1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
//===--- RemoteAST.cpp ----------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the RemoteAST interface.
//
//===----------------------------------------------------------------------===//
#include "swift/RemoteAST/RemoteAST.h"
#include "swift/Remote/MetadataReader.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTDemangler.h"
#include "swift/AST/Decl.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/TypeRepr.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Mangler.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/Demangling/Demangler.h"
#include "llvm/ADT/StringSwitch.h"
// TODO: Develop a proper interface for this.
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/SILOptions.h"
#include "swift/SIL/SILModule.h"
#include "../IRGen/IRGenModule.h"
#include "../IRGen/FixedTypeInfo.h"
#include "../IRGen/GenClass.h"
#include "../IRGen/GenStruct.h"
#include "../IRGen/GenTuple.h"
#include "../IRGen/MemberAccessStrategy.h"
using namespace swift;
using namespace swift::remote;
using namespace swift::remoteAST;
using irgen::Alignment;
using irgen::Size;
static inline RemoteAddress operator+(RemoteAddress address, Size offset) {
return RemoteAddress(address.getAddressData() + offset.getValue());
}
namespace {
/// A "minimal" class for querying IRGen.
struct IRGenContext {
const IRGenOptions IROpts;
SILOptions SILOpts;
Lowering::TypeConverter TC;
std::unique_ptr<SILModule> SILMod;
irgen::IRGenerator IRGen;
irgen::IRGenModule IGM;
private:
IRGenContext(ASTContext &ctx, ModuleDecl *module)
: IROpts(createIRGenOptions()),
TC(*module),
SILMod(SILModule::createEmptyModule(module, TC, SILOpts)),
IRGen(IROpts, *SILMod),
IGM(IRGen, IRGen.createTargetMachine()) {}
static IRGenOptions createIRGenOptions() {
IRGenOptions IROpts;
return IROpts;
}
public:
static std::unique_ptr<IRGenContext>
create(ASTContext &ctx, DeclContext *nominalDC) {
auto module = nominalDC->getParentModule();
return std::unique_ptr<IRGenContext>(new IRGenContext(ctx, module));
}
};
/// The basic implementation of the RemoteASTContext interface.
/// The template subclasses do target-specific logic.
class RemoteASTContextImpl {
std::unique_ptr<IRGenContext> IRGen;
std::optional<Failure> CurFailure;
public:
RemoteASTContextImpl() = default;
virtual ~RemoteASTContextImpl() = default;
virtual Result<Type>
getTypeForRemoteTypeMetadata(RemoteAddress metadata, bool skipArtificial) = 0;
virtual Result<MetadataKind>
getKindForRemoteTypeMetadata(RemoteAddress metadata) = 0;
virtual Result<NominalTypeDecl*>
getDeclForRemoteNominalTypeDescriptor(RemoteAddress descriptor) = 0;
virtual Result<RemoteAddress>
getHeapMetadataForObject(RemoteAddress object) = 0;
virtual Result<OpenedExistential>
getDynamicTypeAndAddressForError(RemoteAddress object) = 0;
virtual Result<OpenedExistential>
getDynamicTypeAndAddressForExistential(RemoteAddress object,
Type staticType) = 0;
virtual Result<Type>
getUnderlyingTypeForOpaqueType(remote::RemoteAddress opaqueDescriptor,
SubstitutionMap substitutions,
unsigned ordinal) = 0;
Result<uint64_t>
getOffsetOfMember(Type type, RemoteAddress optMetadata, StringRef memberName){
// Soundness check: obviously invalid arguments.
if (!type || memberName.empty())
return Result<uint64_t>::emplaceFailure(Failure::BadArgument);
// Soundness check: if the caller gave us a dependent type, there's no way
// we can handle that.
if (type->hasTypeParameter() || type->hasArchetype())
return Result<uint64_t>::emplaceFailure(Failure::DependentArgument);
// Split into cases.
if (auto typeDecl = type->getNominalOrBoundGenericNominal()) {
return getOffsetOfField(type, typeDecl, optMetadata, memberName);
} else if (auto tupleType = type->getAs<TupleType>()) {
return getOffsetOfTupleElement(tupleType, optMetadata, memberName);
} else {
return Result<uint64_t>::emplaceFailure(Failure::TypeHasNoSuchMember,
memberName.str());
}
}
protected:
template <class T, class DefaultFailureKindTy, class... DefaultFailureArgTys>
Result<T> getFailureAsResult(DefaultFailureKindTy defaultFailureKind,
DefaultFailureArgTys &&...defaultFailureArgs) {
// If we already have a failure, use that.
if (CurFailure) {
Result<T> result = std::move(*CurFailure);
CurFailure.reset();
return result;
}
// Otherwise, use the default failure.
return Result<T>::emplaceFailure(defaultFailureKind,
std::forward<DefaultFailureArgTys>(defaultFailureArgs)...);
}
template <class T>
Result<T> getFailure() {
return getFailureAsResult<T>(Failure::Unknown);
}
template <class T, class KindTy, class... ArgTys>
Result<T> fail(KindTy kind, ArgTys &&...args) {
return Result<T>::emplaceFailure(kind, std::forward<ArgTys>(args)...);
}
private:
virtual ASTBuilder &getBuilder() = 0;
virtual MemoryReader &getReader() = 0;
virtual bool readWordOffset(RemoteAddress address, int64_t *offset) = 0;
virtual std::unique_ptr<IRGenContext> createIRGenContext() = 0;
virtual Result<uint64_t>
getOffsetOfTupleElementFromMetadata(RemoteAddress metadata,
unsigned elementIndex) = 0;
virtual Result<uint64_t>
getOffsetOfFieldFromMetadata(RemoteAddress metadata,
StringRef memberName) = 0;
IRGenContext *getIRGen() {
if (!IRGen) IRGen = createIRGenContext();
return IRGen.get();
}
Result<uint64_t>
getOffsetOfField(Type type, NominalTypeDecl *typeDecl,
RemoteAddress optMetadata, StringRef memberName) {
if (!isa<StructDecl>(typeDecl) && !isa<ClassDecl>(typeDecl))
return fail<uint64_t>(Failure::Unimplemented,
"access members of this kind of type");
// Try to find the member.
VarDecl *member = findField(typeDecl, memberName);
// If we found a member, try to find its offset statically.
if (member && member->hasStorage() && !typeDecl->isResilient()) {
if (auto irgen = getIRGen()) {
return getOffsetOfFieldFromIRGen(irgen->IGM, type, typeDecl,
optMetadata, member);
}
}
// Try searching the metadata for a member with the given name.
if (optMetadata) {
return getOffsetOfFieldFromMetadata(optMetadata, memberName);
}
// Okay, that's everything we know how to try.
// Use a specialized diagnostic if we couldn't find any such member.
if (!member) {
return fail<uint64_t>(Failure::TypeHasNoSuchMember, memberName.str());
}
return fail<uint64_t>(Failure::Unknown);
}
/// Look for an instance property of the given nominal type that's
/// known to be stored.
VarDecl *findField(NominalTypeDecl *typeDecl, StringRef memberName) {
for (auto field : typeDecl->getStoredProperties()) {
if (field->getName().str() == memberName)
return field;
}
return nullptr;
}
using MemberAccessStrategy = irgen::MemberAccessStrategy;
Result<uint64_t>
getOffsetOfFieldFromIRGen(irgen::IRGenModule &IGM, Type type,
NominalTypeDecl *typeDecl,
RemoteAddress optMetadata, VarDecl *member) {
SILType loweredTy = IGM.getLoweredType(type);
MemberAccessStrategy strategy =
(isa<StructDecl>(typeDecl)
? getPhysicalStructMemberAccessStrategy(IGM, loweredTy, member)
: getPhysicalClassMemberAccessStrategy(IGM, loweredTy, member));
switch (strategy.getKind()) {
case MemberAccessStrategy::Kind::Complex:
return fail<uint64_t>(Failure::Unimplemented,
"access members with complex storage");
case MemberAccessStrategy::Kind::DirectFixed:
return uint64_t(strategy.getDirectOffset().getValue());
case MemberAccessStrategy::Kind::DirectGlobal: {
RemoteAddress directOffsetAddress =
getReader().getSymbolAddress(strategy.getDirectGlobalSymbol());
if (!directOffsetAddress)
return getFailure<uint64_t>();
return readDirectOffset(directOffsetAddress,
strategy.getDirectOffsetKind());
}
case MemberAccessStrategy::Kind::IndirectFixed: {
// We can't apply indirect offsets without metadata.
if (!optMetadata)
return fail<uint64_t>(Failure::Unimplemented,
"access generically-offset members without "
"metadata");
Size indirectOffset = strategy.getIndirectOffset();
return readIndirectOffset(optMetadata, indirectOffset,
strategy.getDirectOffsetKind());
}
case MemberAccessStrategy::Kind::IndirectGlobal: {
// We can't apply indirect offsets without metadata.
if (!optMetadata)
return fail<uint64_t>(Failure::Unimplemented,
"access generically-offset members without "
"metadata");
RemoteAddress indirectOffsetAddress =
getReader().getSymbolAddress(strategy.getIndirectGlobalSymbol());
Size indirectOffset;
if (!readOffset(indirectOffsetAddress,
strategy.getIndirectOffsetKind(),
indirectOffset))
return getFailure<uint64_t>();
return readIndirectOffset(optMetadata, indirectOffset,
strategy.getDirectOffsetKind());
}
}
llvm_unreachable("bad member MemberAccessStrategy");
}
bool readOffset(RemoteAddress address,
MemberAccessStrategy::OffsetKind kind,
Size &offset) {
switch (kind) {
case MemberAccessStrategy::OffsetKind::Bytes_Word: {
int64_t rawOffset;
if (!readWordOffset(address, &rawOffset))
return false;
offset = Size(rawOffset);
return true;
}
}
llvm_unreachable("bad offset kind");
}
Result<uint64_t> readIndirectOffset(RemoteAddress metadata,
Size indirectOffset,
MemberAccessStrategy::OffsetKind kind) {
RemoteAddress directOffsetAddress = metadata + indirectOffset;
return readDirectOffset(directOffsetAddress, kind);
}
Result<uint64_t> readDirectOffset(RemoteAddress directOffsetAddress,
MemberAccessStrategy::OffsetKind kind) {
Size directOffset;
if (!readOffset(directOffsetAddress, kind, directOffset))
return getFailure<uint64_t>();
return uint64_t(directOffset.getValue());
}
/// Read the
Result<uint64_t>
getOffsetOfTupleElement(TupleType *type, RemoteAddress optMetadata,
StringRef memberName) {
// Check that the member "name" is a valid index into the tuple.
unsigned targetIndex;
if (memberName.getAsInteger(10, targetIndex) ||
targetIndex >= type->getNumElements())
return fail<uint64_t>(Failure::TypeHasNoSuchMember, memberName.str());
// Fast path: element 0 is always at offset 0.
if (targetIndex == 0)
return uint64_t(0);
// Create an IRGen instance.
auto irgen = getIRGen();
if (!irgen)
return Result<uint64_t>::emplaceFailure(Failure::Unknown);
auto &IGM = irgen->IGM;
SILType loweredTy = IGM.getLoweredType(type);
// Only the runtime metadata knows the offsets of resilient members.
auto &typeInfo = IGM.getTypeInfo(loweredTy);
if (!isa<irgen::FixedTypeInfo>(&typeInfo))
return Result<uint64_t>::emplaceFailure(Failure::NotFixedLayout);
// If the type has a statically fixed offset, return that.
if (auto offset =
irgen::getFixedTupleElementOffset(IGM, loweredTy, targetIndex))
return offset->getValue();
// If we have metadata, go load from that.
if (optMetadata)
return getOffsetOfTupleElementFromMetadata(optMetadata, targetIndex);
// Okay, reproduce tuple layout.
// Find the last element with a known offset. Note that we don't
// have to ask IRGen about element 0 because we know its size is zero.
Size lastOffset = Size(0);
unsigned lastIndex = targetIndex;
for (--lastIndex; lastIndex != 0; --lastIndex) {
if (auto offset =
irgen::getFixedTupleElementOffset(IGM, loweredTy, lastIndex)) {
lastOffset = *offset;
break;
}
}
// Okay, iteratively build up from there.
for (; ; ++lastIndex) {
// Try to get the size and alignment of this element.
SILType eltTy = loweredTy.getTupleElementType(lastIndex);
auto sizeAndAlignment = getTypeSizeAndAlignment(IGM, eltTy);
if (!sizeAndAlignment) return getFailure<uint64_t>();
// Round up to the alignment of the element.
lastOffset = lastOffset.roundUpToAlignment(sizeAndAlignment->second);
// If this is the target, we're done.
if (lastIndex == targetIndex)
return lastOffset.getValue();
// Otherwise, skip forward by the size of the element.
lastOffset += sizeAndAlignment->first;
}
llvm_unreachable("didn't reach target index");
}
/// Attempt to discover the size and alignment of the given type.
std::optional<std::pair<Size, Alignment>>
getTypeSizeAndAlignment(irgen::IRGenModule &IGM, SILType eltTy) {
auto &eltTI = IGM.getTypeInfo(eltTy);
if (auto fixedTI = dyn_cast<irgen::FixedTypeInfo>(&eltTI)) {
return std::make_pair(fixedTI->getFixedSize(),
fixedTI->getFixedAlignment());
}
// TODO: handle resilient types
return std::nullopt;
}
};
/// A template for generating target-specific implementations of the
/// RemoteASTContext interface.
template <class Runtime>
class RemoteASTContextConcreteImpl final : public RemoteASTContextImpl {
MetadataReader<Runtime, ASTBuilder> Reader;
ASTBuilder &getBuilder() override {
return Reader.Builder;
}
MemoryReader &getReader() override {
return *Reader.Reader;
}
bool readWordOffset(RemoteAddress address, int64_t *extendedOffset) override {
using unsigned_size_t = typename Runtime::StoredSize;
using signed_size_t = typename std::make_signed<unsigned_size_t>::type;
signed_size_t offset;
if (!getReader().readInteger(address, &offset))
return false;
*extendedOffset = offset;
return true;
}
public:
RemoteASTContextConcreteImpl(std::shared_ptr<MemoryReader> &&reader,
ASTContext &ctx)
: Reader(std::move(reader), ctx, GenericSignature()) {}
Result<Type> getTypeForRemoteTypeMetadata(RemoteAddress metadata,
bool skipArtificial) override {
if (auto result = Reader.readTypeFromMetadata(metadata.getAddressData(),
skipArtificial))
return result;
return getFailure<Type>();
}
Result<MetadataKind>
getKindForRemoteTypeMetadata(RemoteAddress metadata) override {
auto result = Reader.readKindFromMetadata(metadata.getAddressData());
if (result)
return *result;
return getFailure<MetadataKind>();
}
Result<NominalTypeDecl*>
getDeclForRemoteNominalTypeDescriptor(RemoteAddress descriptor) override {
if (auto result =
Reader.readNominalTypeFromDescriptor(descriptor.getAddressData()))
return dyn_cast<NominalTypeDecl>((GenericTypeDecl *) result);
return getFailure<NominalTypeDecl*>();
}
std::unique_ptr<IRGenContext> createIRGenContext() override {
return IRGenContext::create(getBuilder().getASTContext(),
getBuilder().getNotionalDC());
}
Result<uint64_t>
getOffsetOfTupleElementFromMetadata(RemoteAddress metadata,
unsigned index) override {
typename Runtime::StoredSize offset;
if (Reader.readTupleElementOffset(metadata.getAddressData(),
index, &offset))
return uint64_t(offset);
return getFailure<uint64_t>();
}
Result<uint64_t>
getOffsetOfFieldFromMetadata(RemoteAddress metadata,
StringRef memberName) override {
// TODO: this would be useful for resilience
return fail<uint64_t>(Failure::Unimplemented,
"look up field offset by name");
}
Result<RemoteAddress>
getHeapMetadataForObject(RemoteAddress object) override {
auto result = Reader.readMetadataFromInstance(object.getAddressData());
if (result) return RemoteAddress(*result);
return getFailure<RemoteAddress>();
}
Result<OpenedExistential>
getDynamicTypeAndAddressClassExistential(RemoteAddress object) {
auto pointerval = Reader.readResolvedPointerValue(object.getAddressData());
if (!pointerval)
return getFailure<OpenedExistential>();
auto result = Reader.readMetadataFromInstance(*pointerval);
if (!result)
return getFailure<OpenedExistential>();
auto typeResult = Reader.readTypeFromMetadata(result.value());
if (!typeResult)
return getFailure<OpenedExistential>();
return OpenedExistential(std::move(typeResult),
RemoteAddress(*pointerval));
}
Result<OpenedExistential>
getDynamicTypeAndAddressErrorExistential(RemoteAddress object,
bool dereference=true) {
if (dereference) {
auto pointerval = Reader.readResolvedPointerValue(object.getAddressData());
if (!pointerval)
return getFailure<OpenedExistential>();
object = RemoteAddress(*pointerval);
}
auto result =
Reader.readMetadataAndValueErrorExistential(object);
if (!result)
return getFailure<OpenedExistential>();
auto typeResult =
Reader.readTypeFromMetadata(result->MetadataAddress.getAddressData());
if (!typeResult)
return getFailure<OpenedExistential>();
// When the existential wraps a class type, LLDB expects that the
// address returned is the class instance itself and not the address
// of the reference.
auto payloadAddress = result->PayloadAddress;
if (!result->IsBridgedError &&
typeResult->getClassOrBoundGenericClass()) {
auto pointerval = Reader.readResolvedPointerValue(
payloadAddress.getAddressData());
if (!pointerval)
return getFailure<OpenedExistential>();
payloadAddress = RemoteAddress(*pointerval);
}
return OpenedExistential(std::move(typeResult),
std::move(payloadAddress));
}
Result<OpenedExistential>
getDynamicTypeAndAddressOpaqueExistential(RemoteAddress object) {
auto result = Reader.readMetadataAndValueOpaqueExistential(object);
if (!result)
return getFailure<OpenedExistential>();
auto typeResult =
Reader.readTypeFromMetadata(result->MetadataAddress.getAddressData());
if (!typeResult)
return getFailure<OpenedExistential>();
// When the existential wraps a class type, LLDB expects that the
// address returned is the class instance itself and not the address
// of the reference.
auto payloadAddress = result->PayloadAddress;
if (typeResult->getClassOrBoundGenericClass()) {
auto pointerval = Reader.readResolvedPointerValue(
payloadAddress.getAddressData());
if (!pointerval)
return getFailure<OpenedExistential>();
payloadAddress = RemoteAddress(*pointerval);
}
return OpenedExistential(std::move(typeResult),
std::move(payloadAddress));
}
Result<OpenedExistential>
getDynamicTypeAndAddressExistentialMetatype(RemoteAddress object) {
// The value of the address is just the input address.
// The type is obtained through the following sequence of steps:
// 1) Loading a pointer from the input address
// 2) Reading it as metadata and resolving the type
// 3) Wrapping the resolved type in an existential metatype.
auto pointerval = Reader.readResolvedPointerValue(object.getAddressData());
if (!pointerval)
return getFailure<OpenedExistential>();
auto typeResult = Reader.readTypeFromMetadata(*pointerval);
if (!typeResult)
return getFailure<OpenedExistential>();
auto wrappedType = ExistentialMetatypeType::get(typeResult);
if (!wrappedType)
return getFailure<OpenedExistential>();
return OpenedExistential(std::move(wrappedType),
std::move(object));
}
/// Resolve the dynamic type and the value address of an error existential
/// object, Unlike getDynamicTypeAndAddressForExistential(), this function
/// takes the address of the instance and not the address of the reference.
Result<OpenedExistential>
getDynamicTypeAndAddressForError(RemoteAddress object) override {
return getDynamicTypeAndAddressErrorExistential(object,
/*dereference=*/false);
}
/// Resolve the dynamic type and the value address of an existential,
/// given its address and its static type. For class and error existentials,
/// this API takes a pointer to the instance reference rather than the
/// instance reference itself.
Result<OpenedExistential>
getDynamicTypeAndAddressForExistential(RemoteAddress object,
Type staticType) override {
// If this is not an existential, give up.
if (!staticType->isAnyExistentialType())
return getFailure<OpenedExistential>();
// Handle the case where this is an ExistentialMetatype.
if (!staticType->isExistentialType())
return getDynamicTypeAndAddressExistentialMetatype(object);
// This should be an existential type at this point.
auto layout = staticType->getExistentialLayout();
switch (layout.getKind()) {
case ExistentialLayout::Kind::Class:
return getDynamicTypeAndAddressClassExistential(object);
case ExistentialLayout::Kind::Error:
return getDynamicTypeAndAddressErrorExistential(object);
case ExistentialLayout::Kind::Opaque:
return getDynamicTypeAndAddressOpaqueExistential(object);
}
llvm_unreachable("invalid type kind");
}
Result<Type>
getUnderlyingTypeForOpaqueType(remote::RemoteAddress opaqueDescriptor,
SubstitutionMap substitutions,
unsigned ordinal) override {
auto underlyingType = Reader
.readUnderlyingTypeForOpaqueTypeDescriptor(
opaqueDescriptor.getAddressData(), ordinal)
.getType();
if (!underlyingType)
return getFailure<Type>();
return underlyingType.subst(substitutions);
}
};
} // end anonymous namespace
static RemoteASTContextImpl *createImpl(ASTContext &ctx,
std::shared_ptr<MemoryReader> &&reader) {
auto &target = ctx.LangOpts.Target;
assert(target.isArch32Bit() || target.isArch64Bit());
bool objcInterop = ctx.LangOpts.EnableObjCInterop;
if (target.isArch32Bit()) {
if (objcInterop) {
using Target = External<WithObjCInterop<RuntimeTarget<4>>>;
return new RemoteASTContextConcreteImpl<Target>(std::move(reader), ctx);
} else {
using Target = External<NoObjCInterop<RuntimeTarget<4>>>;
return new RemoteASTContextConcreteImpl<Target>(std::move(reader), ctx);
}
} else {
if (objcInterop) {
using Target = External<WithObjCInterop<RuntimeTarget<8>>>;
return new RemoteASTContextConcreteImpl<Target>(std::move(reader), ctx);
} else {
using Target = External<NoObjCInterop<RuntimeTarget<8>>>;
return new RemoteASTContextConcreteImpl<Target>(std::move(reader), ctx);
}
}
}
static RemoteASTContextImpl *asImpl(void *impl) {
return static_cast<RemoteASTContextImpl*>(impl);
}
RemoteASTContext::RemoteASTContext(ASTContext &ctx,
std::shared_ptr<MemoryReader> reader)
: Impl(createImpl(ctx, std::move(reader))) {
}
RemoteASTContext::~RemoteASTContext() {
delete asImpl(Impl);
}
Result<Type>
RemoteASTContext::getTypeForRemoteTypeMetadata(RemoteAddress address,
bool skipArtificial) {
return asImpl(Impl)->getTypeForRemoteTypeMetadata(address, skipArtificial);
}
Result<MetadataKind>
RemoteASTContext::getKindForRemoteTypeMetadata(remote::RemoteAddress address) {
return asImpl(Impl)->getKindForRemoteTypeMetadata(address);
}
Result<NominalTypeDecl *>
RemoteASTContext::getDeclForRemoteNominalTypeDescriptor(RemoteAddress address) {
return asImpl(Impl)->getDeclForRemoteNominalTypeDescriptor(address);
}
Result<uint64_t>
RemoteASTContext::getOffsetOfMember(Type type, RemoteAddress optMetadata,
StringRef memberName) {
return asImpl(Impl)->getOffsetOfMember(type, optMetadata, memberName);
}
Result<remote::RemoteAddress>
RemoteASTContext::getHeapMetadataForObject(remote::RemoteAddress address) {
return asImpl(Impl)->getHeapMetadataForObject(address);
}
Result<OpenedExistential>
RemoteASTContext::getDynamicTypeAndAddressForError(
remote::RemoteAddress address) {
return asImpl(Impl)->getDynamicTypeAndAddressForError(address);
}
Result<OpenedExistential>
RemoteASTContext::getDynamicTypeAndAddressForExistential(
remote::RemoteAddress address, Type staticType) {
return asImpl(Impl)->getDynamicTypeAndAddressForExistential(address,
staticType);
}
Result<Type>
RemoteASTContext::getUnderlyingTypeForOpaqueType(
remote::RemoteAddress opaqueDescriptor,
SubstitutionMap substitutions,
unsigned ordinal) {
return asImpl(Impl)->getUnderlyingTypeForOpaqueType(opaqueDescriptor,
substitutions, ordinal);
}
|