1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
|
//===--- SILConstants.cpp - SIL constant representation -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILConstants.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/Demangling/Demangle.h"
#include "swift/SIL/SILBuilder.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/TrailingObjects.h"
using namespace swift;
namespace swift {
llvm::cl::opt<unsigned>
ConstExprLimit("constexpr-limit", llvm::cl::init(3072),
llvm::cl::desc("Number of instructions interpreted in a"
" constexpr function"));
}
template <typename... T, typename... U>
static InFlightDiagnostic diagnose(ASTContext &Context, SourceLoc loc,
Diag<T...> diag, U &&... args) {
// The lifetime of StringRef arguments will be extended as necessary by this
// utility. The copy happens in onTentativeDiagnosticFlush at the bottom of
// DiagnosticEngine.cpp, which is called when the destructor of the
// InFlightDiagnostic returned by diagnose runs.
return Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
//===----------------------------------------------------------------------===//
// SymbolicValue implementation
//===----------------------------------------------------------------------===//
void SymbolicValue::print(llvm::raw_ostream &os, unsigned indent) const {
os.indent(indent);
switch (representationKind) {
case RK_UninitMemory:
os << "uninit\n";
return;
case RK_Unknown: {
os << "unknown(" << (int)getUnknownReason().getKind() << "): ";
getUnknownNode()->dump();
return;
}
case RK_Metatype:
os << "metatype: ";
getMetatypeValue()->print(os);
os << "\n";
return;
case RK_Function: {
auto fn = getFunctionValue();
os << "fn: " << fn->getName() << ": ";
os << Demangle::demangleSymbolAsString(fn->getName());
os << "\n";
return;
}
case RK_Integer:
case RK_IntegerInline:
os << "int: " << getIntegerValue() << "\n";
return;
case RK_String:
os << "string: \"" << getStringValue() << "\"\n";
return;
case RK_Aggregate: {
ArrayRef<SymbolicValue> elements = getAggregateMembers();
switch (elements.size()) {
case 0:
os << "agg: 0 elements []\n";
return;
case 1:
os << "agg: 1 elt: ";
elements[0].print(os, indent + 2);
return;
default:
os << "agg: " << elements.size() << " elements [\n";
for (auto elt : elements)
elt.print(os, indent + 2);
os.indent(indent) << "]\n";
return;
}
}
case RK_Enum: {
auto *decl = getEnumValue();
os << "enum: ";
decl->print(os);
return;
}
case RK_EnumWithPayload: {
auto *decl = getEnumValue();
os << "enum: ";
decl->print(os);
os << ", payload: ";
getEnumPayloadValue().print(os, indent);
return;
}
case RK_DirectAddress:
case RK_DerivedAddress: {
SmallVector<unsigned, 4> accessPath;
SymbolicValueMemoryObject *memObject = getAddressValue(accessPath);
os << "address[" << memObject->getType() << "] ";
llvm::interleave(
accessPath.begin(), accessPath.end(), [&](unsigned idx) { os << idx; },
[&]() { os << ", "; });
os << "\n";
break;
}
case RK_ArrayStorage: {
CanType elementType;
ArrayRef<SymbolicValue> elements = getStoredElements(elementType);
os << "elements type: " << elementType << " size: " << elements.size();
switch (elements.size()) {
case 0:
os << " contents []\n";
return;
default:
os << " contents [\n";
for (auto elt : elements)
elt.print(os, indent + 2);
os.indent(indent) << "]\n";
return;
}
}
case RK_Array: {
os << getArrayType() << ": \n";
getStorageOfArray().print(os, indent);
return;
}
case RK_Closure: {
SymbolicClosure *clo = getClosure();
SILFunction *target = clo->getTarget();
std::string targetName = target->getName().str();
os << "closure: target: " << targetName;
ArrayRef<SymbolicClosureArgument> args = clo->getCaptures();
os << " captures [\n";
for (SymbolicClosureArgument closureArg : args) {
os.indent(indent + 2) << closureArg.first << "\n";
}
os.indent(indent) << "] values: [\n";
for (SymbolicClosureArgument closureArg : args) {
std::optional<SymbolicValue> value = closureArg.second;
if (!value.has_value()) {
os.indent(indent + 2) << "nil\n";
continue;
}
value->print(os, indent + 2);
}
os.indent(indent) << "]\n";
return;
}
}
}
void SymbolicValue::dump() const { print(llvm::errs()); }
/// For constant values, return the classification of this value. We have
/// multiple forms for efficiency, but provide a simpler interface to clients.
SymbolicValue::Kind SymbolicValue::getKind() const {
switch (representationKind) {
case RK_UninitMemory:
return UninitMemory;
case RK_Unknown:
return Unknown;
case RK_Metatype:
return Metatype;
case RK_Function:
return Function;
case RK_Aggregate:
return Aggregate;
case RK_Enum:
return Enum;
case RK_EnumWithPayload:
return EnumWithPayload;
case RK_Integer:
case RK_IntegerInline:
return Integer;
case RK_String:
return String;
case RK_DirectAddress:
case RK_DerivedAddress:
return Address;
case RK_ArrayStorage:
return ArrayStorage;
case RK_Array:
return Array;
case RK_Closure:
return Closure;
}
llvm_unreachable("covered switch");
}
/// Clone this SymbolicValue into the specified allocator and return the new
/// version. This only works for valid constants.
SymbolicValue
SymbolicValue::cloneInto(SymbolicValueAllocator &allocator) const {
auto thisRK = representationKind;
switch (thisRK) {
case RK_UninitMemory:
case RK_Unknown:
case RK_Metatype:
case RK_Function:
assert(0 && "cloning this representation kind is not supported");
case RK_Enum:
// These have trivial inline storage, just return a copy.
return *this;
case RK_IntegerInline:
case RK_Integer:
return SymbolicValue::getInteger(getIntegerValue(), allocator);
case RK_String:
return SymbolicValue::getString(getStringValue(), allocator);
case RK_Aggregate: {
auto elts = getAggregateMembers();
SmallVector<SymbolicValue, 4> results;
results.reserve(elts.size());
for (auto elt : elts)
results.push_back(elt.cloneInto(allocator));
return getAggregate(results, getAggregateType(), allocator);
}
case RK_EnumWithPayload: {
return getEnumWithPayload(
getEnumValue(), getEnumPayloadValue().cloneInto(allocator), allocator);
}
case RK_DirectAddress:
case RK_DerivedAddress: {
SmallVector<unsigned, 4> accessPath;
auto *memObject = getAddressValue(accessPath);
auto *newMemObject = SymbolicValueMemoryObject::create(
memObject->getType(), memObject->getValue().cloneInto(allocator),
allocator);
return getAddress(newMemObject, accessPath, allocator);
}
case RK_ArrayStorage: {
CanType elementType;
ArrayRef<SymbolicValue> oldElements = getStoredElements(elementType);
SmallVector<SymbolicValue, 4> clonedElements;
clonedElements.reserve(oldElements.size());
for (auto elem : oldElements)
clonedElements.push_back(elem.cloneInto(allocator));
return getSymbolicArrayStorage(clonedElements, elementType, allocator);
}
case RK_Array: {
SymbolicValue clonedStorage = getStorageOfArray().cloneInto(allocator);
return getArray(getArrayType(), clonedStorage, allocator);
}
case RK_Closure: {
SymbolicClosure *clo = getClosure();
ArrayRef<SymbolicClosureArgument> closureArgs = clo->getCaptures();
return SymbolicValue::makeClosure(clo->getTarget(), closureArgs,
clo->getCallSubstitutionMap(),
clo->getClosureInst(), allocator);
}
}
llvm_unreachable("covered switch");
}
bool SymbolicValue::containsOnlyConstants() const {
if (!isConstant())
return false;
auto thisRK = representationKind;
switch (thisRK) {
case RK_UninitMemory:
case RK_Unknown:
case RK_Metatype:
case RK_Function:
case RK_Enum:
case RK_IntegerInline:
case RK_Integer:
case RK_String:
case RK_Closure:
return true;
case RK_Aggregate: {
auto elts = getAggregateMembers();
for (auto elt : elts)
if (!elt.containsOnlyConstants())
return false;
return true;
}
case RK_EnumWithPayload: {
return getEnumPayloadValue().containsOnlyConstants();
}
case RK_DirectAddress:
case RK_DerivedAddress: {
auto *memObject = getAddressValueMemoryObject();
return memObject->getValue().containsOnlyConstants();
}
case RK_ArrayStorage: {
CanType elementType;
ArrayRef<SymbolicValue> elts = getStoredElements(elementType);
for (auto elt : elts)
if (!elt.containsOnlyConstants())
return false;
return true;
}
case RK_Array: {
return getStorageOfArray().containsOnlyConstants();
}
}
llvm_unreachable("covered switch");
}
//===----------------------------------------------------------------------===//
// SymbolicValueMemoryObject implementation
//===----------------------------------------------------------------------===//
SymbolicValueMemoryObject *
SymbolicValueMemoryObject::create(Type type, SymbolicValue value,
SymbolicValueAllocator &allocator) {
auto *result = allocator.allocate(sizeof(SymbolicValueMemoryObject),
alignof(SymbolicValueMemoryObject));
new (result) SymbolicValueMemoryObject(type, value);
return (SymbolicValueMemoryObject *)result;
}
//===----------------------------------------------------------------------===//
// Integers
//===----------------------------------------------------------------------===//
SymbolicValue SymbolicValue::getInteger(int64_t value, unsigned bitWidth) {
SymbolicValue result;
result.representationKind = RK_IntegerInline;
result.value.integerInline = value;
result.auxInfo.integerBitwidth = bitWidth;
return result;
}
SymbolicValue SymbolicValue::getInteger(const APInt &value,
SymbolicValueAllocator &allocator) {
// In the common case, we can form an inline representation.
unsigned numWords = value.getNumWords();
if (numWords == 1)
return getInteger(value.getRawData()[0], value.getBitWidth());
// Copy the integers from the APInt into the allocator.
auto *words = allocator.allocate<uint64_t>(numWords);
std::uninitialized_copy(value.getRawData(), value.getRawData() + numWords,
words);
SymbolicValue result;
result.representationKind = RK_Integer;
result.value.integer = words;
result.auxInfo.integerBitwidth = value.getBitWidth();
return result;
}
APInt SymbolicValue::getIntegerValue() const {
assert(getKind() == Integer);
if (representationKind == RK_IntegerInline) {
auto numBits = auxInfo.integerBitwidth;
return APInt(numBits, value.integerInline);
}
assert(representationKind == RK_Integer);
auto numBits = auxInfo.integerBitwidth;
auto numWords =
(numBits + APInt::APINT_BITS_PER_WORD - 1) / APInt::APINT_BITS_PER_WORD;
return APInt(numBits, {value.integer, numWords});
}
unsigned SymbolicValue::getIntegerValueBitWidth() const {
assert(getKind() == Integer);
assert (representationKind == RK_IntegerInline ||
representationKind == RK_Integer);
return auxInfo.integerBitwidth;
}
//===----------------------------------------------------------------------===//
// Strings
//===----------------------------------------------------------------------===//
// Returns a SymbolicValue representing a UTF-8 encoded string.
SymbolicValue SymbolicValue::getString(StringRef string,
SymbolicValueAllocator &allocator) {
// TODO: Could have an inline representation for strings if there was demand,
// just store a char[8] as the storage.
auto *resultPtr = allocator.allocate<char>(string.size());
std::uninitialized_copy(string.begin(), string.end(), resultPtr);
SymbolicValue result;
result.representationKind = RK_String;
result.value.string = resultPtr;
result.auxInfo.stringNumBytes = string.size();
return result;
}
// Returns the UTF-8 encoded string underlying a SymbolicValue.
StringRef SymbolicValue::getStringValue() const {
assert(getKind() == String);
assert(representationKind == RK_String);
return StringRef(value.string, auxInfo.stringNumBytes);
}
//===----------------------------------------------------------------------===//
// Aggregates
//===----------------------------------------------------------------------===//
namespace swift {
/// Representation of a constant aggregate namely a struct or a tuple.
struct AggregateSymbolicValue final
: private llvm::TrailingObjects<AggregateSymbolicValue, SymbolicValue> {
friend class llvm::TrailingObjects<AggregateSymbolicValue, SymbolicValue>;
const Type aggregateType;
const unsigned numElements;
static AggregateSymbolicValue *create(ArrayRef<SymbolicValue> members,
Type aggregateType,
SymbolicValueAllocator &allocator) {
auto byteSize =
AggregateSymbolicValue::totalSizeToAlloc<SymbolicValue>(members.size());
auto rawMem = allocator.allocate(byteSize, alignof(AggregateSymbolicValue));
// Placement initialize the object.
auto *aggregate =
::new (rawMem) AggregateSymbolicValue(aggregateType, members.size());
std::uninitialized_copy(members.begin(), members.end(),
aggregate->getTrailingObjects<SymbolicValue>());
return aggregate;
}
/// Return the type of the aggregate.
Type getAggregateType() const { return aggregateType; }
/// Return the symbolic values of members.
ArrayRef<SymbolicValue> getMemberValues() const {
return {getTrailingObjects<SymbolicValue>(), numElements};
}
// This is used by the llvm::TrailingObjects base class.
size_t numTrailingObjects(OverloadToken<SymbolicValue>) const {
return numElements;
}
private:
AggregateSymbolicValue() = delete;
AggregateSymbolicValue(const AggregateSymbolicValue &) = delete;
AggregateSymbolicValue(Type aggregateType, unsigned numElements)
: aggregateType(aggregateType), numElements(numElements) {}
};
} // namespace swift
SymbolicValue SymbolicValue::getAggregate(ArrayRef<SymbolicValue> members,
Type aggregateType,
SymbolicValueAllocator &allocator) {
SymbolicValue result;
result.representationKind = RK_Aggregate;
result.value.aggregate =
AggregateSymbolicValue::create(members, aggregateType, allocator);
return result;
}
ArrayRef<SymbolicValue> SymbolicValue::getAggregateMembers() const {
assert(getKind() == Aggregate);
return value.aggregate->getMemberValues();
}
Type SymbolicValue::getAggregateType() const {
assert(getKind() == Aggregate);
return value.aggregate->getAggregateType();
}
//===----------------------------------------------------------------------===//
// Unknown
//===----------------------------------------------------------------------===//
namespace swift {
/// When the value is Unknown, this contains information about the unfoldable
/// part of the computation.
struct alignas(SourceLoc) UnknownSymbolicValue final
: private llvm::TrailingObjects<UnknownSymbolicValue, SourceLoc> {
friend class llvm::TrailingObjects<UnknownSymbolicValue, SourceLoc>;
/// The value that was unfoldable.
SILNode *node;
/// A more explanatory reason for the value being unknown.
UnknownReason reason;
/// The number of elements in the call stack.
unsigned callStackSize;
static UnknownSymbolicValue *create(SILNode *node, UnknownReason reason,
ArrayRef<SourceLoc> elements,
SymbolicValueAllocator &allocator) {
auto byteSize =
UnknownSymbolicValue::totalSizeToAlloc<SourceLoc>(elements.size());
auto *rawMem = allocator.allocate(byteSize, alignof(UnknownSymbolicValue));
// Placement-new the value inside the memory we just allocated.
auto value = ::new (rawMem) UnknownSymbolicValue(
node, reason, static_cast<unsigned>(elements.size()));
std::uninitialized_copy(elements.begin(), elements.end(),
value->getTrailingObjects<SourceLoc>());
return value;
}
ArrayRef<SourceLoc> getCallStack() const {
return {getTrailingObjects<SourceLoc>(), callStackSize};
}
// This is used by the llvm::TrailingObjects base class.
size_t numTrailingObjects(OverloadToken<SourceLoc>) const {
return callStackSize;
}
private:
UnknownSymbolicValue() = delete;
UnknownSymbolicValue(const UnknownSymbolicValue &) = delete;
UnknownSymbolicValue(SILNode *node, UnknownReason reason,
unsigned callStackSize)
: node(node), reason(reason), callStackSize(callStackSize) {}
};
} // namespace swift
SymbolicValue SymbolicValue::getUnknown(SILNode *node, UnknownReason reason,
llvm::ArrayRef<SourceLoc> callStack,
SymbolicValueAllocator &allocator) {
assert(node && "node must be present");
SymbolicValue result;
result.representationKind = RK_Unknown;
result.value.unknown =
UnknownSymbolicValue::create(node, reason, callStack, allocator);
return result;
}
ArrayRef<SourceLoc> SymbolicValue::getUnknownCallStack() const {
assert(getKind() == Unknown);
return value.unknown->getCallStack();
}
SILNode *SymbolicValue::getUnknownNode() const {
assert(getKind() == Unknown);
return value.unknown->node;
}
UnknownReason SymbolicValue::getUnknownReason() const {
assert(getKind() == Unknown);
return value.unknown->reason;
}
//===----------------------------------------------------------------------===//
// Enums
//===----------------------------------------------------------------------===//
namespace swift {
/// This is the representation of a constant enum value with payload.
struct EnumWithPayloadSymbolicValue final {
/// The enum case.
EnumElementDecl *enumDecl;
SymbolicValue payload;
EnumWithPayloadSymbolicValue(EnumElementDecl *decl, SymbolicValue payload)
: enumDecl(decl), payload(payload) {}
private:
EnumWithPayloadSymbolicValue() = delete;
EnumWithPayloadSymbolicValue(const EnumWithPayloadSymbolicValue &) = delete;
};
} // end namespace swift
/// This returns a constant Symbolic value for the enum case in `decl` with a
/// payload.
SymbolicValue
SymbolicValue::getEnumWithPayload(EnumElementDecl *decl, SymbolicValue payload,
SymbolicValueAllocator &allocator) {
assert(decl && payload.isConstant());
auto rawMem = allocator.allocate(sizeof(EnumWithPayloadSymbolicValue),
alignof(EnumWithPayloadSymbolicValue));
auto enumVal = ::new (rawMem) EnumWithPayloadSymbolicValue(decl, payload);
SymbolicValue result;
result.representationKind = RK_EnumWithPayload;
result.value.enumValWithPayload = enumVal;
return result;
}
EnumElementDecl *SymbolicValue::getEnumValue() const {
if (representationKind == RK_Enum)
return value.enumVal;
assert(representationKind == RK_EnumWithPayload);
return value.enumValWithPayload->enumDecl;
}
SymbolicValue SymbolicValue::getEnumPayloadValue() const {
assert(representationKind == RK_EnumWithPayload);
return value.enumValWithPayload->payload;
}
//===----------------------------------------------------------------------===//
// Addresses
//===----------------------------------------------------------------------===//
namespace swift {
/// This is the representation of a derived address. A derived address refers
/// to a memory object along with an access path that drills into it.
struct DerivedAddressValue final
: private llvm::TrailingObjects<DerivedAddressValue, unsigned> {
friend class llvm::TrailingObjects<DerivedAddressValue, unsigned>;
SymbolicValueMemoryObject *memoryObject;
/// This is the number of indices in the derived address.
const unsigned numElements;
static DerivedAddressValue *create(SymbolicValueMemoryObject *memoryObject,
ArrayRef<unsigned> elements,
SymbolicValueAllocator &allocator) {
auto byteSize =
DerivedAddressValue::totalSizeToAlloc<unsigned>(elements.size());
auto *rawMem = allocator.allocate(byteSize, alignof(DerivedAddressValue));
// Placement initialize the object.
auto dav =
::new (rawMem) DerivedAddressValue(memoryObject, elements.size());
std::uninitialized_copy(elements.begin(), elements.end(),
dav->getTrailingObjects<unsigned>());
return dav;
}
/// Return the access path for this derived address, which is an array of
/// indices drilling into the memory object.
ArrayRef<unsigned> getElements() const {
return {getTrailingObjects<unsigned>(), numElements};
}
// This is used by the llvm::TrailingObjects base class.
size_t numTrailingObjects(OverloadToken<unsigned>) const {
return numElements;
}
private:
DerivedAddressValue() = delete;
DerivedAddressValue(const DerivedAddressValue &) = delete;
DerivedAddressValue(SymbolicValueMemoryObject *memoryObject,
unsigned numElements)
: memoryObject(memoryObject), numElements(numElements) {}
};
} // end namespace swift
/// Return a symbolic value that represents the address of a memory object
/// indexed by a path.
SymbolicValue SymbolicValue::getAddress(SymbolicValueMemoryObject *memoryObject,
ArrayRef<unsigned> indices,
SymbolicValueAllocator &allocator) {
if (indices.empty())
return getAddress(memoryObject);
auto dav = DerivedAddressValue::create(memoryObject, indices, allocator);
SymbolicValue result;
result.representationKind = RK_DerivedAddress;
result.value.derivedAddress = dav;
return result;
}
/// Return the memory object of this reference along with any access path
/// indices involved.
SymbolicValueMemoryObject *
SymbolicValue::getAddressValue(SmallVectorImpl<unsigned> &accessPath) const {
assert(getKind() == Address);
accessPath.clear();
if (representationKind == RK_DirectAddress)
return value.directAddress;
assert(representationKind == RK_DerivedAddress);
auto *dav = value.derivedAddress;
// The first entry is the object ID, the rest are indices in the accessPath.
accessPath.assign(dav->getElements().begin(), dav->getElements().end());
return dav->memoryObject;
}
/// Return just the memory object for an address value.
SymbolicValueMemoryObject *SymbolicValue::getAddressValueMemoryObject() const {
if (representationKind == RK_DirectAddress)
return value.directAddress;
assert(representationKind == RK_DerivedAddress);
return value.derivedAddress->memoryObject;
}
//===----------------------------------------------------------------------===//
// Arrays
//===----------------------------------------------------------------------===//
namespace swift {
/// Representation of the internal storage of an array. This is a container for
/// a sequence of symbolic values corresponding to the elements of an array.
struct SymbolicArrayStorage final
: private llvm::TrailingObjects<SymbolicArrayStorage, SymbolicValue> {
friend class llvm::TrailingObjects<SymbolicArrayStorage, SymbolicValue>;
const CanType elementType;
const unsigned numElements;
static SymbolicArrayStorage *create(ArrayRef<SymbolicValue> elements,
CanType elementType,
SymbolicValueAllocator &allocator) {
auto byteSize =
SymbolicArrayStorage::totalSizeToAlloc<SymbolicValue>(elements.size());
auto rawMem = allocator.allocate(byteSize, alignof(SymbolicArrayStorage));
// Placement initialize the object.
auto *storage =
::new (rawMem) SymbolicArrayStorage(elementType, elements.size());
std::uninitialized_copy(elements.begin(), elements.end(),
storage->getTrailingObjects<SymbolicValue>());
return storage;
}
/// Return the stored elements.
ArrayRef<SymbolicValue> getElements() const {
return {getTrailingObjects<SymbolicValue>(), numElements};
}
// This is used by the llvm::TrailingObjects base class.
size_t numTrailingObjects(OverloadToken<SymbolicValue>) const {
return numElements;
}
private:
SymbolicArrayStorage() = delete;
SymbolicArrayStorage(const SymbolicArrayStorage &) = delete;
SymbolicArrayStorage(CanType elementType, unsigned numElements)
: elementType(elementType), numElements(numElements) {}
};
} // namespace swift
// end namespace swift
SymbolicValue
SymbolicValue::getSymbolicArrayStorage(ArrayRef<SymbolicValue> elements,
CanType elementType,
SymbolicValueAllocator &allocator) {
// TODO: Could compress the empty array representation if there were a reason
// to.
auto *arrayStorage =
SymbolicArrayStorage::create(elements, elementType, allocator);
SymbolicValue result;
result.representationKind = RK_ArrayStorage;
result.value.arrayStorage = arrayStorage;
return result;
}
ArrayRef<SymbolicValue>
SymbolicValue::getStoredElements(CanType &elementType) const {
assert(getKind() == ArrayStorage);
elementType = value.arrayStorage->elementType;
return value.arrayStorage->getElements();
}
SymbolicValue SymbolicValue::getArray(Type arrayType,
SymbolicValue arrayStorage,
SymbolicValueAllocator &allocator) {
assert(arrayStorage.getKind() == ArrayStorage);
SymbolicValue result;
result.representationKind = RK_Array;
result.value.array =
SymbolicValueMemoryObject::create(arrayType, arrayStorage, allocator);
return result;
}
SymbolicValue
SymbolicValue::getAddressOfArrayElement(SymbolicValueAllocator &allocator,
unsigned index) const {
assert(getKind() == Array);
return SymbolicValue::getAddress(value.array, {index}, allocator);
}
SymbolicValue SymbolicValue::getStorageOfArray() const {
assert(getKind() == Array);
return value.array->getValue();
}
Type SymbolicValue::getArrayType() const {
assert(getKind() == Array);
return value.array->getType();
}
//===----------------------------------------------------------------------===//
// Symbolic Closure
//===----------------------------------------------------------------------===//
SymbolicValue SymbolicValue::makeClosure(SILFunction *target,
ArrayRef<SymbolicClosureArgument> args,
SubstitutionMap substMap,
SingleValueInstruction *closureInst,
SymbolicValueAllocator &allocator) {
auto clo =
SymbolicClosure::create(target, args, substMap, closureInst, allocator);
SymbolicValue result;
result.representationKind = RK_Closure;
result.value.closure = clo;
return result;
}
SymbolicClosure *SymbolicClosure::create(SILFunction *target,
ArrayRef<SymbolicClosureArgument> args,
SubstitutionMap substMap,
SingleValueInstruction *closureInst,
SymbolicValueAllocator &allocator) {
// Determine whether there are captured arguments without a symbolic value.
// Consider indirectly captured arguments as well, which can happen with
// @in_guaranteed convention for captures.
bool hasNonConstantCapture = false;
for (SymbolicClosureArgument closureArg : args) {
if (!closureArg.second) {
hasNonConstantCapture = true;
break;
}
SymbolicValue closureValue = closureArg.second.value();
// Is capture non-constant?
if (!closureValue.isConstant()) {
hasNonConstantCapture = true;
break;
}
// Is the indirect capture non-constant?
if (closureValue.getKind() == SymbolicValue::Address &&
!closureValue.getAddressValueMemoryObject()->getValue().isConstant()) {
hasNonConstantCapture = true;
break;
}
}
auto byteSizeOfArgs =
SymbolicClosure::totalSizeToAlloc<SymbolicClosureArgument>(args.size());
auto rawMem = allocator.allocate(byteSizeOfArgs, alignof(SymbolicClosure));
// Placement initialize the object.
auto closure = ::new (rawMem) SymbolicClosure(
target, args.size(), substMap, closureInst, hasNonConstantCapture);
std::uninitialized_copy(
args.begin(), args.end(),
closure->getTrailingObjects<SymbolicClosureArgument>());
return closure;
}
//===----------------------------------------------------------------------===//
// Higher level code
//===----------------------------------------------------------------------===//
/// The SIL location for operations we process are usually deep in the bowels
/// of inlined code from opaque libraries, which are all implementation details
/// to the user. As such, walk the inlining location of the specified node to
/// return the first location *outside* opaque libraries.
static SILDebugLocation skipInternalLocations(SILDebugLocation loc) {
auto ds = loc.getScope();
if (!ds || loc.getLocation().getSourceLoc().isValid())
return loc;
// Zip through inlined call site information that came from the
// implementation guts of the library. We want to report the message inside
// the user's code, not in the guts we inlined through.
for (; auto ics = ds->InlinedCallSite; ds = ics) {
// If we found a valid inlined-into location, then we are good.
if (ds->Loc.getSourceLoc().isValid())
return SILDebugLocation(ds->Loc, ds);
if (SILFunction *F = ds->getInlinedFunction()) {
if (F->getLocation().getSourceLoc().isValid())
break;
}
}
if (ds->Loc.getSourceLoc().isValid())
return SILDebugLocation(ds->Loc, ds);
return loc;
}
/// Dig through single element aggregates, return the ultimate thing inside of
/// it. This is useful when dealing with integers and floats, because they
/// are often wrapped in single-element struct wrappers.
SymbolicValue SymbolicValue::lookThroughSingleElementAggregates() const {
auto result = *this;
while (1) {
if (result.getKind() != Aggregate)
return result;
auto elts = result.getAggregateMembers();
if (elts.size() != 1)
return result;
result = elts[0];
}
}
bool SymbolicValue::isUnknownDueToUnevaluatedInstructions() {
auto unknownKind = getUnknownReason().getKind();
return (unknownKind == UnknownReason::ReturnedByUnevaluatedInstruction ||
unknownKind == UnknownReason::MutatedByUnevaluatedInstruction);
}
static void getWitnessMethodName(WitnessMethodInst *witnessMethodInst,
SmallVectorImpl<char> &methodName) {
assert(witnessMethodInst);
SILDeclRef witnessMember = witnessMethodInst->getMember();
if (witnessMember.hasDecl()) {
witnessMember.getDecl()->getName().getString(methodName);
}
}
/// A helper function to pretty print function names in diagnostics.
static std::string demangleSymbolNameForDiagnostics(StringRef name) {
return Demangle::demangleSymbolAsString(
name, Demangle::DemangleOptions::SimplifiedUIDemangleOptions());
}
/// Given that this is an 'Unknown' value, emit diagnostic notes providing
/// context about what the problem is. Specifically, point to interesting
/// source locations and function calls in the call stack.
void SymbolicValue::emitUnknownDiagnosticNotes(SILLocation fallbackLoc) {
auto unknownNode = getUnknownNode();
auto unknownReason = getUnknownReason();
auto errorCallStack = getUnknownCallStack();
ASTContext &ctx = unknownNode->getModule()->getASTContext();
// Extract the location of the instruction/construct that triggered the error
// during interpretation, if available. If the instruction is internal to
// stdlib and has an invalid location, find the innermost call that has a
// valid location.
SourceLoc triggerLoc;
bool triggerLocSkipsInternalLocs = false;
if (auto *badInst = dyn_cast<SILInstruction>(unknownNode)) {
SILDebugLocation debugLoc = badInst->getDebugLocation();
SourceLoc initialSourceLoc = debugLoc.getLocation().getSourceLoc();
if (initialSourceLoc.isValid()) {
triggerLoc = initialSourceLoc;
} else {
triggerLocSkipsInternalLocs = true;
triggerLoc = skipInternalLocations(debugLoc).getLocation().getSourceLoc();
}
}
// Determine the top-level expression where the error happens and use it as
// the location to emit diagnostics. Specifically, if the call-stack is
// non-empty, use the first call in the sequence as the error location as the
// error happens only in the context of this call. Use the fallback loc if
// the faulty top-level expression location cannot be found.
auto diagLoc =
errorCallStack.empty()
? (triggerLoc.isValid() ? triggerLoc : fallbackLoc.getSourceLoc())
: errorCallStack.front();
if (diagLoc.isInvalid()) {
return;
}
// Emit a note at the trigger location as well if it is different from the
// top-level expression.
bool emitTriggerLocInDiag =
triggerLoc.isValid() ? diagLoc != triggerLoc : false;
switch (unknownReason.getKind()) {
case UnknownReason::Default:
diagnose(ctx, diagLoc, diag::constexpr_unknown_reason_default);
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc, diag::constexpr_unevaluable_operation,
triggerLocSkipsInternalLocs);
return;
case UnknownReason::TooManyInstructions:
diagnose(ctx, diagLoc, diag::constexpr_too_many_instructions,
ConstExprLimit);
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc, diag::constexpr_limit_exceeding_instruction,
triggerLocSkipsInternalLocs);
return;
case UnknownReason::Loop:
diagnose(ctx, diagLoc, diag::constexpr_loop_found_note);
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc, diag::constexpr_loop_instruction,
triggerLocSkipsInternalLocs);
return;
case UnknownReason::Overflow:
diagnose(ctx, diagLoc, diag::constexpr_overflow);
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc, diag::constexpr_overflow_operation,
triggerLocSkipsInternalLocs);
return;
case UnknownReason::Trap: {
diagnose(ctx, diagLoc, diag::constexpr_trap,
unknownReason.getTrapMessage());
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc, diag::constexpr_trap_operation,
triggerLocSkipsInternalLocs);
return;
}
case UnknownReason::InvalidOperandValue:
diagnose(ctx, diagLoc, diag::constexpr_invalid_operand_seen);
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc, diag::constexpr_operand_invalid_here,
triggerLocSkipsInternalLocs);
return;
case UnknownReason::NotTopLevelConstant: {
// For top-level errors, trigger loc is better than diagLoc.
auto loc = emitTriggerLocInDiag ? triggerLoc : diagLoc;
diagnose(ctx, loc, diag::constexpr_value_unknown_at_top_level);
return;
}
case UnknownReason::MutipleTopLevelWriters: {
// For top-level errors, trigger loc is better than diagLoc.
auto loc = emitTriggerLocInDiag ? triggerLoc : diagLoc;
diagnose(ctx, loc, diag::constexpr_multiple_writers_found_at_top_level);
return;
}
case UnknownReason::UnsupportedInstruction: {
// Get the name of the unsupported instruction.
auto *unsupportedInst = dyn_cast<SILInstruction>(unknownNode);
assert(unsupportedInst);
SmallString<4> instName(getSILInstructionName(unsupportedInst->getKind()));
if (auto *builtinInst = dyn_cast<BuiltinInst>(unsupportedInst)) {
instName.append(" ");
instName.append(builtinInst->getName().str());
}
diagnose(ctx, diagLoc, diag::constexpr_unsupported_instruction_found,
instName);
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc,
diag::constexpr_unsupported_instruction_found_here,
triggerLocSkipsInternalLocs);
return;
}
case UnknownReason::CalleeImplementationUnknown: {
SILFunction *callee = unknownReason.getCalleeWithoutImplmentation();
std::string demangledCalleeName =
demangleSymbolNameForDiagnostics(callee->getName());
diagnose(ctx, diagLoc, diag::constexpr_found_callee_with_no_body,
demangledCalleeName);
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc, diag::constexpr_callee_with_no_body,
triggerLocSkipsInternalLocs);
return;
}
case UnknownReason::CallArgumentUnknown: {
unsigned argNumber = unknownReason.getArgumentIndex() + 1;
ApplyInst *call = dyn_cast<ApplyInst>(unknownNode);
assert(call);
SILFunction *callee = call->getCalleeFunction();
assert(callee);
std::string demangledCalleeName =
demangleSymbolNameForDiagnostics(callee->getName());
diagnose(ctx, diagLoc, diag::constexpr_found_call_with_unknown_arg,
demangledCalleeName,
(Twine(argNumber) + llvm::getOrdinalSuffix(argNumber)).str());
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc, diag::constexpr_call_with_unknown_arg,
triggerLocSkipsInternalLocs);
return;
}
case UnknownReason::UntrackedSILValue:
diagnose(ctx, diagLoc, diag::constexpr_untracked_sil_value_use_found);
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc, diag::constexpr_untracked_sil_value_used_here,
triggerLocSkipsInternalLocs);
return;
case UnknownReason::UnknownCastResult: {
diagnose(ctx, diagLoc, diag::constexpr_unevaluable_cast_found);
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc, diag::constexpr_unevaluable_cast_used_here,
triggerLocSkipsInternalLocs);
return;
}
case UnknownReason::UnknownWitnessMethodConformance: {
SmallString<8> witnessMethodName;
getWitnessMethodName(dyn_cast<WitnessMethodInst>(unknownNode),
witnessMethodName);
diagnose(ctx, diagLoc, diag::constexpr_unresolvable_witness_call,
witnessMethodName);
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc,
diag::constexpr_witness_call_with_no_conformance,
triggerLocSkipsInternalLocs);
return;
}
case UnknownReason::NoWitnesTableEntry: {
SmallString<8> witnessMethodName;
getWitnessMethodName(dyn_cast<WitnessMethodInst>(unknownNode),
witnessMethodName);
diagnose(ctx, diagLoc, diag::constexpr_unresolvable_witness_call,
witnessMethodName);
if (emitTriggerLocInDiag)
diagnose(ctx, triggerLoc, diag::constexpr_no_witness_table_entry,
triggerLocSkipsInternalLocs);
return;
}
case UnknownReason::ReturnedByUnevaluatedInstruction:
diagnose(ctx, diagLoc, diag::constexpr_returned_by_unevaluated_instruction);
break;
case UnknownReason::MutatedByUnevaluatedInstruction:
diagnose(ctx, diagLoc, diag::constexpr_mutated_by_unevaluated_instruction);
break;
}
// TODO: print the call-stack in a controlled way if needed.
}
/// Returns the element of `aggregate` specified by the access path.
///
/// This is a helper for `SymbolicValueMemoryObject::getIndexedElement`. See
/// there for more detailed documentation.
static SymbolicValue getIndexedElement(SymbolicValue aggregate,
ArrayRef<unsigned> accessPath,
Type type) {
// We're done if we've run out of access path.
if (accessPath.empty())
return aggregate;
// Everything inside uninit memory is uninit memory.
if (aggregate.getKind() == SymbolicValue::UninitMemory)
return SymbolicValue::getUninitMemory();
assert((aggregate.getKind() == SymbolicValue::Aggregate ||
aggregate.getKind() == SymbolicValue::ArrayStorage) &&
"the accessPath is invalid for this type");
unsigned elementNo = accessPath.front();
SymbolicValue elt;
Type eltType;
if (aggregate.getKind() == SymbolicValue::ArrayStorage) {
CanType arrayEltTy;
elt = aggregate.getStoredElements(arrayEltTy)[elementNo];
eltType = arrayEltTy;
} else {
elt = aggregate.getAggregateMembers()[elementNo];
if (auto *decl = type->getStructOrBoundGenericStruct()) {
eltType = decl->getStoredProperties()[elementNo]->getTypeInContext();
} else if (auto tuple = type->getAs<TupleType>()) {
assert(elementNo < tuple->getNumElements() && "invalid index");
eltType = tuple->getElement(elementNo).getType();
} else {
llvm_unreachable("the accessPath is invalid for this type");
}
}
return getIndexedElement(elt, accessPath.drop_front(), eltType);
}
/// Given that this memory object contains an aggregate value like
/// {{1, 2}, 3}, and given an access path like [0,1], return the indexed
/// element, e.g. "2" in this case.
///
/// Returns uninit memory if the access path points at or into uninit memory.
///
/// Precondition: The access path must be valid for this memory object's type.
SymbolicValue
SymbolicValueMemoryObject::getIndexedElement(ArrayRef<unsigned> accessPath) {
return ::getIndexedElement(value, accessPath, type);
}
/// Returns `aggregate` with the element specified by the access path set to
/// `newElement`.
///
/// This is a helper for `SymbolicValueMemoryObject::setIndexedElement`. See
/// there for more detailed documentation.
static SymbolicValue setIndexedElement(SymbolicValue aggregate,
ArrayRef<unsigned> accessPath,
SymbolicValue newElement, Type type,
SymbolicValueAllocator &allocator) {
// We're done if we've run out of access path.
if (accessPath.empty())
return newElement;
// Callers are required to ensure unknowns are not passed. However,
// the recurisve call can pass an unknown as an aggregate.
if (aggregate.getKind() == SymbolicValue::Unknown)
return aggregate;
// If we have an uninit memory, then scalarize it into an aggregate to
// continue. This happens when memory objects are initialized piecewise.
if (aggregate.getKind() == SymbolicValue::UninitMemory) {
unsigned numMembers;
// We need to have either a struct or a tuple type.
if (auto *decl = type->getStructOrBoundGenericStruct()) {
numMembers = decl->getStoredProperties().size();
} else if (auto tuple = type->getAs<TupleType>()) {
numMembers = tuple->getNumElements();
} else {
llvm_unreachable("the accessPath is invalid for this type");
}
SmallVector<SymbolicValue, 4> newElts(numMembers,
SymbolicValue::getUninitMemory());
aggregate = SymbolicValue::getAggregate(newElts, type, allocator);
}
assert((aggregate.getKind() == SymbolicValue::Aggregate ||
aggregate.getKind() == SymbolicValue::ArrayStorage) &&
"the accessPath is invalid for this type");
unsigned elementNo = accessPath.front();
ArrayRef<SymbolicValue> oldElts;
Type eltType;
if (aggregate.getKind() == SymbolicValue::ArrayStorage) {
CanType arrayEltTy;
oldElts = aggregate.getStoredElements(arrayEltTy);
eltType = arrayEltTy;
} else {
oldElts = aggregate.getAggregateMembers();
if (auto *decl = type->getStructOrBoundGenericStruct()) {
eltType = decl->getStoredProperties()[elementNo]->getTypeInContext();
} else if (auto tuple = type->getAs<TupleType>()) {
assert(elementNo < tuple->getNumElements() && "invalid index");
eltType = tuple->getElement(elementNo).getType();
} else {
llvm_unreachable("the accessPath is invalid for this type");
}
}
// Update the indexed element of the aggregate.
SmallVector<SymbolicValue, 4> newElts(oldElts.begin(), oldElts.end());
newElts[elementNo] =
setIndexedElement(newElts[elementNo], accessPath.drop_front(), newElement,
eltType, allocator);
if (aggregate.getKind() == SymbolicValue::Aggregate) {
Type aggregateType = aggregate.getAggregateType();
assert(aggregateType->isEqual(type) &&
"input type does not match the type of the aggregate");
return SymbolicValue::getAggregate(newElts, aggregateType, allocator);
}
return aggregate = SymbolicValue::getSymbolicArrayStorage(
newElts, eltType->getCanonicalType(), allocator);
return aggregate;
}
/// Given that this memory object contains an aggregate value like
/// {{1, 2}, 3}, given an access path like [0,1], and given a new element like
/// "4", set the indexed element to the specified scalar, producing {{1, 4},
/// 3} in this case.
///
/// Precondition: The access path must be valid for this memory object's type.
void SymbolicValueMemoryObject::setIndexedElement(
ArrayRef<unsigned> accessPath, SymbolicValue newElement,
SymbolicValueAllocator &allocator) {
value = ::setIndexedElement(value, accessPath, newElement, type, allocator);
}
|