operations on swift values and objects.
//
// This interface is supplemented in two ways:
// - FixedTypeInfo provides a number of operations meaningful only
// for types with a fixed-size representation
// - ReferenceTypeInfo is a further refinement of FixedTypeInfo
// which provides operations meaningful only for types with
// reference semantics
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_IRGEN_TYPEINFO_H
#define SWIFT_IRGEN_TYPEINFO_H
#include "IRGen.h"
#include "Outlining.h"
#include "swift/AST/ReferenceCounting.h"
#include "llvm/ADT/MapVector.h"
namespace llvm {
class Constant;
class Twine;
class Type;
}
namespace swift {
enum IsInitialization_t : bool;
enum IsTake_t : bool;
class SILType;
namespace irgen {
class Address;
class StackAddress;
class IRGenFunction;
class IRGenTypeVerifierFunction;
class IRGenModule;
class Explosion;
class ExplosionSchema;
class NativeConventionSchema;
enum OnHeap_t : unsigned char;
class OutliningMetadataCollector;
class OwnedAddress;
class RValue;
class RValueSchema;
class TypeLayoutEntry;
/// Ways in which an object can fit into a fixed-size buffer.
enum class FixedPacking {
/// It fits at offset zero.
OffsetZero,
/// It doesn't fit and needs to be side-allocated.
Allocate,
/// It needs to be checked dynamically.
Dynamic
};
enum class SpecialTypeInfoKind : uint8_t {
Unimplemented,
None,
/// Everything after this is statically fixed-size.
Fixed,
Weak,
/// Everything after this is loadable.
Loadable,
Reference,
Last_Kind = Reference
};
enum : unsigned { NumSpecialTypeInfoKindBits =
countBitsUsed(static_cast<unsigned>(SpecialTypeInfoKind::Last_Kind)) };
/// Information about the IR representation and generation of the
/// given type.
class TypeInfo {
TypeInfo(const TypeInfo &) = delete;
TypeInfo &operator=(const TypeInfo &) = delete;
friend class TypeConverter;
protected:
// clang-format off
union {
uint64_t OpaqueBits;
SWIFT_INLINE_BITFIELD_BASE(TypeInfo,
bitmax(NumSpecialTypeInfoKindBits,8)+6+1+1+1+1+3+1+1,
/// The kind of supplemental API this type has, if any.
Kind : bitmax(NumSpecialTypeInfoKindBits,8),
/// The storage alignment of this type in log2 bytes.
AlignmentShift : 6,
/// Whether this type is known to be trivially destructible.
TriviallyDestroyable : 1,
/// Whether this type is known to be bitwise-takable.
BitwiseTakable : 1,
/// Whether this type is known to be bitwise-borrowable.
BitwiseBorrowable : 1,
/// Whether this type is known to be copyable.
Copyable : 1,
/// An arbitrary discriminator for the subclass. This is useful for e.g.
/// distinguishing between different TypeInfos that all implement the same
/// kind of type.
/// FIXME -- Create TypeInfoNodes.def and get rid of this field.
SubclassKind : 3,
/// Whether this type can be assumed to have a fixed size from all
/// resilience domains.
AlwaysFixedSize : 1,
/// Whether this type is ABI-accessible from this SILModule.
ABIAccessible : 1
);
/// FixedTypeInfo will use the remaining bits for the size.
///
/// NOTE: Until one can define statically sized inline arrays in the
/// language, defining an extremely large object is quite impractical.
/// For now: "4 GiB should be more than good enough."
SWIFT_INLINE_BITFIELD_FULL(FixedTypeInfo, TypeInfo, 32,
: NumPadBits,
/// The storage size of this type in bytes. This may be zero even
/// for well-formed and complete types, such as a trivial enum or
/// tuple.
Size : 32
);
} Bits;
// clang-format on
enum { InvalidSubclassKind = 0x7 };
TypeInfo(llvm::Type *Type, Alignment A, IsTriviallyDestroyable_t pod,
IsBitwiseTakable_t bitwiseTakable,
IsCopyable_t copyable,
IsFixedSize_t alwaysFixedSize,
IsABIAccessible_t abiAccessible,
SpecialTypeInfoKind stik) : StorageType(Type) {
assert(stik >= SpecialTypeInfoKind::Fixed || !alwaysFixedSize);
Bits.OpaqueBits = 0;
Bits.TypeInfo.Kind = unsigned(stik);
Bits.TypeInfo.AlignmentShift = llvm::Log2_32(A.getValue());
Bits.TypeInfo.TriviallyDestroyable = pod;
Bits.TypeInfo.BitwiseTakable = bitwiseTakable >= IsBitwiseTakableOnly;
Bits.TypeInfo.BitwiseBorrowable =
bitwiseTakable == IsBitwiseTakableAndBorrowable;
Bits.TypeInfo.Copyable = copyable;
Bits.TypeInfo.SubclassKind = InvalidSubclassKind;
Bits.TypeInfo.AlwaysFixedSize = alwaysFixedSize;
Bits.TypeInfo.ABIAccessible = abiAccessible;
}
/// Change the minimum alignment of a stored value of this type.
void setStorageAlignment(Alignment alignment) {
auto Prev = Bits.TypeInfo.AlignmentShift;
auto Next = llvm::Log2_32(alignment.getValue());
assert(Next >= Prev && "Alignment can only increase");
(void)Prev;
Bits.TypeInfo.AlignmentShift = Next;
}
void setSubclassKind(unsigned kind) {
assert(kind != InvalidSubclassKind);
Bits.TypeInfo.SubclassKind = kind;
assert(Bits.TypeInfo.SubclassKind == kind && "kind was truncated?");
}
private:
mutable const TypeInfo *NextConverted = nullptr;
/// The LLVM representation of a stored value of this type. For
/// non-fixed types, this is really useful only for forming pointers to it.
llvm::Type *StorageType;
mutable NativeConventionSchema *nativeReturnSchema = nullptr;
mutable NativeConventionSchema *nativeParameterSchema = nullptr;
public:
virtual ~TypeInfo();
/// Unsafely cast this to the given subtype.
template <class T> const T &as() const {
// FIXME: maybe do an assert somehow if we have RTTI enabled.
return static_cast<const T &>(*this);
}
/// Whether this type is known to be empty.
bool isKnownEmpty(ResilienceExpansion expansion) const;
/// Whether this type is known to be ABI-accessible, i.e. whether it's
/// actually possible to do ABI operations on it from this current SILModule.
/// See SILModule::isTypeABIAccessible.
///
/// All fixed-size types are currently ABI-accessible, although this would
/// not be difficult to change (e.g. if we had an archetype size constraint
/// that didn't say anything about triviality).
IsABIAccessible_t isABIAccessible() const {
return IsABIAccessible_t(Bits.TypeInfo.ABIAccessible);
}
/// Whether this type is known to be trivially destroyable, i.e. to not
/// require any particular action on destroy. If the type is also copyable,
/// this implies that copying is also bitwise, i.e., equivalent to memcpy.
IsTriviallyDestroyable_t isTriviallyDestroyable(ResilienceExpansion expansion) const {
return IsTriviallyDestroyable_t(Bits.TypeInfo.TriviallyDestroyable);
}
/// Whether this type is known to be copyable.
IsCopyable_t isCopyable(ResilienceExpansion expansion) const {
return IsCopyable_t(Bits.TypeInfo.Copyable);
}
/// Whether this type is known to be bitwise-takable, i.e. "initializeWithTake"
/// is equivalent to a memcpy, and possibly bitwise-borrowable, i.e.,
/// a borrowed argument can be passed by value rather than by reference.
IsBitwiseTakable_t getBitwiseTakable(ResilienceExpansion expansion) const {
return IsBitwiseTakable_t(
Bits.TypeInfo.BitwiseTakable | (Bits.TypeInfo.BitwiseBorrowable << 1));
}
/// Whether this type is known to be bitwise-takable, i.e. "initializeWithTake"
/// is equivalent to a memcpy
bool isBitwiseTakable(ResilienceExpansion expansion) const {
return Bits.TypeInfo.BitwiseTakable;
}
/// Whether this type is known to be bitwise-borrowable, i.e.,
/// a borrowed argument can be passed by value rather than by reference.
bool isBitwiseBorrowable(ResilienceExpansion expansion) const {
return Bits.TypeInfo.BitwiseBorrowable;
}
/// Returns the type of special interface followed by this TypeInfo.
/// It is important for our design that this depends only on
/// immediate type structure and not on, say, properties that can
/// vary by resilience. Of course, generics can obscure these
/// properties on their parameter types, but then the program
/// can rely on them.
SpecialTypeInfoKind getSpecialTypeInfoKind() const {
return SpecialTypeInfoKind(Bits.TypeInfo.Kind);
}
/// Returns whatever arbitrary data has been stash in the subclass
/// kind field. This mechanism allows an orthogonal dimension of
/// distinguishing between TypeInfos, which is useful when multiple
/// TypeInfo subclasses are used to implement the same kind of type.
unsigned getSubclassKind() const {
assert(Bits.TypeInfo.SubclassKind != InvalidSubclassKind &&
"subclass kind has not been initialized!");
return Bits.TypeInfo.SubclassKind;
}
/// Whether this type is known to be fixed-size in the local
/// resilience domain. If true, this TypeInfo can be cast to
/// FixedTypeInfo.
IsFixedSize_t isFixedSize() const {
return IsFixedSize_t(getSpecialTypeInfoKind() >= SpecialTypeInfoKind::Fixed);
}
/// Whether this type is known to be fixed-size in the given
/// resilience domain. If true, spare bits can be used.
IsFixedSize_t isFixedSize(ResilienceExpansion expansion) const {
switch (expansion) {
case ResilienceExpansion::Maximal:
return isFixedSize();
case ResilienceExpansion::Minimal:
// We can't be universally fixed size if we're not locally
// fixed size.
assert((isFixedSize() || Bits.TypeInfo.AlwaysFixedSize == IsNotFixedSize) &&
"IsFixedSize vs IsAlwaysFixedSize mismatch");
return IsFixedSize_t(Bits.TypeInfo.AlwaysFixedSize);
}
llvm_unreachable("Not a valid ResilienceExpansion.");
}
/// Whether this type is known to be loadable in the local
/// resilience domain. If true, this TypeInfo can be cast to
/// LoadableTypeInfo.
IsLoadable_t isLoadable() const {
return IsLoadable_t(getSpecialTypeInfoKind() >= SpecialTypeInfoKind::Loadable);
}
llvm::Type *getStorageType() const { return StorageType; }
Alignment getBestKnownAlignment() const {
auto Shift = Bits.TypeInfo.AlignmentShift;
return Alignment(1ull << Shift);
}
/// Given a generic pointer to this type, produce an Address for it.
Address getAddressForPointer(llvm::Value *ptr) const;
/// Produce an undefined pointer to an object of this type.
Address getUndefAddress() const;
/// Return the size and alignment of this type.
virtual llvm::Value *getSize(IRGenFunction &IGF, SILType T) const = 0;
virtual llvm::Value *getAlignmentMask(IRGenFunction &IGF, SILType T) const = 0;
virtual llvm::Value *getStride(IRGenFunction &IGF, SILType T) const = 0;
virtual llvm::Value *getIsTriviallyDestroyable(IRGenFunction &IGF, SILType T) const = 0;
virtual llvm::Value *getIsBitwiseTakable(IRGenFunction &IGF, SILType T) const = 0;
virtual llvm::Value *isDynamicallyPackedInline(IRGenFunction &IGF,
SILType T) const = 0;
/// Return the statically-known size of this type, or null if it is
/// not known.
virtual llvm::Constant *getStaticSize(IRGenModule &IGM) const = 0;
/// Return the statically-known alignment mask for this type, or
/// null if it is not known.
virtual llvm::Constant *getStaticAlignmentMask(IRGenModule &IGM) const = 0;
/// Return the statically-known stride size of this type, or null if
/// it is not known.
virtual llvm::Constant *getStaticStride(IRGenModule &IGM) const = 0;
/// Add the information for exploding values of this type to the
/// given schema.
virtual void getSchema(ExplosionSchema &schema) const = 0;
/// A convenience for getting the schema of a single type.
ExplosionSchema getSchema() const;
/// Build the type layout for this type info.
virtual TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const = 0;
/// Allocate a variable of this type on the stack.
virtual StackAddress allocateStack(IRGenFunction &IGF, SILType T,
const llvm::Twine &name) const = 0;
virtual StackAddress allocateVector(IRGenFunction &IGF, SILType T,
llvm::Value *capacity,
const Twine &name) const = 0;
/// Deallocate a variable of this type.
virtual void deallocateStack(IRGenFunction &IGF, StackAddress addr,
SILType T) const = 0;
/// Destroy the value of a variable of this type, then deallocate its
/// memory.
virtual void destroyStack(IRGenFunction &IGF, StackAddress addr, SILType T,
bool isOutlined) const = 0;
/// Copy or take a value out of one address and into another, destroying
/// old value in the destination. Equivalent to either assignWithCopy
/// or assignWithTake depending on the value of isTake.
void assign(IRGenFunction &IGF, Address dest, Address src, IsTake_t isTake,
SILType T, bool isOutlined) const;
/// Copy a value out of an object and into another, destroying the
/// old value in the destination.
virtual void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const = 0;
/// Move a value out of an object and into another, destroying the
/// old value there and leaving the source object in an invalid state.
virtual void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const = 0;
/// Copy-initialize or take-initialize an uninitialized object
/// with the value from a different object. Equivalent to either
/// initializeWithCopy or initializeWithTake depending on the value
/// of isTake.
void initialize(IRGenFunction &IGF, Address dest, Address src,
IsTake_t isTake, SILType T, bool isOutlined) const;
/// Perform a "take-initialization" from the given object. A
/// take-initialization is like a C++ move-initialization, except that
/// the old object is actually no longer permitted to be destroyed.
virtual void initializeWithTake(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T,
bool isOutlined) const = 0;
/// Perform a copy-initialization from the given object.
virtual void initializeWithCopy(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T,
bool isOutlined) const = 0;
/// Perform a copy-initialization from the given fixed-size buffer
/// into an uninitialized fixed-size buffer, allocating the buffer if
/// necessary. Returns the address of the value inside the buffer.
///
/// This is equivalent to:
/// auto srcAddress = projectBuffer(IGF, srcBuffer, T);
/// initializeBufferWithCopy(IGF, destBuffer, srcAddress, T);
/// but will be more efficient for dynamic types, since it uses a single
/// value witness call.
virtual Address initializeBufferWithCopyOfBuffer(IRGenFunction &IGF,
Address destBuffer,
Address srcBuffer,
SILType T) const;
/// Take-initialize an address from a parameter explosion.
virtual void initializeFromParams(IRGenFunction &IGF, Explosion ¶ms,
Address src, SILType T,
bool isOutlined) const = 0;
/// Destroy an object of this type in memory.
virtual void destroy(IRGenFunction &IGF, Address address, SILType T,
bool isOutlined) const = 0;
/// Should optimizations be enabled which rely on the representation
/// for this type being a single object pointer?
///
/// \return false by default
virtual bool isSingleRetainablePointer(ResilienceExpansion expansion,
ReferenceCounting *refcounting
= nullptr) const;
/// Should optimizations be enabled which rely on the representation
/// for this type being a single Swift-retainable object pointer?
///
/// \return false by default
bool isSingleSwiftRetainablePointer(ResilienceExpansion expansion) const {
ReferenceCounting refcounting;
return (isSingleRetainablePointer(expansion, &refcounting) &&
refcounting == ReferenceCounting::Native);
}
/// Does this type statically have extra inhabitants, or may it dynamically
/// have extra inhabitants based on type arguments?
virtual bool mayHaveExtraInhabitants(IRGenModule &IGM) const = 0;
/// Returns true if the value witness operations on this type work correctly
/// with extra inhabitants up to the given index.
///
/// An example of this is retainable pointers. The first extra inhabitant for
/// these types is the null pointer, on which swift_retain is a harmless
/// no-op. If this predicate returns true, then a single-payload enum with
/// this type as its payload (like Optional<T>) can avoid additional branching
/// on the enum tag for value witness operations.
virtual bool canValueWitnessExtraInhabitantsUpTo(IRGenModule &IGM,
unsigned index) const;
/// Get the tag of a single payload enum with a payload of this type (\p T) e.g
/// Optional<T>.
virtual llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
llvm::Value *numEmptyCases,
Address enumAddr,
SILType T,
bool isOutlined) const = 0;
/// Store the tag of a single payload enum with a payload of this type.
virtual void storeEnumTagSinglePayload(IRGenFunction &IGF,
llvm::Value *whichCase,
llvm::Value *numEmptyCases,
Address enumAddr,
SILType T,
bool isOutlined) const = 0;
/// Return an extra-inhabitant tag for the given type, which will be
/// 0 for a value that's not an extra inhabitant or else a value in
/// 1...extraInhabitantCount. Note that the range is off by one relative
/// to the expectations of FixedTypeInfo::getExtraInhabitantIndex!
///
/// Most places in IRGen shouldn't be using this.
///
/// knownXICount can be null.
llvm::Value *getExtraInhabitantTagDynamic(IRGenFunction &IGF,
Address address,
SILType T,
llvm::Value *knownXICount,
bool isOutlined) const;
/// Store an extra-inhabitant tag for the given type, which is known to be
/// in 1...extraInhabitantCount. Note that the range is off by one
/// relative to the expectations of FixedTypeInfo::storeExtraInhabitant!
///
/// Most places in IRGen shouldn't be using this.
void storeExtraInhabitantTagDynamic(IRGenFunction &IGF,
llvm::Value *index,
Address address,
SILType T,
bool isOutlined) const;
/// Compute the packing of values of this type into a fixed-size buffer.
/// A value might not be stored in the fixed-size buffer because it does not
/// fit or because it is not bit-wise takable. Non bit-wise takable values are
/// not stored inline by convention.
FixedPacking getFixedPacking(IRGenModule &IGM) const;
/// Index into an array of objects of this type.
Address indexArray(IRGenFunction &IGF, Address base, llvm::Value *offset,
SILType T) const;
/// Round up the address value \p base to the alignment of type \p T.
Address roundUpToTypeAlignment(IRGenFunction &IGF, Address base,
SILType T) const;
/// Destroy an array of objects of this type in memory.
virtual void destroyArray(IRGenFunction &IGF, Address base,
llvm::Value *count, SILType T) const;
/// Initialize an array of objects of this type in memory by copying the
/// values from another array. The arrays must not overlap.
virtual void initializeArrayWithCopy(IRGenFunction &IGF,
Address dest,
Address src,
llvm::Value *count, SILType T) const;
/// Initialize an array of objects of this type in memory by taking the
/// values from another array. The array must not overlap.
virtual void initializeArrayWithTakeNoAlias(IRGenFunction &IGF,
Address dest, Address src,
llvm::Value *count, SILType T) const;
/// Initialize an array of objects of this type in memory by taking the
/// values from another array. The destination array may overlap the head of
/// the source array because the elements are taken as if in front-to-back
/// order.
virtual void initializeArrayWithTakeFrontToBack(IRGenFunction &IGF,
Address dest, Address src,
llvm::Value *count, SILType T) const;
/// Initialize an array of objects of this type in memory by taking the
/// values from another array. The destination array may overlap the tail of
/// the source array because the elements are taken as if in back-to-front
/// order.
virtual void initializeArrayWithTakeBackToFront(IRGenFunction &IGF,
Address dest, Address src,
llvm::Value *count, SILType T) const;
/// Assign to an array of objects of this type in memory by copying the
/// values from another array. The array must not overlap.
virtual void assignArrayWithCopyNoAlias(IRGenFunction &IGF, Address dest,
Address src, llvm::Value *count,
SILType T) const;
/// Assign to an array of objects of this type in memory by copying the
/// values from another array. The destination array may overlap the head of
/// the source array because the elements are taken as if in front-to-back
/// order.
virtual void assignArrayWithCopyFrontToBack(IRGenFunction &IGF, Address dest,
Address src, llvm::Value *count,
SILType T) const;
/// Assign to an array of objects of this type in memory by copying the
/// values from another array. The destination array may overlap the tail of
/// the source array because the elements are taken as if in back-to-front
/// order.
virtual void assignArrayWithCopyBackToFront(IRGenFunction &IGF, Address dest,
Address src, llvm::Value *count,
SILType T) const;
/// Assign to an array of objects of this type in memory by taking the
/// values from another array. The array must not overlap.
virtual void assignArrayWithTake(IRGenFunction &IGF, Address dest,
Address src, llvm::Value *count,
SILType T) const;
/// Collect all the metadata necessary in order to perform value
/// operations on this type.
virtual void collectMetadataForOutlining(OutliningMetadataCollector &collector,
SILType T) const;
/// Get the native (abi) convention for a return value of this type.
const NativeConventionSchema &nativeReturnValueSchema(IRGenModule &IGM) const;
/// Get the native (abi) convention for a parameter value of this type.
const NativeConventionSchema &nativeParameterValueSchema(IRGenModule &IGM) const;
/// Emit verifier code that compares compile-time constant knowledge of
/// this kind of type's traits to its runtime manifestation.
virtual void verify(IRGenTypeVerifierFunction &IGF,
llvm::Value *typeMetadata,
SILType T) const;
/// Perform \p invocation with the appropriate metadata collector for use in
/// emitting an outlined value function of a value operation that can be
/// performed with a value witness.
///
/// Returns whether there was an appropriate emitter (and whether \p
/// invocation was called).
bool withWitnessableMetadataCollector(
IRGenFunction &IGF, SILType T, LayoutIsNeeded_t needsLayout,
DeinitIsNeeded_t needsDeinit,
llvm::function_ref<void(OutliningMetadataCollector &)> invocation) const;
void callOutlinedCopy(IRGenFunction &IGF, Address dest, Address src,
SILType T, IsInitialization_t isInit,
IsTake_t isTake) const;
void callOutlinedDestroy(IRGenFunction &IGF, Address addr, SILType T) const;
void callOutlinedRelease(IRGenFunction &IGF, Address addr, SILType T,
Atomicity atomicity) const;
};
} // end namespace irgen
} // end namespace swift
#endif
|