File: SILDeclRef.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1773 lines) | stat: -rw-r--r-- 61,802 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
//===--- SILDeclRef.cpp - Implements SILDeclRef ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

#include "swift/SIL/SILDeclRef.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/SourceFile.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/SILLinkage.h"
#include "swift/SIL/SILLocation.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Mangle.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;

/// Get the method dispatch mechanism for a method.
MethodDispatch
swift::getMethodDispatch(AbstractFunctionDecl *method) {
  // Some methods are forced to be statically dispatched.
  if (method->hasForcedStaticDispatch())
    return MethodDispatch::Static;

  if (method->getAttrs().hasAttribute<DistributedActorAttr>())
    return MethodDispatch::Static;

  // Import-as-member declarations are always statically referenced.
  if (method->isImportAsMember())
    return MethodDispatch::Static;

  auto dc = method->getDeclContext();

  if (dc->getSelfClassDecl()) {
    if (method->shouldUseObjCDispatch()) {
      return MethodDispatch::Class;
    }

    // Final methods can be statically referenced.
    if (method->isFinal())
      return MethodDispatch::Static;

    // Imported class methods are dynamically dispatched.
    if (method->isObjC() && method->hasClangNode())
      return MethodDispatch::Class;

    // Members defined directly inside a class are dynamically dispatched.
    if (isa<ClassDecl>(dc)) {
      // Native convenience initializers are not dynamically dispatched unless
      // required.
      if (auto ctor = dyn_cast<ConstructorDecl>(method)) {
        if (!ctor->isRequired() && !ctor->isDesignatedInit()
            && !requiresForeignEntryPoint(ctor))
          return MethodDispatch::Static;
      }
      return MethodDispatch::Class;
    }
  }

  // Otherwise, it can be referenced statically.
  return MethodDispatch::Static;
}

bool swift::requiresForeignToNativeThunk(ValueDecl *vd) {
  // Functions imported from C, Objective-C methods imported from Objective-C,
  // as well as methods in @objc protocols (even protocols defined in Swift)
  // require a foreign to native thunk.
  auto dc = vd->getDeclContext();
  if (auto proto = dyn_cast<ProtocolDecl>(dc))
    if (proto->isObjC())
      return true;

  if (auto fd = dyn_cast<FuncDecl>(vd))
    return fd->hasClangNode();

  return false;
}

bool swift::requiresForeignEntryPoint(ValueDecl *vd) {
  assert(!isa<AbstractStorageDecl>(vd));

  if (vd->shouldUseObjCDispatch()) {
    return true;
  }

  if (vd->isObjC() && isa<ProtocolDecl>(vd->getDeclContext()))
    return true;

  if (vd->isImportAsMember())
    return true;

  if (vd->hasClangNode())
    return true;

  if (auto *accessor = dyn_cast<AccessorDecl>(vd)) {
    // Property accessors should be generated alongside the property.
    if (accessor->isGetterOrSetter()) {
      auto *asd = accessor->getStorage();
      if (asd->isObjC() && asd->hasClangNode())
        return true;
    }
  }

  return false;
}

SILDeclRef::SILDeclRef(ValueDecl *vd, SILDeclRef::Kind kind, bool isForeign,
                       bool isDistributed, bool isKnownToBeLocal,
                       bool isRuntimeAccessible,
                       SILDeclRef::BackDeploymentKind backDeploymentKind,
                       AutoDiffDerivativeFunctionIdentifier *derivativeId)
    : loc(vd), kind(kind), isForeign(isForeign), isDistributed(isDistributed),
      isKnownToBeLocal(isKnownToBeLocal),
      isRuntimeAccessible(isRuntimeAccessible),
      backDeploymentKind(backDeploymentKind), defaultArgIndex(0),
      isAsyncLetClosure(0), pointer(derivativeId) {}

SILDeclRef::SILDeclRef(SILDeclRef::Loc baseLoc, bool asForeign,
                       bool asDistributed, bool asDistributedKnownToBeLocal)
    : isRuntimeAccessible(false),
      backDeploymentKind(SILDeclRef::BackDeploymentKind::None),
      defaultArgIndex(0), isAsyncLetClosure(0),
      pointer((AutoDiffDerivativeFunctionIdentifier *)nullptr) {
  if (auto *vd = baseLoc.dyn_cast<ValueDecl*>()) {
    if (auto *fd = dyn_cast<FuncDecl>(vd)) {
      // Map FuncDecls directly to Func SILDeclRefs.
      loc = fd;
      kind = Kind::Func;
    }
    // Map ConstructorDecls to the Allocator SILDeclRef of the constructor.
    else if (auto *cd = dyn_cast<ConstructorDecl>(vd)) {
      loc = cd;
      kind = Kind::Allocator;
    }
    // Map EnumElementDecls to the EnumElement SILDeclRef of the element.
    else if (auto *ed = dyn_cast<EnumElementDecl>(vd)) {
      loc = ed;
      kind = Kind::EnumElement;
    }
    // VarDecl constants require an explicit kind.
    else if (isa<VarDecl>(vd)) {
      llvm_unreachable("must create SILDeclRef for VarDecl with explicit kind");
    }
    // Map DestructorDecls to the Deallocator of the destructor.
    else if (auto dtor = dyn_cast<DestructorDecl>(vd)) {
      loc = dtor;
      kind = Kind::Deallocator;
    }
    else {
      llvm_unreachable("invalid loc decl for SILDeclRef!");
    }
  } else if (auto *ACE = baseLoc.dyn_cast<AbstractClosureExpr *>()) {
    loc = ACE;
    kind = Kind::Func;
    if (ACE->getASTContext().LangOpts.hasFeature(
            Feature::RegionBasedIsolation)) {
      assert(ACE->getASTContext().LangOpts.hasFeature(
                 Feature::SendingArgsAndResults) &&
             "Sending args and results should always be enabled");
      if (auto *autoClosure = dyn_cast<AutoClosureExpr>(ACE)) {
        isAsyncLetClosure =
            autoClosure->getThunkKind() == AutoClosureExpr::Kind::AsyncLet;
      }
    }
  } else {
    llvm_unreachable("impossible SILDeclRef loc");
  }

  isForeign = asForeign;
  isDistributed = asDistributed;
  isKnownToBeLocal = asDistributedKnownToBeLocal;
}

SILDeclRef::SILDeclRef(SILDeclRef::Loc baseLoc,
                       GenericSignature prespecializedSig)
    : SILDeclRef(baseLoc, false, false) {
  pointer = prespecializedSig.getPointer();
}

std::optional<AnyFunctionRef> SILDeclRef::getAnyFunctionRef() const {
  switch (getLocKind()) {
  case LocKind::Decl:
    if (auto *afd = getAbstractFunctionDecl())
      return AnyFunctionRef(afd);
    return std::nullopt;
  case LocKind::Closure:
    return AnyFunctionRef(getAbstractClosureExpr());
  case LocKind::File:
    return std::nullopt;
  }
  llvm_unreachable("Unhandled case in switch");
}

DeclContext *SILDeclRef::getInnermostDeclContext() const {
  if (!loc)
    return nullptr;
  switch (getLocKind()) {
  case LocKind::Decl:
    return getDecl()->getInnermostDeclContext();
  case LocKind::Closure:
    return getAbstractClosureExpr();
  case LocKind::File:
    return getFileUnit();
  }
  llvm_unreachable("Unhandled case in switch");
}

ASTContext &SILDeclRef::getASTContext() const {
  auto *DC = getInnermostDeclContext();
  assert(DC && "Must have a decl context");
  return DC->getASTContext();
}

std::optional<AvailabilityContext>
SILDeclRef::getAvailabilityForLinkage() const {
  // Back deployment thunks and fallbacks don't have availability since they
  // are non-ABI.
  // FIXME: Generalize this check to all kinds of non-ABI functions.
  if (backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
    return std::nullopt;

  return getDecl()->getAvailabilityForLinkage();
}

bool SILDeclRef::isThunk() const {
  return isForeignToNativeThunk() || isNativeToForeignThunk() ||
         isDistributedThunk() || isBackDeploymentThunk();
}

bool SILDeclRef::isClangImported() const {
  if (!hasDecl())
    return false;

  ValueDecl *d = getDecl();
  DeclContext *moduleContext = d->getDeclContext()->getModuleScopeContext();

  if (isa<ClangModuleUnit>(moduleContext)) {
    if (isClangGenerated())
      return true;

    if (isa<ConstructorDecl>(d) || isa<EnumElementDecl>(d))
      return !isForeign;

    if (auto *FD = dyn_cast<FuncDecl>(d))
      if (isa<AccessorDecl>(FD) ||
          isa<NominalTypeDecl>(d->getDeclContext()))
        return !isForeign;
  }
  return false;
}

bool SILDeclRef::isClangGenerated() const {
  if (!hasDecl())
    return false;

  return isClangGenerated(getDecl()->getClangNode());
}

// FIXME: this is a weird predicate.
bool SILDeclRef::isClangGenerated(ClangNode node) {
  if (auto nd = dyn_cast_or_null<clang::NamedDecl>(node.getAsDecl())) {
    // ie, 'static inline' functions for which we must ask Clang to emit a body
    // for explicitly
    if (!nd->isExternallyVisible())
      return true;
  }

  return false;
}

bool SILDeclRef::isImplicit() const {
  switch (getLocKind()) {
  case LocKind::Decl:
    return getDecl()->isImplicit();
  case LocKind::Closure:
    return getAbstractClosureExpr()->isImplicit();
  case LocKind::File:
    // Files are currently never considered implicit.
    return false;
  }
  llvm_unreachable("Unhandled case in switch");
}

bool SILDeclRef::hasUserWrittenCode() const {
  // Non-implicit decls generally have user-written code.
  if (!isImplicit()) {
    switch (kind) {
    case Kind::PropertyWrapperBackingInitializer: {
      // Only has user-written code if any of the property wrappers have
      // arguments to apply. Otherwise, it's just a forwarding initializer for
      // the wrappedValue.
      auto *var = cast<VarDecl>(getDecl());
      return llvm::any_of(var->getAttachedPropertyWrappers(), [&](auto *attr) {
        return attr->hasArgs();
      });
    }
    case Kind::PropertyWrapperInitFromProjectedValue:
      // Never has user-written code, is just a forwarding initializer.
      return false;
    default:
      // TODO: This checking is currently conservative, we ought to
      // exhaustively handle all the cases here, and use emitOrDelayFunction
      // in more cases to take advantage of it.
      return true;
    }
    llvm_unreachable("Unhandled case in switch!");
  }

  // Implicit decls generally don't have user-written code, but some splice
  // user code into their body.
  switch (kind) {
  case Kind::Func: {
    if (getAbstractClosureExpr()) {
      // Auto-closures have user-written code.
      if (auto *ACE = getAutoClosureExpr()) {
        // Currently all types of auto-closures can contain user code. Note this
        // logic does not affect delayed emission, as we eagerly emit all
        // closure definitions. This does however affect profiling.
        switch (ACE->getThunkKind()) {
        case AutoClosureExpr::Kind::None:
        case AutoClosureExpr::Kind::SingleCurryThunk:
        case AutoClosureExpr::Kind::DoubleCurryThunk:
        case AutoClosureExpr::Kind::AsyncLet:
          return true;
        }
        llvm_unreachable("Unhandled case in switch!");
      }
      // Otherwise, assume an implicit closure doesn't have user code.
      return false;
    }

    // Lazy getters splice in the user-written initializer expr.
    if (auto *accessor = dyn_cast<AccessorDecl>(getFuncDecl())) {
      auto *storage = accessor->getStorage();
      if (accessor->isGetter() && !storage->isImplicit() &&
          storage->getAttrs().hasAttribute<LazyAttr>()) {
        return true;
      }
    }
    return false;
  }
  case Kind::StoredPropertyInitializer: {
    // Property wrapper initializers for the implicit backing storage can splice
    // in the user-written initializer on the original property.
    auto *var = cast<VarDecl>(getDecl());
    if (auto *originalProperty = var->getOriginalWrappedProperty()) {
      if (originalProperty->isPropertyMemberwiseInitializedWithWrappedType())
        return true;
    }
    return false;
  }
  case Kind::Allocator:
  case Kind::Initializer:
  case Kind::EnumElement:
  case Kind::Destroyer:
  case Kind::Deallocator:
  case Kind::GlobalAccessor:
  case Kind::DefaultArgGenerator:
  case Kind::IVarInitializer:
  case Kind::IVarDestroyer:
  case Kind::PropertyWrapperBackingInitializer:
  case Kind::PropertyWrapperInitFromProjectedValue:
  case Kind::EntryPoint:
  case Kind::AsyncEntryPoint:
    // Implicit decls for these don't splice in user-written code.
    return false;
  }
  llvm_unreachable("Unhandled case in switch!");
}

namespace {
enum class LinkageLimit {
  /// No limit.
  None,
  /// The linkage should behave as if the decl is private.
  Private,
  /// The declaration is emitted on-demand; it should end up with internal
  /// or shared linkage.
  OnDemand,
  /// The declaration should never be made public.
  NeverPublic,
  /// The declaration should always be emitted into the client,
  AlwaysEmitIntoClient,
};
} // end anonymous namespace

/// Compute the linkage limit for a given SILDeclRef. This augments the
/// mapping of access level to linkage to provide a maximum or minimum linkage.
static LinkageLimit getLinkageLimit(SILDeclRef constant) {
  using Limit = LinkageLimit;
  using Kind = SILDeclRef::Kind;

  auto *d = constant.getDecl();

  // Back deployment thunks and fallbacks are emitted into the client.
  if (constant.backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
    return Limit::AlwaysEmitIntoClient;

  if (auto *fn = dyn_cast<AbstractFunctionDecl>(d)) {
    // Native-to-foreign thunks for top-level decls are created on-demand,
    // unless they are marked @_cdecl, in which case they expose a dedicated
    // entry-point with the visibility of the function.
    //
    // Native-to-foreign thunks for methods are always just private, since
    // they're anchored by Objective-C metadata.
    auto &attrs = fn->getAttrs();
    if (constant.isNativeToForeignThunk() && !attrs.hasAttribute<CDeclAttr>()) {
      auto isTopLevel = fn->getDeclContext()->isModuleScopeContext();
      return isTopLevel ? Limit::OnDemand : Limit::Private;
    }
  }

  if (auto fn = constant.getFuncDecl()) {
    // Forced-static-dispatch functions are created on-demand and have
    // at best shared linkage.
    if (fn->hasForcedStaticDispatch())
      return Limit::OnDemand;
  }
  
  if (auto dd = dyn_cast<DestructorDecl>(d)) {
    // The destructor of a class implemented with @_objcImplementation is only
    // ever called by its ObjC thunk, so it should not be public.
    if (d->getDeclContext()->getSelfNominalTypeDecl()->hasClangNode())
      return Limit::OnDemand;
  }

  switch (constant.kind) {
  case Kind::Func:
  case Kind::Allocator:
  case Kind::Initializer:
  case Kind::Deallocator:
  case Kind::Destroyer: {
    // @_alwaysEmitIntoClient declarations are like the default arguments of
    // public functions; they are roots for dead code elimination and have
    // serialized bodies, but no public symbol in the generated binary.
    if (d->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
      return Limit::AlwaysEmitIntoClient;
    if (auto accessor = dyn_cast<AccessorDecl>(d)) {
      auto *storage = accessor->getStorage();
      if (storage->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
        return Limit::AlwaysEmitIntoClient;
    }
    break;
  }
  case Kind::EnumElement:
    return Limit::OnDemand;

  case Kind::GlobalAccessor:
    // global unsafeMutableAddressor should be kept hidden if its decl
    // is resilient.
    return cast<VarDecl>(d)->isResilient() ? Limit::NeverPublic : Limit::None;

  case Kind::DefaultArgGenerator:
    // If the default argument is to be serialized, only use non-ABI public
    // linkage. If the argument is not to be serialized, don't use a limit.
    // This actually means that default arguments *can be ABI public* if
    // `isSerialized()` returns false and the effective access level is public,
    // which happens under `-enable-testing` with an internal decl.
    return constant.isSerialized() ? Limit::AlwaysEmitIntoClient : Limit::None;

  case Kind::PropertyWrapperBackingInitializer:
  case Kind::PropertyWrapperInitFromProjectedValue: {
    if (!d->getDeclContext()->isTypeContext()) {
      // If the backing initializer is to be serialized, only use non-ABI public
      // linkage. If the initializer is not to be serialized, don't use a limit.
      // This actually means that it *can be ABI public* if `isSerialized()`
      // returns false and the effective access level is public, which happens
      // under `-enable-testing` with an internal decl.
      return constant.isSerialized() ? Limit::AlwaysEmitIntoClient
                                     : Limit::None;
    }
    // Otherwise, regular property wrapper backing initializers (for properties)
    // are treated just like stored property initializers.
    LLVM_FALLTHROUGH;
  }
  case Kind::StoredPropertyInitializer: {
    // Stored property initializers get the linkage of their containing type.
    // There are three cases:
    //
    // 1) Type is formally @_fixed_layout/@frozen. Root initializers can be
    //    declared @inlinable. The property initializer must only reference
    //    public symbols, and is serialized, so we give it PublicNonABI linkage.
    //
    // 2) Type is not formally @_fixed_layout/@frozen and the module is not
    //    resilient. Root initializers can be declared @inlinable. This is the
    //    annoying case. We give the initializer public linkage if the type is
    //    public.
    //
    // 3) Type is resilient. The property initializer is never public because
    //    root initializers cannot be @inlinable.
    //
    // FIXME: Get rid of case 2 somehow.
    if (constant.isSerialized())
      return Limit::AlwaysEmitIntoClient;

    // FIXME: This should always be true.
    if (d->getModuleContext()->isStrictlyResilient())
      return Limit::NeverPublic;

    break;
  }
  case Kind::IVarInitializer:
  case Kind::IVarDestroyer:
    // ivar initializers and destroyers are completely contained within the
    // class from which they come, and never get seen externally.
    return Limit::NeverPublic;

  case Kind::EntryPoint:
  case Kind::AsyncEntryPoint:
    llvm_unreachable("Already handled");
  }
  return Limit::None;
}

SILLinkage SILDeclRef::getDefinitionLinkage() const {
  using Limit = LinkageLimit;

  auto privateLinkage = [&]() {
    // Private decls may still be serialized if they are e.g in an inlinable
    // function. In such a case, they receive shared linkage.
    return isNotSerialized() ? SILLinkage::Private : SILLinkage::Shared;
  };

  // Prespecializations are public.
  if (getSpecializedSignature())
    return SILLinkage::Public;

  // Closures can only be referenced from the same file.
  if (getAbstractClosureExpr())
    return privateLinkage();

  // The main entry-point is public.
  if (kind == Kind::EntryPoint)
    return SILLinkage::Public;
  if (kind == Kind::AsyncEntryPoint) {
    // async main entrypoint is referenced only from @main and
    // they are in the same SIL module. Hiding this entrypoint
    // from other object file makes it possible to link multiple
    // executable targets for SwiftPM testing with -entry-point-function-name
    return SILLinkage::Private;
  }

  // Calling convention thunks have shared linkage.
  if (isForeignToNativeThunk())
    return SILLinkage::Shared;

  // Declarations imported from Clang modules have shared linkage.
  if (isClangImported())
    return SILLinkage::Shared;

  const auto limit = getLinkageLimit(*this);
  if (limit == Limit::Private)
    return privateLinkage();

  auto *decl = getDecl();

  if (isPropertyWrapperBackingInitializer()) {
    auto *dc = decl->getDeclContext();

    // External property wrapper backing initializers have linkage based
    // on the access level of their function.
    if (isa<ParamDecl>(decl)) {
      if (isa<AbstractClosureExpr>(dc))
        return privateLinkage();

      decl = cast<ValueDecl>(dc->getAsDecl());
    }

    // Property wrappers in types have linkage based on the access level of
    // their nominal.
    if (dc->isTypeContext())
      decl = cast<NominalTypeDecl>(dc);
  }

  // Stored property initializers have linkage based on the access level of
  // their nominal.
  if (isStoredPropertyInitializer())
    decl = cast<NominalTypeDecl>(
               decl->getDeclContext()->getImplementedObjCContext());

  // Compute the effective access level, taking e.g testable into consideration.
  auto effectiveAccess = decl->getEffectiveAccess();

  // Private setter implementations for an internal storage declaration should
  // be at least internal as well, so that a dynamically-writable
  // keypath can be formed from other files in the same module.
  if (auto *accessor = dyn_cast<AccessorDecl>(decl)) {
    auto storageAccess = accessor->getStorage()->getEffectiveAccess();
    if (accessor->isSetter() && storageAccess >= AccessLevel::Internal)
      effectiveAccess = std::max(effectiveAccess, AccessLevel::Internal);
  }

  switch (effectiveAccess) {
  case AccessLevel::Private:
  case AccessLevel::FilePrivate:
    return privateLinkage();

  case AccessLevel::Internal:
    assert(!isSerialized() &&
           "Serialized decls should either be private (for decls in inlinable "
           "code), or they should be public");
    if (limit == Limit::OnDemand)
      return SILLinkage::Shared;
    return SILLinkage::Hidden;

  case AccessLevel::Package:
    switch (limit) {
    case Limit::None:
      return SILLinkage::Package;
    case Limit::AlwaysEmitIntoClient:
      // Drop the AEIC if the enclosing decl is not effectively public.
      // This matches what we do in the `internal` case.
      if (isSerialized())
        return SILLinkage::PackageNonABI;
      else return SILLinkage::Package;
    case Limit::OnDemand:
      return SILLinkage::Shared;
    case Limit::NeverPublic:
      return SILLinkage::Hidden;
    case Limit::Private:
      llvm_unreachable("Already handled");
    }
  case AccessLevel::Public:
  case AccessLevel::Open:
    switch (limit) {
    case Limit::None:
      return SILLinkage::Public;
    case Limit::AlwaysEmitIntoClient:
      return SILLinkage::PublicNonABI;
    case Limit::OnDemand:
      return SILLinkage::Shared;
    case Limit::NeverPublic:
      return SILLinkage::Hidden;
    case Limit::Private:
      llvm_unreachable("Already handled");
    }
  }
  llvm_unreachable("unhandled access");
}

SILLinkage SILDeclRef::getLinkage(ForDefinition_t forDefinition) const {
  // Add external to the linkage of the definition
  // (e.g. Public -> PublicExternal) if this is a declaration.
  auto linkage = getDefinitionLinkage();
  return forDefinition ? linkage : addExternalToLinkage(linkage);
}

SILDeclRef SILDeclRef::getDefaultArgGenerator(Loc loc,
                                              unsigned defaultArgIndex) {
  SILDeclRef result;
  result.loc = loc;
  result.kind = Kind::DefaultArgGenerator;
  result.defaultArgIndex = defaultArgIndex;
  return result;
}

SILDeclRef SILDeclRef::getMainDeclEntryPoint(ValueDecl *decl) {
  auto *file = cast<FileUnit>(decl->getDeclContext()->getModuleScopeContext());
  assert(file->getMainDecl() == decl);
  SILDeclRef result;
  result.loc = decl;
  result.kind = Kind::EntryPoint;
  return result;
}

SILDeclRef SILDeclRef::getAsyncMainDeclEntryPoint(ValueDecl *decl) {
  auto *file = cast<FileUnit>(decl->getDeclContext()->getModuleScopeContext());
  assert(file->getMainDecl() == decl);
  SILDeclRef result;
  result.loc = decl;
  result.kind = Kind::AsyncEntryPoint;
  return result;
}

SILDeclRef SILDeclRef::getAsyncMainFileEntryPoint(FileUnit *file) {
  assert(file->hasEntryPoint() && !file->getMainDecl());
  SILDeclRef result;
  result.loc = file;
  result.kind = Kind::AsyncEntryPoint;
  return result;
}

SILDeclRef SILDeclRef::getMainFileEntryPoint(FileUnit *file) {
  assert(file->hasEntryPoint() && !file->getMainDecl());
  SILDeclRef result;
  result.loc = file;
  result.kind = Kind::EntryPoint;
  return result;
}

bool SILDeclRef::hasClosureExpr() const {
  return loc.is<AbstractClosureExpr *>()
    && isa<ClosureExpr>(getAbstractClosureExpr());
}

bool SILDeclRef::hasAutoClosureExpr() const {
  return loc.is<AbstractClosureExpr *>()
    && isa<AutoClosureExpr>(getAbstractClosureExpr());
}

bool SILDeclRef::hasFuncDecl() const {
  return loc.is<ValueDecl *>() && isa<FuncDecl>(getDecl());
}

ClosureExpr *SILDeclRef::getClosureExpr() const {
  return dyn_cast_or_null<ClosureExpr>(getAbstractClosureExpr());
}
AutoClosureExpr *SILDeclRef::getAutoClosureExpr() const {
  return dyn_cast_or_null<AutoClosureExpr>(getAbstractClosureExpr());
}

FuncDecl *SILDeclRef::getFuncDecl() const {
  return dyn_cast_or_null<FuncDecl>(getDecl());
}

ModuleDecl *SILDeclRef::getModuleContext() const {
  if (hasDecl()) {
    return getDecl()->getModuleContext();
  } else if (hasFileUnit()) {
    return getFileUnit()->getParentModule();
  } else if (hasClosureExpr()) {
    return getClosureExpr()->getParentModule();
  } else if (hasAutoClosureExpr()) {
    return getAutoClosureExpr()->getParentModule();
  }
  llvm_unreachable("Unknown declaration reference");
}

bool SILDeclRef::isSetter() const {
  if (!hasDecl())
    return false;
  if (auto accessor = dyn_cast<AccessorDecl>(getDecl()))
    return accessor->isSetter();
  return false;
}

AbstractFunctionDecl *SILDeclRef::getAbstractFunctionDecl() const {
  return dyn_cast_or_null<AbstractFunctionDecl>(getDecl());
}

bool SILDeclRef::isInitAccessor() const {
  if (kind != Kind::Func || !hasDecl())
    return false;

  if (auto accessor = dyn_cast<AccessorDecl>(getDecl()))
    return accessor->getAccessorKind() == AccessorKind::Init;

  return false;
}

/// True if the function should be treated as transparent.
bool SILDeclRef::isTransparent() const {
  if (isEnumElement())
    return true;

  if (isStoredPropertyInitializer())
    return true;

  if (hasAutoClosureExpr()) {
    auto *ace = getAutoClosureExpr();
    switch (ace->getThunkKind()) {
    case AutoClosureExpr::Kind::None:
      return true;

    case AutoClosureExpr::Kind::AsyncLet:
    case AutoClosureExpr::Kind::DoubleCurryThunk:
    case AutoClosureExpr::Kind::SingleCurryThunk:
      break;
    }
  }

  if (hasDecl()) {
    if (auto *AFD = dyn_cast<AbstractFunctionDecl>(getDecl()))
      return AFD->isTransparent();

    if (auto *ASD = dyn_cast<AbstractStorageDecl>(getDecl()))
      return ASD->isTransparent();
  }

  return false;
}

bool SILDeclRef::isSerialized() const {
  return getSerializedKind() == IsSerialized;
}

bool SILDeclRef::isNotSerialized() const {
  return getSerializedKind() == IsNotSerialized;
}

/// True if the function should have its body serialized.
SerializedKind_t SILDeclRef::getSerializedKind() const {
  if (auto closure = getAbstractClosureExpr()) {
    // Ask the AST if we're inside an @inlinable context.
    if (closure->getResilienceExpansion() == ResilienceExpansion::Minimal) {
      return IsSerialized;
    }

    return IsNotSerialized;
  }

  if (kind == Kind::EntryPoint || kind == Kind::AsyncEntryPoint)
    return IsNotSerialized;

  if (isIVarInitializerOrDestroyer())
    return IsNotSerialized;

  auto *d = getDecl();

  // Default and property wrapper argument generators are serialized if the
  // containing declaration is public.
  if (isDefaultArgGenerator() || (isPropertyWrapperBackingInitializer() &&
                                  isa<ParamDecl>(d))) {
    if (isPropertyWrapperBackingInitializer()) {
      if (auto *func = dyn_cast_or_null<ValueDecl>(d->getDeclContext()->getAsDecl())) {
        d = func;
      }
    }

    // Ask the AST if we're inside an @inlinable context.
    if (d->getDeclContext()->getResilienceExpansion()
          == ResilienceExpansion::Minimal) {
      return IsSerialized;
    }

    // Otherwise, check if the owning declaration is public.
    auto scope =
      d->getFormalAccessScope(/*useDC=*/nullptr,
                              /*treatUsableFromInlineAsPublic=*/true);

    if (scope.isPublic())
      return IsSerialized;
    return IsNotSerialized;
  }

  // Stored property initializers are inlinable if the type is explicitly
  // marked as @frozen.
  if (isStoredPropertyInitializer() || (isPropertyWrapperBackingInitializer() &&
                                        d->getDeclContext()->isTypeContext())) {
    auto *nominal = dyn_cast<NominalTypeDecl>(d->getDeclContext());

    // If this isn't in a nominal, it must be in an @objc @implementation
    // extension. We don't serialize those since clients outside the module
    // don't think of these as Swift classes.
    if (!nominal) {
      assert(isa<ExtensionDecl>(d->getDeclContext()) &&
             cast<ExtensionDecl>(d->getDeclContext())->isObjCImplementation());
      return IsNotSerialized;
    }

    auto scope =
      nominal->getFormalAccessScope(/*useDC=*/nullptr,
                                    /*treatUsableFromInlineAsPublic=*/true);
    if (!scope.isPublic())
      return IsNotSerialized;
    if (nominal->isFormallyResilient())
      return IsNotSerialized;
    return IsSerialized;
  }

  // Note: if 'd' is a function, then 'dc' is the function itself, not
  // its parent context.
  auto *dc = d->getInnermostDeclContext();

  // Local functions are serializable if their parent function is
  // serializable.
  if (d->getDeclContext()->isLocalContext()) {
    if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal)
      return IsSerialized;

    return IsNotSerialized;
  }

  // Anything else that is not public is not serializable.
  if (d->getEffectiveAccess() < AccessLevel::Public)
    return IsNotSerialized;

  // Enum element constructors are serializable if the enum is
  // @usableFromInline or public.
  if (isEnumElement())
    return IsSerialized;

  // 'read' and 'modify' accessors synthesized on-demand are serialized if
  // visible outside the module.
  if (auto fn = dyn_cast<FuncDecl>(d))
    if (!isClangImported() &&
        fn->hasForcedStaticDispatch())
      return IsSerialized;

  if (isForeignToNativeThunk())
    return IsSerialized;

  // The allocating entry point for designated initializers are serialized
  // if the class is @usableFromInline or public. Actors are excluded because
  // whether the init is designated is not clearly reflected in the source code.
  if (kind == SILDeclRef::Kind::Allocator) {
    auto *ctor = cast<ConstructorDecl>(d);
    if (auto classDecl = ctor->getDeclContext()->getSelfClassDecl()) {
      if (!classDecl->isAnyActor() && ctor->isDesignatedInit())
        if (!ctor->hasClangNode())
          return IsSerialized;
    }
  }

  if (isForeign) {
    // @objc thunks for methods are not serializable since they're only
    // referenced from the method table.
    if (d->getDeclContext()->isTypeContext())
      return IsNotSerialized;

    // @objc thunks for top-level functions are serializable since they're
    // referenced from @convention(c) conversions inside inlinable
    // functions.
    return IsSerialized;
  }

  // Declarations imported from Clang modules are serialized if
  // referenced from an inlinable context.
  if (isClangImported())
    return IsSerialized;

  // Handle back deployed functions. The original back deployed function
  // should not be serialized, but the thunk and fallback should be since they
  // need to be emitted into the client.
  if (isBackDeployed()) {
    switch (backDeploymentKind) {
      case BackDeploymentKind::None:
        return IsNotSerialized;
      case BackDeploymentKind::Fallback:
      case BackDeploymentKind::Thunk:
        return IsSerialized;
    }
  }

  // Otherwise, ask the AST if we're inside an @inlinable context.
  if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal)
    return IsSerialized;

  return IsNotSerialized;
}

/// True if the function has an @inline(never) attribute.
bool SILDeclRef::isNoinline() const {
  if (!hasDecl())
    return false;

  auto *decl = getDecl();
  if (auto *attr = decl->getAttrs().getAttribute<InlineAttr>())
    if (attr->getKind() == InlineKind::Never)
      return true;

  if (auto *accessorDecl = dyn_cast<AccessorDecl>(decl)) {
    auto *storage = accessorDecl->getStorage();
    if (auto *attr = storage->getAttrs().getAttribute<InlineAttr>())
      if (attr->getKind() == InlineKind::Never)
        return true;
  }

  return false;
}

/// True if the function has the @inline(__always) attribute.
bool SILDeclRef::isAlwaysInline() const {
  swift::Decl *decl = nullptr;
  if (hasDecl()) {
    decl = getDecl();
  } else if (auto *ce = getAbstractClosureExpr()) {
    // Closures within @inline(__always) functions should be always inlined, too.
    // Note that this is different from @inline(never), because closures inside
    // @inline(never) _can_ be inlined within the inline-never function.
    decl = ce->getParent()->getInnermostDeclarationDeclContext();
    if (!decl)
      return false;
  } else {
    return false;
  }

  if (auto attr = decl->getAttrs().getAttribute<InlineAttr>())
    if (attr->getKind() == InlineKind::Always)
      return true;

  if (auto *accessorDecl = dyn_cast<AccessorDecl>(decl)) {
    auto *storage = accessorDecl->getStorage();
    if (auto *attr = storage->getAttrs().getAttribute<InlineAttr>())
      if (attr->getKind() == InlineKind::Always)
        return true;
  }

  return false;
}

bool SILDeclRef::isBackDeployed() const {
  if (!hasDecl())
    return false;

  auto *decl = getDecl();
  if (auto afd = dyn_cast<AbstractFunctionDecl>(decl))
    return afd->isBackDeployed(getASTContext());

  return false;
}

bool SILDeclRef::isForeignToNativeThunk() const {
  // If this isn't a native entry-point, it's not a foreign-to-native thunk.
  if (isForeign)
    return false;

  // Non-decl entry points are never natively foreign, so they would never
  // have a foreign-to-native thunk.
  if (!hasDecl())
    return false;
  // A default argument generator for a C++ function is a Swift function, so no
  // thunk needed.
  if (isDefaultArgGenerator())
    return false;
  if (requiresForeignToNativeThunk(getDecl()))
    return true;
  // ObjC initializing constructors and factories are foreign.
  // We emit a special native allocating constructor though.
  if (isa<ConstructorDecl>(getDecl())
      && (kind == Kind::Initializer
          || cast<ConstructorDecl>(getDecl())->isFactoryInit())
      && getDecl()->hasClangNode())
    return true;
  return false;
}

bool SILDeclRef::isNativeToForeignThunk() const {
  // If this isn't a foreign entry-point, it's not a native-to-foreign thunk.
  if (!isForeign)
    return false;

  switch (getLocKind()) {
  case LocKind::Decl:
    // A decl with a clang node doesn't have a native entry-point to forward
    // onto.
    if (getDecl()->hasClangNode())
      return false;
    // No thunk is required if the decl directly references an external decl.
    if (getDecl()->getAttrs().hasAttribute<ExternAttr>())
      return false;

    // Only certain kinds of SILDeclRef can expose native-to-foreign thunks.
    return kind == Kind::Func || kind == Kind::Initializer ||
           kind == Kind::Deallocator;
  case LocKind::Closure:
    // We can have native-to-foreign thunks over closures.
    return true;
  case LocKind::File:
    return false;
  }
  llvm_unreachable("Unhandled case in switch");
}

bool SILDeclRef::isDistributedThunk() const {
  if (!isDistributed)
    return false;
  return kind == Kind::Func;
}

bool SILDeclRef::isBackDeploymentFallback() const {
  if (backDeploymentKind != BackDeploymentKind::Fallback)
    return false;
  return kind == Kind::Func || kind == Kind::Initializer ||
         kind == Kind::Allocator;
}

bool SILDeclRef::isBackDeploymentThunk() const {
  if (backDeploymentKind != BackDeploymentKind::Thunk)
    return false;
  return kind == Kind::Func || kind == Kind::Initializer ||
         kind == Kind::Allocator;
}

/// Use the Clang importer to mangle a Clang declaration.
static void mangleClangDeclViaImporter(raw_ostream &buffer,
                                       const clang::NamedDecl *clangDecl,
                                       ASTContext &ctx) {
  auto *importer = static_cast<ClangImporter *>(ctx.getClangModuleLoader());
  importer->getMangledName(buffer, clangDecl);
}

static std::string mangleClangDecl(Decl *decl, bool isForeign) {
  auto clangDecl = decl->getClangDecl();

  if (auto namedClangDecl = dyn_cast<clang::DeclaratorDecl>(clangDecl)) {
    if (auto asmLabel = namedClangDecl->getAttr<clang::AsmLabelAttr>()) {
      std::string s(1, '\01');
      s += asmLabel->getLabel();
      return s;
    } else if (namedClangDecl->hasAttr<clang::OverloadableAttr>() ||
               decl->getASTContext().LangOpts.EnableCXXInterop) {
      std::string storage;
      llvm::raw_string_ostream SS(storage);
      mangleClangDeclViaImporter(SS, namedClangDecl, decl->getASTContext());
      return SS.str();
    }
    return namedClangDecl->getName().str();
  } else if (auto objcDecl = dyn_cast<clang::ObjCMethodDecl>(clangDecl)) {
    if (objcDecl->isDirectMethod() && isForeign) {
      std::string storage;
      llvm::raw_string_ostream SS(storage);
      clang::ASTContext &ctx = clangDecl->getASTContext();
      std::unique_ptr<clang::MangleContext> mangler(ctx.createMangleContext());
      mangler->mangleObjCMethodName(objcDecl, SS, /*includePrefixByte=*/true,
                                    /*includeCategoryNamespace=*/false);
      return SS.str();
    }
  }

  return "";
}

std::string SILDeclRef::mangle(ManglingKind MKind) const {
  using namespace Mangle;
  ASTMangler mangler;

  if (auto *derivativeFunctionIdentifier = getDerivativeFunctionIdentifier()) {
    std::string originalMangled = asAutoDiffOriginalFunction().mangle(MKind);
    auto *silParameterIndices = autodiff::getLoweredParameterIndices(
        derivativeFunctionIdentifier->getParameterIndices(),
        getDecl()->getInterfaceType()->castTo<AnyFunctionType>());
    // FIXME: is this correct in the presence of curried types?
    auto *resultIndices = autodiff::getFunctionSemanticResultIndices(
      asAutoDiffOriginalFunction().getAbstractFunctionDecl(),
      derivativeFunctionIdentifier->getParameterIndices());
    AutoDiffConfig silConfig(
        silParameterIndices, resultIndices,
        derivativeFunctionIdentifier->getDerivativeGenericSignature());
    return mangler.mangleAutoDiffDerivativeFunction(
        asAutoDiffOriginalFunction().getAbstractFunctionDecl(),
        derivativeFunctionIdentifier->getKind(),
        silConfig);
  }

  // As a special case, Clang functions and globals don't get mangled at all
  // - except \c objc_direct decls.
  if (hasDecl() && !isDefaultArgGenerator()) {
    if (getDecl()->getClangDecl()) {
      if (!isForeignToNativeThunk() && !isNativeToForeignThunk()) {
        auto clangMangling = mangleClangDecl(getDecl(), isForeign);
        if (!clangMangling.empty())
          return clangMangling;
      }
    }
  }

  // Mangle prespecializations.
  if (getSpecializedSignature()) {
    SILDeclRef nonSpecializedDeclRef = *this;
    nonSpecializedDeclRef.pointer =
        (AutoDiffDerivativeFunctionIdentifier *)nullptr;
    auto mangledNonSpecializedString = nonSpecializedDeclRef.mangle();
    auto *funcDecl = cast<AbstractFunctionDecl>(getDecl());
    auto genericSig = funcDecl->getGenericSignature();
    return GenericSpecializationMangler::manglePrespecialization(
        mangledNonSpecializedString, genericSig, getSpecializedSignature());
  }

  ASTMangler::SymbolKind SKind = ASTMangler::SymbolKind::Default;
  switch (MKind) {
    case SILDeclRef::ManglingKind::Default:
      if (isForeign) {
        SKind = ASTMangler::SymbolKind::SwiftAsObjCThunk;
      } else if (isForeignToNativeThunk()) {
        SKind = ASTMangler::SymbolKind::ObjCAsSwiftThunk;
      } else if (isDistributedThunk()) {
        SKind = ASTMangler::SymbolKind::DistributedThunk;
      } else if (isBackDeploymentThunk()) {
        SKind = ASTMangler::SymbolKind::BackDeploymentThunk;
      } else if (isBackDeploymentFallback()) {
        SKind = ASTMangler::SymbolKind::BackDeploymentFallback;
      }
      break;
    case SILDeclRef::ManglingKind::DynamicThunk:
      SKind = ASTMangler::SymbolKind::DynamicThunk;
      break;
  }

  switch (kind) {
  case SILDeclRef::Kind::Func:
    if (auto *ACE = getAbstractClosureExpr())
      return mangler.mangleClosureEntity(ACE, SKind);

    // As a special case, functions can have manually mangled names.
    // Use the SILGen name only for the original non-thunked, non-curried entry
    // point.
    if (auto NameA = getDecl()->getAttrs().getAttribute<SILGenNameAttr>())
      if (!NameA->Name.empty() && !isThunk()) {
        return NameA->Name.str();
      }

    if (auto *ExternA = ExternAttr::find(getDecl()->getAttrs(), ExternKind::C)) {
      assert(isa<FuncDecl>(getDecl()) && "non-FuncDecl with @_extern should be rejected by typechecker");
      return ExternA->getCName(cast<FuncDecl>(getDecl())).str();
    }

    // Use a given cdecl name for native-to-foreign thunks.
    if (auto CDeclA = getDecl()->getAttrs().getAttribute<CDeclAttr>())
      if (isNativeToForeignThunk()) {
        // If this is an @implementation @_cdecl, mangle it like the clang
        // function it implements.
        if (auto objcInterface = getDecl()->getImplementedObjCDecl()) {
          auto clangMangling = mangleClangDecl(objcInterface, isForeign);
          if (!clangMangling.empty())
            return clangMangling;
        }
        return CDeclA->Name.str();
      }

    if (SKind == ASTMangler::SymbolKind::DistributedThunk) {
      return mangler.mangleDistributedThunk(cast<FuncDecl>(getDecl()));
    }

    // Otherwise, fall through into the 'other decl' case.
    LLVM_FALLTHROUGH;

  case SILDeclRef::Kind::EnumElement:
    return mangler.mangleEntity(getDecl(), SKind);

  case SILDeclRef::Kind::Deallocator:
    return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
                                          /*isDeallocating*/ true,
                                          SKind);

  case SILDeclRef::Kind::Destroyer:
    return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
                                          /*isDeallocating*/ false,
                                          SKind);

  case SILDeclRef::Kind::Allocator:
    // As a special case, initializers can have manually mangled names.
    // Use the SILGen name only for the original non-thunked, non-curried entry
    // point.
    if (auto NameA = getDecl()->getAttrs().getAttribute<SILGenNameAttr>()) {
      if (!NameA->Name.empty() && !isThunk()) {
        return NameA->Name.str();
      }
    }

    return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
                                           /*allocating*/ true,
                                           SKind);

  case SILDeclRef::Kind::Initializer:
    return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
                                           /*allocating*/ false,
                                           SKind);

  case SILDeclRef::Kind::IVarInitializer:
  case SILDeclRef::Kind::IVarDestroyer:
    return mangler.mangleIVarInitDestroyEntity(cast<ClassDecl>(getDecl()),
                                  kind == SILDeclRef::Kind::IVarDestroyer,
                                  SKind);

  case SILDeclRef::Kind::GlobalAccessor:
    return mangler.mangleAccessorEntity(AccessorKind::MutableAddress,
                                        cast<AbstractStorageDecl>(getDecl()),
                                        /*isStatic*/ false,
                                        SKind);

  case SILDeclRef::Kind::DefaultArgGenerator:
    return mangler.mangleDefaultArgumentEntity(
                                        cast<DeclContext>(getDecl()),
                                        defaultArgIndex,
                                        SKind);

  case SILDeclRef::Kind::StoredPropertyInitializer:
    return mangler.mangleInitializerEntity(cast<VarDecl>(getDecl()), SKind);

  case SILDeclRef::Kind::PropertyWrapperBackingInitializer:
    return mangler.mangleBackingInitializerEntity(cast<VarDecl>(getDecl()),
                                                  SKind);

  case SILDeclRef::Kind::PropertyWrapperInitFromProjectedValue:
    return mangler.mangleInitFromProjectedValueEntity(cast<VarDecl>(getDecl()),
                                                      SKind);

  case SILDeclRef::Kind::AsyncEntryPoint: {
    return "async_Main";
  }
  case SILDeclRef::Kind::EntryPoint: {
    return getASTContext().getEntryPointFunctionName();
  }
  }

  llvm_unreachable("bad entity kind!");
}

// Returns true if the given JVP/VJP SILDeclRef requires a new vtable entry.
// FIXME(https://github.com/apple/swift/issues/54833): Also consider derived declaration `@derivative` attributes.
static bool derivativeFunctionRequiresNewVTableEntry(SILDeclRef declRef) {
  assert(declRef.getDerivativeFunctionIdentifier() &&
         "Expected a derivative function SILDeclRef");
  auto overridden = declRef.getOverridden();
  if (!overridden)
    return false;
  // Get the derived `@differentiable` attribute.
  auto *derivedDiffAttr = *llvm::find_if(
      declRef.getDecl()->getAttrs().getAttributes<DifferentiableAttr>(),
      [&](const DifferentiableAttr *derivedDiffAttr) {
        return derivedDiffAttr->getParameterIndices() ==
               declRef.getDerivativeFunctionIdentifier()->getParameterIndices();
      });
  assert(derivedDiffAttr && "Expected `@differentiable` attribute");
  // Otherwise, if the base `@differentiable` attribute specifies a derivative
  // function, then the derivative is inherited and no new vtable entry is
  // needed. Return false.
  auto baseDiffAttrs =
      overridden.getDecl()->getAttrs().getAttributes<DifferentiableAttr>();
  for (auto *baseDiffAttr : baseDiffAttrs) {
    if (baseDiffAttr->getParameterIndices() ==
        declRef.getDerivativeFunctionIdentifier()->getParameterIndices())
      return false;
  }
  // Otherwise, if there is no base `@differentiable` attribute exists, then a
  // new vtable entry is needed. Return true.
  return true;
}

bool SILDeclRef::requiresNewVTableEntry() const {
  if (getDerivativeFunctionIdentifier())
    if (derivativeFunctionRequiresNewVTableEntry(*this))
      return true;
  if (!hasDecl())
    return false;
  if (isBackDeploymentThunk())
    return false;
  auto fnDecl = dyn_cast<AbstractFunctionDecl>(getDecl());
  if (!fnDecl)
    return false;
  if (fnDecl->needsNewVTableEntry())
    return true;
  return false;
}

bool SILDeclRef::requiresNewWitnessTableEntry() const {
  return cast<AbstractFunctionDecl>(getDecl())->requiresNewWitnessTableEntry();
}

SILDeclRef SILDeclRef::getOverridden() const {
  if (!hasDecl())
    return SILDeclRef();
  auto overridden = getDecl()->getOverriddenDecl();
  if (!overridden)
    return SILDeclRef();
  return withDecl(overridden);
}

SILDeclRef SILDeclRef::getNextOverriddenVTableEntry() const {
  if (auto overridden = getOverridden()) {
    // Back deployed methods should not be overridden.
    assert(backDeploymentKind == SILDeclRef::BackDeploymentKind::None);

    // If we overrode a foreign decl or dynamic method, if this is an
    // accessor for a property that overrides an ObjC decl, or if it is an
    // @NSManaged property, then it won't be in the vtable.
    if (overridden.getDecl()->hasClangNode())
      return SILDeclRef();

    // Distributed thunks are not in the vtable.
    if (isDistributedThunk())
      return SILDeclRef();

    // An @objc convenience initializer can be "overridden" in the sense that
    // its selector is reclaimed by a subclass's convenience init with the
    // same name. The AST models this as an override for the purposes of
    // ObjC selector validation, but it isn't for Swift method dispatch
    // purposes.
    if (overridden.kind == SILDeclRef::Kind::Allocator) {
      auto overriddenCtor = cast<ConstructorDecl>(overridden.getDecl());
      if (!overriddenCtor->isDesignatedInit()
          && !overriddenCtor->isRequired())
        return SILDeclRef();
    }

    // Initializing entry points for initializers won't be in the vtable.
    // For Swift designated initializers, they're only used in super.init
    // chains, which can always be statically resolved. Other native Swift
    // initializers only have allocating entry points. ObjC initializers always
    // have the initializing entry point (corresponding to the -init method)
    // but those are never in the vtable.
    if (overridden.kind == SILDeclRef::Kind::Initializer) {
      return SILDeclRef();
    }

    // Overrides of @objc dynamic declarations are not in the vtable.
    if (overridden.getDecl()->shouldUseObjCDispatch()) {
      return SILDeclRef();
    }

    if (auto *accessor = dyn_cast<AccessorDecl>(overridden.getDecl())) {
      auto *asd = accessor->getStorage();
      if (asd->hasClangNode())
        return SILDeclRef();
      if (asd->shouldUseObjCDispatch()) {
        return SILDeclRef();
      }
    }

    // If we overrode a decl from an extension, it won't be in a vtable
    // either. This can occur for extensions to ObjC classes.
    if (isa<ExtensionDecl>(overridden.getDecl()->getDeclContext()))
      return SILDeclRef();

    // JVPs/VJPs are overridden only if the base declaration has a
    // `@differentiable` attribute with the same parameter indices.
    if (getDerivativeFunctionIdentifier()) {
      auto overriddenAttrs =
          overridden.getDecl()->getAttrs().getAttributes<DifferentiableAttr>();
      for (const auto *attr : overriddenAttrs) {
        if (attr->getParameterIndices() !=
            getDerivativeFunctionIdentifier()->getParameterIndices())
          continue;
        auto *overriddenDerivativeId =
            overridden.getDerivativeFunctionIdentifier();
        overridden.pointer =
            AutoDiffDerivativeFunctionIdentifier::get(
                overriddenDerivativeId->getKind(),
                overriddenDerivativeId->getParameterIndices(),
                attr->getDerivativeGenericSignature(),
                getDecl()->getASTContext());
        return overridden;
      }
      return SILDeclRef();
    }
    return overridden;
  }
  return SILDeclRef();
}

SILDeclRef SILDeclRef::getOverriddenWitnessTableEntry() const {
  auto bestOverridden =
    getOverriddenWitnessTableEntry(cast<AbstractFunctionDecl>(getDecl()));
  return withDecl(bestOverridden);
}

AbstractFunctionDecl *SILDeclRef::getOverriddenWitnessTableEntry(
                                                 AbstractFunctionDecl *func) {
  if (!isa<ProtocolDecl>(func->getDeclContext()))
    return func;

  AbstractFunctionDecl *bestOverridden = nullptr;

  SmallVector<AbstractFunctionDecl *, 4> stack;
  SmallPtrSet<AbstractFunctionDecl *, 4> visited;
  stack.push_back(func);
  visited.insert(func);

  while (!stack.empty()) {
    auto current = stack.back();
    stack.pop_back();

    auto overriddenDecls = current->getOverriddenDecls();
    if (overriddenDecls.empty()) {
      // This entry introduced a witness table entry. Determine whether it is
      // better than the best entry we've seen thus far.
      if (!bestOverridden ||
          ProtocolDecl::compare(
                        cast<ProtocolDecl>(current->getDeclContext()),
                        cast<ProtocolDecl>(bestOverridden->getDeclContext()))
            < 0) {
        bestOverridden = cast<AbstractFunctionDecl>(current);
      }

      continue;
    }

    // Add overridden declarations to the stack.
    for (auto overridden : overriddenDecls) {
      auto overriddenFunc = cast<AbstractFunctionDecl>(overridden);
      if (visited.insert(overriddenFunc).second)
        stack.push_back(overriddenFunc);
    }
  }

  return bestOverridden;
}

SILDeclRef SILDeclRef::getOverriddenVTableEntry() const {
  SILDeclRef cur = *this, next = *this;
  do {
    cur = next;
    if (cur.requiresNewVTableEntry())
      return cur;
    next = cur.getNextOverriddenVTableEntry();
  } while (next);

  return cur;
}

SILLocation SILDeclRef::getAsRegularLocation() const {
  switch (getLocKind()) {
  case LocKind::Decl:
    return RegularLocation(getDecl());
  case LocKind::Closure:
    return RegularLocation(getAbstractClosureExpr());
  case LocKind::File:
    return RegularLocation::getModuleLocation();
  }
  llvm_unreachable("Unhandled case in switch");
}

SubclassScope SILDeclRef::getSubclassScope() const {
  if (!hasDecl())
    return SubclassScope::NotApplicable;

  auto *decl = getDecl();

  if (!isa<AbstractFunctionDecl>(decl))
    return SubclassScope::NotApplicable;

  DeclContext *context = decl->getDeclContext();

  // Only methods in non-final classes go in the vtable.
  auto *classType = dyn_cast<ClassDecl>(context);
  if (!classType || classType->isFinal())
    return SubclassScope::NotApplicable;

  // If a method appears in the vtable of a class, we must give it's symbol
  // special consideration when computing visibility because the SIL-level
  // linkage does not map to the symbol's visibility in a straightforward
  // way.
  //
  // In particular, the rules are:
  // - If the class metadata is not resilient, then all method symbols must
  //   be visible from any translation unit where a subclass might be defined,
  //   because the subclass metadata will re-emit all vtable entries.
  //
  // - For resilient classes, we do the opposite: generally, a method's symbol
  //   can be hidden from other translation units, because we want to enforce
  //   that resilient access patterns are used for method calls and overrides.
  //
  //   Constructors and final methods are the exception here, because they can
  //   be called directly.

  // FIXME: This is too narrow. Any class with resilient metadata should
  // probably have this, at least for method overrides that don't add new
  // vtable entries.
  bool isStrictResilientClass = classType->isStrictlyResilient();

  if (auto *CD = dyn_cast<ConstructorDecl>(decl)) {
    if (isStrictResilientClass)
      return SubclassScope::NotApplicable;
    // Initializing entry points do not appear in the vtable.
    if (kind == SILDeclRef::Kind::Initializer)
      return SubclassScope::NotApplicable;
    // Non-required convenience inits do not appear in the vtable.
    if (!CD->isRequired() && !CD->isDesignatedInit())
      return SubclassScope::NotApplicable;
  } else if (isa<DestructorDecl>(decl)) {
    // Destructors do not appear in the vtable.
    return SubclassScope::NotApplicable;
  } else {
    assert(isa<FuncDecl>(decl));
  }

  // Various forms of thunks don't go in the vtable.
  if (isThunk() || isForeign)
    return SubclassScope::NotApplicable;

  // Default arg generators don't go in the vtable.
  if (isDefaultArgGenerator())
    return SubclassScope::NotApplicable;

  if (decl->isFinal()) {
    // Final methods only go in the vtable if they override something.
    if (!decl->getOverriddenDecl())
      return SubclassScope::NotApplicable;

    // In the resilient case, we're going to be making symbols _less_
    // visible, so make sure we stop now; final methods can always be
    // called directly.
    if (isStrictResilientClass)
      return SubclassScope::Internal;
  }

  assert(decl->getEffectiveAccess() <= classType->getEffectiveAccess() &&
         "class must be as visible as its members");

  if (isStrictResilientClass) {
    // The symbol should _only_ be reached via the vtable, so we're
    // going to make it hidden.
    return SubclassScope::Resilient;
  }

  switch (classType->getEffectiveAccess()) {
  case AccessLevel::Private:
  case AccessLevel::FilePrivate:
    // If the class is private, it can only be subclassed from the same
    // SILModule, so we don't need to do anything.
    return SubclassScope::NotApplicable;
  case AccessLevel::Internal:
  case AccessLevel::Package:
  case AccessLevel::Public:
    // If the class is internal or public, it can only be subclassed from
    // the same AST Module, but possibly a different SILModule.
    return SubclassScope::Internal;
  case AccessLevel::Open:
    // If the class is open, it can be subclassed from a different
    // AST Module. All method symbols are public.
    return SubclassScope::External;
  }

  llvm_unreachable("Unhandled access level in switch.");
}

Expr *SILDeclRef::getInitializationExpr() const {
  switch (kind) {
  case Kind::StoredPropertyInitializer: {
    auto *var = cast<VarDecl>(getDecl());
    auto *pbd = var->getParentPatternBinding();
    unsigned idx = pbd->getPatternEntryIndexForVarDecl(var);
    auto *init = pbd->getInit(idx);
    assert(!pbd->isInitializerSubsumed(idx));

    // If this is the backing storage for a property with an attached wrapper
    // that was initialized with `=`, use that expression as the initializer.
    if (auto originalProperty = var->getOriginalWrappedProperty()) {
      if (originalProperty->isPropertyMemberwiseInitializedWithWrappedType()) {
        auto wrapperInfo =
            originalProperty->getPropertyWrapperInitializerInfo();
        auto *placeholder = wrapperInfo.getWrappedValuePlaceholder();
        init = placeholder->getOriginalWrappedValue();
        assert(init);
      }
    }
    return init;
  }
  case Kind::PropertyWrapperBackingInitializer: {
    auto *var = cast<VarDecl>(getDecl());
    auto wrapperInfo = var->getPropertyWrapperInitializerInfo();
    assert(wrapperInfo.hasInitFromWrappedValue());
    return wrapperInfo.getInitFromWrappedValue();
  }
  case Kind::PropertyWrapperInitFromProjectedValue: {
    auto *var = cast<VarDecl>(getDecl());
    auto wrapperInfo = var->getPropertyWrapperInitializerInfo();
    assert(wrapperInfo.hasInitFromProjectedValue());
    return wrapperInfo.getInitFromProjectedValue();
  }
  default:
    return nullptr;
  }
}

unsigned SILDeclRef::getParameterListCount() const {
  // Only decls can introduce currying.
  if (!hasDecl())
    return 1;

  // Always uncurried even if the underlying function is curried.
  if (kind == Kind::DefaultArgGenerator || kind == Kind::EntryPoint ||
      kind == Kind::AsyncEntryPoint)
    return 1;

  auto *vd = getDecl();

  if (isa<AbstractFunctionDecl>(vd) || isa<EnumElementDecl>(vd)) {
    // For functions and enum elements, the number of parameter lists is the
    // same as in their interface type.
    return vd->getNumCurryLevels();
  } else if (isa<ClassDecl>(vd)) {
    return 2;
  } else if (isa<VarDecl>(vd)) {
    return 1;
  } else {
    llvm_unreachable("Unhandled ValueDecl for SILDeclRef");
  }
}

static bool isDesignatedConstructorForClass(ValueDecl *decl) {
  if (auto *ctor = dyn_cast_or_null<ConstructorDecl>(decl))
    if (ctor->getDeclContext()->getSelfClassDecl())
      return ctor->isDesignatedInit();
  return false;
}

bool SILDeclRef::canBeDynamicReplacement() const {
  // The foreign entry of a @dynamicReplacement(for:) of @objc method in a
  // generic class can't be a dynamic replacement.
  if (isForeign && hasDecl() && getDecl()->isNativeMethodReplacement())
    return false;
  if (isDistributedThunk())
    return false;
  if (backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
    return false;
  if (kind == SILDeclRef::Kind::Destroyer ||
      kind == SILDeclRef::Kind::DefaultArgGenerator)
    return false;
  if (kind == SILDeclRef::Kind::Initializer)
    return isDesignatedConstructorForClass(getDecl());
  if (kind == SILDeclRef::Kind::Allocator)
    return !isDesignatedConstructorForClass(getDecl());
  return true;
}

bool SILDeclRef::isDynamicallyReplaceable() const {
  // The non-foreign entry of a @dynamicReplacement(for:) of @objc method in a
  // generic class can't be a dynamically replaced.
  if (!isForeign && hasDecl() && getDecl()->isNativeMethodReplacement())
    return false;

  if (isDistributedThunk())
    return false;

  if (backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
    return false;

  if (kind == SILDeclRef::Kind::DefaultArgGenerator)
    return false;
  if (isStoredPropertyInitializer() || isPropertyWrapperBackingInitializer())
    return false;

  // Class allocators are not dynamic replaceable.
  if (kind == SILDeclRef::Kind::Allocator &&
      isDesignatedConstructorForClass(getDecl()))
    return false;

  if (kind == SILDeclRef::Kind::Destroyer ||
      (kind == SILDeclRef::Kind::Initializer &&
       !isDesignatedConstructorForClass(getDecl())) ||
      kind == SILDeclRef::Kind::GlobalAccessor) {
    return false;
  }

  if (!hasDecl())
    return false;

  auto decl = getDecl();

  if (isForeign)
    return false;

  // We can't generate categories for generic classes. So the standard mechanism
  // for replacing @objc dynamic methods in generic classes does not work.
  // Instead we mark the non @objc entry dynamically replaceable and replace
  // that.
  // For now, we only support this behavior if -enable-implicit-dynamic is
  // enabled.
  return decl->shouldUseNativeMethodReplacement();
}

bool SILDeclRef::hasAsync() const {
  if (isDistributedThunk())
    return true;

  if (hasDecl()) {
    if (auto afd = dyn_cast<AbstractFunctionDecl>(getDecl())) {
      return afd->hasAsync();
    }
    return false;
  }
  return getAbstractClosureExpr()->isBodyAsync();
}