File: SILFunctionBuilder.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (436 lines) | stat: -rw-r--r-- 18,619 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
//===--- SILFunctionBuilder.cpp -------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

#include "swift/SIL/SILFunctionBuilder.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/AttrKind.h"
#include "swift/AST/Availability.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsParse.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/SemanticAttrs.h"
#include "clang/AST/Mangle.h"

using namespace swift;

SILFunction *SILFunctionBuilder::getOrCreateFunction(
    SILLocation loc, StringRef name, SILLinkage linkage,
    CanSILFunctionType type, IsBare_t isBareSILFunction,
    IsTransparent_t isTransparent, SerializedKind_t serializedKind,
    IsDynamicallyReplaceable_t isDynamic, IsDistributed_t isDistributed,
    IsRuntimeAccessible_t isRuntimeAccessible, ProfileCounter entryCount,
    IsThunk_t isThunk, SubclassScope subclassScope) {
  assert(!type->isNoEscape() && "Function decls always have escaping types.");
  if (auto fn = mod.lookUpFunction(name)) {
    assert(fn->getLoweredFunctionType() == type);
    assert(stripExternalFromLinkage(fn->getLinkage()) ==
           stripExternalFromLinkage(linkage) || mod.getOptions().EmbeddedSwift);
    return fn;
  }

  auto fn = SILFunction::create(mod, linkage, name, type, nullptr, loc,
                                isBareSILFunction, isTransparent, serializedKind,
                                entryCount, isDynamic, isDistributed,
                                isRuntimeAccessible, IsNotExactSelfClass,
                                isThunk, subclassScope);
  fn->setDebugScope(new (mod) SILDebugScope(loc, fn));
  return fn;
}

void SILFunctionBuilder::addFunctionAttributes(
    SILFunction *F, DeclAttributes &Attrs, SILModule &M,
    llvm::function_ref<SILFunction *(SILLocation loc, SILDeclRef constant)>
        getOrCreateDeclaration,
    SILDeclRef constant) {

  for (auto *A : Attrs.getAttributes<SemanticsAttr>())
    F->addSemanticsAttr(cast<SemanticsAttr>(A)->Value);

  // If we are asked to emit assembly vision remarks for this function, mark the
  // function as force emitting all optremarks including assembly vision
  // remarks. This allows us to emit the assembly vision remarks without needing
  // to change any of the underlying optremark mechanisms.
  if (auto *A = Attrs.getAttribute(DeclAttrKind::EmitAssemblyVisionRemarks))
    F->addSemanticsAttr(semantics::FORCE_EMIT_OPT_REMARK_PREFIX);

  // Propagate @_specialize.
  for (auto *A : Attrs.getAttributes<SpecializeAttr>()) {
    auto *SA = cast<SpecializeAttr>(A);
    auto kind =
        SA->getSpecializationKind() == SpecializeAttr::SpecializationKind::Full
            ? SILSpecializeAttr::SpecializationKind::Full
            : SILSpecializeAttr::SpecializationKind::Partial;
    assert(!constant.isNull());
    SILFunction *targetFunction = nullptr;
    auto *attributedFuncDecl = constant.getAbstractFunctionDecl();
    auto *targetFunctionDecl = SA->getTargetFunctionDecl(attributedFuncDecl);
    // Filter out _spi.
    auto spiGroups = SA->getSPIGroups();
    bool hasSPI = !spiGroups.empty();
    if (hasSPI) {
      if (attributedFuncDecl->getModuleContext() != M.getSwiftModule() &&
          !M.getSwiftModule()->isImportedAsSPI(SA, attributedFuncDecl)) {
        continue;
      }
    }
    assert(spiGroups.size() <= 1 && "SIL does not support multiple SPI groups");
    Identifier spiGroupIdent;
    if (hasSPI) {
      spiGroupIdent = spiGroups[0];
    }
    auto availability =
      AvailabilityInference::annotatedAvailableRangeForAttr(SA,
         M.getSwiftModule()->getASTContext());
    auto specializedSignature = SA->getSpecializedSignature(attributedFuncDecl);
    if (targetFunctionDecl) {
      SILDeclRef declRef(targetFunctionDecl, constant.kind, false);
      targetFunction = getOrCreateDeclaration(targetFunctionDecl, declRef);
      F->addSpecializeAttr(SILSpecializeAttr::create(
          M, specializedSignature, SA->getTypeErasedParams(),
          SA->isExported(), kind, targetFunction, spiGroupIdent,
          attributedFuncDecl->getModuleContext(), availability));
    } else {
      F->addSpecializeAttr(SILSpecializeAttr::create(
          M, specializedSignature, SA->getTypeErasedParams(),
          SA->isExported(), kind, nullptr, spiGroupIdent,
          attributedFuncDecl->getModuleContext(), availability));
    }
  }

  llvm::SmallVector<const EffectsAttr *, 8> customEffects;
  if (constant) {
    for (auto *attr : Attrs.getAttributes<EffectsAttr>()) {
      auto *effectsAttr = cast<EffectsAttr>(attr);
      if (effectsAttr->getKind() == EffectsKind::Custom) {
        customEffects.push_back(effectsAttr);
        continue;
      }
      if (F->getEffectsKind() != EffectsKind::Unspecified) {
        // If multiple known effects are specified, the most restrictive one
        // is used.
        F->setEffectsKind(
            std::min(effectsAttr->getKind(), F->getEffectsKind()));
      } else {
        F->setEffectsKind(effectsAttr->getKind());
      }
    }
  }

  if (!customEffects.empty()) {
    llvm::SmallVector<StringRef, 8> paramNames;
    auto *fnDecl = cast<AbstractFunctionDecl>(constant.getDecl());
    if (ParameterList *paramList = fnDecl->getParameters()) {
      for (ParamDecl *pd : *paramList) {
        // Give up on tuples. Their elements are added as individual
        // arguments. It destroys the 1-1 relation ship between parameters
        // and arguments.
        if (pd->getInterfaceType()->is<TupleType>())
          break;
        // First try the "local" parameter name. If there is none, use the
        // API name. E.g. `foo(apiName localName: Type) {}`
        StringRef name = pd->getName().str();
        if (name.empty())
          name = pd->getArgumentName().str();
        if (!name.empty())
          paramNames.push_back(name);
      }
    }
    for (const EffectsAttr *effectsAttr : llvm::reverse(customEffects)) {
      auto error = F->parseArgumentEffectsFromSource(
                                effectsAttr->getCustomString(), paramNames);
      if (error.first) {
        SourceLoc loc = effectsAttr->getCustomStringLocation();
        if (loc.isValid())
          loc = loc.getAdvancedLoc(error.second);
        mod.getASTContext().Diags.diagnose(loc,
                    diag::warning_in_effects_attribute, StringRef(error.first));
      }
    }
  }

  if (auto *OA = Attrs.getAttribute<OptimizeAttr>()) {
    F->setOptimizationMode(OA->getMode());
  }

  // @_silgen_name and @_cdecl functions may be called from C code somewhere.
  if (Attrs.hasAttribute<SILGenNameAttr>() || Attrs.hasAttribute<CDeclAttr>())
    F->setHasCReferences(true);

  for (auto *EA : Attrs.getAttributes<ExposeAttr>()) {
    bool shouldExportDecl = true;
    if (Attrs.hasAttribute<CDeclAttr>()) {
      // If the function is marked with @cdecl, expose only C compatible
      // thunk function.
      shouldExportDecl = constant.isNativeToForeignThunk();
    }
    if (EA->getExposureKind() == ExposureKind::Wasm && shouldExportDecl) {
      // A wasm-level exported function must be retained if it appears in a
      // compilation unit.
      F->setMarkedAsUsed(true);
      if (EA->Name.empty())
        F->setWasmExportName(F->getName());
      else
        F->setWasmExportName(EA->Name);
    }
  }

  if (auto *EA = ExternAttr::find(Attrs, ExternKind::Wasm)) {
    // @_extern(wasm) always has explicit names
    F->setWasmImportModuleAndField(*EA->ModuleName, *EA->Name);
  }

  if (Attrs.hasAttribute<UsedAttr>())
    F->setMarkedAsUsed(true);

  if (Attrs.hasAttribute<NoLocksAttr>()) {
    F->setPerfConstraints(PerformanceConstraints::NoLocks);
  } else if (Attrs.hasAttribute<NoAllocationAttr>()) {
    F->setPerfConstraints(PerformanceConstraints::NoAllocation);
  } else if (Attrs.hasAttribute<NoRuntimeAttr>()) {
    F->setPerfConstraints(PerformanceConstraints::NoRuntime);
  } else if (Attrs.hasAttribute<NoExistentialsAttr>()) {
    F->setPerfConstraints(PerformanceConstraints::NoExistentials);
  } else if (Attrs.hasAttribute<NoObjCBridgingAttr>()) {
    F->setPerfConstraints(PerformanceConstraints::NoObjCBridging);
  }

  if (Attrs.hasAttribute<LexicalLifetimesAttr>()) {
    F->setForceEnableLexicalLifetimes(DoForceEnableLexicalLifetimes);
  }

  if (Attrs.hasAttribute<UnsafeNonEscapableResultAttr>()) {
    F->setHasUnsafeNonEscapableResult(true);
  }

  if (Attrs.hasAttribute<ResultDependsOnSelfAttr>()) {
    F->setHasResultDependsOnSelf();
  }

  // Validate `@differentiable` attributes by calling `getParameterIndices`.
  // This is important for:
  // - Skipping invalid `@differentiable` attributes in non-primary files.
  // - Preventing duplicate SIL differentiability witness creation for
  //   `@differentiable` attributes on `AbstractStorageDecl` declarations.
  //   Such `@differentiable` attributes are deleted and recreated on the getter
  //   `AccessorDecl` of the `AbstractStorageDecl`.
  for (auto *A : Attrs.getAttributes<DifferentiableAttr>())
    (void)A->getParameterIndices();

  // Propagate `@noDerivative` as `[_semantics "autodiff.nonvarying"]`.
  //
  // `@noDerivative` implies non-varying semantics for differentiable activity
  // analysis. SIL values produced from references to `@noDerivative`
  // declarations will not be marked as varying; these values do not need a
  // derivative.
  if (Attrs.hasAttribute<NoDerivativeAttr>())
    F->addSemanticsAttr("autodiff.nonvarying");

  // Propagate @_dynamicReplacement(for:).
  if (constant.isNull())
    return;
  auto *decl = constant.getDecl();

  // Don't add section for addressor functions (where decl is a global)
  if (isa<FuncDecl>(decl)) {
    if (auto *SA = Attrs.getAttribute<SectionAttr>())
      F->setSection(SA->Name);
  }

  // Only emit replacements for the objc entry point of objc methods.
  // There is one exception: @_dynamicReplacement(for:) of @objc methods in
  // generic classes. In this special case we use native replacement instead of
  // @objc categories.
  if (decl->isObjC() && !decl->isNativeMethodReplacement() &&
      F->getLoweredFunctionType()->getExtInfo().getRepresentation() !=
          SILFunctionTypeRepresentation::ObjCMethod)
    return;

  // Only assign replacements when the thing being replaced is function-like and
  // explicitly declared.  
  auto *origDecl = decl->getDynamicallyReplacedDecl();
  if (auto *replacedDecl = dyn_cast_or_null<AbstractFunctionDecl>(origDecl)) {
    // For @objc method replacement we normally use categories to perform the
    // replacement. Except for methods in generic class where we can't. Instead,
    // we special case this and use the native swift replacement mechanism.
    if (decl->isObjC() && !decl->isNativeMethodReplacement()) {
      F->setObjCReplacement(replacedDecl);
      return;
    }

    if (constant.canBeDynamicReplacement()) {
      SILDeclRef declRef(replacedDecl, constant.kind, false);
      auto *replacedFunc = getOrCreateDeclaration(replacedDecl, declRef);

      assert(replacedFunc->getLoweredFunctionType() ==
                 F->getLoweredFunctionType() ||
             replacedFunc->getLoweredFunctionType()->hasOpaqueArchetype());

      F->setDynamicallyReplacedFunction(replacedFunc);
    }
  } else if (constant.isDistributedThunk()) {
    // It's okay for `decodeFuncDecl` to be null because system could be
    // generic.
    if (auto decodeFuncDecl =
            getAssociatedDistributedInvocationDecoderDecodeNextArgumentFunction(
                decl)) {
      auto decodeRef = SILDeclRef(decodeFuncDecl);
      auto *adHocFunc = getOrCreateDeclaration(decodeFuncDecl, decodeRef);
      F->setReferencedAdHocRequirementWitnessFunction(adHocFunc);
    }
  }
}

SILFunction *SILFunctionBuilder::getOrCreateFunction(
    SILLocation loc, SILDeclRef constant, ForDefinition_t forDefinition,
    llvm::function_ref<SILFunction *(SILLocation loc, SILDeclRef constant)>
        getOrCreateDeclaration,
    ProfileCounter entryCount) {
  auto nameTmp = constant.mangle();
  auto constantType = mod.Types.getConstantFunctionType(
      TypeExpansionContext::minimal(), constant);
  SILLinkage linkage = constant.getLinkage(forDefinition);

  if (auto fn = mod.lookUpFunction(nameTmp)) {
    // During SILGen (where the module's SIL stage is Raw), there might be
    // mismatches between the type or linkage. This can happen, when two
    // functions are mistakenly mapped to the same name (e.g. with @_cdecl).
    // We want to issue a regular error in this case and not crash with an
    // assert.
    assert(mod.getStage() == SILStage::Raw ||
           fn->getLoweredFunctionType() == constantType);
    auto linkageForDef = constant.getLinkage(ForDefinition_t::ForDefinition);
    auto fnLinkage = fn->getLinkage();
    assert(mod.getStage() == SILStage::Raw || fn->getLinkage() == linkage ||
           (forDefinition == ForDefinition_t::NotForDefinition &&
            (fnLinkage == linkageForDef ||
             (linkageForDef == SILLinkage::PublicNonABI ||
              linkageForDef == SILLinkage::PackageNonABI) &&
              fnLinkage == SILLinkage::Shared)));
    if (forDefinition) {
      // In all the cases where getConstantLinkage returns something
      // different for ForDefinition, it returns an available-externally
      // linkage.
      if (isAvailableExternally(fn->getLinkage())) {
        fn->setLinkage(constant.getLinkage(ForDefinition));
      }
    }
    return fn;
  }

  IsTransparent_t IsTrans =
      constant.isTransparent() ? IsTransparent : IsNotTransparent;

  SerializedKind_t IsSer = constant.getSerializedKind();
  // Don't create a [serialized] function after serialization has happened.
  if (IsSer != IsNotSerialized && mod.isSerialized())
    IsSer = IsNotSerialized;

  Inline_t inlineStrategy = InlineDefault;
  if (constant.isNoinline())
    inlineStrategy = NoInline;
  else if (constant.isAlwaysInline())
    inlineStrategy = AlwaysInline;

  StringRef name = mod.allocateCopy(nameTmp);
  IsDynamicallyReplaceable_t IsDyn = IsNotDynamic;
  if (constant.isDynamicallyReplaceable()) {
    IsDyn = IsDynamic;
    IsTrans = IsNotTransparent;
  }

  IsDistributed_t IsDistributed = IsDistributed_t::IsNotDistributed;
  // Mark both distributed thunks and methods as distributed.
  if (constant.hasFuncDecl() && constant.getFuncDecl()->isDistributed()) {
    IsDistributed = IsDistributed_t::IsDistributed;
  }

  IsRuntimeAccessible_t isRuntimeAccessible = IsNotRuntimeAccessible;

  auto *F = SILFunction::create(
      mod, linkage, name, constantType, nullptr, std::nullopt, IsNotBare,
      IsTrans, IsSer, entryCount, IsDyn, IsDistributed, isRuntimeAccessible,
      IsNotExactSelfClass, IsNotThunk, constant.getSubclassScope(),
      inlineStrategy);
  F->setDebugScope(new (mod) SILDebugScope(loc, F));

  if (constant.isGlobal())
    F->setSpecialPurpose(SILFunction::Purpose::GlobalInit);

  if (constant.hasDecl()) {
    auto decl = constant.getDecl();

    if (constant.isForeign && decl->hasClangNode() &&
        !decl->getObjCImplementationDecl())
      F->setClangNodeOwner(decl);

    if (auto availability = constant.getAvailabilityForLinkage())
      F->setAvailabilityForLinkage(*availability);

    F->setIsAlwaysWeakImported(decl->isAlwaysWeakImported());

    if (auto *accessor = dyn_cast<AccessorDecl>(decl)) {
      auto *storage = accessor->getStorage();
      // Add attributes for e.g. computed properties.
      addFunctionAttributes(F, storage->getAttrs(), mod,
                            getOrCreateDeclaration);
                            
      auto *varDecl = dyn_cast<VarDecl>(storage);
      if (varDecl && varDecl->getAttrs().hasAttribute<LazyAttr>() &&
          accessor->getAccessorKind() == AccessorKind::Get) {
        F->setSpecialPurpose(SILFunction::Purpose::LazyPropertyGetter);
        
        // Lazy property getters should not get inlined because they are usually
        // non-trivial functions (otherwise the user would not implement it as
        // lazy property). Inlining such getters would most likely not benefit
        // other optimizations because the top-level switch_enum cannot be
        // constant folded in most cases.
        // Also, not inlining lazy property getters enables optimizing them in
        // CSE.
        F->setInlineStrategy(NoInline);
      }
    }
    addFunctionAttributes(F, decl->getAttrs(), mod, getOrCreateDeclaration,
                          constant);
  }

  return F;
}

SILFunction *SILFunctionBuilder::getOrCreateSharedFunction(
    SILLocation loc, StringRef name, CanSILFunctionType type,
    IsBare_t isBareSILFunction, IsTransparent_t isTransparent,
    SerializedKind_t serializedKind, ProfileCounter entryCount, IsThunk_t isThunk,
    IsDynamicallyReplaceable_t isDynamic, IsDistributed_t isDistributed,
    IsRuntimeAccessible_t isRuntimeAccessible) {
  return getOrCreateFunction(loc, name, SILLinkage::Shared, type,
                             isBareSILFunction, isTransparent, serializedKind,
                             isDynamic, isDistributed, isRuntimeAccessible,
                             entryCount, isThunk, SubclassScope::NotApplicable);
}

SILFunction *SILFunctionBuilder::createFunction(
    SILLinkage linkage, StringRef name, CanSILFunctionType loweredType,
    GenericEnvironment *genericEnv, std::optional<SILLocation> loc,
    IsBare_t isBareSILFunction, IsTransparent_t isTrans,
    SerializedKind_t serializedKind, IsDynamicallyReplaceable_t isDynamic,
    IsDistributed_t isDistributed, IsRuntimeAccessible_t isRuntimeAccessible,
    ProfileCounter entryCount, IsThunk_t isThunk, SubclassScope subclassScope,
    Inline_t inlineStrategy, EffectsKind EK, SILFunction *InsertBefore,
    const SILDebugScope *DebugScope) {
  return SILFunction::create(mod, linkage, name, loweredType, genericEnv, loc,
                             isBareSILFunction, isTrans, serializedKind,
                             entryCount, isDynamic, isDistributed,
                             isRuntimeAccessible, IsNotExactSelfClass, isThunk,
                             subclassScope, inlineStrategy, EK, InsertBefore,
                             DebugScope);
}