1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
|
//===--- ModuleContentsWriter.cpp - Walk module decls to print ObjC/C++ ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ModuleContentsWriter.h"
#include "ClangSyntaxPrinter.h"
#include "DeclAndTypePrinter.h"
#include "OutputLanguageMode.h"
#include "PrimitiveTypeMapping.h"
#include "PrintClangValueType.h"
#include "PrintSwiftToClangCoreScaffold.h"
#include "SwiftToClangInteropContext.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Module.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SwiftNameTranslation.h"
#include "swift/AST/TypeDeclFinder.h"
#include "swift/Basic/SourceManager.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/Strings.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Module.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
using namespace swift::objc_translation;
using DelayedMemberSet = DeclAndTypePrinter::DelayedMemberSet;
/// Returns true if \p decl represents an <os/object.h> type.
static bool isOSObjectType(const clang::Decl *decl) {
auto *named = dyn_cast_or_null<clang::NamedDecl>(decl);
if (!named)
return false;
return !DeclAndTypePrinter::maybeGetOSObjectBaseName(named).empty();
}
namespace {
class ReferencedTypeFinder : public TypeDeclFinder {
friend TypeDeclFinder;
llvm::function_ref<void(ReferencedTypeFinder &, const TypeDecl *)> Callback;
bool NeedsDefinition = false;
explicit ReferencedTypeFinder(decltype(Callback) callback)
: Callback(callback) {}
Action visitNominalType(NominalType *nominal) override {
Callback(*this, nominal->getDecl());
return Action::SkipNode;
}
Action visitTypeAliasType(TypeAliasType *aliasTy) override {
if (aliasTy->getDecl()->hasClangNode() &&
!aliasTy->getDecl()->isCompatibilityAlias()) {
Callback(*this, aliasTy->getDecl());
} else {
Type(aliasTy->getSinglyDesugaredType()).walk(*this);
}
return Action::SkipNode;
}
/// Returns true if \p paramTy has any constraints other than being
/// class-bound ("conforms to" AnyObject).
static bool isConstrained(GenericSignature sig,
GenericTypeParamType *paramTy) {
auto existentialTy = sig->getExistentialType(paramTy);
return !(existentialTy->isAny() || existentialTy->isAnyObject());
}
Action visitBoundGenericType(BoundGenericType *boundGeneric) override {
auto *decl = boundGeneric->getDecl();
NeedsDefinition = true;
Callback(*this, decl);
NeedsDefinition = false;
bool isObjCGeneric = decl->hasClangNode();
auto sig = decl->getGenericSignature();
for_each(boundGeneric->getGenericArgs(),
sig.getInnermostGenericParams(),
[&](Type argTy, GenericTypeParamType *paramTy) {
// FIXME: I think there's a bug here with recursive generic types.
if (isObjCGeneric && isConstrained(sig, paramTy))
NeedsDefinition = true;
argTy.walk(*this);
NeedsDefinition = false;
});
return Action::SkipNode;
}
public:
bool needsDefinition() const {
return NeedsDefinition;
}
static void walk(Type ty, decltype(Callback) callback) {
ty.walk(ReferencedTypeFinder(callback));
}
};
class ModuleWriter {
enum class EmissionState {
NotYetDefined = 0,
DefinitionRequested,
Defined
};
raw_ostream &os;
SmallPtrSetImpl<ImportModuleTy> &imports;
ModuleDecl &M;
llvm::DenseMap<const TypeDecl *, std::pair<EmissionState, bool>> seenTypes;
llvm::DenseSet<const clang::Type *> seenClangTypes;
std::vector<const Decl *> declsToWrite;
DelayedMemberSet objcDelayedMembers;
CxxDeclEmissionScope topLevelEmissionScope;
PrimitiveTypeMapping typeMapping;
std::string outOfLineDefinitions;
llvm::raw_string_ostream outOfLineDefinitionsOS;
DeclAndTypePrinter printer;
OutputLanguageMode outputLangMode;
bool dependsOnStdlib = false;
public:
ModuleWriter(raw_ostream &os, raw_ostream &prologueOS,
llvm::SmallPtrSetImpl<ImportModuleTy> &imports, ModuleDecl &mod,
SwiftToClangInteropContext &interopContext, AccessLevel access,
bool requiresExposedAttribute, llvm::StringSet<> &exposedModules,
OutputLanguageMode outputLang)
: os(os), imports(imports), M(mod),
outOfLineDefinitionsOS(outOfLineDefinitions),
printer(M, os, prologueOS, outOfLineDefinitionsOS, objcDelayedMembers,
topLevelEmissionScope, typeMapping, interopContext, access,
requiresExposedAttribute, exposedModules, outputLang),
outputLangMode(outputLang) {}
PrimitiveTypeMapping &getTypeMapping() { return typeMapping; }
/// Returns true if a Stdlib dependency was seen during the emission of this module.
bool isStdlibRequired() const {
return dependsOnStdlib;
}
/// Returns true if we added the decl's module to the import set, false if
/// the decl is a local decl.
///
/// The standard library is special-cased: we assume that any types from it
/// will be handled explicitly rather than needing an explicit @import.
bool addImport(const Decl *D) {
ModuleDecl *otherModule = D->getModuleContext();
if (otherModule == &M)
return false;
if (otherModule->isStdlibModule()) {
dependsOnStdlib = true;
return true;
} else if (otherModule->isBuiltinModule())
return true;
// Don't need a module for SIMD types in C.
if (otherModule->getName() == M.getASTContext().Id_simd)
return true;
// If there's a Clang node, see if it comes from an explicit submodule.
// Import that instead, looking through any implicit submodules.
if (auto clangNode = D->getClangNode()) {
auto importer =
static_cast<ClangImporter *>(M.getASTContext().getClangModuleLoader());
if (const auto *clangModule = importer->getClangOwningModule(clangNode)) {
while (clangModule && !clangModule->IsExplicit)
clangModule = clangModule->Parent;
if (clangModule) {
imports.insert(clangModule);
return true;
}
}
}
if (outputLangMode == OutputLanguageMode::Cxx) {
// Do not expose compiler private '_ObjC' module.
if (otherModule->getName().str() == CLANG_HEADER_MODULE_NAME)
return true;
// Add C++ module imports in C++ mode explicitly, to ensure that their
// import is always emitted in the header.
if (D->hasClangNode()) {
if (auto *clangMod = otherModule->findUnderlyingClangModule())
imports.insert(clangMod);
}
}
imports.insert(otherModule);
return true;
}
bool hasBeenRequested(const TypeDecl *D) const {
return seenTypes.lookup(D).first >= EmissionState::DefinitionRequested;
}
bool tryRequire(const TypeDecl *D) {
if (addImport(D)) {
seenTypes[D] = { EmissionState::Defined, true };
return true;
}
auto &state = seenTypes[D];
return state.first == EmissionState::Defined;
}
bool require(const TypeDecl *D) {
if (addImport(D)) {
seenTypes[D] = { EmissionState::Defined, true };
return true;
}
auto &state = seenTypes[D];
switch (state.first) {
case EmissionState::NotYetDefined:
case EmissionState::DefinitionRequested:
state.first = EmissionState::DefinitionRequested;
declsToWrite.push_back(D);
return false;
case EmissionState::Defined:
return true;
}
llvm_unreachable("Unhandled EmissionState in switch.");
}
void forwardDeclare(const NominalTypeDecl *NTD,
llvm::function_ref<void(void)> Printer) {
if (NTD->getModuleContext()->isStdlibModule()) {
if (outputLangMode != OutputLanguageMode::Cxx ||
!printer.shouldInclude(NTD))
return;
}
auto &state = seenTypes[NTD];
if (state.second)
return;
Printer();
state.second = true;
}
bool forwardDeclare(const ClassDecl *CD) {
if (!CD->isObjC() ||
CD->getForeignClassKind() == ClassDecl::ForeignKind::CFType ||
isOSObjectType(CD->getClangDecl())) {
return false;
}
forwardDeclare(CD, [&]{ os << "@class " << getNameForObjC(CD) << ";\n"; });
return true;
}
void forwardDeclare(const ProtocolDecl *PD) {
assert(PD->isObjC() ||
*PD->getKnownProtocolKind() == KnownProtocolKind::Error);
forwardDeclare(PD, [&]{
os << "@protocol " << getNameForObjC(PD) << ";\n";
});
}
void forwardDeclare(const EnumDecl *ED) {
assert(ED->isObjC() || ED->hasClangNode());
forwardDeclare(ED, [&]{
os << "enum " << getNameForObjC(ED) << " : ";
printer.print(ED->getRawType());
os << ";\n";
});
}
void emitReferencedClangTypeMetadata(const TypeDecl *typeDecl) {
if (!isa<clang::TypeDecl>(typeDecl->getClangDecl()))
return;
// Get the underlying clang type from a type alias decl or record decl.
auto clangDecl = typeDecl->getClangDecl();
auto clangType = clangDecl->getASTContext()
.getTypeDeclType(cast<clang::TypeDecl>(clangDecl))
.getCanonicalType();
if (!isa<clang::RecordType>(clangType.getTypePtr()))
return;
auto it = seenClangTypes.insert(clangType.getTypePtr());
if (it.second)
ClangValueTypePrinter::printClangTypeSwiftGenericTraits(os, typeDecl, &M,
printer);
}
void forwardDeclareCxxValueTypeIfNeeded(const NominalTypeDecl *NTD) {
forwardDeclare(NTD, [&]() {
ClangValueTypePrinter::forwardDeclType(os, NTD, printer);
});
}
void forwardDeclareType(const TypeDecl *TD) {
if (outputLangMode == OutputLanguageMode::Cxx) {
if (isa<StructDecl>(TD) || isa<EnumDecl>(TD)) {
auto *NTD = cast<NominalTypeDecl>(TD);
if (!addImport(NTD))
forwardDeclareCxxValueTypeIfNeeded(NTD);
else if (isa<StructDecl>(TD) && NTD->hasClangNode())
emitReferencedClangTypeMetadata(NTD);
} else if (auto TAD = dyn_cast<TypeAliasDecl>(TD)) {
if (TAD->hasClangNode())
emitReferencedClangTypeMetadata(TAD);
}
return;
}
if (auto CD = dyn_cast<ClassDecl>(TD)) {
if (!forwardDeclare(CD)) {
(void)addImport(CD);
}
} else if (auto PD = dyn_cast<ProtocolDecl>(TD)) {
if (!PD->isMarkerProtocol())
forwardDeclare(PD);
} else if (auto TAD = dyn_cast<TypeAliasDecl>(TD)) {
bool imported = false;
if (TAD->hasClangNode())
imported = addImport(TD);
assert((imported || !TAD->isGeneric()) &&
"referencing non-imported generic typealias?");
} else if (addImport(TD)) {
return;
} else if (auto ED = dyn_cast<EnumDecl>(TD)) {
forwardDeclare(ED);
} else if (isa<GenericTypeParamDecl>(TD)) {
llvm_unreachable("should not see generic parameters here");
} else if (isa<AssociatedTypeDecl>(TD)) {
llvm_unreachable("should not see associated types here");
} else if (isa<StructDecl>(TD) &&
TD->getModuleContext()->isStdlibModule()) {
// stdlib has some @_cdecl functions with structs.
return;
} else {
assert(false && "unknown local type decl");
}
}
bool forwardDeclareMemberTypes(DeclRange members, const Decl *container) {
PrettyStackTraceDecl
entry("printing forward declarations needed by members of", container);
switch (container->getKind()) {
case DeclKind::Class:
case DeclKind::Protocol:
case DeclKind::Extension:
break;
case DeclKind::Struct:
case DeclKind::Enum:
if (outputLangMode == OutputLanguageMode::Cxx)
break;
LLVM_FALLTHROUGH;
default:
llvm_unreachable("unexpected container kind");
}
bool hadAnyDelayedMembers = false;
SmallVector<ValueDecl *, 4> nestedTypes;
for (auto member : members) {
PrettyStackTraceDecl loopEntry("printing for member", member);
auto VD = dyn_cast<ValueDecl>(member);
if (!VD || !printer.shouldInclude(VD))
continue;
// Catch nested types and emit their definitions /after/ this class.
if (isa<TypeDecl>(VD)) {
// Don't emit nested types that are just implicitly @objc.
// You should have to opt into this, since they are even less
// namespaced than usual.
if (std::any_of(VD->getAttrs().begin(), VD->getAttrs().end(),
[](const DeclAttribute *attr) {
return isa<ObjCAttr>(attr) && !attr->isImplicit();
})) {
nestedTypes.push_back(VD);
}
continue;
}
bool needsToBeIndividuallyDelayed = false;
ReferencedTypeFinder::walk(VD->getInterfaceType(),
[&](ReferencedTypeFinder &finder,
const TypeDecl *TD) {
PrettyStackTraceDecl
entry("walking its interface type, currently at", TD);
if (TD == container)
return;
// Bridge, if necessary.
if (outputLangMode != OutputLanguageMode::Cxx)
TD = printer.getObjCTypeDecl(TD);
if (finder.needsDefinition() && isa<NominalTypeDecl>(TD)) {
// We can delay individual members of classes; do so if necessary.
if (isa<ClassDecl>(container)) {
if (!tryRequire(TD)) {
needsToBeIndividuallyDelayed = true;
hadAnyDelayedMembers = true;
}
return;
}
// Extensions can always be delayed wholesale.
if (isa<ExtensionDecl>(container)) {
if (!require(TD))
hadAnyDelayedMembers = true;
return;
}
// Protocols should be delayed wholesale unless we might have a cycle.
if (auto *proto = dyn_cast<ProtocolDecl>(container)) {
if (!hasBeenRequested(proto) || !hasBeenRequested(TD)) {
if (!require(TD))
hadAnyDelayedMembers = true;
return;
}
}
// Otherwise, we have a cyclic dependency. Give up and continue with
// regular forward-declarations even though this will lead to an
// error; there's nothing we can do here.
// FIXME: It would be nice to diagnose this.
}
forwardDeclareType(TD);
});
if (needsToBeIndividuallyDelayed) {
assert(isa<ClassDecl>(container));
objcDelayedMembers.insert(VD);
}
}
declsToWrite.insert(declsToWrite.end()-1, nestedTypes.rbegin(),
nestedTypes.rend());
// Separate forward declarations from the class itself.
return !hadAnyDelayedMembers;
}
bool writeClass(const ClassDecl *CD) {
if (addImport(CD))
return true;
if (seenTypes[CD].first == EmissionState::Defined)
return true;
bool allRequirementsSatisfied = true;
const ClassDecl *superclass = nullptr;
if ((superclass = CD->getSuperclassDecl())) {
allRequirementsSatisfied &= require(superclass);
}
if (outputLangMode != OutputLanguageMode::Cxx) {
for (auto proto :
CD->getLocalProtocols(ConformanceLookupKind::OnlyExplicit))
if (printer.shouldInclude(proto))
allRequirementsSatisfied &= require(proto);
}
if (!allRequirementsSatisfied)
return false;
(void)forwardDeclareMemberTypes(CD->getMembers(), CD);
seenTypes[CD] = { EmissionState::Defined, true };
os << '\n';
printer.print(CD);
return true;
}
bool writeFunc(const FuncDecl *FD) {
if (addImport(FD))
return true;
PrettyStackTraceDecl entry(
"printing forward declarations needed by function", FD);
ReferencedTypeFinder::walk(
FD->getInterfaceType(),
[&](ReferencedTypeFinder &finder, const TypeDecl *TD) {
PrettyStackTraceDecl entry("walking its interface type, currently at",
TD);
forwardDeclareType(TD);
});
os << '\n';
printer.print(FD);
return true;
}
bool writeStruct(const StructDecl *SD) {
if (addImport(SD))
return true;
if (outputLangMode == OutputLanguageMode::Cxx) {
(void)forwardDeclareMemberTypes(SD->getMembers(), SD);
for (const auto *ed :
printer.getInteropContext().getExtensionsForNominalType(SD)) {
(void)forwardDeclareMemberTypes(ed->getMembers(), SD);
}
forwardDeclareCxxValueTypeIfNeeded(SD);
}
printer.print(SD);
return true;
}
bool writeProtocol(const ProtocolDecl *PD) {
if (addImport(PD))
return true;
if (seenTypes[PD].first == EmissionState::Defined)
return true;
bool allRequirementsSatisfied = true;
for (auto proto : PD->getInheritedProtocols()) {
if (printer.shouldInclude(proto)) {
assert(proto->isObjC());
allRequirementsSatisfied &= require(proto);
}
}
if (!allRequirementsSatisfied)
return false;
if (!forwardDeclareMemberTypes(PD->getMembers(), PD))
return false;
seenTypes[PD] = { EmissionState::Defined, true };
os << '\n';
printer.print(PD);
return true;
}
bool writeExtension(const ExtensionDecl *ED) {
if (printer.isEmptyExtensionDecl(ED))
return true;
bool allRequirementsSatisfied = true;
const ClassDecl *CD = ED->getSelfClassDecl();
allRequirementsSatisfied &= require(CD);
for (auto proto : ED->getLocalProtocols())
if (printer.shouldInclude(proto))
allRequirementsSatisfied &= require(proto);
if (!allRequirementsSatisfied)
return false;
// This isn't rolled up into the previous set of requirements because
// it /also/ prints forward declarations, and the header is a little
// prettier if those are as close as possible to the necessary extension.
if (!forwardDeclareMemberTypes(ED->getMembers(), ED))
return false;
os << '\n';
printer.print(ED);
return true;
}
bool writeEnum(const EnumDecl *ED) {
if (addImport(ED))
return true;
if (outputLangMode == OutputLanguageMode::Cxx) {
forwardDeclareMemberTypes(ED->getMembers(), ED);
forwardDeclareCxxValueTypeIfNeeded(ED);
}
if (seenTypes[ED].first == EmissionState::Defined)
return true;
seenTypes[ED] = {EmissionState::Defined, true};
printer.print(ED);
ASTContext &ctx = M.getASTContext();
SmallVector<ProtocolConformance *, 1> conformances;
auto errorTypeProto = ctx.getProtocol(KnownProtocolKind::Error);
if (outputLangMode != OutputLanguageMode::Cxx
&& ED->lookupConformance(errorTypeProto, conformances)) {
bool hasDomainCase = std::any_of(ED->getAllElements().begin(),
ED->getAllElements().end(),
[](const EnumElementDecl *elem) {
return elem->getBaseIdentifier().str() == "Domain";
});
if (!hasDomainCase) {
os << "static NSString * _Nonnull const " << getNameForObjC(ED)
<< "Domain = @\"" << getErrorDomainStringForObjC(ED) << "\";\n";
}
}
return true;
}
void write() {
SmallVector<Decl *, 64> decls;
M.getTopLevelDecls(decls);
llvm::DenseSet<const ValueDecl *> removedValueDecls;
auto newEnd =
std::remove_if(decls.begin(), decls.end(),
[this, &removedValueDecls](const Decl *D) -> bool {
if (auto VD = dyn_cast<ValueDecl>(D)) {
auto shouldRemove = !printer.shouldInclude(VD);
if (shouldRemove)
removedValueDecls.insert(VD);
return shouldRemove;
}
if (auto ED = dyn_cast<ExtensionDecl>(D)) {
if (outputLangMode == OutputLanguageMode::Cxx)
return false;
auto baseClass = ED->getSelfClassDecl();
return !baseClass ||
!printer.shouldInclude(baseClass) ||
baseClass->isForeign();
}
return true;
});
decls.erase(newEnd, decls.end());
if (M.isStdlibModule()) {
llvm::SmallVector<Decl *, 2> nestedAdds;
for (const auto *d : decls) {
auto *ext = dyn_cast<ExtensionDecl>(d);
if (!ext ||
ext->getExtendedNominal() != M.getASTContext().getStringDecl())
continue;
for (auto *m : ext->getMembers()) {
if (auto *sd = dyn_cast<StructDecl>(m)) {
if (sd->getBaseIdentifier().str() == "UTF8View" ||
sd->getBaseIdentifier().str() == "Index") {
nestedAdds.push_back(sd);
}
}
}
}
decls.append(nestedAdds);
}
// REVERSE sort the decls, since we are going to copy them onto a stack.
llvm::array_pod_sort(decls.begin(), decls.end(),
[](Decl * const *lhs, Decl * const *rhs) -> int {
enum : int {
Ascending = -1,
Equivalent = 0,
Descending = 1,
};
assert(*lhs != *rhs && "duplicate top-level decl");
auto getSortName = [](const Decl *D) -> StringRef {
if (auto VD = dyn_cast<ValueDecl>(D))
return VD->getBaseName().userFacingName();
if (auto ED = dyn_cast<ExtensionDecl>(D)) {
auto baseClass = ED->getSelfClassDecl();
if (!baseClass)
return ED->getExtendedNominal()->getName().str();
return baseClass->getName().str();
}
llvm_unreachable("unknown top-level ObjC decl");
};
// Sort by names.
int result = getSortName(*rhs).compare(getSortName(*lhs));
if (result != 0)
return result;
// Two overloaded functions can have the same name when emitting C++.
if (isa<AbstractFunctionDecl>(*rhs) && isa<AbstractFunctionDecl>(*lhs)) {
// Sort top level functions with the same C++ name by their location to
// have stable sorting that depends on users source but not on the
// compiler invocation.
// FIXME: This is pretty suspect; PrintAsClang sometimes operates on
// serialized modules which don't have SourceLocs, so this sort
// rule may be applied in some steps of a build but not others.
if ((*rhs)->getLoc().isValid() && (*lhs)->getLoc().isValid()) {
auto getLocText = [](const Decl *afd) {
std::string res;
llvm::raw_string_ostream os(res);
afd->getLoc().print(os, afd->getASTContext().SourceMgr);
return std::move(os.str());
};
result = getLocText(*rhs).compare(getLocText(*lhs));
if (result != 0)
return result;
}
}
// A function and a global variable can have the same name in C++,
// even when the variable might not actually be emitted by the emitter.
// In that case, order the function before the variable.
if (isa<AbstractFunctionDecl>(*rhs) && isa<VarDecl>(*lhs))
return 1;
if (isa<AbstractFunctionDecl>(*lhs) && isa<VarDecl>(*rhs))
return -1;
// Prefer value decls to extensions.
if (isa<ValueDecl>(*lhs) && !isa<ValueDecl>(*rhs))
return Descending;
if (!isa<ValueDecl>(*lhs) && isa<ValueDecl>(*rhs))
return Ascending;
// Last-ditch ValueDecl tiebreaker: Compare mangled names. This captures
// *tons* of context and detail missed by the previous checks, but the
// resulting sort makes little sense to humans.
// FIXME: It'd be nice to share the mangler or even memoize mangled names,
// but we'd have to stop using `llvm::array_pod_sort()` so that we
// could capture some outside state.
Mangle::ASTMangler mangler;
auto getMangledName = [&](const Decl *D) {
auto VD = dyn_cast<ValueDecl>(D);
if (!VD && isa<ExtensionDecl>(D))
VD = cast<ExtensionDecl>(D)->getExtendedNominal();
if (!VD)
return std::string();
return mangler.mangleAnyDecl(VD, /*prefix=*/true,
/*respectOriginallyDefinedIn=*/true);
};
result = getMangledName(*rhs).compare(getMangledName(*lhs));
if (result != 0)
return result;
// Mangled names ought to distinguish all value decls, leaving only
// extensions of the same nominal type beyond this point.
assert(isa<ExtensionDecl>(*lhs) && isa<ExtensionDecl>(*rhs));
// Break ties in extensions by putting smaller extensions last (in reverse
// order).
// FIXME: This will end up taking linear time.
auto lhsMembers = cast<ExtensionDecl>(*lhs)->getMembers();
auto rhsMembers = cast<ExtensionDecl>(*rhs)->getMembers();
unsigned numLHSMembers = std::distance(lhsMembers.begin(),
lhsMembers.end());
unsigned numRHSMembers = std::distance(rhsMembers.begin(),
rhsMembers.end());
if (numLHSMembers != numRHSMembers)
return numLHSMembers < numRHSMembers ? Descending : Ascending;
// Or the extension with fewer protocols.
auto lhsProtos = cast<ExtensionDecl>(*lhs)->getLocalProtocols();
auto rhsProtos = cast<ExtensionDecl>(*rhs)->getLocalProtocols();
if (lhsProtos.size() != rhsProtos.size())
return lhsProtos.size() < rhsProtos.size() ? Descending : Ascending;
// If that fails, arbitrarily pick the extension whose protocols are
// alphabetically first.
{
auto mismatch =
std::mismatch(lhsProtos.begin(), lhsProtos.end(), rhsProtos.begin(),
[] (const ProtocolDecl *nextLHSProto,
const ProtocolDecl *nextRHSProto) {
return nextLHSProto->getName() != nextRHSProto->getName();
});
if (mismatch.first != lhsProtos.end()) {
StringRef lhsProtoName = (*mismatch.first)->getName().str();
return lhsProtoName.compare((*mismatch.second)->getName().str());
}
}
// Still nothing? Fine, we'll pick the one with the alphabetically first
// member instead.
{
auto mismatch =
std::mismatch(cast<ExtensionDecl>(*lhs)->getMembers().begin(),
cast<ExtensionDecl>(*lhs)->getMembers().end(),
cast<ExtensionDecl>(*rhs)->getMembers().begin(),
[] (const Decl *nextLHSDecl, const Decl *nextRHSDecl) {
if (isa<ValueDecl>(nextLHSDecl) && isa<ValueDecl>(nextRHSDecl)) {
return cast<ValueDecl>(nextLHSDecl)->getName() !=
cast<ValueDecl>(nextRHSDecl)->getName();
}
return isa<ValueDecl>(nextLHSDecl) != isa<ValueDecl>(nextRHSDecl);
});
if (mismatch.first != cast<ExtensionDecl>(*lhs)->getMembers().end()) {
auto *lhsMember = dyn_cast<ValueDecl>(*mismatch.first),
*rhsMember = dyn_cast<ValueDecl>(*mismatch.second);
if (!rhsMember && lhsMember)
return Descending;
if (lhsMember && !rhsMember)
return Ascending;
if (lhsMember && rhsMember)
return rhsMember->getName().compare(lhsMember->getName());
}
}
// Hopefully two extensions with identical conformances and member names
// will be interchangeable enough not to matter.
return Equivalent;
});
assert(declsToWrite.empty());
declsToWrite.assign(decls.begin(), decls.end());
if (outputLangMode == OutputLanguageMode::Cxx) {
for (const Decl *D : declsToWrite) {
if (auto *ED = dyn_cast<ExtensionDecl>(D)) {
const auto *type = ED->getExtendedNominal();
if (isa<StructDecl>(type) || isa<EnumDecl>(type))
printer.getInteropContext().recordExtensions(type, ED);
}
}
}
while (!declsToWrite.empty()) {
const Decl *D = declsToWrite.back();
bool success = true;
if (auto ED = dyn_cast<EnumDecl>(D)) {
success = writeEnum(ED);
} else if (auto CD = dyn_cast<ClassDecl>(D)) {
success = writeClass(CD);
} else if (outputLangMode == OutputLanguageMode::Cxx) {
if (auto FD = dyn_cast<FuncDecl>(D))
success = writeFunc(FD);
else if (auto SD = dyn_cast<StructDecl>(D))
success = writeStruct(SD);
else if (auto *vd = dyn_cast<ValueDecl>(D))
topLevelEmissionScope.additionalUnrepresentableDeclarations.push_back(
vd);
} else if (isa<ValueDecl>(D)) {
if (auto PD = dyn_cast<ProtocolDecl>(D))
success = writeProtocol(PD);
else if (auto ED = dyn_cast<FuncDecl>(D))
success = writeFunc(ED);
else
llvm_unreachable("unknown top-level ObjC value decl");
} else if (auto ED = dyn_cast<ExtensionDecl>(D)) {
success = writeExtension(ED);
} else {
llvm_unreachable("unknown top-level ObjC decl");
}
if (success) {
assert(declsToWrite.back() == D);
os << "\n";
declsToWrite.pop_back();
}
}
if (outputLangMode == OutputLanguageMode::ObjC)
if (!objcDelayedMembers.empty()) {
auto groupBegin = objcDelayedMembers.begin();
for (auto i = groupBegin, e = objcDelayedMembers.end(); i != e; ++i) {
if ((*i)->getDeclContext() != (*groupBegin)->getDeclContext()) {
printer.printAdHocCategory(make_range(groupBegin, i));
groupBegin = i;
}
}
printer.printAdHocCategory(
make_range(groupBegin, objcDelayedMembers.end()));
}
// Print any out of line definitions.
os << outOfLineDefinitionsOS.str();
// In C++ section, emit unavailable stubs for top value level
// declarations that couldn't be represented in C++.
if (outputLangMode != OutputLanguageMode::Cxx)
return;
auto &emissionScope = topLevelEmissionScope;
auto removedVDList = std::vector<const ValueDecl *>(
removedValueDecls.begin(), removedValueDecls.end());
for (const auto *removedVD :
emissionScope.additionalUnrepresentableDeclarations)
removedVDList.push_back(removedVD);
// Do not report internal/private decls as unavailable.
// @objc declarations are emitted in the Objective-C section, so do not
// report them as unavailable. Also skip underscored decls from the standard
// library. Also skip structs from the standard library, they can cause
// ambiguities because of the arithmetic types that conflict with types we
// already have in `swift::` namespace. Also skip `Error` protocol from
// stdlib, we have experimental support for it.
removedVDList.erase(
llvm::remove_if(
removedVDList,
[&](const ValueDecl *vd) {
return !printer.isVisible(vd) || vd->isObjC() ||
(vd->isStdlibDecl() && !vd->getName().isSpecial() &&
vd->getBaseIdentifier().hasUnderscoredNaming()) ||
(vd->isStdlibDecl() && isa<StructDecl>(vd)) ||
(vd->isStdlibDecl() &&
vd->getASTContext().getErrorDecl() == vd);
}),
removedVDList.end());
// Sort the unavaiable decls by their name and kind.
llvm::sort(removedVDList, [](const ValueDecl *lhs, const ValueDecl *rhs) {
auto getSortKey = [](const ValueDecl *vd) {
std::string sortKey;
llvm::raw_string_ostream os(sortKey);
vd->getName().print(os);
os << ' ' << (unsigned)vd->getDescriptiveKind();
return std::move(os.str());
};
return getSortKey(lhs) < getSortKey(rhs);
});
for (const auto *vd : removedVDList) {
assert(!vd->isObjC());
os << "\n";
auto emitStubComment = [&]() {
// Emit a generic comment for an handled declaration.
os << "// Unavailable in C++: Swift "
<< vd->getDescriptiveKindName(vd->getDescriptiveKind()) << " '";
vd->getName().print(os);
os << "'.\n";
};
// Do not emit a C++ declaration with a specific C++ name more than once.
auto cxxName = cxx_translation::getNameForCxx(vd);
if (emissionScope.emittedDeclarationNames.contains(cxxName)) {
emitStubComment();
continue;
}
emissionScope.emittedDeclarationNames.insert(cxxName);
// Emit an unavailable stub for a Swift type.
if (auto *nmtd = dyn_cast<NominalTypeDecl>(vd)) {
auto representation = cxx_translation::getDeclRepresentation(vd);
os << "class ";
ClangSyntaxPrinter(os).printBaseName(vd);
os << " { } SWIFT_UNAVAILABLE_MSG(\"";
auto diag =
representation.isUnsupported() && representation.error.has_value()
? cxx_translation::diagnoseRepresenationError(
*representation.error, const_cast<ValueDecl *>(vd))
: Diagnostic(
vd->isStdlibDecl() ? diag::unexposed_other_decl_in_cxx
: diag::unsupported_other_decl_in_cxx,
const_cast<ValueDecl *>(vd));
// Emit a specific unavailable message when we know why a decl can't be
// exposed, or a generic message otherwise.
auto diagString = M.getASTContext().Diags.diagnosticStringFor(
diag.getID(), /*PrintDiagnosticNames=*/false);
DiagnosticEngine::formatDiagnosticText(os, diagString, diag.getArgs(),
DiagnosticFormatOptions());
os << "\");\n";
continue;
}
// FIXME: Emit an unavailable stub for a function / function overload set
// / variable.
// FIXME: Note unrepresented type aliases too.
emitStubComment();
}
}
};
} // end anonymous namespace
static AccessLevel getRequiredAccess(const ModuleDecl &M) {
return M.isExternallyConsumed() ? AccessLevel::Public : AccessLevel::Internal;
}
void swift::printModuleContentsAsObjC(
raw_ostream &os, llvm::SmallPtrSetImpl<ImportModuleTy> &imports,
ModuleDecl &M, SwiftToClangInteropContext &interopContext) {
llvm::raw_null_ostream prologueOS;
llvm::StringSet<> exposedModules;
ModuleWriter(os, prologueOS, imports, M, interopContext, getRequiredAccess(M),
/*requiresExposedAttribute=*/false, exposedModules,
OutputLanguageMode::ObjC)
.write();
}
EmittedClangHeaderDependencyInfo swift::printModuleContentsAsCxx(
raw_ostream &os, ModuleDecl &M, SwiftToClangInteropContext &interopContext,
bool requiresExposedAttribute, llvm::StringSet<> &exposedModules) {
std::string moduleContentsBuf;
llvm::raw_string_ostream moduleOS{moduleContentsBuf};
std::string modulePrologueBuf;
llvm::raw_string_ostream prologueOS{modulePrologueBuf};
EmittedClangHeaderDependencyInfo info;
// Define the `SWIFT_SYMBOL` macro.
os << "#ifdef SWIFT_SYMBOL\n";
os << "#undef SWIFT_SYMBOL\n";
os << "#endif\n";
os << "#define SWIFT_SYMBOL(usrValue) SWIFT_SYMBOL_MODULE_USR(\"";
ClangSyntaxPrinter(os).printBaseName(&M);
os << "\", usrValue)\n";
// FIXME: Use getRequiredAccess once @expose is supported.
ModuleWriter writer(moduleOS, prologueOS, info.imports, M, interopContext,
AccessLevel::Public, requiresExposedAttribute,
exposedModules, OutputLanguageMode::Cxx);
writer.write();
info.dependsOnStandardLibrary = writer.isStdlibRequired();
if (M.isStdlibModule()) {
// Embed additional STL includes.
os << "#ifndef SWIFT_CXX_INTEROP_HIDE_STL_OVERLAY\n";
os << "#include <string>\n";
os << "#endif\n";
os << "#include <new>\n";
// Embed an overlay for the standard library.
ClangSyntaxPrinter(moduleOS).printIncludeForShimHeader(
"_SwiftStdlibCxxOverlay.h");
// Ignore typos in Swift stdlib doc comments.
os << "#pragma clang diagnostic push\n";
os << "#pragma clang diagnostic ignored \"-Wdocumentation\"\n";
}
os << "#ifndef SWIFT_PRINTED_CORE\n";
os << "#define SWIFT_PRINTED_CORE\n";
printSwiftToClangCoreScaffold(interopContext, M.getASTContext(),
writer.getTypeMapping(), os);
os << "#endif\n";
// FIXME: refactor.
if (!prologueOS.str().empty()) {
// FIXME: This is a workaround for prologue being emitted outside of
// __cplusplus.
if (!M.isStdlibModule())
os << "#endif\n";
os << "#ifdef __cplusplus\n";
os << "namespace ";
ClangSyntaxPrinter(os).printBaseName(&M);
os << " SWIFT_PRIVATE_ATTR";
ClangSyntaxPrinter(os).printSymbolUSRAttribute(&M);
os << " {\n";
os << "namespace " << cxx_synthesis::getCxxImplNamespaceName() << " {\n";
os << "extern \"C\" {\n";
os << "#endif\n\n";
os << prologueOS.str();
if (!M.isStdlibModule())
os << "\n#ifdef __cplusplus\n";
os << "}\n";
os << "}\n";
os << "}\n";
}
// Construct a C++ namespace for the module.
ClangSyntaxPrinter(os).printNamespace(
[&](raw_ostream &os) { ClangSyntaxPrinter(os).printBaseName(&M); },
[&](raw_ostream &os) { os << moduleOS.str(); },
ClangSyntaxPrinter::NamespaceTrivia::AttributeSwiftPrivate, &M);
if (M.isStdlibModule()) {
os << "#pragma clang diagnostic pop\n";
}
os << "#undef SWIFT_SYMBOL\n";
return info;
}
|