File: TypeLayoutVerifier.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (326 lines) | stat: -rw-r--r-- 13,148 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
//===--- TypeLayoutVerifier.cpp -------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines a generator that produces code to verify that IRGen's
// static assumptions about data layout for a Swift type correspond to the
// runtime's understanding of data layout.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticsIRGen.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/Types.h"
#include "swift/SIL/SILModule.h"
#include "EnumPayload.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "GenOpaque.h"
#include "GenType.h"
#include "FixedTypeInfo.h"

using namespace swift;
using namespace irgen;

IRGenTypeVerifierFunction::IRGenTypeVerifierFunction(IRGenModule &IGM,
                                                     llvm::Function *f)
    : IRGenFunction(IGM, f),
      VerifierFn(IGM.getVerifyTypeLayoutAttributeFunctionPointer()) {
  // Verifier functions are always artificial.
  if (IGM.DebugInfo)
    IGM.DebugInfo->emitArtificialFunction(*this, f);
}

void
IRGenTypeVerifierFunction::emit(ArrayRef<CanType> formalTypes) {
  auto getSizeConstant = [&](Size sz) -> llvm::Constant * {
    return llvm::ConstantInt::get(IGM.SizeTy, sz.getValue());
  };
  auto getAlignmentMaskConstant = [&](Alignment a) -> llvm::Constant * {
    return llvm::ConstantInt::get(IGM.SizeTy, a.getValue() - 1);
  };
  auto getBoolConstant = [&](bool b) -> llvm::Constant * {
    return llvm::ConstantInt::get(IGM.Int1Ty, b);
  };

  SmallString<20> numberBuf;

  for (auto formalType : formalTypes) {
    // Runtime type metadata always represents the maximal abstraction level of
    // the type.
    auto maxAbstraction = AbstractionPattern::getOpaque();
    auto layoutType = IGM.getLoweredType(maxAbstraction, formalType);
    auto &ti = getTypeInfo(layoutType);
    auto metadata = emitTypeMetadataRef(formalType);

    // Check type metrics for fixed-layout types.
    // If there's no fixed type info, we rely on the runtime for type metrics,
    // so there's no compile-time values to validate against.
    if (auto *fixedTI = dyn_cast<FixedTypeInfo>(&ti)) {
      // Check that the fixed layout matches the runtime layout.
      verifyValues(metadata,
             emitLoadOfSize(*this, layoutType),
             getSizeConstant(fixedTI->getFixedSize()),
             "size");
      verifyValues(metadata,
             emitLoadOfAlignmentMask(*this, layoutType),
             getAlignmentMaskConstant(fixedTI->getFixedAlignment()),
             "alignment mask");
      verifyValues(metadata,
             emitLoadOfStride(*this, layoutType),
             getSizeConstant(fixedTI->getFixedStride()),
             "stride");
      verifyValues(metadata,
             emitLoadOfIsInline(*this, layoutType),
             getBoolConstant(fixedTI->getFixedPacking(IGM)
                               == FixedPacking::OffsetZero),
             "is-inline bit");
      verifyValues(metadata,
             emitLoadOfIsTriviallyDestroyable(*this, layoutType),
             getBoolConstant(fixedTI->isTriviallyDestroyable(ResilienceExpansion::Maximal)),
             "is-trivially-destructible bit");
      verifyValues(metadata,
             emitLoadOfIsBitwiseTakable(*this, layoutType),
             getBoolConstant(fixedTI->isBitwiseTakable(ResilienceExpansion::Maximal)),
             "is-bitwise-takable bit");
      unsigned xiCount = fixedTI->getFixedExtraInhabitantCount(IGM);
      verifyValues(metadata,
             emitLoadOfExtraInhabitantCount(*this, layoutType),
             IGM.getInt32(xiCount),
             "extra inhabitant count");

      // Check extra inhabitants.
      if (xiCount > 0) {
        // Verify that the extra inhabitant representations are consistent.
        
        // TODO: Update for EnumPayload implementation changes.
        auto xiBuf = createAlloca(fixedTI->getStorageType(),
                                      fixedTI->getFixedAlignment(),
                                      "extra-inhabitant");
        auto fixedXIBuf = createAlloca(fixedTI->getStorageType(),
                                           fixedTI->getFixedAlignment(),
                                           "extra-inhabitant");
        auto xiOpaque = Builder.CreateElementBitCast(xiBuf, IGM.OpaqueTy);
        auto fixedXIOpaque =
            Builder.CreateElementBitCast(fixedXIBuf, IGM.OpaqueTy);
        auto xiMask = fixedTI->getFixedExtraInhabitantMask(IGM);
        auto xiSchema = EnumPayloadSchema(xiMask.getBitWidth());

        auto maxXiCount = std::min(xiCount, 256u);
        auto numCases = llvm::ConstantInt::get(IGM.Int32Ty, maxXiCount);

        // TODO: Randomize the set of extra inhabitants we check.
        unsigned bits = fixedTI->getFixedSize().getValueInBits();
        for (unsigned i = 0, e = maxXiCount; i < e; ++i) {
          // Initialize the buffer with junk, to help ensure we're insensitive to
          // insignificant bits.
          // TODO: Randomize the filler.
          Builder.CreateMemSet(xiBuf.getAddress(),
                                   llvm::ConstantInt::get(IGM.Int8Ty, 0x5A),
                                   fixedTI->getFixedSize().getValue(),
                                   llvm::MaybeAlign(fixedTI->getFixedAlignment().getValue()));
          
          // Ask the runtime to store an extra inhabitant.
          auto tag = llvm::ConstantInt::get(IGM.Int32Ty, i+1);
          emitStoreEnumTagSinglePayloadCall(*this, layoutType, tag,
                                            numCases, xiOpaque);
          
          // Compare the stored extra inhabitant against the fixed extra
          // inhabitant pattern.
          auto fixedXIValue
             = fixedTI->getFixedExtraInhabitantValue(IGM, bits, i);
          auto fixedXIPayload =
            EnumPayload::fromBitPattern(IGM, fixedXIValue,
                                        xiSchema);
          fixedXIPayload.store(*this, fixedXIBuf);
          
          auto runtimeXIPayload = EnumPayload::load(*this, xiBuf, xiSchema);
          runtimeXIPayload.emitApplyAndMask(*this, xiMask);
          runtimeXIPayload.store(*this, xiBuf);

          numberBuf.clear();
          {
            llvm::raw_svector_ostream os(numberBuf);
            os << i;
          }
          
          verifyBuffers(metadata, xiBuf, fixedXIBuf, fixedTI->getFixedSize(),
                 llvm::Twine("stored extra inhabitant ") + numberBuf.str());
          
          // Now ask the runtime to identify the fixed extra inhabitant value.
          // Mask in junk to make sure the runtime correctly ignores it.
          // TODO: Randomize the filler.
          auto xiFill = ~APInt(fixedXIValue.getBitWidth(), 0);
          xiFill &= ~xiMask;
          fixedXIValue |= xiFill;

          auto maskedXIPayload = EnumPayload::fromBitPattern(IGM,
            fixedXIValue, xiSchema);
          maskedXIPayload.store(*this, fixedXIBuf);
          
          auto runtimeTag =
            emitGetEnumTagSinglePayloadCall(*this, layoutType, numCases,
                                            fixedXIOpaque);
          verifyValues(metadata,
                       runtimeTag, tag,
                       llvm::Twine("extra inhabitant tag calculation ")
                         + numberBuf.str());
        }
      }
    }
    ti.verify(*this, metadata, layoutType);
  }

  Builder.CreateRetVoid();
}

void
IRGenTypeVerifierFunction::verifyValues(llvm::Value *typeMetadata,
                                        llvm::Value *runtimeVal,
                                        llvm::Value *staticVal,
                                        const llvm::Twine &description) {
  assert(runtimeVal->getType() == staticVal->getType());
  // Get or create buffers for the arguments.
  VerifierArgumentBuffers bufs;
  auto foundBufs = VerifierArgBufs.find(runtimeVal->getType());
  if (foundBufs != VerifierArgBufs.end()) {
    bufs = foundBufs->second;
  } else {
    Address runtimeBuf = createAlloca(runtimeVal->getType(),
                                          IGM.getPointerAlignment(),
                                          "runtime");
    Address staticBuf = createAlloca(staticVal->getType(),
                                         IGM.getPointerAlignment(),
                                         "static");
    bufs = {runtimeBuf, staticBuf};
    VerifierArgBufs[runtimeVal->getType()] = bufs;
  }
  
  Builder.CreateStore(runtimeVal, bufs.runtimeBuf);
  Builder.CreateStore(staticVal, bufs.staticBuf);
  
  auto runtimePtr = Builder.CreateBitCast(bufs.runtimeBuf.getAddress(),
                                              IGM.Int8PtrTy);
  auto staticPtr = Builder.CreateBitCast(bufs.staticBuf.getAddress(),
                                             IGM.Int8PtrTy);
  auto count = llvm::ConstantInt::get(IGM.SizeTy,
                IGM.DataLayout.getTypeStoreSize(runtimeVal->getType()));
  auto msg
    = IGM.getAddrOfGlobalString(description.str());
  
  Builder.CreateCall(
      VerifierFn, {typeMetadata, runtimePtr, staticPtr, count, msg});
}

void
IRGenTypeVerifierFunction::verifyBuffers(llvm::Value *typeMetadata,
                                         Address runtimeBuf,
                                         Address staticBuf,
                                         Size size,
                                         const llvm::Twine &description) {
  auto runtimePtr = Builder.CreateBitCast(runtimeBuf.getAddress(),
                                          IGM.Int8PtrTy);
  auto staticPtr = Builder.CreateBitCast(staticBuf.getAddress(),
                                         IGM.Int8PtrTy);
  auto count = llvm::ConstantInt::get(IGM.SizeTy,
                                      size.getValue());
  auto msg
    = IGM.getAddrOfGlobalString(description.str());

  Builder.CreateCall(
      VerifierFn, {typeMetadata, runtimePtr, staticPtr, count, msg});
}

void IRGenModule::emitTypeVerifier() {
  // Look up the types to verify.
  
  SmallVector<CanType, 4> TypesToVerify;
  for (auto name : IRGen.Opts.VerifyTypeLayoutNames) {
    // Look up the name in the module.
    SmallVector<ValueDecl*, 1> lookup;
    swift::ModuleDecl *M = getSwiftModule();
    M->lookupMember(lookup, M, DeclName(Context.getIdentifier(name)),
                    Identifier());
    if (lookup.empty()) {
      Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_not_found,
                             name);
      continue;
    }
    
    TypeDecl *typeDecl = nullptr;
    for (auto decl : lookup) {
      if (auto td = dyn_cast<TypeDecl>(decl)) {
        if (typeDecl) {
          Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_ambiguous,
                                 name);
          goto next;
        }
        typeDecl = td;
        break;
      }
    }
    if (!typeDecl) {
      Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_not_found, name);
      continue;
    }
    
    {
      auto type = typeDecl->getDeclaredInterfaceType();
      if (type->hasTypeParameter()) {
        Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_dependent,
                               name);
        continue;
      }
      
      TypesToVerify.push_back(type->getCanonicalType());
    }
  next:;
  }
  if (TypesToVerify.empty())
    return;

  // Find the entry point.
  SILFunction *EntryPoint = getSILModule().lookUpFunction(
      getSILModule().getASTContext().getEntryPointFunctionName());

  if (!EntryPoint)
    return;
  
  llvm::Function *EntryFunction = Module.getFunction(EntryPoint->getName());
  if (!EntryFunction)
    return;
  
  // Create a new function to contain our logic.
  auto fnTy = llvm::FunctionType::get(VoidTy, /*varArg*/ false);
  auto VerifierFunction = llvm::Function::Create(fnTy,
                                             llvm::GlobalValue::PrivateLinkage,
                                             "type_verifier",
                                             getModule());
  VerifierFunction->setAttributes(constructInitialAttributes());
  
  // Insert a call into the entry function.
  {
    llvm::BasicBlock *EntryBB = &EntryFunction->getEntryBlock();
    llvm::BasicBlock::iterator IP = EntryBB->getFirstInsertionPt();
    IRBuilder Builder(getLLVMContext(), DebugInfo != nullptr);
    Builder.llvm::IRBuilderBase::SetInsertPoint(EntryBB, IP);
    if (DebugInfo)
      DebugInfo->setEntryPointLoc(Builder);
    Builder.CreateCall(fnTy, VerifierFunction, {});
  }

  IRGenTypeVerifierFunction VerifierIGF(*this, VerifierFunction);
  VerifierIGF.emit(TypesToVerify);
}