1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_REFACTORING_ASYNCREFACTORING_H
#define SWIFT_REFACTORING_ASYNCREFACTORING_H
#include "ContextFinder.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticsRefactoring.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignAsyncConvention.h"
#include "swift/AST/GenericParamList.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Stmt.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/IDE/Utils.h"
#include "swift/Parse/Lexer.h"
namespace swift {
namespace refactoring {
namespace asyncrefactorings {
using namespace swift::ide;
FuncDecl *getUnderlyingFunc(const Expr *Fn);
/// Describes the expressions to be kept from a call to the handler in a
/// function that has (or will have ) and async alternative. Eg.
/// ```
/// func toBeAsync(completion: (String?, Error?) -> Void) {
/// ...
/// completion("something", nil) // Result = ["something"], IsError = false
/// ...
/// completion(nil, MyError.Bad) // Result = [MyError.Bad], IsError = true
/// }
class HandlerResult {
SmallVector<Argument, 2> Args;
bool IsError = false;
public:
HandlerResult() {}
HandlerResult(ArrayRef<Argument> ArgsRef)
: Args(ArgsRef.begin(), ArgsRef.end()) {}
HandlerResult(Argument Arg, bool IsError) : IsError(IsError) {
Args.push_back(Arg);
}
bool isError() { return IsError; }
ArrayRef<Argument> args() { return Args; }
};
/// The type of the handler, ie. whether it takes regular parameters or a
/// single parameter of `Result` type.
enum class HandlerType { INVALID, PARAMS, RESULT };
/// A single return type of a refactored async function. If the async function
/// returns a tuple, each element of the tuple (represented by a \c
/// LabeledReturnType) might have a label, otherwise the \p Label is empty.
struct LabeledReturnType {
Identifier Label;
swift::Type Ty;
LabeledReturnType(Identifier Label, swift::Type Ty) : Label(Label), Ty(Ty) {}
};
/// Given a function with an async alternative (or one that *could* have an
/// async alternative), stores information about the completion handler.
/// The completion handler can be either a variable (which includes a parameter)
/// or a function
struct AsyncHandlerDesc {
PointerUnion<const VarDecl *, const AbstractFunctionDecl *> Handler = nullptr;
HandlerType Type = HandlerType::INVALID;
bool HasError = false;
static AsyncHandlerDesc get(const ValueDecl *Handler, bool RequireName);
bool isValid() const { return Type != HandlerType::INVALID; }
/// Return the declaration of the completion handler as a \c ValueDecl.
/// In practice, the handler will always be a \c VarDecl or \c
/// AbstractFunctionDecl.
/// \c getNameStr and \c getType provide access functions that are available
/// for both variables and functions, but not on \c ValueDecls.
const ValueDecl *getHandler() const;
/// Return the name of the completion handler. If it is a variable, the
/// variable name, if it's a function, the function base name.
StringRef getNameStr() const;
HandlerType getHandlerType() const { return Type; }
/// Get the type of the completion handler.
swift::Type getType() const;
ArrayRef<AnyFunctionType::Param> params() const;
/// Retrieve the parameters relevant to a successful return from the
/// completion handler. This drops the Error parameter if present.
ArrayRef<AnyFunctionType::Param> getSuccessParams() const;
/// If the completion handler has an Error parameter, return it.
std::optional<AnyFunctionType::Param> getErrorParam() const;
/// Get the type of the error that will be thrown by the \c async method or \c
/// None if the completion handler doesn't accept an error parameter.
/// This may be more specialized than the generic 'Error' type if the
/// completion handler of the converted function takes a more specialized
/// error type.
std::optional<swift::Type> getErrorType() const;
/// The `CallExpr` if the given node is a call to the `Handler`
CallExpr *getAsHandlerCall(ASTNode Node) const;
/// Returns \c true if the call to the completion handler contains possibly
/// non-nil values for both the success and error parameters, e.g.
/// \code
/// completion(result, error)
/// \endcode
/// This can only happen if the completion handler is a params handler.
bool isAmbiguousCallToParamHandler(const CallExpr *CE) const;
/// Given a call to the `Handler`, extract the expressions to be returned or
/// thrown, taking care to remove the `.success`/`.failure` if it's a
/// `RESULT` handler type.
/// If the call is ambiguous (contains potentially non-nil arguments to both
/// the result and the error parameters), the \p ReturnErrorArgsIfAmbiguous
/// determines whether the success or error parameters are passed.
HandlerResult extractResultArgs(const CallExpr *CE,
bool ReturnErrorArgsIfAmbiguous) const;
// Convert the type of a success parameter in the completion handler function
// to a return type suitable for an async function. If there is an error
// parameter present e.g (T?, Error?) -> Void, this unwraps a level of
// optionality from T?. If this is a Result<T, U> type, returns the success
// type T.
swift::Type getSuccessParamAsyncReturnType(swift::Type Ty) const;
/// If the async function returns a tuple, the label of the \p Index -th
/// element in the returned tuple. If the function doesn't return a tuple or
/// the element is unlabeled, an empty identifier is returned.
Identifier getAsyncReturnTypeLabel(size_t Index) const;
/// Gets the return value types for the async equivalent of this handler.
ArrayRef<LabeledReturnType>
getAsyncReturnTypes(SmallVectorImpl<LabeledReturnType> &Scratch) const;
/// Whether the async equivalent of this handler returns Void.
bool willAsyncReturnVoid() const;
// TODO: If we have an async alternative we should check its result types
// for whether to unwrap or not
bool shouldUnwrap(swift::Type Ty) const {
return HasError && Ty->isOptional();
}
};
/// Given a completion handler that is part of a function signature, stores
/// information about that completion handler and its index within the function
/// declaration.
struct AsyncHandlerParamDesc : public AsyncHandlerDesc {
/// Enum to represent the position of the completion handler param within
/// the parameter list. Given `(A, B, C, D)`:
/// - A is `First`
/// - B and C are `Middle`
/// - D is `Last`
/// The position is `Only` if there's a single parameter that is the
/// completion handler and `None` if there is no handler.
enum class Position { First, Middle, Last, Only, None };
/// The function the completion handler is a parameter of.
const FuncDecl *Func = nullptr;
/// The index of the completion handler in the function that declares it.
unsigned Index = 0;
/// The async alternative, if one is found.
const AbstractFunctionDecl *Alternative = nullptr;
AsyncHandlerParamDesc() : AsyncHandlerDesc() {}
AsyncHandlerParamDesc(const AsyncHandlerDesc &Handler, const FuncDecl *Func,
unsigned Index, const AbstractFunctionDecl *Alternative)
: AsyncHandlerDesc(Handler), Func(Func), Index(Index),
Alternative(Alternative) {}
static AsyncHandlerParamDesc find(const FuncDecl *FD,
bool RequireAttributeOrName) {
if (!FD || FD->hasAsync() || FD->hasThrows() ||
!FD->getResultInterfaceType()->isVoid())
return AsyncHandlerParamDesc();
const auto *Alternative = FD->getAsyncAlternative();
std::optional<unsigned> Index =
FD->findPotentialCompletionHandlerParam(Alternative);
if (!Index)
return AsyncHandlerParamDesc();
bool RequireName = RequireAttributeOrName && !Alternative;
return AsyncHandlerParamDesc(
AsyncHandlerDesc::get(FD->getParameters()->get(*Index), RequireName),
FD, *Index, Alternative);
}
/// Build an @available attribute with the name of the async alternative as
/// the \c renamed argument, followed by a newline.
SmallString<128> buildRenamedAttribute() const {
SmallString<128> AvailabilityAttr;
llvm::raw_svector_ostream OS(AvailabilityAttr);
// If there's an alternative then there must already be an attribute,
// don't add another.
if (!isValid() || Alternative)
return AvailabilityAttr;
DeclName Name = Func->getName();
OS << "@available(*, renamed: \"" << Name.getBaseName() << "(";
ArrayRef<Identifier> ArgNames = Name.getArgumentNames();
for (size_t I = 0; I < ArgNames.size(); ++I) {
if (I != Index) {
OS << ArgNames[I] << tok::colon;
}
}
OS << ")\")\n";
return AvailabilityAttr;
}
/// Retrieves the parameter decl for the completion handler parameter, or
/// \c nullptr if no valid completion parameter is present.
const ParamDecl *getHandlerParam() const {
if (!isValid())
return nullptr;
return cast<ParamDecl>(getHandler());
}
/// See \c Position
Position handlerParamPosition() const {
if (!isValid())
return Position::None;
const auto *Params = Func->getParameters();
if (Params->size() == 1)
return Position::Only;
if (Index == 0)
return Position::First;
if (Index == Params->size() - 1)
return Position::Last;
return Position::Middle;
}
bool operator==(const AsyncHandlerParamDesc &Other) const {
return Handler == Other.Handler && Type == Other.Type &&
HasError == Other.HasError && Index == Other.Index;
}
bool alternativeIsAccessor() const {
return isa_and_nonnull<AccessorDecl>(Alternative);
}
};
/// The type of a condition in a conditional statement.
enum class ConditionType {
NIL, // == nil
NOT_NIL, // != nil
IS_TRUE, // if b
IS_FALSE, // if !b
SUCCESS_PATTERN, // case .success
FAILURE_PATTEN // case .failure
};
/// Indicates whether a condition describes a success or failure path. For
/// example, a check for whether an error parameter is present is a failure
/// path. A check for a nil error parameter is a success path. This is distinct
/// from ConditionType, as it relies on contextual information about what values
/// need to be checked for success or failure.
enum class ConditionPath { SUCCESS, FAILURE };
/// Finds the `Subject` being compared to in various conditions. Also finds any
/// pattern that may have a bound name.
struct CallbackCondition {
std::optional<ConditionType> Type;
const Decl *Subject = nullptr;
const Pattern *BindPattern = nullptr;
/// Initializes a `CallbackCondition` with a `!=` or `==` comparison of
/// an `Optional` typed `Subject` to `nil`, or a `Bool` typed `Subject` to a
/// boolean literal, ie.
/// - `<Subject> != nil`
/// - `<Subject> == nil`
/// - `<Subject> != true`
/// - `<Subject> == false`
CallbackCondition(const BinaryExpr *BE, const FuncDecl *Operator);
/// A bool condition expression.
explicit CallbackCondition(const Expr *E);
/// Initializes a `CallbackCondition` with binding of an `Optional` or
/// `Result` typed `Subject`, ie.
/// - `let bind = <Subject>`
/// - `case .success(let bind) = <Subject>`
/// - `case .failure(let bind) = <Subject>`
/// - `let bind = try? <Subject>.get()`
CallbackCondition(const Pattern *P, const Expr *Init);
/// Initializes a `CallbackCondtion` from a case statement inside a switch
/// on `Subject` with `Result` type, ie.
/// ```
/// switch <Subject> {
/// case .success(let bind):
/// case .failure(let bind):
/// }
/// ```
CallbackCondition(const Decl *Subject, const CaseLabelItem *CaseItem);
bool isValid() const { return Type.has_value(); }
private:
void initFromEnumPattern(const Decl *D, const EnumElementPattern *EEP);
void initFromOptionalTry(const class Pattern *P, const OptionalTryExpr *OTE);
};
/// A CallbackCondition with additional semantic information about whether it
/// is for a success path or failure path.
struct ClassifiedCondition : public CallbackCondition {
ConditionPath Path;
/// Whether this represents an Obj-C style boolean flag check for success.
bool IsObjCStyleFlagCheck;
explicit ClassifiedCondition(CallbackCondition Cond, ConditionPath Path,
bool IsObjCStyleFlagCheck)
: CallbackCondition(Cond), Path(Path),
IsObjCStyleFlagCheck(IsObjCStyleFlagCheck) {}
};
/// A wrapper for a map of parameter decls to their classified conditions, or
/// \c None if they are not present in any conditions.
struct ClassifiedCallbackConditions final
: llvm::MapVector<const Decl *, ClassifiedCondition> {
std::optional<ClassifiedCondition> lookup(const Decl *D) const {
auto Res = find(D);
if (Res == end())
return std::nullopt;
return Res->second;
}
};
/// A list of nodes to print, along with a list of locations that may have
/// preceding comments attached, which also need printing. For example:
///
/// \code
/// if .random() {
/// // a
/// print("hello")
/// // b
/// }
/// \endcode
///
/// To print out the contents of the if statement body, we'll include the AST
/// node for the \c print call. This will also include the preceding comment
/// \c a, but won't include the comment \c b. To ensure the comment \c b gets
/// printed, the SourceLoc for the closing brace \c } is added as a possible
/// comment loc.
class NodesToPrint {
SmallVector<ASTNode, 0> Nodes;
SmallVector<SourceLoc, 2> PossibleCommentLocs;
public:
NodesToPrint() {}
NodesToPrint(ArrayRef<ASTNode> Nodes, ArrayRef<SourceLoc> PossibleCommentLocs)
: Nodes(Nodes.begin(), Nodes.end()),
PossibleCommentLocs(PossibleCommentLocs.begin(),
PossibleCommentLocs.end()) {}
ArrayRef<ASTNode> getNodes() const { return Nodes; }
ArrayRef<SourceLoc> getPossibleCommentLocs() const {
return PossibleCommentLocs;
}
/// Add an AST node to print.
void addNode(ASTNode Node) {
// Note we skip vars as they'll be printed as a part of their
// PatternBindingDecl.
if (!Node.isDecl(DeclKind::Var))
Nodes.push_back(Node);
}
/// Add a SourceLoc which may have a preceding comment attached. If so, the
/// comment will be printed out at the appropriate location.
void addPossibleCommentLoc(SourceLoc Loc) {
if (Loc.isValid())
PossibleCommentLocs.push_back(Loc);
}
/// Add all the nodes in the brace statement to the list of nodes to print.
/// This should be preferred over adding the nodes manually as it picks up the
/// end location of the brace statement as a possible comment loc, ensuring
/// that we print any trailing comments in the brace statement.
void addNodesInBraceStmt(BraceStmt *Brace) {
for (auto Node : Brace->getElements())
addNode(Node);
// Ignore the end locations of implicit braces, as they're likely bogus.
// e.g for a case statement, the r-brace loc points to the last token of the
// last node in the body.
if (!Brace->isImplicit())
addPossibleCommentLoc(Brace->getRBraceLoc());
}
/// Add the nodes and comment locs from another NodesToPrint.
void addNodes(NodesToPrint OtherNodes) {
Nodes.append(OtherNodes.Nodes.begin(), OtherNodes.Nodes.end());
PossibleCommentLocs.append(OtherNodes.PossibleCommentLocs.begin(),
OtherNodes.PossibleCommentLocs.end());
}
/// Whether the last recorded node is an explicit return or break statement.
bool hasTrailingReturnOrBreak() const {
if (Nodes.empty())
return false;
return (Nodes.back().isStmt(StmtKind::Return) ||
Nodes.back().isStmt(StmtKind::Break)) &&
!Nodes.back().isImplicit();
}
/// If the last recorded node is an explicit return or break statement that
/// can be safely dropped, drop it from the list.
void dropTrailingReturnOrBreakIfPossible() {
if (!hasTrailingReturnOrBreak())
return;
auto *Node = Nodes.back().get<Stmt *>();
// If this is a return statement with return expression, let's preserve it.
if (auto *RS = dyn_cast<ReturnStmt>(Node)) {
if (RS->hasResult())
return;
}
// Remove the node from the list, but make sure to add it as a possible
// comment loc to preserve any of its attached comments.
Nodes.pop_back();
addPossibleCommentLoc(Node->getStartLoc());
}
/// Returns a list of nodes to print in a brace statement. This picks up the
/// end location of the brace statement as a possible comment loc, ensuring
/// that we print any trailing comments in the brace statement.
static NodesToPrint inBraceStmt(BraceStmt *stmt) {
NodesToPrint Nodes;
Nodes.addNodesInBraceStmt(stmt);
return Nodes;
}
};
/// The statements within the closure of call to a function taking a callback
/// are split into a `SuccessBlock` and `ErrorBlock` (`ClassifiedBlocks`).
/// This class stores the nodes for each block, as well as a mapping of
/// decls to any patterns they are used in.
class ClassifiedBlock {
NodesToPrint Nodes;
// A mapping of closure params to a list of patterns that bind them.
using ParamPatternBindingsMap =
llvm::MapVector<const Decl *, TinyPtrVector<const Pattern *>>;
ParamPatternBindingsMap ParamPatternBindings;
public:
const NodesToPrint &nodesToPrint() const { return Nodes; }
/// Attempt to retrieve an existing bound name for a closure parameter, or
/// an empty string if there's no suitable existing binding.
StringRef boundName(const Decl *D) const {
// Adopt the same name as the representative single pattern, if it only
// binds a single var.
if (auto *P = getSinglePatternFor(D)) {
if (P->getSingleVar())
return P->getBoundName().str();
}
return StringRef();
}
/// Checks whether a closure parameter can be represented by a single pattern
/// that binds it. If the param is only bound by a single pattern, that will
/// be returned. If there's a pattern with a single var that binds it, that
/// will be returned, preferring a 'let' pattern to prefer out of line
/// printing of 'var' patterns.
const Pattern *getSinglePatternFor(const Decl *D) const {
auto Iter = ParamPatternBindings.find(D);
if (Iter == ParamPatternBindings.end())
return nullptr;
const auto &Patterns = Iter->second;
if (Patterns.empty())
return nullptr;
if (Patterns.size() == 1)
return Patterns[0];
// If we have multiple patterns, search for the best single var pattern to
// use, preferring a 'let' binding.
const Pattern *FirstSingleVar = nullptr;
for (auto *P : Patterns) {
if (!P->getSingleVar())
continue;
if (!P->hasAnyMutableBindings())
return P;
if (!FirstSingleVar)
FirstSingleVar = P;
}
return FirstSingleVar;
}
/// Retrieve any bound vars that are effectively aliases of a given closure
/// parameter.
llvm::SmallDenseSet<const Decl *> getAliasesFor(const Decl *D) const {
auto Iter = ParamPatternBindings.find(D);
if (Iter == ParamPatternBindings.end())
return {};
llvm::SmallDenseSet<const Decl *> Aliases;
// The single pattern that we replace the decl with is always an alias.
if (auto *P = getSinglePatternFor(D)) {
if (auto *SingleVar = P->getSingleVar())
Aliases.insert(SingleVar);
}
// Any other let bindings we have are also aliases.
for (auto *P : Iter->second) {
if (auto *SingleVar = P->getSingleVar()) {
if (!P->hasAnyMutableBindings())
Aliases.insert(SingleVar);
}
}
return Aliases;
}
const ParamPatternBindingsMap ¶mPatternBindings() const {
return ParamPatternBindings;
}
void addNodesInBraceStmt(BraceStmt *Brace) {
Nodes.addNodesInBraceStmt(Brace);
}
void addPossibleCommentLoc(SourceLoc Loc) {
Nodes.addPossibleCommentLoc(Loc);
}
void addAllNodes(NodesToPrint OtherNodes) {
Nodes.addNodes(std::move(OtherNodes));
}
void addNode(ASTNode Node) { Nodes.addNode(Node); }
void addBinding(const ClassifiedCondition &FromCondition) {
auto *P = FromCondition.BindPattern;
if (!P)
return;
// Patterns that don't bind anything aren't interesting.
SmallVector<VarDecl *, 2> Vars;
P->collectVariables(Vars);
if (Vars.empty())
return;
ParamPatternBindings[FromCondition.Subject].push_back(P);
}
void addAllBindings(const ClassifiedCallbackConditions &FromConditions) {
for (auto &Entry : FromConditions)
addBinding(Entry.second);
}
};
/// The type of block rewritten code may be placed in.
enum class BlockKind { SUCCESS, ERROR, FALLBACK };
/// A completion handler function parameter that is known to be a Bool flag
/// indicating success or failure.
struct KnownBoolFlagParam {
const ParamDecl *Param;
bool IsSuccessFlag;
};
/// A set of parameters for a completion callback closure.
class ClosureCallbackParams final {
const AsyncHandlerParamDesc &HandlerDesc;
ArrayRef<const ParamDecl *> AllParams;
llvm::SetVector<const ParamDecl *> SuccessParams;
const ParamDecl *ErrParam = nullptr;
std::optional<KnownBoolFlagParam> BoolFlagParam;
public:
ClosureCallbackParams(const AsyncHandlerParamDesc &HandlerDesc,
const ClosureExpr *Closure)
: HandlerDesc(HandlerDesc),
AllParams(Closure->getParameters()->getArray()) {
assert(AllParams.size() == HandlerDesc.params().size());
assert(HandlerDesc.Type != HandlerType::RESULT || AllParams.size() == 1);
SuccessParams.insert(AllParams.begin(), AllParams.end());
if (HandlerDesc.HasError && HandlerDesc.Type == HandlerType::PARAMS)
ErrParam = SuccessParams.pop_back_val();
// Check to see if we have a known bool flag parameter.
if (auto *AsyncAlt = HandlerDesc.Func->getAsyncAlternative()) {
if (auto Conv = AsyncAlt->getForeignAsyncConvention()) {
auto FlagIdx = Conv->completionHandlerFlagParamIndex();
if (FlagIdx && *FlagIdx >= 0 && *FlagIdx < AllParams.size()) {
auto IsSuccessFlag = Conv->completionHandlerFlagIsErrorOnZero();
BoolFlagParam = {AllParams[*FlagIdx], IsSuccessFlag};
}
}
}
}
/// Whether the closure has a particular parameter.
bool hasParam(const ParamDecl *Param) const {
return Param == ErrParam || SuccessParams.contains(Param);
}
/// Whether \p Param is a success param.
bool isSuccessParam(const ParamDecl *Param) const {
return SuccessParams.contains(Param);
}
/// Whether \p Param is a closure parameter that may be unwrapped. This
/// includes optional parameters as well as \c Result parameters that may be
/// unwrapped through e.g 'try? res.get()'.
bool isUnwrappableParam(const ParamDecl *Param) const {
if (!hasParam(Param))
return false;
if (getResultParam() == Param)
return true;
return HandlerDesc.shouldUnwrap(Param->getTypeInContext());
}
/// Whether \p Param is the known Bool parameter that indicates success or
/// failure.
bool isKnownBoolFlagParam(const ParamDecl *Param) const {
if (auto BoolFlag = getKnownBoolFlagParam())
return BoolFlag->Param == Param;
return false;
}
/// Whether \p Param is a closure parameter that has a binding available in
/// the async variant of the call for a particular \p Block.
bool hasBinding(const ParamDecl *Param, BlockKind Block) const {
switch (Block) {
case BlockKind::SUCCESS:
// Known bool flags get dropped from the imported async variant.
if (isKnownBoolFlagParam(Param))
return false;
return isSuccessParam(Param);
case BlockKind::ERROR:
return Param == ErrParam;
case BlockKind::FALLBACK:
// We generally want to bind everything in the fallback case.
return hasParam(Param);
}
llvm_unreachable("Unhandled case in switch");
}
/// Retrieve the parameters to bind in a given \p Block.
TinyPtrVector<const ParamDecl *> getParamsToBind(BlockKind Block) {
TinyPtrVector<const ParamDecl *> Result;
for (auto *Param : AllParams) {
if (hasBinding(Param, Block))
Result.push_back(Param);
}
return Result;
}
/// If there is a known Bool flag parameter indicating success or failure,
/// returns it, \c None otherwise.
std::optional<KnownBoolFlagParam> getKnownBoolFlagParam() const {
return BoolFlagParam;
}
/// All the parameters of the closure passed as the completion handler.
ArrayRef<const ParamDecl *> getAllParams() const { return AllParams; }
/// The success parameters of the closure passed as the completion handler.
/// Note this includes a \c Result parameter.
ArrayRef<const ParamDecl *> getSuccessParams() const {
return SuccessParams.getArrayRef();
}
/// The error parameter of the closure passed as the completion handler, or
/// \c nullptr if there is no error parameter.
const ParamDecl *getErrParam() const { return ErrParam; }
/// If the closure has a single \c Result parameter, returns it, \c nullptr
/// otherwise.
const ParamDecl *getResultParam() const {
return HandlerDesc.Type == HandlerType::RESULT ? SuccessParams[0] : nullptr;
}
};
struct ClassifiedBlocks {
ClassifiedBlock SuccessBlock;
ClassifiedBlock ErrorBlock;
};
/// Classifer of callback closure statements that that have either multiple
/// non-Result parameters or a single Result parameter and return Void.
///
/// It performs a (possibly incorrect) best effort and may give up in certain
/// cases. Aims to cover the idiomatic cases of either having no error
/// parameter at all, or having success/error code wrapped in ifs/guards/switch
/// using either pattern binding or nil checks.
///
/// Code outside any clear conditions is assumed to be solely part of the
/// success block for now, though some heuristics could be added to classify
/// these better in the future.
struct CallbackClassifier {
/// Updates the success and error block of `Blocks` with nodes and bound
/// names from `Body`. Errors are added through `DiagEngine`, possibly
/// resulting in partially filled out blocks.
static void classifyInto(ClassifiedBlocks &Blocks,
const ClosureCallbackParams &Params,
llvm::DenseSet<SwitchStmt *> &HandledSwitches,
DiagnosticEngine &DiagEngine, BraceStmt *Body);
private:
ClassifiedBlocks &Blocks;
const ClosureCallbackParams &Params;
llvm::DenseSet<SwitchStmt *> &HandledSwitches;
DiagnosticEngine &DiagEngine;
ClassifiedBlock *CurrentBlock;
/// This is set to \c true if we're currently classifying on a known condition
/// path, where \c CurrentBlock is set to the appropriate block. This lets us
/// be more lenient with unhandled conditions as we already know the block
/// we're supposed to be in.
bool IsKnownConditionPath = false;
CallbackClassifier(ClassifiedBlocks &Blocks,
const ClosureCallbackParams &Params,
llvm::DenseSet<SwitchStmt *> &HandledSwitches,
DiagnosticEngine &DiagEngine)
: Blocks(Blocks), Params(Params), HandledSwitches(HandledSwitches),
DiagEngine(DiagEngine), CurrentBlock(&Blocks.SuccessBlock) {}
/// Attempt to apply custom classification logic to a given node, returning
/// \c true if the node was classified, otherwise \c false.
bool tryClassifyNode(ASTNode Node);
/// Classify a node, or add the node to the block if it cannot be classified.
/// Returns \c true if there was an error.
bool classifyNode(ASTNode Node);
void classifyNodes(ArrayRef<ASTNode> Nodes, SourceLoc EndCommentLoc);
/// Whether any of the provided ASTNodes have a child expression that force
/// unwraps the error parameter. Note that this doesn't walk into new scopes.
bool hasForceUnwrappedErrorParam(ArrayRef<ASTNode> Nodes);
/// Given a callback condition, classify it as a success or failure path.
std::optional<ClassifiedCondition>
classifyCallbackCondition(const CallbackCondition &Cond,
const NodesToPrint &SuccessNodes, Stmt *ElseStmt);
/// Classifies all the conditions present in a given StmtCondition, taking
/// into account its success body and failure body. Returns \c true if there
/// were any conditions that couldn't be classified, \c false otherwise.
bool classifyConditionsOf(StmtCondition Cond,
const NodesToPrint &ThenNodesToPrint,
Stmt *ElseStmt,
ClassifiedCallbackConditions &Conditions);
/// Classifies the conditions of a conditional statement, and adds the
/// necessary nodes to either the success or failure block.
void classifyConditional(Stmt *Statement, StmtCondition Condition,
NodesToPrint ThenNodesToPrint, Stmt *ElseStmt);
/// Adds \p Nodes to \p Block, potentially flipping the current block if we
/// can determine that the nodes being added will cause control flow to leave
/// the scope.
///
/// \param Block The block to add the nodes to.
/// \param OtherBlock The block for the opposing condition path.
/// \param Nodes The nodes to add.
/// \param AlwaysExitsScope Whether the nodes being added always exit the
/// scope, and therefore whether the current block should be flipped.
void setNodes(ClassifiedBlock *Block, ClassifiedBlock *OtherBlock,
NodesToPrint Nodes, bool AlwaysExitsScope = false);
void classifySwitch(SwitchStmt *SS);
};
class DeclCollector : private SourceEntityWalker {
llvm::DenseSet<const Decl *> &Decls;
public:
/// Collect all explicit declarations declared in \p Scope (or \p SF if
/// \p Scope is a nullptr) that are not within their own scope.
static void collect(BraceStmt *Scope, SourceFile &SF,
llvm::DenseSet<const Decl *> &Decls);
private:
DeclCollector(llvm::DenseSet<const Decl *> &Decls) : Decls(Decls) {}
bool walkToDeclPre(Decl *D, CharSourceRange Range) override;
bool walkToExprPre(Expr *E) override;
bool walkToStmtPre(Stmt *S) override;
};
class ReferenceCollector : private SourceEntityWalker {
SourceManager *SM;
llvm::DenseSet<const Decl *> DeclaredDecls;
llvm::DenseSet<const Decl *> &ReferencedDecls;
ASTNode Target;
bool AfterTarget;
public:
/// Collect all explicit references in \p Scope (or \p SF if \p Scope is
/// a nullptr) that are after \p Target and not first declared. That is,
/// references that we don't want to shadow with hoisted declarations.
///
/// Also collect all declarations that are \c DeclContexts, which is an
/// over-appoximation but let's us ignore them elsewhere.
static void collect(ASTNode Target, BraceStmt *Scope, SourceFile &SF,
llvm::DenseSet<const Decl *> &Decls);
private:
ReferenceCollector(ASTNode Target, SourceManager *SM,
llvm::DenseSet<const Decl *> &Decls)
: SM(SM), DeclaredDecls(), ReferencedDecls(Decls), Target(Target),
AfterTarget(false) {}
bool walkToDeclPre(Decl *D, CharSourceRange Range) override;
bool walkToExprPre(Expr *E) override;
bool walkToStmtPre(Stmt *S) override;
bool walkToPatternPre(Pattern *P) override;
bool shouldWalkInto(SourceRange Range);
};
/// Similar to the \c ReferenceCollector but collects references in all scopes
/// without any starting point in each scope. In addition, it tracks the number
/// of references to a decl in a given scope.
class ScopedDeclCollector : private SourceEntityWalker {
public:
using DeclsTy = llvm::DenseSet<const Decl *>;
using RefDeclsTy = llvm::DenseMap<const Decl *, /*numRefs*/ unsigned>;
private:
using ScopedDeclsTy = llvm::DenseMap<const Stmt *, RefDeclsTy>;
struct Scope {
DeclsTy DeclaredDecls;
RefDeclsTy *ReferencedDecls;
Scope(RefDeclsTy *ReferencedDecls)
: DeclaredDecls(), ReferencedDecls(ReferencedDecls) {}
};
ScopedDeclsTy ReferencedDecls;
llvm::SmallVector<Scope, 4> ScopeStack;
public:
/// Starting at \c Scope, collect all explicit references in every scope
/// within (including the initial) that are not first declared, ie. those that
/// could end up shadowed. Also include all \c DeclContext declarations as
/// we'd like to avoid renaming functions and types completely.
void collect(ASTNode Node) { walk(Node); }
const RefDeclsTy *getReferencedDecls(Stmt *Scope) const;
private:
bool walkToDeclPre(Decl *D, CharSourceRange Range) override;
bool walkToExprPre(Expr *E) override;
bool walkToStmtPre(Stmt *S) override;
bool walkToStmtPost(Stmt *S) override;
};
/// Checks whether an ASTNode contains a reference to a given declaration.
class DeclReferenceFinder : private SourceEntityWalker {
bool HasFoundReference = false;
const Decl *Search;
bool walkToExprPre(Expr *E) override;
DeclReferenceFinder(const Decl *Search) : Search(Search) {}
public:
/// Returns \c true if \p node contains a reference to \p Search, \c false
/// otherwise.
static bool containsReference(ASTNode Node, const ValueDecl *Search);
};
/// Builds up async-converted code for an AST node.
///
/// If it is a function, its declaration will have `async` added. If a
/// completion handler is present, it will be removed and the return type of
/// the function will reflect the parameters of the handler, including an
/// added `throws` if necessary.
///
/// Calls to the completion handler are replaced with either a `return` or
/// `throws` depending on the arguments.
///
/// Calls to functions with an async alternative will be replaced with a call
/// to the alternative, possibly wrapped in a do/catch. The do/catch is skipped
/// if the closure either:
/// 1. Has no error
/// 2. Has an error but no error handling (eg. just ignores)
/// 3. Has error handling that only calls the containing function's handler
/// with an error matching the error argument
///
/// (2) is technically not the correct translation, but in practice it's likely
/// the code a user would actually want.
///
/// If the success vs error handling split inside the closure cannot be
/// determined and the closure takes regular parameters (ie. not a Result), a
/// fallback translation is used that keeps all the same variable names and
/// simply moves the code within the closure out.
///
/// The fallback is generally avoided, however, since it's quite unlikely to be
/// the code the user intended. In most cases the refactoring will continue,
/// with any unhandled decls wrapped in placeholders instead.
class AsyncConverter : private SourceEntityWalker {
struct Scope {
llvm::DenseSet<DeclBaseName> Names;
/// If this scope is wrapped in a \c withChecked(Throwing)Continuation, the
/// name of the continuation that must be resumed where there previously was
/// a call to the function's completion handler.
/// Otherwise an empty identifier.
Identifier ContinuationName;
Scope(Identifier ContinuationName)
: Names(), ContinuationName(ContinuationName) {}
/// Whether this scope is wrapped in a \c withChecked(Throwing)Continuation.
bool isWrappedInContination() const { return !ContinuationName.empty(); }
};
SourceFile *SF;
SourceManager &SM;
DiagnosticEngine &DiagEngine;
// Node to convert
ASTNode StartNode;
// Completion handler of `StartNode` (if it's a function with an async
// alternative)
AsyncHandlerParamDesc TopHandler;
SmallString<0> Buffer;
llvm::raw_svector_ostream OS;
// Decls where any force unwrap or optional chain of that decl should be
// elided, e.g for a previously optional closure parameter that has become a
// non-optional local.
llvm::DenseSet<const Decl *> Unwraps;
// Decls whose references should be replaced with, either because they no
// longer exist or are a different type. Any replaced code should ideally be
// handled by the refactoring properly, but that's not possible in all cases
llvm::DenseSet<const Decl *> Placeholders;
// Mapping from decl -> name, used as the name of possible new local
// declarations of old completion handler parametes, as well as the
// replacement for other hoisted declarations and their references
llvm::DenseMap<const Decl *, Identifier> Names;
/// The scopes (containing all name decls and whether the scope is wrapped in
/// a continuation) as the AST is being walked. The first element is the
/// initial scope and the last is the current scope.
llvm::SmallVector<Scope, 4> Scopes;
// Mapping of \c BraceStmt -> declarations referenced in that statement
// without first being declared. These are used to fill the \c ScopeNames
// map on entering that scope.
ScopedDeclCollector ScopedDecls;
/// The switch statements that have been re-written by this transform.
llvm::DenseSet<SwitchStmt *> HandledSwitches;
// The last source location that has been output. Used to output the source
// between handled nodes
SourceLoc LastAddedLoc;
// Number of expressions (or pattern binding decl) currently nested in, taking
// into account hoisting and the possible removal of ifs/switches
int NestedExprCount = 0;
// Whether a completion handler body is currently being hoisted out of its
// call
bool Hoisting = false;
/// Whether a pattern is currently being converted.
bool ConvertingPattern = false;
/// A mapping of inline patterns to print for closure parameters.
using InlinePatternsToPrint = llvm::DenseMap<const Decl *, const Pattern *>;
public:
/// Convert a function
AsyncConverter(SourceFile *SF, SourceManager &SM,
DiagnosticEngine &DiagEngine, AbstractFunctionDecl *FD,
const AsyncHandlerParamDesc &TopHandler)
: SF(SF), SM(SM), DiagEngine(DiagEngine), StartNode(FD),
TopHandler(TopHandler), OS(Buffer) {
Placeholders.insert(TopHandler.getHandler());
ScopedDecls.collect(FD);
// Shouldn't strictly be necessary, but prefer possible shadowing over
// crashes caused by a missing scope
addNewScope({});
}
/// Convert a call
AsyncConverter(SourceFile *SF, SourceManager &SM,
DiagnosticEngine &DiagEngine, CallExpr *CE, BraceStmt *Scope)
: SF(SF), SM(SM), DiagEngine(DiagEngine), StartNode(CE), OS(Buffer) {
ScopedDecls.collect(CE);
// Create the initial scope, can be more accurate than the general
// \c ScopedDeclCollector as there is a starting point.
llvm::DenseSet<const Decl *> UsedDecls;
DeclCollector::collect(Scope, *SF, UsedDecls);
ReferenceCollector::collect(StartNode, Scope, *SF, UsedDecls);
addNewScope(UsedDecls);
}
ASTContext &getASTContext() const { return SF->getASTContext(); }
bool convert();
/// When adding an async alternative method for the function declaration \c
/// FD, this function tries to create a function body for the legacy function
/// (the one with a completion handler), which calls the newly converted async
/// function. There are certain situations in which we fail to create such a
/// body, e.g. if the completion handler has the signature `(String, Error?)
/// -> Void` in which case we can't synthesize the result of type \c String in
/// the error case.
bool createLegacyBody();
/// Creates an async alternative function that forwards onto the completion
/// handler function through
/// withCheckedContinuation/withCheckedThrowingContinuation.
bool createAsyncWrapper();
void replace(ASTNode Node, SourceEditConsumer &EditConsumer,
SourceLoc StartOverride = SourceLoc());
void insertAfter(ASTNode Node, SourceEditConsumer &EditConsumer);
private:
bool canCreateLegacyBody();
/// Prints a tuple of elements, or a lone single element if only one is
/// present, using the provided printing function.
template <typename Container, typename PrintFn>
void addTupleOf(const Container &Elements, llvm::raw_ostream &OS,
PrintFn PrintElt) {
if (Elements.size() == 1) {
PrintElt(Elements[0]);
return;
}
OS << tok::l_paren;
llvm::interleave(Elements, PrintElt, [&]() { OS << tok::comma << " "; });
OS << tok::r_paren;
}
/// Retrieve the completion handler closure argument for an async wrapper
/// function.
std::string
getAsyncWrapperCompletionClosure(StringRef ContName,
const AsyncHandlerParamDesc &HandlerDesc);
/// Retrieves the SourceRange of the preceding comment, or an invalid range if
/// there is no preceding comment.
CharSourceRange getPrecedingCommentRange(SourceLoc Loc);
/// Retrieves the location for the start of a comment attached to the token
/// at the provided location, or the location itself if there is no comment.
SourceLoc getLocIncludingPrecedingComment(SourceLoc Loc);
/// If the provided SourceLoc has a preceding comment, print it out.
void printCommentIfNeeded(SourceLoc Loc);
void convertNodes(const NodesToPrint &ToPrint);
void convertNode(ASTNode Node, SourceLoc StartOverride = {},
bool ConvertCalls = true,
bool IncludePrecedingComment = true);
void convertPattern(const Pattern *P);
/// Check whether \p Node requires the remainder of this scope to be wrapped
/// in a \c withChecked(Throwing)Continuation. If it is necessary, add
/// a call to \c withChecked(Throwing)Continuation and modify the current
/// scope (\c Scopes.back() ) so that it knows it's wrapped in a continuation.
///
/// Wrapping a node in a continuation is necessary if the following conditions
/// are satisfied:
/// - It contains a reference to the \c TopHandler's completion hander,
/// because these completion handler calls need to be promoted to \c return
/// statements in the refactored method, but
/// - We cannot hoist the completion handler of \p Node, because it doesn't
/// have an async alternative by our heuristics (e.g. because of a
/// completion handler name mismatch or because it also returns a value
/// synchronously).
void wrapScopeInContinationIfNecessary(ASTNode Node);
bool walkToPatternPre(Pattern *P) override;
bool walkToDeclPre(Decl *D, CharSourceRange Range) override;
bool walkToDeclPost(Decl *D) override;
bool walkToExprPre(Expr *E) override;
bool replaceRangeWithPlaceholder(SourceRange range);
bool walkToExprPost(Expr *E) override;
bool walkToStmtPre(Stmt *S) override;
bool walkToStmtPost(Stmt *S) override;
bool addCustom(SourceRange Range, llvm::function_ref<void()> Custom = {});
/// Insert custom text at the given \p Loc that shouldn't replace any existing
/// source code.
bool insertCustom(SourceLoc Loc, llvm::function_ref<void()> Custom = {});
void addRange(SourceLoc Start, SourceLoc End, bool ToEndOfToken = false);
void addRange(SourceRange Range, bool ToEndOfToken = false);
void addFuncDecl(const FuncDecl *FD);
void addFallbackVars(ArrayRef<const ParamDecl *> FallbackParams,
const ClosureCallbackParams &AllParams);
void addDo();
/// Assuming that \p Result represents an error result to completion handler,
/// returns \c true if the error has already been handled through a
/// 'try await'.
bool isErrorAlreadyHandled(HandlerResult Result);
/// Returns \c true if the source representation of \p E can be interpreted
/// as an expression returning an Optional value.
bool isExpressionOptional(Expr *E);
/// Converts a call \p CE to a completion handler. Depending on the call it
/// will be interpreted as a call that's returning a success result, an error
/// or, if the call is completely ambiguous, adds an if-let that checks if the
/// error is \c nil at runtime and dispatches to the success or error case
/// depending on it.
/// \p AddConvertedHandlerCall needs to add the converted version of the
/// completion handler. Depending on the given \c HandlerResult, it must be
/// intepreted as a success or error call.
/// \p AddConvertedErrorCall must add the converted equivalent of returning an
/// error. The passed \c StringRef contains the name of a variable that is of
/// type 'Error'.
void convertHandlerCall(
const CallExpr *CE,
llvm::function_ref<void(HandlerResult)> AddConvertedHandlerCall,
llvm::function_ref<void(StringRef)> AddConvertedErrorCall);
/// Convert a call \p CE to a completion handler to its 'return' or 'throws'
/// equivalent.
void convertHandlerToReturnOrThrows(const CallExpr *CE);
/// Convert the call \p CE to a completion handler to its 'return' or 'throws'
/// equivalent, where \p Result determines whether the call should be
/// interpreted as an error or success call.
void convertHandlerToReturnOrThrowsImpl(const CallExpr *CE,
HandlerResult Result);
/// Convert a call \p CE to a completion handler to resumes of the
/// continuation that's currently on top of the stack.
void convertHandlerToContinuationResume(const CallExpr *CE);
/// Convert a call \p CE to a completion handler to resumes of the
/// continuation that's currently on top of the stack.
/// \p Result determines whether the call should be interpreted as a success
/// or error call.
void convertHandlerToContinuationResumeImpl(const CallExpr *CE,
HandlerResult Result);
/// From the given expression \p E, which is an argument to a function call,
/// extract the passed closure if there is one. Otherwise return \c nullptr.
ClosureExpr *extractCallback(Expr *E);
/// Callback arguments marked as e.g. `@convention(block)` produce arguments
/// that are `FunctionConversionExpr`.
/// We don't care about the conversions and want to shave them off.
Expr *lookThroughFunctionConversionExpr(Expr *E);
void addHoistedCallback(const CallExpr *CE,
const AsyncHandlerParamDesc &HandlerDesc);
/// Add a binding to a known bool flag that indicates success or failure.
void addBoolFlagParamBindingIfNeeded(std::optional<KnownBoolFlagParam> Flag,
BlockKind Block);
/// Add a call to the async alternative of \p CE and convert the \p Callback
/// to be executed after the async call. \p HandlerDesc describes the
/// completion handler in the function that's called by \p CE and \p ArgList
/// are the arguments being passed in \p CE.
void addHoistedClosureCallback(const CallExpr *CE,
const AsyncHandlerParamDesc &HandlerDesc,
const ClosureExpr *Callback);
/// Add a call to the async alternative of \p FD. Afterwards, pass the results
/// of the async call to the completion handler, named \p HandlerName and
/// described by \p HandlerDesc.
/// \p AddAwaitCall adds the call to the refactored async method to the output
/// stream without storing the result to any variables.
/// This is used when the user didn't use a closure for the callback, but
/// passed in a variable or function name for the completion handler.
void addHoistedNamedCallback(const FuncDecl *FD,
const AsyncHandlerDesc &HandlerDesc,
StringRef HandlerName,
std::function<void(void)> AddAwaitCall);
/// Checks whether a binding pattern for a given decl can be printed inline in
/// an await call, e.g 'let ((x, y), z) = await foo()', where '(x, y)' is the
/// inline pattern.
const Pattern *
bindingPatternToPrintInline(const Decl *D, const ClassifiedBlock &Block,
const ClosureExpr *CallbackClosure);
/// Retrieve a map of patterns to print inline for an array of param decls.
InlinePatternsToPrint
getInlinePatternsToPrint(const ClassifiedBlock &Block,
ArrayRef<const ParamDecl *> Params,
const ClosureExpr *CallbackClosure);
/// Print any out of line binding patterns that could not be printed as inline
/// patterns. These typically appear directly after an await call, e.g:
/// \code
/// let x = await foo()
/// let (y, z) = x
/// \endcode
void
printOutOfLineBindingPatterns(const ClassifiedBlock &Block,
const InlinePatternsToPrint &InlinePatterns);
/// Prints an \c await call to an \c async function, binding any return values
/// into variables.
///
/// \param CE The call expr to convert.
/// \param SuccessBlock The nodes present in the success block following the
/// call.
/// \param SuccessParams The success parameters, which will be printed as
/// return values.
/// \param InlinePatterns A map of patterns that can be printed inline for
/// a given param.
/// \param HandlerDesc A description of the completion handler.
/// \param AddDeclarations Whether or not to add \c let or \c var keywords to
/// the return value bindings.
void addAwaitCall(const CallExpr *CE, const ClassifiedBlock &SuccessBlock,
ArrayRef<const ParamDecl *> SuccessParams,
const InlinePatternsToPrint &InlinePatterns,
const AsyncHandlerParamDesc &HandlerDesc,
bool AddDeclarations);
void addFallbackCatch(const ClosureCallbackParams &Params);
void addCatch(const ParamDecl *ErrParam);
void preparePlaceholdersAndUnwraps(AsyncHandlerDesc HandlerDesc,
const ClosureCallbackParams &Params,
BlockKind Block);
/// Add a mapping from each passed parameter to a new name, possibly
/// synthesizing a new one if hoisting it would cause a redeclaration or
/// shadowing. If there's no bound name and \c AddIfMissing is false, no
/// name will be added.
void prepareNames(const ClassifiedBlock &Block,
ArrayRef<const ParamDecl *> Params,
const InlinePatternsToPrint &InlinePatterns,
bool AddIfMissing = true);
/// Returns a unique name using \c Name as base that doesn't clash with any
/// other names in the current scope.
Identifier createUniqueName(StringRef Name);
/// Create a unique name for the variable declared by \p D that doesn't
/// clash with any other names in scope, using \p BoundName as the base name
/// if not empty and the name of \p D otherwise. Adds this name to both
/// \c Names and the current scope's names (\c Scopes.Names).
Identifier assignUniqueName(const Decl *D, StringRef BoundName);
StringRef newNameFor(const Decl *D, bool Required = true);
void addNewScope(const llvm::DenseSet<const Decl *> &Decls);
void clearNames(ArrayRef<const ParamDecl *> Params);
/// Adds a forwarding call to the old completion handler function, with
/// \p HandlerReplacement that allows for a custom replacement or, if empty,
/// removal of the completion handler closure.
void addForwardingCallTo(const FuncDecl *FD, StringRef HandlerReplacement);
/// Adds a forwarded error argument to a completion handler call. If the error
/// type of \p HandlerDesc is more specialized than \c Error, an
/// 'as! CustomError' cast to the more specialized error type will be added to
/// the output stream.
void addForwardedErrorArgument(StringRef ErrorName,
const AsyncHandlerDesc &HandlerDesc);
/// If \p T has a natural default value like \c nil for \c Optional or \c ()
/// for \c Void, add that default value to the output. Otherwise, add a
/// placeholder that contains \p T's name as the hint.
void addDefaultValueOrPlaceholder(Type T);
/// Adds the \c Index -th parameter to the completion handler described by \p
/// HanderDesc.
/// If \p ResultName is not empty, it is assumed that a variable with that
/// name contains the result returned from the async alternative. If the
/// callback also takes an error parameter, \c nil passed to the completion
/// handler for the error. If \p ResultName is empty, it is a assumed that a
/// variable named 'error' contains the error thrown from the async method and
/// 'nil' will be passed to the completion handler for all result parameters.
void addCompletionHandlerArgument(size_t Index, StringRef ResultName,
const AsyncHandlerDesc &HandlerDesc);
/// Add a call to the completion handler named \p HandlerName and described by
/// \p HandlerDesc, passing all the required arguments. See \c
/// getCompletionHandlerArgument for how the arguments are synthesized.
void addCallToCompletionHandler(StringRef ResultName,
const AsyncHandlerDesc &HandlerDesc,
StringRef HandlerName);
/// Adds the result type of a refactored async function that previously
/// returned results via a completion handler described by \p HandlerDesc.
void addAsyncFuncReturnType(const AsyncHandlerDesc &HandlerDesc);
/// If \p FD is generic, adds a type annotation with the return type of the
/// converted async function. This is used when creating a legacy function,
/// calling the converted 'async' function so that the generic parameters of
/// the legacy function are passed to the generic function. For example for
/// \code
/// func foo<GenericParam>() async -> GenericParam {}
/// \endcode
/// we generate
/// \code
/// func foo<GenericParam>(completion: (GenericParam) -> Void) {
/// Task {
/// let result: GenericParam = await foo()
/// <------------>
/// completion(result)
/// }
/// }
/// \endcode
/// This function adds the range marked by \c <----->
void addResultTypeAnnotationIfNecessary(const FuncDecl *FD,
const AsyncHandlerDesc &HandlerDesc);
};
} // namespace asyncrefactorings
} // namespace refactoring
} // namespace swift
#endif
|