1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "AsyncRefactoring.h"
using namespace swift;
using namespace swift::refactoring::asyncrefactorings;
/// Whether the given type is (or conforms to) the stdlib Error type
static bool isErrorType(Type Ty, ModuleDecl *MD) {
if (!Ty)
return false;
return !MD->checkConformance(Ty, Ty->getASTContext().getErrorDecl())
.isInvalid();
}
AsyncHandlerDesc AsyncHandlerDesc::get(const ValueDecl *Handler,
bool RequireName) {
AsyncHandlerDesc HandlerDesc;
if (auto Var = dyn_cast<VarDecl>(Handler)) {
HandlerDesc.Handler = Var;
} else if (auto Func = dyn_cast<AbstractFunctionDecl>(Handler)) {
HandlerDesc.Handler = Func;
} else {
// The handler must be a variable or function
return AsyncHandlerDesc();
}
// Callback must have a completion-like name
if (RequireName && !isCompletionHandlerParamName(HandlerDesc.getNameStr()))
return AsyncHandlerDesc();
// Callback must be a function type and return void. Doesn't need to have
// any parameters - may just be a "I'm done" callback
auto *HandlerTy = HandlerDesc.getType()->getAs<AnyFunctionType>();
if (!HandlerTy || !HandlerTy->getResult()->isVoid())
return AsyncHandlerDesc();
// Find the type of result in the handler (eg. whether it's a Result<...>,
// just parameters, or nothing).
auto HandlerParams = HandlerTy->getParams();
if (HandlerParams.size() == 1) {
auto ParamTy =
HandlerParams.back().getPlainType()->getAs<BoundGenericType>();
if (ParamTy && ParamTy->isResult()) {
auto GenericArgs = ParamTy->getGenericArgs();
assert(GenericArgs.size() == 2 && "Result should have two params");
HandlerDesc.Type = HandlerType::RESULT;
HandlerDesc.HasError = !GenericArgs.back()->isUninhabited();
}
}
if (HandlerDesc.Type != HandlerType::RESULT) {
// Only handle non-result parameters
for (auto &Param : HandlerParams) {
if (Param.getPlainType() && Param.getPlainType()->isResult())
return AsyncHandlerDesc();
}
HandlerDesc.Type = HandlerType::PARAMS;
if (!HandlerParams.empty()) {
auto LastParamTy = HandlerParams.back().getParameterType();
HandlerDesc.HasError = isErrorType(LastParamTy->getOptionalObjectType(),
Handler->getModuleContext());
}
}
return HandlerDesc;
}
const ValueDecl *AsyncHandlerDesc::getHandler() const {
if (!Handler) {
return nullptr;
}
if (auto Var = Handler.dyn_cast<const VarDecl *>()) {
return Var;
} else if (auto Func = Handler.dyn_cast<const AbstractFunctionDecl *>()) {
return Func;
} else {
llvm_unreachable("Unknown handler type");
}
}
StringRef AsyncHandlerDesc::getNameStr() const {
if (auto Var = Handler.dyn_cast<const VarDecl *>()) {
return Var->getNameStr();
} else if (auto Func = Handler.dyn_cast<const AbstractFunctionDecl *>()) {
return Func->getNameStr();
} else {
llvm_unreachable("Unknown handler type");
}
}
swift::Type AsyncHandlerDesc::getType() const {
if (auto Var = Handler.dyn_cast<const VarDecl *>()) {
return Var->getTypeInContext();
} else if (auto Func = Handler.dyn_cast<const AbstractFunctionDecl *>()) {
auto Type = Func->getInterfaceType();
// Undo the self curry thunk if we are referencing a member function.
if (Func->hasImplicitSelfDecl()) {
assert(Type->is<AnyFunctionType>());
Type = Type->getAs<AnyFunctionType>()->getResult();
}
return Type;
} else {
llvm_unreachable("Unknown handler type");
}
}
ArrayRef<AnyFunctionType::Param> AsyncHandlerDesc::params() const {
auto Ty = getType()->getAs<AnyFunctionType>();
assert(Ty && "Type must be a function type");
return Ty->getParams();
}
ArrayRef<AnyFunctionType::Param> AsyncHandlerDesc::getSuccessParams() const {
if (HasError && Type == HandlerType::PARAMS)
return params().drop_back();
return params();
}
std::optional<AnyFunctionType::Param> AsyncHandlerDesc::getErrorParam() const {
if (HasError && Type == HandlerType::PARAMS)
return params().back();
return std::nullopt;
}
std::optional<swift::Type> AsyncHandlerDesc::getErrorType() const {
if (HasError) {
switch (Type) {
case HandlerType::INVALID:
return std::nullopt;
case HandlerType::PARAMS:
// The last parameter of the completion handler is the error param
return params().back().getPlainType()->lookThroughSingleOptionalType();
case HandlerType::RESULT:
assert(
params().size() == 1 &&
"Result handler should have the Result type as the only parameter");
auto ResultType =
params().back().getPlainType()->getAs<BoundGenericType>();
auto GenericArgs = ResultType->getGenericArgs();
assert(GenericArgs.size() == 2 && "Result should have two params");
// The second (last) generic parameter of the Result type is the error
// type.
return GenericArgs.back();
}
} else {
return std::nullopt;
}
}
CallExpr *AsyncHandlerDesc::getAsHandlerCall(ASTNode Node) const {
if (!isValid())
return nullptr;
if (auto E = Node.dyn_cast<Expr *>()) {
if (auto *CE = dyn_cast<CallExpr>(E->getSemanticsProvidingExpr())) {
if (CE->getFn()->getReferencedDecl().getDecl() == getHandler()) {
return CE;
}
}
}
return nullptr;
}
bool AsyncHandlerDesc::isAmbiguousCallToParamHandler(const CallExpr *CE) const {
if (!HasError || Type != HandlerType::PARAMS) {
// Only param handlers with an error can pass both an error AND a result.
return false;
}
auto Args = CE->getArgs()->getArgExprs();
if (!isa<NilLiteralExpr>(Args.back())) {
// We've got an error parameter. If any of the success params is not nil,
// the call is ambiguous.
for (auto &Arg : Args.drop_back()) {
if (!isa<NilLiteralExpr>(Arg)) {
return true;
}
}
}
return false;
}
HandlerResult
AsyncHandlerDesc::extractResultArgs(const CallExpr *CE,
bool ReturnErrorArgsIfAmbiguous) const {
auto *ArgList = CE->getArgs();
SmallVector<Argument, 2> Scratch(ArgList->begin(), ArgList->end());
auto Args = llvm::ArrayRef(Scratch);
if (Type == HandlerType::PARAMS) {
bool IsErrorResult;
if (isAmbiguousCallToParamHandler(CE)) {
IsErrorResult = ReturnErrorArgsIfAmbiguous;
} else {
// If there's an error parameter and the user isn't passing nil to it,
// assume this is the error path.
IsErrorResult = (HasError && !isa<NilLiteralExpr>(Args.back().getExpr()));
}
if (IsErrorResult)
return HandlerResult(Args.back(), true);
// We can drop the args altogether if they're just Void.
if (willAsyncReturnVoid())
return HandlerResult();
return HandlerResult(HasError ? Args.drop_back() : Args);
} else if (Type == HandlerType::RESULT) {
if (Args.size() != 1)
return HandlerResult(Args);
auto *ResultCE = dyn_cast<CallExpr>(Args[0].getExpr());
if (!ResultCE)
return HandlerResult(Args);
auto *DSC = dyn_cast<DotSyntaxCallExpr>(ResultCE->getFn());
if (!DSC)
return HandlerResult(Args);
auto *D =
dyn_cast<EnumElementDecl>(DSC->getFn()->getReferencedDecl().getDecl());
if (!D)
return HandlerResult(Args);
auto ResultArgList = ResultCE->getArgs();
auto isFailure = D->getNameStr() == StringRef("failure");
// We can drop the arg altogether if it's just Void.
if (!isFailure && willAsyncReturnVoid())
return HandlerResult();
// Otherwise the arg gets the .success() or .failure() call dropped.
return HandlerResult(ResultArgList->get(0), isFailure);
}
llvm_unreachable("Unhandled result type");
}
swift::Type
AsyncHandlerDesc::getSuccessParamAsyncReturnType(swift::Type Ty) const {
switch (Type) {
case HandlerType::PARAMS: {
// If there's an Error parameter in the handler, the success branch can
// be unwrapped.
if (HasError)
Ty = Ty->lookThroughSingleOptionalType();
return Ty;
}
case HandlerType::RESULT: {
// Result<T, U> maps to T.
return Ty->castTo<BoundGenericType>()->getGenericArgs()[0];
}
case HandlerType::INVALID:
llvm_unreachable("Invalid handler type");
}
}
Identifier AsyncHandlerDesc::getAsyncReturnTypeLabel(size_t Index) const {
assert(Index < getSuccessParams().size());
if (getSuccessParams().size() <= 1) {
// There can't be any labels if the async function doesn't return a tuple.
return Identifier();
} else {
return getSuccessParams()[Index].getInternalLabel();
}
}
ArrayRef<LabeledReturnType> AsyncHandlerDesc::getAsyncReturnTypes(
SmallVectorImpl<LabeledReturnType> &Scratch) const {
for (size_t I = 0; I < getSuccessParams().size(); ++I) {
auto Ty = getSuccessParams()[I].getParameterType();
Scratch.emplace_back(getAsyncReturnTypeLabel(I),
getSuccessParamAsyncReturnType(Ty));
}
return Scratch;
}
bool AsyncHandlerDesc::willAsyncReturnVoid() const {
// If all of the success params will be converted to Void return types,
// this will be a Void async function.
return llvm::all_of(getSuccessParams(), [&](auto ¶m) {
auto Ty = param.getParameterType();
return getSuccessParamAsyncReturnType(Ty)->isVoid();
});
}
|