1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
|
//===--- SILType.cpp - Defines SILType ------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILType.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/Decl.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Module.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/Type.h"
#include "swift/SIL/AbstractionPattern.h"
#include "swift/SIL/SILFunctionConventions.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/Test.h"
#include "swift/SIL/TypeLowering.h"
#include <tuple>
using namespace swift;
using namespace swift::Lowering;
/// Find a local archetype represented by this type.
/// It is assumed by this method that the type contains
/// at most one opened archetype.
/// Typically, it would be called from a type visitor.
/// It checks only the type itself, but does not try to
/// recursively check any children of this type, because
/// this is the task of the type visitor invoking it.
/// \returns The found archetype or empty type otherwise.
CanOpenedArchetypeType swift::getOpenedArchetypeOf(CanType Ty) {
return dyn_cast_or_null<OpenedArchetypeType>(getLocalArchetypeOf(Ty));
}
CanLocalArchetypeType swift::getLocalArchetypeOf(CanType Ty) {
if (!Ty)
return CanLocalArchetypeType();
while (auto MetaTy = dyn_cast<AnyMetatypeType>(Ty))
Ty = MetaTy.getInstanceType();
return dyn_cast<LocalArchetypeType>(Ty);
}
SILType SILType::getExceptionType(const ASTContext &C) {
return SILType::getPrimitiveObjectType(C.getErrorExistentialType());
}
SILType SILType::getNativeObjectType(const ASTContext &C) {
return SILType(C.TheNativeObjectType, SILValueCategory::Object);
}
SILType SILType::getBridgeObjectType(const ASTContext &C) {
return SILType(C.TheBridgeObjectType, SILValueCategory::Object);
}
SILType SILType::getRawPointerType(const ASTContext &C) {
return getPrimitiveObjectType(C.TheRawPointerType);
}
SILType SILType::getBuiltinIntegerLiteralType(const ASTContext &C) {
return getPrimitiveObjectType(C.TheIntegerLiteralType);
}
SILType SILType::getBuiltinIntegerType(unsigned bitWidth,
const ASTContext &C) {
return getPrimitiveObjectType(CanType(BuiltinIntegerType::get(bitWidth, C)));
}
SILType SILType::getBuiltinFloatType(BuiltinFloatType::FPKind Kind,
const ASTContext &C) {
CanType ty;
switch (Kind) {
case BuiltinFloatType::IEEE16: ty = C.TheIEEE16Type; break;
case BuiltinFloatType::IEEE32: ty = C.TheIEEE32Type; break;
case BuiltinFloatType::IEEE64: ty = C.TheIEEE64Type; break;
case BuiltinFloatType::IEEE80: ty = C.TheIEEE80Type; break;
case BuiltinFloatType::IEEE128: ty = C.TheIEEE128Type; break;
case BuiltinFloatType::PPC128: ty = C.ThePPC128Type; break;
}
return getPrimitiveObjectType(ty);
}
SILType SILType::getBuiltinWordType(const ASTContext &C) {
return getPrimitiveObjectType(CanType(BuiltinIntegerType::getWordType(C)));
}
SILType SILType::getOptionalType(SILType type) {
return getPrimitiveType(type.getASTType().wrapInOptionalType(),
type.getCategory())
.copyingMoveOnlyWrapper(type);
}
SILType SILType::getEmptyTupleType(const ASTContext &C) {
return getPrimitiveObjectType(C.TheEmptyTupleType);
}
SILType SILType::getSILTokenType(const ASTContext &C) {
return getPrimitiveObjectType(C.TheSILTokenType);
}
SILType SILType::getPackIndexType(const ASTContext &C) {
return getPrimitiveObjectType(C.ThePackIndexType);
}
SILType SILType::getOpaqueIsolationType(const ASTContext &C) {
auto actorProtocol = C.getProtocol(KnownProtocolKind::Actor);
auto actorType = ExistentialType::get(actorProtocol->getDeclaredInterfaceType());
return getPrimitiveObjectType(CanType(actorType).wrapInOptionalType());
}
bool SILType::isTrivial(const SILFunction &F) const {
auto contextType = hasTypeParameter() ? F.mapTypeIntoContext(*this) : *this;
return F.getTypeLowering(contextType).isTrivial();
}
bool SILType::isOrContainsRawPointer(const SILFunction &F) const {
auto contextType = hasTypeParameter() ? F.mapTypeIntoContext(*this) : *this;
return F.getTypeLowering(contextType).isOrContainsRawPointer();
}
bool SILType::isNonTrivialOrContainsRawPointer(const SILFunction *f) const {
auto contextType = hasTypeParameter() ? f->mapTypeIntoContext(*this) : *this;
const TypeLowering &tyLowering = f->getTypeLowering(contextType);
bool result = !tyLowering.isTrivial() || tyLowering.isOrContainsRawPointer();
assert((result || !isFunctionTypeWithContext()) &&
"a function type with context must either be non trivial or marked as containing a pointer");
return result;
}
bool SILType::isOrContainsPack(const SILFunction &F) const {
auto contextType = hasTypeParameter() ? F.mapTypeIntoContext(*this) : *this;
return F.getTypeLowering(contextType).isOrContainsPack();
}
bool SILType::isEmpty(const SILFunction &F) const {
// Infinite types are never empty.
if (F.getTypeLowering(*this).getRecursiveProperties().isInfinite()) {
return false;
}
if (auto tupleTy = getAs<TupleType>()) {
// A tuple is empty if it either has no elements or if all elements are
// empty.
for (unsigned idx = 0, num = tupleTy->getNumElements(); idx < num; ++idx) {
if (!getTupleElementType(idx).isEmpty(F))
return false;
}
return true;
}
if (StructDecl *structDecl = getStructOrBoundGenericStruct()) {
// Also, a struct is empty if it either has no fields or if all fields are
// empty.
SILModule &module = F.getModule();
TypeExpansionContext typeEx = F.getTypeExpansionContext();
for (VarDecl *field : structDecl->getStoredProperties()) {
if (!getFieldType(field, module, typeEx).isEmpty(F))
return false;
}
return true;
}
return false;
}
bool SILType::isReferenceCounted(SILModule &M) const {
return M.Types.getTypeLowering(*this,
TypeExpansionContext::minimal())
.isReferenceCounted();
}
bool SILType::isReferenceCounted(SILFunction *f) const {
return isReferenceCounted(f->getModule());
}
bool SILType::isNoReturnFunction(SILModule &M,
TypeExpansionContext context) const {
if (auto funcTy = dyn_cast<SILFunctionType>(getASTType()))
return funcTy->isNoReturnFunction(M, context);
return false;
}
Lifetime SILType::getLifetime(const SILFunction &F) const {
auto contextType = hasTypeParameter() ? F.mapTypeIntoContext(*this) : *this;
const auto &lowering = F.getTypeLowering(contextType);
auto properties = lowering.getRecursiveProperties();
if (properties.isTrivial())
return Lifetime::None;
return properties.isLexical() ? Lifetime::Lexical : Lifetime::EagerMove;
}
std::string SILType::getMangledName() const {
Mangle::ASTMangler mangler;
return mangler.mangleTypeWithoutPrefix(getRawASTType());
}
std::string SILType::getAsString() const {
std::string Result;
llvm::raw_string_ostream OS(Result);
print(OS);
return OS.str();
}
bool SILType::isPointerSizeAndAligned(SILModule &M,
ResilienceExpansion expansion) const {
auto &C = getASTContext();
if (isHeapObjectReferenceType()
|| getASTType()->isEqual(C.TheRawPointerType)) {
return true;
}
if (auto intTy = dyn_cast<BuiltinIntegerType>(getASTType()))
return intTy->getWidth().isPointerWidth();
if (auto underlyingField = getSingletonAggregateFieldType(M, expansion)) {
return underlyingField.isPointerSizeAndAligned(M, expansion);
}
return false;
}
static bool isSingleSwiftRefcounted(SILModule &M,
SILType SILTy,
ResilienceExpansion expansion,
bool didUnwrapOptional) {
auto &C = M.getASTContext();
// Unwrap one layer of optionality.
// TODO: Or more generally, any fragile enum with a single payload and single
// no-payload case.
if (!didUnwrapOptional) {
if (auto objectTy = SILTy.getOptionalObjectType()) {
return ::isSingleSwiftRefcounted(M, objectTy, expansion, true);
}
}
// Unwrap singleton aggregates.
if (auto underlyingField = SILTy.getSingletonAggregateFieldType(M, expansion)) {
return ::isSingleSwiftRefcounted(M, underlyingField, expansion,
didUnwrapOptional);
}
auto Ty = SILTy.getASTType();
// Easy cases: Builtin.NativeObject and boxes are always Swift-refcounted.
if (Ty == C.TheNativeObjectType)
return true;
if (isa<SILBoxType>(Ty))
return true;
// Is the type a Swift-refcounted class?
// For a generic type, consider its superclass constraint, if any.
auto ClassTy = Ty;
if (auto archety = dyn_cast<ArchetypeType>(Ty)) {
if (auto superclass = Ty->getSuperclass()) {
ClassTy = superclass->getCanonicalType();
}
}
// For an existential type, consider its superclass constraint, if it carries
// no witness tables.
if (Ty->isAnyExistentialType()) {
auto layout = Ty->getExistentialLayout();
// Must be no protocol constraints that aren't @objc or @_marker.
if (layout.containsSwiftProtocol) {
return false;
}
// The Error existential has its own special layout.
if (layout.isErrorExistential()) {
return false;
}
// We can look at the superclass constraint, if any, to see if it's
// Swift-refcounted.
if (!layout.getSuperclass()) {
return false;
}
ClassTy = layout.getSuperclass()->getCanonicalType();
}
// TODO: Does the base class we found have fully native Swift ancestry,
// so we can use Swift native refcounting on it?
return false;
}
bool SILType::isSingleSwiftRefcounted(SILModule &M,
ResilienceExpansion expansion) const {
return ::isSingleSwiftRefcounted(M, *this, expansion, false);
}
// Reference cast from representations with single pointer low bits.
// Only reference cast to simple single pointer representations.
//
// TODO: handle casting to a loadable existential by generating
// init_existential_ref. Until then, only promote to a heap object dest.
//
// This cannot allow trivial-to-reference casts, as required by
// isRCIdentityPreservingCast.
bool SILType::canRefCast(SILType operTy, SILType resultTy, SILModule &M) {
auto fromTy = operTy.unwrapOptionalType();
auto toTy = resultTy.unwrapOptionalType();
return (fromTy.isHeapObjectReferenceType() || fromTy.isClassExistentialType())
&& toTy.isHeapObjectReferenceType();
}
static bool needsFieldSubstitutions(const AbstractionPattern &origType) {
if (origType.isTypeParameter()) return false;
auto type = origType.getType();
if (!type->hasTypeParameter()) return false;
return type.findIf([](CanType type) {
return isa<PackExpansionType>(type);
});
}
static void addFieldSubstitutionsIfNeeded(TypeConverter &TC, SILType ty,
ValueDecl *field,
AbstractionPattern &origType) {
if (needsFieldSubstitutions(origType)) {
auto subMap = ty.getASTType()->getContextSubstitutionMap(
&TC.M, field->getDeclContext());
origType = origType.withSubstitutions(subMap);
}
}
VarDecl *SILType::getFieldDecl(intptr_t fieldIndex) const {
NominalTypeDecl *decl = getNominalOrBoundGenericNominal();
assert(decl && "expected nominal type");
return getIndexedField(decl, fieldIndex);
}
SILType SILType::getFieldType(VarDecl *field, TypeConverter &TC,
TypeExpansionContext context) const {
AbstractionPattern origFieldTy = TC.getAbstractionPattern(field);
addFieldSubstitutionsIfNeeded(TC, *this, field, origFieldTy);
CanType substFieldTy;
if (field->hasClangNode()) {
substFieldTy = origFieldTy.getType();
} else {
// We want to specifically use getASTType() here instead of getRawASTType()
// to ensure that we can correctly get our substituted field type. If we
// need to rewrap the type layer, we do it below.
substFieldTy =
getASTType()->getTypeOfMember(&TC.M, field)->getCanonicalType();
}
auto loweredTy =
TC.getLoweredRValueType(context, origFieldTy, substFieldTy);
// If this type is not a class type, then we propagate "move only"-ness to the
// field. Example:
if (!getClassOrBoundGenericClass() && isMoveOnlyWrapped())
loweredTy = SILMoveOnlyWrappedType::get(loweredTy);
if (isAddress() || getClassOrBoundGenericClass() != nullptr) {
return SILType::getPrimitiveAddressType(loweredTy);
} else {
return SILType::getPrimitiveObjectType(loweredTy);
}
}
SILType SILType::getFieldType(VarDecl *field, SILModule &M,
TypeExpansionContext context) const {
return getFieldType(field, M.Types, context);
}
SILType SILType::getFieldType(VarDecl *field, SILFunction *fn) const {
return getFieldType(field, fn->getModule(), fn->getTypeExpansionContext());
}
SILType SILType::getFieldType(intptr_t fieldIndex, SILFunction *function) const {
VarDecl *field = getFieldDecl(fieldIndex);
return getFieldType(field, function->getModule(), function->getTypeExpansionContext());
}
StringRef SILType::getFieldName(intptr_t fieldIndex) const {
NominalTypeDecl *decl = getNominalOrBoundGenericNominal();
VarDecl *field = getIndexedField(decl, fieldIndex);
return field->getName().str();
}
unsigned SILType::getNumNominalFields() const {
auto *nominal = getNominalOrBoundGenericNominal();
assert(nominal && "expected nominal type");
return getNumFieldsInNominal(nominal);
}
SILType SILType::getEnumElementType(EnumElementDecl *elt, TypeConverter &TC,
TypeExpansionContext context) const {
assert(elt->getDeclContext() == getEnumOrBoundGenericEnum());
assert(elt->hasAssociatedValues());
if (auto objectType = getASTType().getOptionalObjectType()) {
assert(elt == TC.Context.getOptionalSomeDecl());
return SILType(objectType, getCategory()).copyingMoveOnlyWrapper(*this);
}
// If the case is indirect, then the payload is boxed.
if (elt->isIndirect() || elt->getParentEnum()->isIndirect()) {
auto box = TC.getBoxTypeForEnumElement(context, *this, elt);
return SILType(SILType::getPrimitiveObjectType(box).getASTType(),
getCategory());
}
auto origEltType = TC.getAbstractionPattern(elt);
addFieldSubstitutionsIfNeeded(TC, *this, elt, origEltType);
auto substEltTy = getASTType()->getTypeOfMember(
&TC.M, elt, elt->getArgumentInterfaceType());
auto loweredTy = TC.getLoweredRValueType(
context, TC.getAbstractionPattern(elt), substEltTy);
return SILType(loweredTy, getCategory()).copyingMoveOnlyWrapper(*this);
}
SILType SILType::getEnumElementType(EnumElementDecl *elt, SILModule &M,
TypeExpansionContext context) const {
return getEnumElementType(elt, M.Types, context);
}
SILType SILType::getEnumElementType(EnumElementDecl *elt,
SILFunction *fn) const {
return getEnumElementType(elt, fn->getModule(),
fn->getTypeExpansionContext());
}
EnumElementDecl *SILType::getEnumElement(int caseIndex) const {
EnumDecl *enumDecl = getEnumOrBoundGenericEnum();
for (auto elemWithIndex : llvm::enumerate(enumDecl->getAllElements())) {
if ((int)elemWithIndex.index() == caseIndex)
return elemWithIndex.value();
}
llvm_unreachable("invalid enum case index");
}
bool SILType::isLoadableOrOpaque(const SILFunction &F) const {
SILModule &M = F.getModule();
return isLoadable(F) || !SILModuleConventions(M).useLoweredAddresses();
}
bool SILType::isAddressOnly(const SILFunction &F) const {
auto contextType = hasTypeParameter() ? F.mapTypeIntoContext(*this) : *this;
return F.getTypeLowering(contextType).isAddressOnly();
}
bool SILType::isFixedABI(const SILFunction &F) const {
auto contextType = hasTypeParameter() ? F.mapTypeIntoContext(*this) : *this;
return F.getTypeLowering(contextType).isFixedABI();
}
SILType SILType::substGenericArgs(SILModule &M, SubstitutionMap SubMap,
TypeExpansionContext context) const {
auto fnTy = castTo<SILFunctionType>();
auto canFnTy = CanSILFunctionType(fnTy->substGenericArgs(M, SubMap, context));
return SILType::getPrimitiveObjectType(canFnTy);
}
bool SILType::isHeapObjectReferenceType() const {
auto &C = getASTContext();
auto Ty = getASTType();
if (Ty->isBridgeableObjectType())
return true;
if (Ty->isEqual(C.TheNativeObjectType))
return true;
if (Ty->isEqual(C.TheBridgeObjectType))
return true;
if (is<SILBoxType>())
return true;
return false;
}
bool SILType::aggregateContainsRecord(SILType Record, SILModule &Mod,
TypeExpansionContext context) const {
assert(!hasArchetype() && "Agg should be proven to not be generic "
"before passed to this function.");
assert(!Record.hasArchetype() && "Record should be proven to not be generic "
"before passed to this function.");
llvm::SmallVector<SILType, 8> Worklist;
Worklist.push_back(*this);
// For each "subrecord" of agg in the worklist...
while (!Worklist.empty()) {
SILType Ty = Worklist.pop_back_val();
// If it is record, we succeeded. Return true.
if (Ty == Record)
return true;
// Otherwise, we gather up sub-records that need to be checked for
// checking... First handle the tuple case.
if (CanTupleType TT = Ty.getAs<TupleType>()) {
for (unsigned i = 0, e = TT->getNumElements(); i != e; ++i)
Worklist.push_back(Ty.getTupleElementType(i));
continue;
}
// Then if we have an enum...
if (EnumDecl *E = Ty.getEnumOrBoundGenericEnum()) {
for (auto Elt : E->getAllElements())
if (Elt->hasAssociatedValues())
Worklist.push_back(Ty.getEnumElementType(Elt, Mod, context));
continue;
}
// Then if we have a struct address...
if (StructDecl *S = Ty.getStructOrBoundGenericStruct())
for (VarDecl *Var : S->getStoredProperties())
Worklist.push_back(Ty.getFieldType(Var, Mod, context));
// If we have a class address, it is a pointer so it cannot contain other
// types.
// If we reached this point, then this type has no subrecords. Since it does
// not equal our record, we can skip it.
}
// Could not find the record in the aggregate.
return false;
}
bool SILType::aggregateHasUnreferenceableStorage() const {
if (auto s = getStructOrBoundGenericStruct()) {
return s->hasUnreferenceableStorage();
}
// Tuples with pack expansions don't *actually* have unreferenceable
// storage, but the optimizer needs to be taught how to handle them,
// and it won't do that correctly in the short term.
if (auto t = getAs<TupleType>()) {
return t.containsPackExpansionType();
}
return false;
}
SILType SILType::getOptionalObjectType() const {
if (auto objectTy = getASTType().getOptionalObjectType()) {
return SILType(objectTy, getCategory()).copyingMoveOnlyWrapper(*this);
}
return SILType();
}
SILType SILType::unwrapOptionalType() const {
if (auto objectTy = removingMoveOnlyWrapper().getOptionalObjectType()) {
return objectTy.copyingMoveOnlyWrapper(*this);
}
return *this;
}
/// True if the given type value is nonnull, and the represented type is NSError
/// or CFError, the error classes for which we support "toll-free" bridging to
/// Error existentials.
static bool isBridgedErrorClass(ASTContext &ctx, Type t) {
// There's no bridging if ObjC interop is disabled.
if (!ctx.LangOpts.EnableObjCInterop)
return false;
if (!t)
return false;
if (auto archetypeType = t->getAs<ArchetypeType>())
t = archetypeType->getSuperclass();
// NSError (TODO: and CFError) can be bridged.
auto nsErrorType = ctx.getNSErrorType();
if (t && nsErrorType && nsErrorType->isExactSuperclassOf(t))
return true;
return false;
}
ExistentialRepresentation
SILType::getPreferredExistentialRepresentation(Type containedType) const {
// Existential metatypes always use metatype representation.
if (is<ExistentialMetatypeType>())
return ExistentialRepresentation::Metatype;
// If the type isn't existential, then there is no representation.
if (!isExistentialType())
return ExistentialRepresentation::None;
auto layout = getASTType().getExistentialLayout();
if (layout.isErrorExistential()) {
// NSError or CFError references can be adopted directly as Error
// existentials.
if (isBridgedErrorClass(getASTContext(), containedType)) {
return ExistentialRepresentation::Class;
} else {
return ExistentialRepresentation::Boxed;
}
}
// A class-constrained protocol composition can adopt the conforming
// class reference directly.
if (layout.requiresClass())
return ExistentialRepresentation::Class;
// Otherwise, we need to use a fixed-sized buffer.
assert(!layout.isObjC());
return ExistentialRepresentation::Opaque;
}
bool
SILType::canUseExistentialRepresentation(ExistentialRepresentation repr,
Type containedType) const {
switch (repr) {
case ExistentialRepresentation::None:
return !isAnyExistentialType();
case ExistentialRepresentation::Opaque:
case ExistentialRepresentation::Class:
case ExistentialRepresentation::Boxed: {
// Look at the protocols to see what representation is appropriate.
if (!isExistentialType())
return false;
auto layout = getASTType().getExistentialLayout();
switch (layout.getKind()) {
// A class-constrained composition uses ClassReference representation;
// otherwise, we use a fixed-sized buffer.
case ExistentialLayout::Kind::Class:
return repr == ExistentialRepresentation::Class;
// The (uncomposed) Error existential uses a special boxed
// representation. It can also adopt class references of bridged
// error types directly.
case ExistentialLayout::Kind::Error:
return repr == ExistentialRepresentation::Boxed
|| (repr == ExistentialRepresentation::Class
&& isBridgedErrorClass(getASTContext(), containedType));
case ExistentialLayout::Kind::Opaque:
return repr == ExistentialRepresentation::Opaque;
}
llvm_unreachable("unknown existential kind!");
}
case ExistentialRepresentation::Metatype:
return is<ExistentialMetatypeType>();
}
llvm_unreachable("Unhandled ExistentialRepresentation in switch.");
}
SILType SILType::mapTypeOutOfContext() const {
return SILType::getPrimitiveType(mapTypeOutOfContext(getASTType()),
getCategory());
}
CanType SILType::mapTypeOutOfContext(CanType type) {
return type->mapTypeOutOfContext()->getCanonicalType();
}
CanType swift::getSILBoxFieldLoweredType(TypeExpansionContext context,
SILBoxType *type, TypeConverter &TC,
unsigned index) {
auto fieldTy = SILType::getPrimitiveObjectType(
type->getLayout()->getFields()[index].getLoweredType());
// Map the type into the new expansion context, which might substitute opaque
// types.
auto sig = type->getLayout()->getGenericSignature();
fieldTy = TC.getTypeLowering(fieldTy, context, sig)
.getLoweredType();
// Apply generic arguments if the layout is generic.
if (auto subMap = type->getSubstitutions()) {
fieldTy = fieldTy.subst(TC,
QuerySubstitutionMap{subMap},
LookUpConformanceInSubstitutionMap(subMap),
sig);
}
return fieldTy.getRawASTType();
}
ValueOwnershipKind
SILResultInfo::getOwnershipKind(SILFunction &F,
CanSILFunctionType FTy) const {
auto &M = F.getModule();
bool IsTrivial =
getSILStorageType(M, FTy, TypeExpansionContext::minimal()).isTrivial(F);
switch (getConvention()) {
case ResultConvention::Indirect:
case ResultConvention::Pack:
return SILModuleConventions(M).isSILIndirect(*this) ? OwnershipKind::None
: OwnershipKind::Owned;
case ResultConvention::Autoreleased:
case ResultConvention::Owned:
return OwnershipKind::Owned;
case ResultConvention::Unowned:
case ResultConvention::UnownedInnerPointer:
if (IsTrivial)
return OwnershipKind::None;
return OwnershipKind::Unowned;
}
llvm_unreachable("Unhandled ResultConvention in switch.");
}
SILModuleConventions::SILModuleConventions(SILModule &M)
: M(&M), loweredAddresses(M.useLoweredAddresses()) {}
bool SILModuleConventions::isReturnedIndirectlyInSIL(SILType type,
SILModule &M) {
if (SILModuleConventions(M).loweredAddresses) {
return M.Types.getTypeLowering(type, TypeExpansionContext::minimal())
.isAddressOnly();
}
return false;
}
bool SILModuleConventions::isPassedIndirectlyInSIL(SILType type, SILModule &M) {
if (SILModuleConventions(M).loweredAddresses) {
return M.Types.getTypeLowering(type, TypeExpansionContext::minimal())
.isAddressOnly();
}
return false;
}
bool SILModuleConventions::isThrownIndirectlyInSIL(SILType type, SILModule &M) {
if (SILModuleConventions(M).loweredAddresses) {
return M.Types.getTypeLowering(type, TypeExpansionContext::minimal())
.isAddressOnly();
}
return false;
}
bool SILFunctionType::isNoReturnFunction(SILModule &M,
TypeExpansionContext context) const {
for (unsigned i = 0, e = getNumResults(); i < e; ++i) {
if (getResults()[i].getReturnValueType(M, this, context)->isUninhabited())
return true;
}
return false;
}
#ifndef NDEBUG
static bool areOnlyAbstractionDifferent(CanType type1, CanType type2) {
assert(type1->isLegalSILType());
assert(type2->isLegalSILType());
// Exact equality is fine.
if (type1 == type2)
return true;
// Either both types should be optional or neither should be.
if (auto object1 = type1.getOptionalObjectType()) {
auto object2 = type2.getOptionalObjectType();
if (!object2)
return false;
return areOnlyAbstractionDifferent(object1, object2);
}
if (type2.getOptionalObjectType())
return false;
// Either both types should be tuples or neither should be.
if (auto tuple1 = dyn_cast<TupleType>(type1)) {
auto tuple2 = dyn_cast<TupleType>(type2);
if (!tuple2)
return false;
if (tuple1->getNumElements() != tuple2->getNumElements())
return false;
for (auto i : indices(tuple2->getElementTypes()))
if (!areOnlyAbstractionDifferent(tuple1.getElementType(i),
tuple2.getElementType(i)))
return false;
return true;
}
if (isa<TupleType>(type2))
return false;
// Either both types should be metatypes or neither should be.
if (auto meta1 = dyn_cast<AnyMetatypeType>(type1)) {
auto meta2 = dyn_cast<AnyMetatypeType>(type2);
if (!meta2)
return false;
if (meta1.getInstanceType() != meta2.getInstanceType())
return false;
return true;
}
// Either both types should be functions or neither should be.
if (auto fn1 = dyn_cast<SILFunctionType>(type1)) {
auto fn2 = dyn_cast<SILFunctionType>(type2);
if (!fn2)
return false;
// TODO: maybe there are checks we can do here?
(void)fn1;
(void)fn2;
return true;
}
if (isa<SILFunctionType>(type2))
return false;
llvm_unreachable("no other types should differ by abstraction");
}
#endif
/// Given two SIL types which are representations of the same type,
/// check whether they have an abstraction difference.
bool SILType::hasAbstractionDifference(SILFunctionTypeRepresentation rep,
SILType type2) {
CanType ct1 = getASTType();
CanType ct2 = type2.getASTType();
assert(getSILFunctionLanguage(rep) == SILFunctionLanguage::C ||
areOnlyAbstractionDifferent(ct1, ct2));
(void)ct1;
(void)ct2;
// Assuming that we've applied the same substitutions to both types,
// abstraction equality should equal type equality.
return (*this != type2);
}
bool SILType::isLoweringOf(TypeExpansionContext context, SILModule &Mod,
CanType formalType) {
SILType loweredType = *this;
if (formalType->hasOpaqueArchetype() &&
context.shouldLookThroughOpaqueTypeArchetypes() &&
loweredType.getASTType() ==
Mod.Types.getLoweredRValueType(context, formalType))
return true;
// Optional lowers its contained type.
SILType loweredObjectType = loweredType.getOptionalObjectType();
CanType formalObjectType = formalType.getOptionalObjectType();
if (loweredObjectType) {
return formalObjectType &&
loweredObjectType.isLoweringOf(context, Mod, formalObjectType);
}
// Metatypes preserve their instance type through lowering.
if (auto loweredMT = loweredType.getAs<MetatypeType>()) {
if (auto formalMT = dyn_cast<MetatypeType>(formalType)) {
return loweredMT.getInstanceType() == formalMT.getInstanceType();
}
}
if (auto loweredEMT = loweredType.getAs<ExistentialMetatypeType>()) {
if (auto formalEMT = dyn_cast<ExistentialMetatypeType>(formalType)) {
return loweredEMT.getInstanceType() == formalEMT.getInstanceType();
}
}
// TODO: Function types go through a more elaborate lowering.
// For now, just check that a SIL function type came from some AST function
// type.
if (loweredType.is<SILFunctionType>())
return isa<AnyFunctionType>(formalType);
// Tuples are lowered elementwise.
// TODO: Will this always be the case?
if (auto loweredTT = loweredType.getAs<TupleType>()) {
if (auto formalTT = dyn_cast<TupleType>(formalType)) {
if (loweredTT->getNumElements() != formalTT->getNumElements())
return false;
for (unsigned i = 0, e = loweredTT->getNumElements(); i < e; ++i) {
auto loweredTTEltType =
SILType::getPrimitiveAddressType(loweredTT.getElementType(i));
if (!loweredTTEltType.isLoweringOf(context, Mod,
formalTT.getElementType(i)))
return false;
}
return true;
}
}
// The pattern of a pack expansion is lowered.
if (auto formalExpansion = dyn_cast<PackExpansionType>(formalType)) {
if (auto loweredExpansion = loweredType.getAs<PackExpansionType>()) {
return loweredExpansion.getCountType() == formalExpansion.getCountType()
&& SILType::getPrimitiveAddressType(loweredExpansion.getPatternType())
.isLoweringOf(context, Mod, formalExpansion.getPatternType());
}
return false;
}
// Dynamic self has the same lowering as its contained type.
if (auto dynamicSelf = dyn_cast<DynamicSelfType>(formalType))
formalType = dynamicSelf.getSelfType();
// Other types are preserved through lowering.
return loweredType.getASTType() == formalType;
}
bool SILType::isDifferentiable(SILModule &M) const {
return getASTType()
->getAutoDiffTangentSpace(LookUpConformanceInModule(M.getSwiftModule()))
.has_value();
}
Type
TypeBase::replaceSubstitutedSILFunctionTypesWithUnsubstituted(SILModule &M) const {
return Type(const_cast<TypeBase *>(this)).transform([&](Type t) -> Type {
if (auto *f = t->getAs<SILFunctionType>()) {
auto sft = f->getUnsubstitutedType(M);
// Also eliminate substituted function types in the arguments, yields,
// and returns of the function type.
bool didChange = false;
SmallVector<SILParameterInfo, 4> newParams;
SmallVector<SILYieldInfo, 4> newYields;
SmallVector<SILResultInfo, 4> newResults;
std::optional<SILResultInfo> newErrorResult;
for (auto param : sft->getParameters()) {
auto newParamTy = param.getInterfaceType()
->replaceSubstitutedSILFunctionTypesWithUnsubstituted(M)
->getCanonicalType();
didChange |= param.getInterfaceType() != newParamTy;
newParams.push_back(SILParameterInfo(newParamTy, param.getConvention()));
}
for (auto yield : sft->getYields()) {
auto newYieldTy = yield.getInterfaceType()
->replaceSubstitutedSILFunctionTypesWithUnsubstituted(M)
->getCanonicalType();
didChange |= yield.getInterfaceType() != newYieldTy;
newYields.push_back(SILYieldInfo(newYieldTy, yield.getConvention()));
}
for (auto result : sft->getResults()) {
auto newResultTy = result.getInterfaceType()
->replaceSubstitutedSILFunctionTypesWithUnsubstituted(M)
->getCanonicalType();
didChange |= result.getInterfaceType() != newResultTy;
newResults.push_back(SILResultInfo(newResultTy, result.getConvention()));
}
if (auto error = sft->getOptionalErrorResult()) {
auto newErrorTy = error->getInterfaceType()
->replaceSubstitutedSILFunctionTypesWithUnsubstituted(M)
->getCanonicalType();
didChange |= error->getInterfaceType() != newErrorTy;
newErrorResult = SILResultInfo(newErrorTy, error->getConvention());
}
if (!didChange)
return sft;
return SILFunctionType::get(sft->getInvocationGenericSignature(),
sft->getExtInfo(), sft->getCoroutineKind(),
sft->getCalleeConvention(),
newParams, newYields, newResults,
newErrorResult,
SubstitutionMap(),
SubstitutionMap(),
M.getASTContext());
}
return t;
});
}
bool SILType::isEffectivelyExhaustiveEnumType(SILFunction *f) {
EnumDecl *decl = getEnumOrBoundGenericEnum();
assert(decl && "Called for a non enum type");
// Since unavailable enum elements cannot be referenced in canonical SIL,
// enums with these elements cannot be treated as exhaustive types.
if (decl->hasCasesUnavailableDuringLowering())
return false;
return decl->isEffectivelyExhaustive(f->getModule().getSwiftModule(),
f->getResilienceExpansion());
}
SILType SILType::getSILBoxFieldType(const SILFunction *f, unsigned field) const {
auto *boxTy = getASTType()->getAs<SILBoxType>();
if (!boxTy)
return SILType();
return ::getSILBoxFieldType(f->getTypeExpansionContext(), boxTy,
f->getModule().Types, field);
}
SILType
SILType::getSingletonAggregateFieldType(SILModule &M,
ResilienceExpansion expansion) const {
if (auto tuple = getAs<TupleType>()) {
if (tuple->getNumElements() == 1) {
return getTupleElementType(0);
}
}
if (auto structDecl = getStructOrBoundGenericStruct()) {
// If the struct has to be accessed resiliently from this resilience domain,
// we can't assume anything about its layout.
if (structDecl->isResilient(M.getSwiftModule(), expansion)) {
return SILType();
}
// C ABI wackiness may cause a single-field struct to have different layout
// from its field.
if (structDecl->hasUnreferenceableStorage()
|| structDecl->hasClangNode()) {
return SILType();
}
// A single-field struct with custom alignment has different layout from its
// field.
if (structDecl->getAttrs().hasAttribute<AlignmentAttr>()) {
return SILType();
}
// If there's only one stored property, we have the layout of its field.
auto allFields = structDecl->getStoredProperties();
if (allFields.size() == 1) {
auto fieldTy = getFieldType(
allFields[0], M,
TypeExpansionContext(expansion, M.getSwiftModule(),
M.isWholeModule()));
if (!M.isTypeABIAccessible(fieldTy,
TypeExpansionContext::maximalResilienceExpansionOnly())){
return SILType();
}
return fieldTy;
}
return SILType();
}
if (auto enumDecl = getEnumOrBoundGenericEnum()) {
// If the enum has to be accessed resiliently from this resilience domain,
// we can't assume anything about its layout.
if (enumDecl->isResilient(M.getSwiftModule(), expansion)) {
return SILType();
}
auto allCases = enumDecl->getAllElements();
auto theCase = allCases.begin();
if (!allCases.empty() && std::next(theCase) == allCases.end()
&& (*theCase)->hasAssociatedValues()) {
auto enumEltTy = getEnumElementType(
*theCase, M,
TypeExpansionContext(expansion, M.getSwiftModule(),
M.isWholeModule()));
if (!M.isTypeABIAccessible(enumEltTy,
TypeExpansionContext::maximalResilienceExpansionOnly())){
return SILType();
}
return enumEltTy;
}
return SILType();
}
return SILType();
}
bool SILType::isEscapable(const SILFunction &function) const {
CanType ty = getASTType();
// For storage with reference ownership, check the referent.
if (auto refStorage = ty->getAs<ReferenceStorageType>())
ty = refStorage->getReferentType()->getCanonicalType();
if (auto fnTy = getAs<SILFunctionType>()) {
// Use isNoEscape instead to determine whether a function type may escape.
return true;
}
if (auto boxTy = getAs<SILBoxType>()) {
auto fields = boxTy->getLayout()->getFields();
assert(fields.size() == 1);
ty = ::getSILBoxFieldLoweredType(function.getTypeExpansionContext(), boxTy,
function.getModule().Types, 0);
}
if (auto *moveOnlyTy = ty->getAs<SILMoveOnlyWrappedType>())
ty = moveOnlyTy->getInnerType();
// TODO: Support ~Escapable in parameter packs.
//
// Treat all other SIL-specific types as Escapable.
if (isa<SILBlockStorageType,
SILBoxType,
SILPackType,
SILTokenType>(ty)) {
return true;
}
return ty->isEscapable();
}
bool SILType::isMoveOnly(bool orWrapped) const {
// If it's inside the move-only wrapper, return true iff we want to include
// such types as "move-only" in this query. Such values are typically
// just "no-implicit-copy" and not "move-only".
if (isMoveOnlyWrapped())
return orWrapped;
// NOTE: getASTType strips the MoveOnlyWrapper off!
CanType ty = getASTType();
// For storage with reference ownership, check the referent.
if (auto refStorage = ty->getAs<ReferenceStorageType>())
ty = refStorage->getReferentType()->getCanonicalType();
// TODO: Nonescaping closures ought to be treated as move-only in SIL.
// They aren't marked move-only now, because the necessary move-only passes
// haven't yet been enabled. We can get away without this because we don't
// ever copy them after SILGen and any incidental copies we emit are always
// optimized out, but we ought to enforce this once move-only type support
// is robust.
/*
if (auto fnTy = getAs<SILFunctionType>()) {
return fnTy->isTrivialNoEscape();
}
*/
if (isa<SILFunctionType>(ty))
return false;
// Treat all other SIL-specific types as Copyable.
if (isa<SILBlockStorageType,
SILBoxType,
SILPackType,
SILTokenType>(ty)) {
return false;
}
// Finally, for other ordinary types, ask the AST type.
return ty->isNoncopyable();
}
bool SILType::isValueTypeWithDeinit() const {
// Do not look inside an aggregate type that has a user-deinit, for which
// memberwise-destruction is not equivalent to aggregate destruction.
if (auto *nominal = getNominalOrBoundGenericNominal()) {
return nominal->getValueTypeDestructor() != nullptr;
}
return false;
}
SILType SILType::getInstanceTypeOfMetatype(SILFunction *function) const {
auto metaType = castTo<MetatypeType>();
CanType instanceTy = metaType.getInstanceType();
auto &tl = function->getModule().Types.getTypeLowering(instanceTy, TypeExpansionContext(*function));
return tl.getLoweredType();
}
MetatypeRepresentation SILType::getRepresentationOfMetatype(SILFunction *function) const {
auto metaType = castTo<MetatypeType>();
return metaType->getRepresentation();
}
bool SILType::isOrContainsObjectiveCClass() const {
return getASTType().findIf([](Type ty) {
if (ClassDecl *cd = ty->getClassOrBoundGenericClass()) {
if (cd->isForeign() || cd->getObjectModel() == ReferenceCounting::ObjC)
return true;
}
if (ty->is<ProtocolCompositionType>())
return true;
return false;
});
}
static bool hasImmortalAttr(NominalTypeDecl *nominal) {
if (auto *semAttr = nominal->getAttrs().getAttribute<SemanticsAttr>()) {
if (semAttr->Value == semantics::ARC_IMMORTAL) {
return true;
}
}
return false;
}
static bool nominalIsMarkedAsImmortal(NominalTypeDecl *nominal) {
if (hasImmortalAttr(nominal))
return true;
if (!isa<ProtocolDecl>(nominal)) {
for (ProtocolDecl *p : nominal->getAllProtocols()) {
if (hasImmortalAttr(p))
return true;
}
}
return false;
}
bool SILType::isMarkedAsImmortal() const {
NominalTypeDecl *nominal = getNominalOrBoundGenericNominal();
if (!nominal)
return false;
if (nominalIsMarkedAsImmortal(nominal))
return true;
if (ClassDecl *cl = dyn_cast<ClassDecl>(nominal)) {
cl = cl->getSuperclassDecl();
while (cl) {
if (nominalIsMarkedAsImmortal(cl))
return true;
cl = cl->getSuperclassDecl();
}
}
return false;
}
intptr_t SILType::getFieldIdxOfNominalType(StringRef fieldName) const {
auto *nominal = getNominalOrBoundGenericNominal();
if (!nominal)
return -1;
SmallVector<NominalTypeDecl *, 5> decls;
decls.push_back(nominal);
if (auto *cd = dyn_cast<ClassDecl>(nominal)) {
while ((cd = cd->getSuperclassDecl()) != nullptr) {
decls.push_back(cd);
}
}
std::reverse(decls.begin(), decls.end());
intptr_t idx = 0;
for (auto *decl : decls) {
for (VarDecl *field : decl->getStoredProperties()) {
if (field->getName().str() == fieldName)
return idx;
idx++;
}
}
return -1;
}
intptr_t SILType::getCaseIdxOfEnumType(StringRef caseName) const {
auto *enumDecl = getEnumOrBoundGenericEnum();
if (!enumDecl)
return -1;
intptr_t idx = 0;
for (EnumElementDecl *elem : enumDecl->getAllElements()) {
if (elem->getNameStr() == caseName)
return idx;
idx++;
}
return -1;
}
std::string SILType::getDebugDescription() const {
std::string str;
llvm::raw_string_ostream os(str);
print(os);
return str;
}
SILType SILType::addingMoveOnlyWrapperToBoxedType(const SILFunction *fn) {
auto boxTy = castTo<SILBoxType>();
auto *oldLayout = boxTy->getLayout();
auto oldField = oldLayout->getFields()[0];
if (oldField.getLoweredType()->is<SILMoveOnlyWrappedType>())
return *this;
assert(!oldField.getLoweredType()->isNoncopyable() &&
"Cannot moveonlywrapped in a moveonly type");
auto newField =
SILField(SILMoveOnlyWrappedType::get(oldField.getLoweredType()),
oldField.isMutable());
auto *newLayout =
SILLayout::get(fn->getASTContext(), oldLayout->getGenericSignature(),
{newField}, oldLayout->capturesGenericEnvironment());
auto newBoxType = SILBoxType::get(fn->getASTContext(), newLayout,
boxTy->getSubstitutions());
return SILType::getPrimitiveObjectType(newBoxType);
}
SILType SILType::removingMoveOnlyWrapperFromBoxedType(const SILFunction *fn) {
auto boxTy = castTo<SILBoxType>();
auto *oldLayout = boxTy->getLayout();
auto oldField = oldLayout->getFields()[0];
auto *moveOnlyWrapped =
oldField.getLoweredType()->getAs<SILMoveOnlyWrappedType>();
if (!moveOnlyWrapped)
return *this;
auto newField =
SILField(moveOnlyWrapped->getInnerType(), oldField.isMutable());
auto *newLayout =
SILLayout::get(fn->getASTContext(), oldLayout->getGenericSignature(),
{newField}, oldLayout->capturesGenericEnvironment());
auto newBoxType = SILBoxType::get(fn->getASTContext(), newLayout,
boxTy->getSubstitutions());
return SILType::getPrimitiveObjectType(newBoxType);
}
SILType SILType::removingAnyMoveOnlyWrapping(const SILFunction *fn) {
if (!isMoveOnlyWrapped() && !isBoxedMoveOnlyWrappedType(fn))
return *this;
if (isMoveOnlyWrapped())
return removingMoveOnlyWrapper();
assert(isBoxedMoveOnlyWrappedType(fn));
return removingMoveOnlyWrapperFromBoxedType(fn);
}
bool SILType::isSendable(SILFunction *fn) const {
return getASTType()->isSendableType();
}
namespace swift::test {
// Arguments:
// - SILValue: value
// Dumps:
// - message
static FunctionTest IsSILTrivial("is-sil-trivial", [](auto &function,
auto &arguments,
auto &test) {
SILValue value = arguments.takeValue();
llvm::outs() << value;
if (value->getType().isTrivial(value->getFunction())) {
llvm::outs() << " is trivial\n";
} else {
llvm::outs() << " is not trivial\n";
}
});
} // end namespace swift::test
|