1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
|
//===--- ParsePattern.cpp - Swift Language Parser for Patterns ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Pattern Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/GenericParamList.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/Module.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Parse/IDEInspectionCallbacks.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
void Parser::DefaultArgumentInfo::setFunctionContext(
DeclContext *DC, ParameterList *paramList){
for (auto context : ParsedContexts) {
context->changeFunction(DC, paramList);
}
}
static ParserStatus parseDefaultArgument(
Parser &P, Parser::DefaultArgumentInfo *defaultArgs, unsigned argIndex,
Expr *&init, bool &hasInheritedDefaultArg,
Parser::ParameterContextKind paramContext) {
assert(P.Tok.is(tok::equal) ||
(P.Tok.isBinaryOperator() && P.Tok.getText() == "=="));
SourceLoc equalLoc = P.consumeToken();
if (P.SF.Kind == SourceFileKind::Interface) {
// Swift module interfaces don't synthesize inherited initializers and
// instead include them explicitly in subclasses. Since the
// \c DefaultArgumentKind of these initializers is \c Inherited, this is
// represented textually as `= super` in the interface.
// If we're in a module interface and the default argument is exactly
// `super` (i.e. the token after that is `,` or `)` which end a parameter)
// report an inherited default argument to the caller and return.
if (P.Tok.is(tok::kw_super) && P.peekToken().isAny(tok::comma, tok::r_paren)) {
hasInheritedDefaultArg = true;
P.consumeToken(tok::kw_super);
defaultArgs->HasDefaultArgument = true;
return ParserStatus();
}
}
// Enter a fresh default-argument context with a meaningless parent.
// We'll change the parent to the function later after we've created
// that declaration.
auto initDC = new (P.Context) DefaultArgumentInitializer(P.CurDeclContext,
argIndex);
Parser::ParseFunctionBody initScope(P, initDC);
ParserResult<Expr> initR = P.parseExpr(diag::expected_init_value);
// Record the default-argument context if we're supposed to accept default
// arguments here.
if (defaultArgs) {
defaultArgs->ParsedContexts.push_back(initDC);
}
Diag<> diagID = { DiagID() };
switch (paramContext) {
case Parser::ParameterContextKind::Function:
case Parser::ParameterContextKind::Operator:
case Parser::ParameterContextKind::Initializer:
case Parser::ParameterContextKind::EnumElement:
case Parser::ParameterContextKind::Subscript:
case Parser::ParameterContextKind::Macro:
break;
case Parser::ParameterContextKind::Closure:
diagID = diag::no_default_arg_closure;
break;
case Parser::ParameterContextKind::Curried:
diagID = diag::no_default_arg_curried;
break;
}
assert((diagID.ID != DiagID()) == !defaultArgs &&
"Default arguments specified for an unexpected parameter list kind");
if (diagID.ID != DiagID()) {
auto inFlight = P.diagnose(equalLoc, diagID);
if (initR.isNonNull())
inFlight.fixItRemove(SourceRange(equalLoc, initR.get()->getEndLoc()));
return ParserStatus();
}
defaultArgs->HasDefaultArgument = true;
if (initR.hasCodeCompletion()) {
init = initR.get();
return makeParserCodeCompletionStatus();
}
if (initR.isNull())
return makeParserError();
init = initR.get();
return ParserStatus();
}
/// Determine whether we are at the start of a parameter name when
/// parsing a parameter.
bool Parser::startsParameterName(bool isClosure) {
// To have a parameter name here, we need a name.
if (!Tok.canBeArgumentLabel())
return false;
// If the next token is ':', this is a name.
const auto &nextTok = peekToken();
if (nextTok.is(tok::colon))
return true;
// If the next token can be an argument label, we might have a name.
if (nextTok.canBeArgumentLabel()) {
// If the first name wasn't a contextual keyword, we're done.
if (!Tok.isContextualKeyword("isolated") &&
!Tok.isContextualKeyword("some") && !Tok.isContextualKeyword("any") &&
!Tok.isContextualKeyword("each") &&
!Tok.isContextualKeyword("__shared") &&
!Tok.isContextualKeyword("__owned") &&
!Tok.isContextualKeyword("borrowing") &&
(!Context.LangOpts.hasFeature(Feature::SendingArgsAndResults) ||
!Tok.isContextualKeyword("sending")) &&
!Tok.isContextualKeyword("consuming") && !Tok.is(tok::kw_repeat) &&
(!Context.LangOpts.hasFeature(Feature::NonescapableTypes) ||
!Tok.isContextualKeyword("_resultDependsOn")))
return true;
// Parameter specifiers can be an argument label, but they're also
// contextual keywords, so look ahead one more token (two total) and see
// if we have a ':' that would
// indicate that this is an argument label.
return lookahead<bool>(2, [&](CancellableBacktrackingScope &) {
if (Tok.is(tok::colon))
return true; // isolated :
return Tok.canBeArgumentLabel() && nextTok.is(tok::colon);
});
}
if (isOptionalToken(nextTok)
|| isImplicitlyUnwrappedOptionalToken(nextTok))
return false;
// The identifier could be a name or it could be a type. In a closure, we
// assume it's a name, because the type can be inferred. Elsewhere, we
// assume it's a type.
return isClosure;
}
SourceLoc Parser::tryCompleteFunctionParamTypeBeginning() {
if (!L->isCodeCompletion())
return SourceLoc();
// Skip over any starting parameter specifiers.
{
CancellableBacktrackingScope backtrack(*this);
ParsedTypeAttributeList attrs(ParseTypeReason::Unspecified);
attrs.parse(*this);
if (!Tok.is(tok::code_complete))
return SourceLoc();
backtrack.cancelBacktrack();
}
if (CodeCompletionCallbacks)
CodeCompletionCallbacks->completeTypePossibleFunctionParamBeginning();
return consumeToken(tok::code_complete);
}
ParserStatus
Parser::parseParameterClause(SourceLoc &leftParenLoc,
SmallVectorImpl<ParsedParameter> ¶ms,
SourceLoc &rightParenLoc,
DefaultArgumentInfo *defaultArgs,
ParameterContextKind paramContext) {
assert(params.empty() && leftParenLoc.isInvalid() &&
rightParenLoc.isInvalid() && "Must start with empty state");
// Consume the starting '(';
leftParenLoc = consumeToken(tok::l_paren);
// Trivial case: empty parameter list.
if (Tok.is(tok::r_paren)) {
rightParenLoc = consumeToken(tok::r_paren);
// Per SE-0155, enum elements may not have empty parameter lists.
if (paramContext == ParameterContextKind::EnumElement) {
decltype(diag::enum_element_empty_arglist) diagnostic;
if (Context.isSwiftVersionAtLeast(5)) {
diagnostic = diag::enum_element_empty_arglist;
} else {
diagnostic = diag::enum_element_empty_arglist_swift4;
}
diagnose(leftParenLoc, diagnostic)
.highlight({leftParenLoc, rightParenLoc});
diagnose(leftParenLoc, diag::enum_element_empty_arglist_delete)
.fixItRemoveChars(leftParenLoc,
Lexer::getLocForEndOfToken(SourceMgr, rightParenLoc));
diagnose(leftParenLoc, diag::enum_element_empty_arglist_add_void)
.fixItInsertAfter(leftParenLoc, "Void");
}
return ParserStatus();
}
// Parse the parameter list.
bool isClosure = paramContext == ParameterContextKind::Closure;
return parseList(tok::r_paren, leftParenLoc, rightParenLoc,
/*AllowSepAfterLast=*/false,
diag::expected_rparen_parameter,
[&]() -> ParserStatus {
ParsedParameter param;
ParserStatus status;
SourceLoc StartLoc = Tok.getLoc();
unsigned defaultArgIndex = defaultArgs ? defaultArgs->NextIndex++ : 0;
// Attributes.
if (paramContext != ParameterContextKind::EnumElement) {
auto AttrStatus = parseDeclAttributeList(param.Attrs);
if (AttrStatus.hasCodeCompletion()) {
if (this->CodeCompletionCallbacks)
this->CodeCompletionCallbacks->setAttrTargetDeclKind(DeclKind::Param);
status.setHasCodeCompletionAndIsError();
}
}
{
// ('inout' | '__shared' | '__owned' | isolated)?
bool hasSpecifier = false;
while (isParameterSpecifier()) {
// Placing 'inout' in front of the parameter specifiers was allowed in
// the Swift 2-ish era and got moved to the return type in Swift 3
// (SE-0031).
// But new parameters that don't store there location in
// `SpecifierLoc` were added afterwards and didn't get diagnosed.
// We thus need to parameter specifiers that don't store their location
// in `SpecifierLoc` here. `SpecifierLoc` parameters get diagnosed in
// `validateParameterWithOwnership`
// is this token the identifier of an argument label? `inout` is a
// reserved keyword but the other modifiers are not.
if (!Tok.is(tok::kw_inout)) {
bool partOfArgumentLabel = lookahead<bool>(1, [&](CancellableBacktrackingScope &) {
if (Tok.is(tok::colon))
return true; // isolated :
return Tok.canBeArgumentLabel() && peekToken().is(tok::colon);
});
if (partOfArgumentLabel)
break;
}
if (Tok.isContextualKeyword("isolated")) {
diagnose(Tok, diag::parameter_specifier_as_attr_disallowed, Tok.getText())
.warnUntilSwiftVersion(6);
// did we already find an 'isolated' type modifier?
if (param.IsolatedLoc.isValid()) {
diagnose(Tok, diag::parameter_specifier_repeated)
.fixItRemove(Tok.getLoc());
consumeToken();
continue;
}
// consume 'isolated' as type modifier
param.IsolatedLoc = consumeToken();
continue;
}
if (Tok.isContextualKeyword("_const")) {
diagnose(Tok, diag::parameter_specifier_as_attr_disallowed, Tok.getText())
.warnUntilSwiftVersion(6);
param.CompileConstLoc = consumeToken();
continue;
}
if (Context.LangOpts.hasFeature(Feature::SendingArgsAndResults) &&
Tok.isContextualKeyword("sending")) {
diagnose(Tok, diag::parameter_specifier_as_attr_disallowed,
Tok.getText())
.warnUntilSwiftVersion(6);
if (param.SendingLoc.isValid()) {
diagnose(Tok, diag::parameter_specifier_repeated)
.fixItRemove(Tok.getLoc());
consumeToken();
continue;
}
param.SendingLoc = consumeToken();
continue;
}
if (!hasSpecifier) {
// These cases are handled later when mapping to ParamDecls for
// better fixits.
if (Tok.is(tok::kw_inout)) {
param.SpecifierKind = ParamDecl::Specifier::InOut;
param.SpecifierLoc = consumeToken();
} else if (Tok.isContextualKeyword("borrowing")) {
param.SpecifierKind = ParamDecl::Specifier::Borrowing;
param.SpecifierLoc = consumeToken();
} else if (Tok.isContextualKeyword("consuming")) {
param.SpecifierKind = ParamDecl::Specifier::Consuming;
param.SpecifierLoc = consumeToken();
} else if (Tok.isContextualKeyword("__shared")) {
param.SpecifierKind = ParamDecl::Specifier::LegacyShared;
param.SpecifierLoc = consumeToken();
} else if (Tok.isContextualKeyword("__owned")) {
param.SpecifierKind = ParamDecl::Specifier::LegacyOwned;
param.SpecifierLoc = consumeToken();
}
if (param.SendingLoc.isValid()) {
diagnose(Tok, diag::sending_before_parameter_specifier,
getNameForParamSpecifier(param.SpecifierKind));
}
hasSpecifier = true;
} else {
// Redundant specifiers are fairly common, recognize, reject, and
// recover from this gracefully.
diagnose(Tok, diag::parameter_specifier_repeated)
.fixItRemove(Tok.getLoc());
consumeToken();
}
}
}
// If let or var is being used as an argument label, allow it but
// generate a warning.
if (!isClosure &&
(Tok.isAny(tok::kw_let, tok::kw_var) ||
(Context.LangOpts.hasFeature(Feature::ReferenceBindings) &&
Tok.isAny(tok::kw_inout)))) {
diagnose(Tok, diag::parameter_let_var_as_attr, Tok.getText())
.fixItReplace(Tok.getLoc(), "`" + Tok.getText().str() + "`");
}
auto parseParamType = [&]() -> ParserResult<TypeRepr> {
// Currently none of the parameter type completions are relevant for
// enum cases, so don't include them. We'll complete for a regular type
// beginning instead.
if (paramContext != ParameterContextKind::EnumElement) {
if (auto CCLoc = tryCompleteFunctionParamTypeBeginning()) {
auto *ET = ErrorTypeRepr::create(Context, CCLoc);
return makeParserCodeCompletionResult<TypeRepr>(ET);
}
}
return parseType(diag::expected_parameter_type);
};
if (startsParameterName(isClosure)) {
// identifier-or-none for the first name
param.FirstNameLoc = consumeArgumentLabel(param.FirstName,
/*diagnoseDollarPrefix=*/!isClosure);
// identifier-or-none? for the second name
if (Tok.canBeArgumentLabel())
param.SecondNameLoc = consumeArgumentLabel(param.SecondName,
/*diagnoseDollarPrefix=*/true);
// Operators, closures, and enum elements cannot have API names.
if ((paramContext == ParameterContextKind::Operator ||
paramContext == ParameterContextKind::Closure ||
paramContext == ParameterContextKind::EnumElement) &&
!param.FirstName.empty() &&
param.SecondNameLoc.isValid()) {
enum KeywordArgumentDiagnosticContextKind {
Operator = 0,
Closure = 1,
EnumElement = 2,
} diagContextKind;
switch (paramContext) {
case ParameterContextKind::Operator:
diagContextKind = Operator;
break;
case ParameterContextKind::Closure:
diagContextKind = Closure;
break;
case ParameterContextKind::EnumElement:
diagContextKind = EnumElement;
break;
default:
llvm_unreachable("Unhandled parameter context kind!");
}
diagnose(param.FirstNameLoc, diag::parameter_operator_keyword_argument,
unsigned(diagContextKind))
.fixItRemoveChars(param.FirstNameLoc, param.SecondNameLoc);
param.FirstName = param.SecondName;
param.FirstNameLoc = param.SecondNameLoc;
param.SecondName = Identifier();
param.SecondNameLoc = SourceLoc();
}
// (':' type)?
if (consumeIf(tok::colon)) {
auto type = parseParamType();
status |= type;
param.Type = type.getPtrOrNull();
// If we didn't parse a type, then we already diagnosed that the type
// was invalid. Remember that.
if (type.isNull() && !type.hasCodeCompletion())
param.isInvalid = true;
} else if (paramContext != Parser::ParameterContextKind::Closure) {
diagnose(Tok, diag::expected_parameter_colon);
param.isInvalid = true;
}
} else {
// Otherwise, we have invalid code. Check to see if this looks like a
// type. If so, diagnose it as a common error.
bool isBareType = false;
{
BacktrackingScope backtrack(*this);
isBareType = canParseType() && Tok.isAny(tok::comma, tok::r_paren,
tok::equal);
}
if (isBareType && paramContext == ParameterContextKind::EnumElement) {
auto type = parseParamType();
status |= type;
param.Type = type.getPtrOrNull();
param.FirstName = Identifier();
param.FirstNameLoc = SourceLoc();
param.SecondName = Identifier();
param.SecondNameLoc = SourceLoc();
} else if (isBareType && !Tok.is(tok::code_complete)) {
// Otherwise, if this is a bare type, then the user forgot to name the
// parameter, e.g. "func foo(Int) {}"
// Don't enter this case if the element could only be parsed as a bare
// type because a code completion token is positioned here. In this case
// the user is about to type the parameter label and we shouldn't
// suggest types.
SourceLoc typeStartLoc = Tok.getLoc();
auto type = parseParamType();
status |= type;
param.Type = type.getPtrOrNull();
// If this is a closure declaration, what is going
// on is most likely argument destructuring, we are going
// to diagnose that after all of the parameters are parsed.
if (param.Type) {
// Mark current parameter type as invalid so it is possible
// to diagnose it as destructuring of the closure parameter list.
param.isPotentiallyDestructured = true;
if (!isClosure) {
// Unnamed parameters must be written as "_: Type".
diagnose(typeStartLoc, diag::parameter_unnamed)
.fixItInsert(typeStartLoc, "_: ");
} else {
// Unnamed parameters were accidentally possibly accepted after
// SE-110 depending on the kind of declaration. We now need to
// warn about the misuse of this syntax and offer to
// fix it.
// An exception to this rule is when the type is declared with type sugar
// Reference: https://github.com/apple/swift/issues/54133
if (isa<OptionalTypeRepr>(param.Type)
|| isa<ImplicitlyUnwrappedOptionalTypeRepr>(param.Type)) {
diagnose(typeStartLoc, diag::parameter_unnamed)
.fixItInsert(typeStartLoc, "_: ");
} else {
diagnose(typeStartLoc, diag::parameter_unnamed)
.warnUntilSwiftVersion(6)
.fixItInsert(typeStartLoc, "_: ");
}
}
}
} else {
// Otherwise, we're not sure what is going on, but this doesn't smell
// like a parameter.
diagnose(Tok, diag::expected_parameter_name);
param.isInvalid = true;
param.FirstNameLoc = Tok.getLoc();
TokReceiver->registerTokenKindChange(param.FirstNameLoc,
tok::identifier);
status.setIsParseError();
}
}
// If this parameter had an ellipsis, check it has a TypeRepr.
if (Tok.isEllipsis()) {
if (param.Type == nullptr && !param.isInvalid) {
diagnose(Tok, diag::untyped_pattern_ellipsis);
consumeToken();
}
}
// ('=' expr) or ('==' expr)?
bool isEqualBinaryOperator =
Tok.isBinaryOperator() && Tok.getText() == "==";
if (Tok.is(tok::equal) || isEqualBinaryOperator) {
SourceLoc EqualLoc = Tok.getLoc();
if (isEqualBinaryOperator) {
diagnose(Tok, diag::expected_assignment_instead_of_comparison_operator)
.fixItReplace(EqualLoc, "=");
}
status |= parseDefaultArgument(
*this, defaultArgs, defaultArgIndex, param.DefaultArg,
param.hasInheritedDefaultArg, paramContext);
}
// If we haven't made progress, don't add the parameter.
if (Tok.getLoc() == StartLoc) {
// If we took a default argument index for this parameter, but didn't add
// one, then give it back.
if (defaultArgs) --defaultArgs->NextIndex;
return status;
}
params.push_back(param);
return status;
});
}
static TypeRepr *
validateParameterWithOwnership(Parser &parser,
Parser::ParsedParameter ¶mInfo,
ParamSpecifier specifier,
bool parsingEnumElt) {
auto type = paramInfo.Type;
auto loc = paramInfo.SpecifierLoc;
// If we're validating an enum element, 'inout' is not allowed
// at all - Sema will catch this for us. In all other contexts, we
// assume the user put 'inout' in the wrong place and offer a fixit.
if (parsingEnumElt) {
return new (parser.Context) OwnershipTypeRepr(type, specifier, loc);
}
if (isa<SpecifierTypeRepr>(type)) {
parser.diagnose(loc, diag::parameter_specifier_repeated).fixItRemove(loc);
} else {
auto specifierName = ParamDecl::getSpecifierSpelling(specifier);
llvm::SmallString<128> replacement(specifierName);
replacement += " ";
parser
.diagnose(loc, diag::parameter_specifier_as_attr_disallowed,
specifierName)
.fixItRemove(loc)
.fixItInsert(type->getStartLoc(), replacement);
type = new (parser.Context) OwnershipTypeRepr(type, specifier, loc);
}
return type;
}
/// Map parsed parameters to a ParameterList.
static ParameterList *
mapParsedParameters(Parser &parser,
SourceLoc leftParenLoc,
MutableArrayRef<Parser::ParsedParameter> params,
SourceLoc rightParenLoc,
SmallVectorImpl<Identifier> *argNames,
Parser::ParameterContextKind paramContext) {
auto &ctx = parser.Context;
// Local function to create a pattern for a single parameter.
auto createParam = [&](Parser::ParsedParameter ¶mInfo,
Identifier argName, SourceLoc argNameLoc,
Identifier paramName, SourceLoc paramNameLoc)
-> ParamDecl * {
auto param = new (ctx) ParamDecl(paramInfo.SpecifierLoc,
argNameLoc, argName,
paramNameLoc, paramName,
parser.CurDeclContext);
param->getAttrs() = paramInfo.Attrs;
bool parsingEnumElt
= (paramContext == Parser::ParameterContextKind::EnumElement);
// If we're not parsing an enum case, lack of a SourceLoc for both
// names indicates the parameter is synthetic.
if (!parsingEnumElt && argNameLoc.isInvalid() && paramNameLoc.isInvalid())
param->setImplicit();
// If we diagnosed this parameter as a parse error, propagate to the decl.
if (paramInfo.isInvalid)
param->setInvalid();
// If we need to diagnose this parameter as a destructuring, propagate that
// to the decl.
// FIXME: This is a terrible way to catch this.
if (paramInfo.isPotentiallyDestructured)
param->setDestructured(true);
// If a type was provided, create the type for the parameter.
if (auto type = paramInfo.Type) {
// If 'inout' was specified, turn the type into an in-out type.
if (paramInfo.SpecifierKind != ParamDecl::Specifier::Default) {
type = validateParameterWithOwnership(parser, paramInfo,
paramInfo.SpecifierKind,
parsingEnumElt);
}
if (paramInfo.IsolatedLoc.isValid()) {
type = new (parser.Context) IsolatedTypeRepr(
type, paramInfo.IsolatedLoc);
param->setIsolated();
}
if (paramInfo.CompileConstLoc.isValid()) {
type = new (parser.Context) CompileTimeConstTypeRepr(
type, paramInfo.CompileConstLoc);
param->setCompileTimeConst();
}
if (paramInfo.ResultDependsOnLoc.isValid()) {
type = new (parser.Context)
ResultDependsOnTypeRepr(type, paramInfo.ResultDependsOnLoc);
param->setResultDependsOn();
}
if (paramInfo.SendingLoc.isValid()) {
type = new (parser.Context) SendingTypeRepr(type, paramInfo.SendingLoc);
param->setSending();
}
param->setTypeRepr(type);
// Dig through the type to find any attributes or modifiers that are
// associated with the type but should also be reflected on the
// declaration.
{
auto unwrappedType = type;
while (true) {
if (auto *ATR = dyn_cast<AttributedTypeRepr>(unwrappedType)) {
// At this point we actually don't know if that's valid to mark
// this parameter declaration as `autoclosure` because type has
// not been resolved yet - it should either be a function type
// or typealias with underlying function type.
if (ATR->has(TypeAttrKind::Autoclosure))
param->setAutoClosure(true);
unwrappedType = ATR->getTypeRepr();
continue;
}
if (auto *STR = dyn_cast<SpecifierTypeRepr>(unwrappedType)) {
if (isa<IsolatedTypeRepr>(STR))
param->setIsolated(true);
else if (isa<CompileTimeConstTypeRepr>(STR))
param->setCompileTimeConst(true);
else if (isa<ResultDependsOnTypeRepr>(STR))
param->setResultDependsOn(true);
else if (isa<SendingTypeRepr>(STR))
param->setSending(true);
unwrappedType = STR->getBase();
continue;
}
break;
}
}
} else if (paramInfo.SpecifierLoc.isValid()) {
llvm::SmallString<16> specifier;
{
llvm::raw_svector_ostream ss(specifier);
ss << '\'' << ParamDecl::getSpecifierSpelling(paramInfo.SpecifierKind)
<< '\'';
}
parser.diagnose(paramInfo.SpecifierLoc, diag::specifier_must_have_type,
specifier);
paramInfo.SpecifierLoc = SourceLoc();
paramInfo.SpecifierKind = ParamDecl::Specifier::Default;
param->setSpecifier(ParamSpecifier::Default);
} else {
param->setSpecifier(ParamSpecifier::Default);
}
return param;
};
// Collect the elements of the tuple patterns for argument and body
// parameters.
SmallVector<ParamDecl*, 4> elements;
for (auto ¶m : params) {
// Whether the provided name is API by default depends on the parameter
// context.
bool isKeywordArgumentByDefault;
switch (paramContext) {
case Parser::ParameterContextKind::Closure:
case Parser::ParameterContextKind::Subscript:
case Parser::ParameterContextKind::Operator:
isKeywordArgumentByDefault = false;
break;
case Parser::ParameterContextKind::EnumElement:
case Parser::ParameterContextKind::Curried:
case Parser::ParameterContextKind::Initializer:
case Parser::ParameterContextKind::Function:
case Parser::ParameterContextKind::Macro:
isKeywordArgumentByDefault = true;
break;
}
// Create the pattern.
ParamDecl *result = nullptr;
Identifier argName;
Identifier paramName;
if (param.SecondNameLoc.isValid()) {
argName = param.FirstName;
paramName = param.SecondName;
// Both names were provided, so pass them in directly.
result = createParam(param, argName, param.FirstNameLoc,
paramName, param.SecondNameLoc);
// If the first and second names are equivalent and non-empty, and we
// would have an argument label by default, complain.
if (isKeywordArgumentByDefault && param.FirstName == param.SecondName
&& !param.FirstName.empty()) {
parser.diagnose(param.FirstNameLoc,
diag::parameter_extraneous_double_up,
param.FirstName)
.fixItRemoveChars(param.FirstNameLoc, param.SecondNameLoc);
}
} else {
if (isKeywordArgumentByDefault)
argName = param.FirstName;
paramName = param.FirstName;
result = createParam(param, argName, SourceLoc(),
param.FirstName, param.FirstNameLoc);
}
assert (((!param.DefaultArg &&
!param.hasInheritedDefaultArg) ||
paramContext == Parser::ParameterContextKind::Function ||
paramContext == Parser::ParameterContextKind::Operator ||
paramContext == Parser::ParameterContextKind::Initializer ||
paramContext == Parser::ParameterContextKind::EnumElement ||
paramContext == Parser::ParameterContextKind::Subscript ||
paramContext == Parser::ParameterContextKind::Macro) &&
"Default arguments are only permitted on the first param clause");
if (param.DefaultArg) {
DefaultArgumentKind kind = getDefaultArgKind(param.DefaultArg);
result->setDefaultArgumentKind(kind);
result->setDefaultExpr(param.DefaultArg, /*isTypeChecked*/ false);
} else if (param.hasInheritedDefaultArg) {
result->setDefaultArgumentKind(DefaultArgumentKind::Inherited);
}
elements.push_back(result);
if (argNames)
argNames->push_back(argName);
}
return ParameterList::create(ctx, leftParenLoc, elements, rightParenLoc);
}
/// Parse a single parameter-clause.
ParserResult<ParameterList>
Parser::parseSingleParameterClause(ParameterContextKind paramContext,
SmallVectorImpl<Identifier> *namePieces,
DefaultArgumentInfo *defaultArgs) {
if (!Tok.is(tok::l_paren)) {
// If we don't have the leading '(', complain.
Diag<> diagID;
switch (paramContext) {
case ParameterContextKind::Function:
case ParameterContextKind::Operator:
diagID = diag::func_decl_without_paren;
break;
case ParameterContextKind::Subscript:
diagID = diag::expected_lparen_subscript;
break;
case ParameterContextKind::Initializer:
diagID = diag::expected_lparen_initializer;
break;
case ParameterContextKind::Macro:
diagID = diag::expected_lparen_macro;
break;
case ParameterContextKind::EnumElement:
case ParameterContextKind::Closure:
case ParameterContextKind::Curried:
llvm_unreachable("should never be here");
}
{
auto diag = diagnose(Tok, diagID);
if (Tok.isAny(tok::l_brace, tok::arrow, tok::kw_throws, tok::kw_rethrows))
diag.fixItInsertAfter(PreviousLoc, "()");
}
// Create an empty parameter list to recover.
return makeParserErrorResult(
ParameterList::createEmpty(Context, PreviousLoc, PreviousLoc));
}
ParserStatus status;
SmallVector<ParsedParameter, 4> params;
SourceLoc leftParenLoc, rightParenLoc;
// Parse the parameter clause.
status |= parseParameterClause(leftParenLoc, params, rightParenLoc,
defaultArgs, paramContext);
// Turn the parameter clause into argument and body patterns.
auto paramList = mapParsedParameters(*this, leftParenLoc, params,
rightParenLoc, namePieces, paramContext);
return makeParserResult(status, paramList);
}
/// Parse function arguments.
///
/// Emits a special diagnostic if there are multiple parameter lists,
/// but otherwise is identical to parseSingleParameterClause().
ParserStatus
Parser::parseFunctionArguments(SmallVectorImpl<Identifier> &NamePieces,
ParameterList *&BodyParams,
ParameterContextKind paramContext,
DefaultArgumentInfo &DefaultArgs) {
// Parse parameter-clauses.
ParserStatus status;
auto FirstParameterClause
= parseSingleParameterClause(paramContext, &NamePieces, &DefaultArgs);
status |= FirstParameterClause;
BodyParams = FirstParameterClause.get();
bool MultipleParameterLists = false;
while (Tok.is(tok::l_paren)) {
MultipleParameterLists = true;
auto CurriedParameterClause
= parseSingleParameterClause(ParameterContextKind::Curried);
status |= CurriedParameterClause;
}
// If the decl uses currying syntax, complain that syntax has gone away.
if (MultipleParameterLists) {
diagnose(BodyParams->getStartLoc(),
diag::parameter_curry_syntax_removed);
}
return status;
}
/// Parse a function definition signature.
/// func-signature:
/// func-arguments ('async'|'reasync')? func-throws? func-signature-result?
/// func-signature-result:
/// '->' type
///
/// Note that this leaves retType as null if unspecified.
ParserStatus
Parser::parseFunctionSignature(DeclBaseName SimpleName,
DeclName &FullName,
ParameterList *&bodyParams,
DefaultArgumentInfo &defaultArgs,
SourceLoc &asyncLoc,
bool &reasync,
SourceLoc &throwsLoc,
bool &rethrows,
TypeRepr *&thrownType,
TypeRepr *&retType) {
SmallVector<Identifier, 4> NamePieces;
ParserStatus Status;
ParameterContextKind paramContext =
SimpleName.isOperator()
? ParameterContextKind::Operator
: (SimpleName.isConstructor() ? ParameterContextKind::Initializer
: ParameterContextKind::Function);
Status |= parseFunctionArguments(NamePieces, bodyParams, paramContext,
defaultArgs);
FullName = DeclName(Context, SimpleName, NamePieces);
// Check for the 'async' and 'throws' keywords.
reasync = false;
rethrows = false;
thrownType = nullptr;
Status |= parseEffectsSpecifiers(SourceLoc(),
asyncLoc, &reasync,
throwsLoc, &rethrows, thrownType);
// If there's a trailing arrow, parse the rest as the result type.
SourceLoc arrowLoc;
if (Tok.isAny(tok::arrow, tok::colon)) {
if (!consumeIf(tok::arrow, arrowLoc)) {
// FixIt ':' to '->'.
diagnose(Tok, diag::func_decl_expected_arrow)
.fixItReplace(Tok.getLoc(), " -> ");
arrowLoc = consumeToken(tok::colon);
}
// Check for effect specifiers after the arrow, but before the return type,
// and correct it.
parseEffectsSpecifiers(arrowLoc, asyncLoc, &reasync, throwsLoc, &rethrows,
thrownType);
ParserResult<TypeRepr> ResultType =
parseDeclResultType(diag::expected_type_function_result);
retType = ResultType.getPtrOrNull();
Status |= ResultType;
if (Status.isErrorOrHasCompletion())
return Status;
// Check for effect specifiers after the type and correct it.
parseEffectsSpecifiers(
arrowLoc, asyncLoc, &reasync, throwsLoc, &rethrows, thrownType);
} else {
// Otherwise, we leave retType null.
retType = nullptr;
}
return Status;
}
bool Parser::isThrowsEffectSpecifier(const Token &T) {
return T.isAny(tok::kw_throws, tok::kw_rethrows) ||
(T.isAny(tok::kw_throw, tok::kw_try) && !T.isAtStartOfLine());
}
bool Parser::isEffectsSpecifier(const Token &T) {
// NOTE: If this returns 'true', that token must be handled in
// 'parseEffectsSpecifiers()'.
if (T.isContextualKeyword("async") ||
(T.isContextualKeyword("await") && !T.isAtStartOfLine()) ||
T.isContextualKeyword("reasync"))
return true;
if (isThrowsEffectSpecifier(T))
return true;
return false;
}
ParserStatus Parser::parseEffectsSpecifiers(SourceLoc existingArrowLoc,
SourceLoc &asyncLoc,
bool *reasync,
SourceLoc &throwsLoc,
bool *rethrows,
TypeRepr *&thrownType) {
ParserStatus status;
while (true) {
// 'async'
bool isReasync = (shouldParseExperimentalConcurrency() &&
Tok.isContextualKeyword("reasync"));
if (Tok.isContextualKeyword("async") ||
isReasync) {
if (asyncLoc.isValid()) {
diagnose(Tok, diag::duplicate_effects_specifier, Tok.getText())
.highlight(asyncLoc)
.fixItRemove(Tok.getLoc());
} else if (!reasync && isReasync) {
// Replace 'reasync' with 'async' unless it's allowed.
diagnose(Tok, diag::reasync_function_type)
.fixItReplace(Tok.getLoc(), "async");
} else if (existingArrowLoc.isValid()) {
SourceLoc insertLoc = existingArrowLoc;
if (throwsLoc.isValid() &&
SourceMgr.isBeforeInBuffer(throwsLoc, insertLoc))
insertLoc = throwsLoc;
diagnose(Tok, diag::async_or_throws_in_wrong_position,
(reasync && isReasync) ? "reasync" : "async")
.fixItRemove(Tok.getLoc())
.fixItInsert(insertLoc,
(reasync && isReasync) ? "reasync " : "async ");
} else if (throwsLoc.isValid()) {
// 'async' cannot be after 'throws'.
assert(existingArrowLoc.isInvalid());
diagnose(Tok, diag::async_after_throws,
reasync && isReasync,
rethrows && *rethrows)
.fixItRemove(Tok.getLoc())
.fixItInsert(throwsLoc, isReasync ? "reasync " : "async ");
}
if (asyncLoc.isInvalid()) {
Tok.setKind(tok::contextual_keyword);
if (reasync)
*reasync = isReasync;
asyncLoc = Tok.getLoc();
}
consumeToken();
continue;
}
// diagnose 'await'
if (Tok.isContextualKeyword("await") && !Tok.isAtStartOfLine()) {
diagnose(Tok, diag::await_in_function_type)
.fixItReplace(Tok.getLoc(), "async");
consumeToken();
continue;
}
// 'throws'/'rethrows', or diagnose 'throw'/'try'.
if (isThrowsEffectSpecifier(Tok)) {
bool isRethrows = Tok.is(tok::kw_rethrows);
if (throwsLoc.isValid()) {
diagnose(Tok, diag::duplicate_effects_specifier, Tok.getText())
.highlight(throwsLoc)
.fixItRemove(Tok.getLoc());
} else if (Tok.isAny(tok::kw_throw, tok::kw_try)) {
// Replace 'throw' or 'try' with 'throws'.
diagnose(Tok, diag::throw_in_function_type)
.fixItReplace(Tok.getLoc(), "throws");
} else if (!rethrows && isRethrows) {
// Replace 'rethrows' with 'throws' unless it's allowed.
diagnose(Tok, diag::rethrowing_function_type)
.fixItReplace(Tok.getLoc(), "throws");
} else if (existingArrowLoc.isValid()) {
diagnose(Tok, diag::async_or_throws_in_wrong_position, Tok.getText())
.fixItRemove(Tok.getLoc())
.fixItInsert(existingArrowLoc, (Tok.getText() + " ").str());
}
if (throwsLoc.isInvalid()) {
if (rethrows)
*rethrows = isRethrows;
throwsLoc = Tok.getLoc();
}
consumeToken();
// Parse the thrown error type.
SourceLoc lParenLoc;
if (consumeIf(tok::l_paren, lParenLoc)) {
ParserResult<TypeRepr> parsedThrownTy =
parseType(diag::expected_thrown_error_type);
thrownType = parsedThrownTy.getPtrOrNull();
status |= parsedThrownTy;
SourceLoc rParenLoc;
parseMatchingToken(
tok::r_paren, rParenLoc,
diag::expected_rparen_after_thrown_error_type, lParenLoc);
if (isRethrows) {
diagnose(throwsLoc, diag::rethrows_with_thrown_error)
.highlight(SourceRange(lParenLoc, rParenLoc));
isRethrows = false;
if (rethrows)
*rethrows = false;
}
}
continue;
}
// Code completion.
if (Tok.is(tok::code_complete) && !Tok.isAtStartOfLine() &&
!existingArrowLoc.isValid()) {
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->completeEffectsSpecifier(asyncLoc.isValid(),
throwsLoc.isValid());
}
consumeToken(tok::code_complete);
status.setHasCodeCompletionAndIsError();
continue;
}
break;
}
return status;
}
/// Parse a pattern with an optional type annotation.
///
/// typed-pattern ::= pattern (':' type)?
///
ParserResult<Pattern> Parser::parseTypedPattern() {
auto result = parsePattern();
// Now parse an optional type annotation.
if (Tok.is(tok::colon)) {
SourceLoc colonLoc = consumeToken(tok::colon);
if (result.isNull()) {
// Recover by creating AnyPattern.
auto *AP = new (Context) AnyPattern(colonLoc);
if (colonLoc.isInvalid())
AP->setImplicit();
result = makeParserErrorResult(AP);
}
ParserResult<TypeRepr> Ty = parseDeclResultType(diag::expected_type);
if (Ty.hasCodeCompletion())
return makeParserCodeCompletionResult<Pattern>();
if (!Ty.isNull()) {
// Attempt to diagnose initializer calls incorrectly written
// as typed patterns, such as "var x: [Int]()".
// Disable this tentative parse when in IDE inspection mode, otherwise
// code-completion may enter the delayed-decl state twice.
if (Tok.isFollowingLParen() &&
!SourceMgr.hasIDEInspectionTargetBuffer()) {
CancellableBacktrackingScope backtrack(*this);
SmallVector<ExprListElt, 2> elts;
auto argListResult = parseArgumentList(tok::l_paren, tok::r_paren,
/*isExprBasic*/ false);
if (!argListResult.isParseErrorOrHasCompletion()) {
backtrack.cancelBacktrack();
// Suggest replacing ':' with '='
auto *args = argListResult.get();
diagnose(args->getLParenLoc(), diag::initializer_as_typed_pattern)
.highlight({Ty.get()->getStartLoc(), args->getRParenLoc()})
.fixItReplace(colonLoc, " = ");
result.setIsParseError();
}
}
} else {
Ty = makeParserResult(ErrorTypeRepr::create(Context, PreviousLoc));
}
result = makeParserResult(result,
new (Context) TypedPattern(result.get(), Ty.get()));
}
return result;
}
/// Parse a pattern.
/// pattern ::= identifier
/// pattern ::= '_'
/// pattern ::= pattern-tuple
/// pattern ::= 'var' pattern
/// pattern ::= 'let' pattern
///
ParserResult<Pattern> Parser::parsePattern() {
auto introducer =
InBindingPattern.getIntroducer().value_or(VarDecl::Introducer::Let);
switch (Tok.getKind()) {
case tok::l_paren:
return parsePatternTuple();
case tok::kw__: {
// Normally, '_' is invalid in type context for patterns, but they show up
// in interface files as the name for type members that are non-public.
// Treat them as an implicitly synthesized NamedPattern with a nameless
// VarDecl inside.
if (CurDeclContext->isTypeContext() &&
SF.Kind == SourceFileKind::Interface) {
auto VD = new (Context) VarDecl(
/*IsStatic*/false, introducer,
consumeToken(tok::kw__), Identifier(), CurDeclContext);
return makeParserResult(NamedPattern::createImplicit(Context, VD));
}
const auto isAsyncLet =
InPatternWithAsyncAttribute && introducer == VarDecl::Introducer::Let;
return makeParserResult(
new (Context) AnyPattern(consumeToken(tok::kw__), isAsyncLet));
}
case tok::identifier: {
Identifier name;
SourceLoc loc = consumeIdentifier(name, /*diagnoseDollarPrefix=*/true);
if (Tok.isIdentifierOrUnderscore() && !Tok.isContextualDeclKeyword() &&
!Tok.isAtStartOfLine())
diagnoseConsecutiveIDs(name.str(), loc,
introducer == VarDecl::Introducer::Let
? "constant" : "variable");
return makeParserResult(createBindingFromPattern(loc, name, introducer));
}
case tok::code_complete:
if (!CurDeclContext->isTypeContext()) {
// This cannot be an overridden property, so just eat the token. We cannot
// code complete anything here -- we expect an identifier.
consumeToken(tok::code_complete);
}
return makeParserCodeCompletionStatus();
case tok::kw_inout:
// If we don't have the reference binding feature, break if we have
// inout. Otherwise, go below.
if (!Context.LangOpts.hasFeature(Feature::ReferenceBindings))
break;
LLVM_FALLTHROUGH;
case tok::kw_var:
case tok::kw_let: {
auto newBindingState = PatternBindingState(Tok);
SourceLoc varLoc = consumeToken();
// 'var', 'let', 'inout' patterns shouldn't nest.
if (InBindingPattern.getIntroducer().has_value()) {
auto diag = diag::var_pattern_in_var;
unsigned index = *newBindingState.getSelectIndexForIntroducer();
if (Context.LangOpts.hasFeature(Feature::ReferenceBindings)) {
diag = diag::var_pattern_in_var_inout;
}
diagnose(varLoc, diag, index);
}
// 'let' isn't valid inside an implicitly immutable context, but var is.
if (newBindingState.isLet() &&
InBindingPattern == PatternBindingState::ImplicitlyImmutable)
diagnose(varLoc, diag::let_pattern_in_immutable_context);
// In our recursive parse, remember that we're in a let/var/inout
// pattern. We default to var if we don't have an immediate pattern bidning
// state.
llvm::SaveAndRestore<decltype(InBindingPattern)> T(
InBindingPattern, newBindingState.getPatternBindingStateForIntroducer(
VarDecl::Introducer::Var));
// Reset async attribute in parser context.
llvm::SaveAndRestore<bool> AsyncAttr(InPatternWithAsyncAttribute, false);
ParserResult<Pattern> subPattern = parsePattern();
if (subPattern.hasCodeCompletion())
return makeParserCodeCompletionResult<Pattern>();
if (subPattern.isNull())
return nullptr;
return makeParserResult(new (Context) BindingPattern(
varLoc,
newBindingState.getIntroducer().value_or(VarDecl::Introducer::Var),
subPattern.get()));
}
default:
break;
}
// Handle the default case.
if (Tok.isKeyword() &&
(peekToken().is(tok::colon) || peekToken().is(tok::equal))) {
diagnose(Tok, diag::keyword_cant_be_identifier, Tok.getText());
diagnose(Tok, diag::backticks_to_escape)
.fixItReplace(Tok.getLoc(), "`" + Tok.getText().str() + "`");
SourceLoc Loc = Tok.getLoc();
consumeToken();
return makeParserErrorResult(new (Context) AnyPattern(Loc));
}
diagnose(Tok, diag::expected_pattern);
return nullptr;
}
Pattern *Parser::createBindingFromPattern(SourceLoc loc, Identifier name,
VarDecl::Introducer introducer) {
auto var = new (Context) VarDecl(/*IsStatic*/false, introducer,
loc, name, CurDeclContext);
return new (Context) NamedPattern(var);
}
/// Parse an element of a tuple pattern.
///
/// pattern-tuple-element:
/// (identifier ':')? pattern
std::pair<ParserStatus, std::optional<TuplePatternElt>>
Parser::parsePatternTupleElement() {
// If this element has a label, parse it.
Identifier Label;
SourceLoc LabelLoc;
// If the tuple element has a label, parse it.
if (Tok.is(tok::identifier) && peekToken().is(tok::colon)) {
LabelLoc = consumeIdentifier(Label, /*diagnoseDollarPrefix=*/true);
consumeToken(tok::colon);
}
// Parse the pattern.
ParserResult<Pattern> pattern = parsePattern();
if (pattern.hasCodeCompletion())
return std::make_pair(makeParserCodeCompletionStatus(), std::nullopt);
if (pattern.isNull())
return std::make_pair(makeParserError(), std::nullopt);
auto Elt = TuplePatternElt(Label, LabelLoc, pattern.get());
return std::make_pair(makeParserSuccess(), Elt);
}
/// Parse a tuple pattern.
///
/// pattern-tuple:
/// '(' pattern-tuple-body? ')'
/// pattern-tuple-body:
/// pattern-tuple-element (',' pattern-tuple-body)*
ParserResult<Pattern> Parser::parsePatternTuple() {
StructureMarkerRAII ParsingPatternTuple(*this, Tok);
SourceLoc LPLoc = consumeToken(tok::l_paren);
SourceLoc RPLoc;
// Parse all the elements.
SmallVector<TuplePatternElt, 8> elts;
ParserStatus ListStatus =
parseList(tok::r_paren, LPLoc, RPLoc,
/*AllowSepAfterLast=*/false,
diag::expected_rparen_tuple_pattern_list,
[&] () -> ParserStatus {
// Parse the pattern tuple element.
ParserStatus EltStatus;
std::optional<TuplePatternElt> elt;
std::tie(EltStatus, elt) = parsePatternTupleElement();
if (EltStatus.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (!elt)
return makeParserError();
// Add this element to the list.
elts.push_back(*elt);
return makeParserSuccess();
});
return makeParserResult(
ListStatus,
TuplePattern::createSimple(Context, LPLoc, elts, RPLoc));
}
/// Parse an optional type annotation on a pattern.
///
/// pattern-type-annotation ::= (':' type)?
///
ParserResult<Pattern> Parser::
parseOptionalPatternTypeAnnotation(ParserResult<Pattern> result) {
if (!Tok.is(tok::colon))
return result;
// Parse an optional type annotation.
consumeToken(tok::colon);
if (result.isNull())
return result;
Pattern *P = result.get();
ParserStatus status;
if (result.hasCodeCompletion())
status.setHasCodeCompletionAndIsError();
ParserResult<TypeRepr> Ty = parseType();
if (Ty.hasCodeCompletion()) {
result.setHasCodeCompletionAndIsError();
return result;
}
TypeRepr *repr = Ty.getPtrOrNull();
if (!repr)
repr = ErrorTypeRepr::create(Context, PreviousLoc);
return makeParserResult(status, new (Context) TypedPattern(P, repr));
}
/// matching-pattern ::= 'is' type
/// matching-pattern ::= matching-pattern-var
/// matching-pattern ::= expr
///
ParserResult<Pattern> Parser::parseMatchingPattern(bool isExprBasic) {
// TODO: Since we expect a pattern in this position, we should optimistically
// parse pattern nodes for productions shared by pattern and expression
// grammar. For short-term ease of initial implementation, we always go
// through the expr parser for ambiguous productions.
// Parse productions that can only be patterns.
if (Tok.isAny(tok::kw_var, tok::kw_let) ||
(Context.LangOpts.hasFeature(Feature::ReferenceBindings) &&
Tok.isAny(tok::kw_inout))) {
assert(Tok.isAny(tok::kw_let, tok::kw_var, tok::kw_inout) && "expects var or let");
auto newPatternBindingState = PatternBindingState(Tok);
SourceLoc varLoc = consumeToken();
return parseMatchingPatternAsBinding(newPatternBindingState, varLoc,
isExprBasic);
}
// The `borrowing` modifier is a contextual keyword, so it's only accepted
// directly applied to a binding name, as in `case .foo(borrowing x)`.
if ((Tok.isContextualKeyword("_borrowing")
|| Tok.isContextualKeyword("borrowing"))
&& peekToken().isAny(tok::identifier, tok::kw_self, tok::dollarident,
tok::code_complete)
&& !peekToken().isAtStartOfLine()) {
diagnose(Tok.getLoc(),
diag::borrowing_syntax_change)
.fixItReplace(Tok.getLoc(), "let");
Tok.setKind(tok::contextual_keyword);
SourceLoc borrowingLoc = consumeToken();
// If we have `case borrowing x.`, `x(`, `x[`, or `x<` then this looks
// like an attempt to include a subexpression under a `borrowing`
// binding, which isn't yet supported.
if (peekToken().isAny(tok::period, tok::period_prefix, tok::l_paren,
tok::l_square)
|| (peekToken().isAnyOperator() && peekToken().getText().equals("<"))) {
// Diagnose the unsupported production.
diagnose(Tok.getLoc(),
diag::borrowing_subpattern_unsupported);
// Recover by parsing as if it was supported.
return parseMatchingPattern(isExprBasic);
}
Identifier name;
SourceLoc nameLoc = consumeIdentifier(name,
/*diagnoseDollarPrefix*/ false);
auto namedPattern = createBindingFromPattern(nameLoc, name,
VarDecl::Introducer::Borrowing);
auto bindPattern = new (Context) BindingPattern(
borrowingLoc, VarDecl::Introducer::Borrowing, namedPattern);
return makeParserResult(bindPattern);
}
// matching-pattern ::= 'is' type
if (Tok.is(tok::kw_is)) {
SourceLoc isLoc = consumeToken(tok::kw_is);
ParserResult<TypeRepr> castType = parseType();
if (castType.isNull() || castType.hasCodeCompletion())
return nullptr;
auto *CastTE = new (Context) TypeExpr(castType.get());
return makeParserResult(new (Context) IsPattern(
isLoc, CastTE, nullptr, CheckedCastKind::Unresolved));
}
// matching-pattern ::= expr
// Fall back to expression parsing for ambiguous forms. Name lookup will
// disambiguate.
ParserResult<Expr> subExpr =
parseExprImpl(diag::expected_pattern, isExprBasic);
ParserStatus status = subExpr;
if (subExpr.isNull())
return status;
if (isa<CodeCompletionExpr>(subExpr.get()) && Tok.isFollowingLParen()) {
// We are in the case like the following of parsing a pattern with the code
// completion token as base and associated value matches:
// #^COMPLETE^#(let a)
// We will have not consumed the `(let a)` in `parseExprPostfixSuffix`
// because usually suffixes don't influence the code completion's type and
// the suffix might be unrelated. But the trailing `(let a)` that is left
// prevents us from forming a valid pattern.
// Consume and discard the `(let a)`, which just leaves us with the base
// of the pattern.
(void)parseExprCallSuffix(subExpr, isExprBasic);
}
// The most common case here is to parse something that was a lexically
// obvious pattern, which will come back wrapped in an immediate
// UnresolvedPatternExpr. Transform this now to simplify later code.
if (auto *UPE = dyn_cast<UnresolvedPatternExpr>(subExpr.get()))
return makeParserResult(status, UPE->getSubPattern());
auto *EP = ExprPattern::createParsed(Context, subExpr.get(), CurDeclContext);
return makeParserResult(status, EP);
}
ParserResult<Pattern>
Parser::parseMatchingPatternAsBinding(PatternBindingState newState,
SourceLoc varLoc, bool isExprBasic) {
// 'var', 'let', 'inout' patterns shouldn't nest.
if (InBindingPattern.getIntroducer().has_value()) {
auto diag = diag::var_pattern_in_var;
if (Context.LangOpts.hasFeature(Feature::ReferenceBindings))
diag = diag::var_pattern_in_var_inout;
diagnose(varLoc, diag,
*newState.getSelectIndexForIntroducer());
}
// 'let' isn't valid inside an implicitly immutable context, but var is.
if (newState.isLet() &&
InBindingPattern == PatternBindingState::ImplicitlyImmutable)
diagnose(varLoc, diag::let_pattern_in_immutable_context);
// In our recursive parse, remember that we're in a var/let pattern.
llvm::SaveAndRestore<decltype(InBindingPattern)> T(
InBindingPattern,
newState.getPatternBindingStateForIntroducer(VarDecl::Introducer::Var));
// Reset async attribute in parser context.
llvm::SaveAndRestore<bool> AsyncAttr(InPatternWithAsyncAttribute, false);
ParserResult<Pattern> subPattern = parseMatchingPattern(isExprBasic);
if (subPattern.isNull())
return nullptr;
auto *varP = new (Context) BindingPattern(
varLoc, newState.getIntroducer().value_or(VarDecl::Introducer::Var),
subPattern.get());
return makeParserResult(ParserStatus(subPattern), varP);
}
bool Parser::isOnlyStartOfMatchingPattern() {
if ((Tok.isContextualKeyword("_borrowing")
|| Tok.isContextualKeyword("borrowing"))
&& peekToken().isAny(tok::identifier, tok::kw_self, tok::dollarident,
tok::code_complete)
&& !peekToken().isAtStartOfLine()) {
return true;
}
return Tok.isAny(tok::kw_var, tok::kw_let, tok::kw_is) ||
(Context.LangOpts.hasFeature(Feature::ReferenceBindings) &&
Tok.isAny(tok::kw_inout));
}
static bool canParsePatternTuple(Parser &P);
/// pattern ::= identifier
/// pattern ::= '_'
/// pattern ::= pattern-tuple
/// pattern ::= 'var' pattern
/// pattern ::= 'let' pattern
static bool canParsePattern(Parser &P) {
switch (P.Tok.getKind()) {
case tok::identifier:
case tok::kw__:
P.consumeToken();
return true;
case tok::kw_inout:
if (!P.Context.LangOpts.hasFeature(Feature::ReferenceBindings))
return false;
LLVM_FALLTHROUGH;
case tok::kw_let:
case tok::kw_var:
P.consumeToken();
return canParsePattern(P);
case tok::l_paren:
return canParsePatternTuple(P);
default:
return false;
}
}
static bool canParsePatternTuple(Parser &P) {
if (!P.consumeIf(tok::l_paren)) return false;
if (P.Tok.isNot(tok::r_paren)) {
do {
if (!canParsePattern(P)) return false;
} while (P.consumeIf(tok::comma));
}
return P.consumeIf(tok::r_paren);
}
/// typed-pattern ::= pattern (':' type)?
///
bool Parser::canParseTypedPattern() {
if (!canParsePattern(*this)) return false;
if (consumeIf(tok::colon))
return canParseType();
return true;
}
|