1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
//===--- BasicBlockUtils.cpp - Utilities for SILBasicBlock ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/LoopInfo.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/TerminatorUtils.h"
#include "swift/SIL/Test.h"
#include "llvm/ADT/STLExtras.h"
using namespace swift;
static bool hasBranchArguments(TermInst *T, unsigned edgeIdx) {
if (auto *BI = dyn_cast<BranchInst>(T)) {
assert(edgeIdx == 0);
return BI->getNumArgs() != 0;
}
if (auto CBI = dyn_cast<CondBranchInst>(T)) {
assert(edgeIdx <= 1);
return edgeIdx == CondBranchInst::TrueIdx ? !CBI->getTrueArgs().empty()
: !CBI->getFalseArgs().empty();
}
// No other terminator have branch arguments.
return false;
}
void swift::changeBranchTarget(TermInst *T, unsigned edgeIdx,
SILBasicBlock *newDest, bool preserveArgs) {
// In many cases, we can just rewrite the successor in place.
if (preserveArgs || !hasBranchArguments(T, edgeIdx)) {
T->getSuccessors()[edgeIdx] = newDest;
return;
}
// Otherwise, we have to build a new branch instruction.
SILBuilderWithScope B(T);
switch (T->getTermKind()) {
// Only Branch and CondBranch may have arguments.
case TermKind::BranchInst: {
auto *BI = cast<BranchInst>(T);
SmallVector<SILValue, 8> args;
if (preserveArgs) {
for (auto arg : BI->getArgs())
args.push_back(arg);
}
B.createBranch(T->getLoc(), newDest, args);
BI->dropAllReferences();
BI->eraseFromParent();
return;
}
case TermKind::CondBranchInst: {
auto CBI = cast<CondBranchInst>(T);
SILBasicBlock *trueDest = CBI->getTrueBB();
SILBasicBlock *falseDest = CBI->getFalseBB();
SmallVector<SILValue, 8> trueArgs;
SmallVector<SILValue, 8> falseArgs;
if (edgeIdx == CondBranchInst::FalseIdx) {
falseDest = newDest;
for (auto arg : CBI->getTrueArgs())
trueArgs.push_back(arg);
} else {
trueDest = newDest;
for (auto arg : CBI->getFalseArgs())
falseArgs.push_back(arg);
}
B.createCondBranch(CBI->getLoc(), CBI->getCondition(), trueDest, trueArgs,
falseDest, falseArgs, CBI->getTrueBBCount(),
CBI->getFalseBBCount());
CBI->dropAllReferences();
CBI->eraseFromParent();
return;
}
default:
llvm_unreachable("only branch and cond_branch have branch arguments");
}
}
template <class SwitchInstTy>
static SILBasicBlock *getNthEdgeBlock(SwitchInstTy *S, unsigned edgeIdx) {
if (S->getNumCases() == edgeIdx)
return S->getDefaultBB();
return S->getCase(edgeIdx).second;
}
static SILBasicBlock *getNthEdgeBlock(SwitchEnumTermInst S, unsigned edgeIdx) {
if (S.getNumCases() == edgeIdx)
return S.getDefaultBB();
return S.getCase(edgeIdx).second;
}
void swift::getEdgeArgs(TermInst *T, unsigned edgeIdx, SILBasicBlock *newEdgeBB,
llvm::SmallVectorImpl<SILValue> &args) {
switch (T->getKind()) {
case SILInstructionKind::BranchInst: {
auto *B = cast<BranchInst>(T);
for (auto V : B->getArgs())
args.push_back(V);
return;
}
case SILInstructionKind::CondBranchInst: {
auto CBI = cast<CondBranchInst>(T);
assert(edgeIdx < 2);
auto OpdArgs = edgeIdx ? CBI->getFalseArgs() : CBI->getTrueArgs();
for (auto V : OpdArgs)
args.push_back(V);
return;
}
case SILInstructionKind::AwaitAsyncContinuationInst: {
auto AACI = cast<AwaitAsyncContinuationInst>(T);
switch (edgeIdx) {
case 0:
// resume BB. this takes the resume value argument if the operand is
// GetAsyncContinuation, or no argument if the operand is
// GetAsyncContinuationAddr
if (auto contOperand = dyn_cast<GetAsyncContinuationInst>(AACI->getOperand())) {
args.push_back(newEdgeBB->createPhiArgument(
contOperand->getLoweredResumeType(), OwnershipKind::Owned));
}
return;
case 1: {
assert(AACI->getErrorBB());
auto &C = AACI->getFunction()->getASTContext();
auto errorTy = C.getErrorExistentialType();
auto errorSILTy = SILType::getPrimitiveObjectType(errorTy);
// error BB. this takes the error value argument
args.push_back(
newEdgeBB->createPhiArgument(errorSILTy, OwnershipKind::Owned));
return;
}
default:
llvm_unreachable("only has at most two edges");
}
}
case SILInstructionKind::SwitchValueInst: {
auto SEI = cast<SwitchValueInst>(T);
auto *succBB = getNthEdgeBlock(SEI, edgeIdx);
assert(succBB->getNumArguments() == 0 && "Can't take an argument");
(void)succBB;
return;
}
// A switch_enum can implicitly pass the enum payload. We need to look at the
// destination block to figure this out.
case SILInstructionKind::SwitchEnumInst:
case SILInstructionKind::SwitchEnumAddrInst: {
SwitchEnumTermInst branch(T);
auto *succBB = getNthEdgeBlock(branch, edgeIdx);
assert(succBB->getNumArguments() < 2 && "Can take at most one argument");
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
// A dynamic_method_br passes the function to the first basic block.
case SILInstructionKind::DynamicMethodBranchInst: {
auto DMBI = cast<DynamicMethodBranchInst>(T);
auto *succBB =
(edgeIdx == 0) ? DMBI->getHasMethodBB() : DMBI->getNoMethodBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
/// A checked_cast_br passes the result of the cast to the first basic block.
case SILInstructionKind::CheckedCastBranchInst: {
auto CBI = cast<CheckedCastBranchInst>(T);
auto succBB = edgeIdx == 0 ? CBI->getSuccessBB() : CBI->getFailureBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
case SILInstructionKind::CheckedCastAddrBranchInst: {
auto CBI = cast<CheckedCastAddrBranchInst>(T);
auto succBB = edgeIdx == 0 ? CBI->getSuccessBB() : CBI->getFailureBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
case SILInstructionKind::TryApplyInst: {
auto *TAI = cast<TryApplyInst>(T);
auto *succBB = edgeIdx == 0 ? TAI->getNormalBB() : TAI->getErrorBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
case SILInstructionKind::YieldInst:
// The edges from 'yield' never have branch arguments.
return;
case SILInstructionKind::ReturnInst:
case SILInstructionKind::ThrowInst:
case SILInstructionKind::ThrowAddrInst:
case SILInstructionKind::UnwindInst:
case SILInstructionKind::UnreachableInst:
llvm_unreachable("terminator never has successors");
#define TERMINATOR(ID, ...)
#define INST(ID, BASE) case SILInstructionKind::ID:
#include "swift/SIL/SILNodes.def"
llvm_unreachable("not a terminator");
}
llvm_unreachable("bad instruction kind");
}
SILBasicBlock *swift::splitEdge(TermInst *T, unsigned edgeIdx,
DominanceInfo *DT, SILLoopInfo *LI) {
auto *srcBB = T->getParent();
auto *F = srcBB->getParent();
SILBasicBlock *destBB = T->getSuccessors()[edgeIdx];
// Create a new basic block in the edge, and insert it after the srcBB.
auto *edgeBB = F->createBasicBlockAfter(srcBB);
SmallVector<SILValue, 16> args;
getEdgeArgs(T, edgeIdx, edgeBB, args);
SILBuilderWithScope(edgeBB, T).createBranch(T->getLoc(), destBB, args);
// Strip the arguments and rewire the branch in the source block.
changeBranchTarget(T, edgeIdx, edgeBB, /*PreserveArgs=*/false);
if (!DT && !LI)
return edgeBB;
// Update the dominator tree.
if (DT) {
auto *srcBBNode = DT->getNode(srcBB);
// Unreachable code could result in a null return here.
if (srcBBNode) {
// The new block is dominated by the srcBB.
auto *edgeBBNode = DT->addNewBlock(edgeBB, srcBB);
// Are all predecessors of destBB dominated by destBB?
auto *destBBNode = DT->getNode(destBB);
bool oldSrcBBDominatesAllPreds = std::all_of(
destBB->pred_begin(), destBB->pred_end(), [=](SILBasicBlock *B) {
if (B == edgeBB)
return true;
auto *PredNode = DT->getNode(B);
if (!PredNode)
return true;
if (DT->dominates(destBBNode, PredNode))
return true;
return false;
});
// If so, the new bb dominates destBB now.
if (oldSrcBBDominatesAllPreds)
DT->changeImmediateDominator(destBBNode, edgeBBNode);
}
}
if (!LI)
return edgeBB;
// Update loop info. Both blocks must be in a loop otherwise the split block
// is outside the loop.
SILLoop *srcBBLoop = LI->getLoopFor(srcBB);
if (!srcBBLoop)
return edgeBB;
SILLoop *DstBBLoop = LI->getLoopFor(destBB);
if (!DstBBLoop)
return edgeBB;
// Same loop.
if (DstBBLoop == srcBBLoop) {
DstBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
// Edge from inner to outer loop.
if (DstBBLoop->contains(srcBBLoop)) {
DstBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
// Edge from outer to inner loop.
if (srcBBLoop->contains(DstBBLoop)) {
srcBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
// Neither loop contains the other. The destination must be the header of its
// loop. Otherwise, we would be creating irreducible control flow.
assert(DstBBLoop->getHeader() == destBB
&& "Creating irreducible control flow?");
// Add to outer loop if there is one.
if (auto *parent = DstBBLoop->getParentLoop())
parent->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
/// Merge the basic block with its successor if possible.
void swift::mergeBasicBlockWithSingleSuccessor(SILBasicBlock *BB,
SILBasicBlock *succBB) {
auto *BI = cast<BranchInst>(BB->getTerminator());
assert(succBB->getSinglePredecessorBlock());
// If there are any BB arguments in the destination, replace them with the
// branch operands, since they must dominate the dest block.
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i)
succBB->getArgument(i)->replaceAllUsesWith(BI->getArg(i));
BI->eraseFromParent();
// Move the instruction from the successor block to the current block.
BB->spliceAtEnd(succBB);
succBB->eraseFromParent();
}
//===----------------------------------------------------------------------===//
// DeadEndBlocks
//===----------------------------------------------------------------------===//
// Propagate the reachability up the control flow graph.
void DeadEndBlocks::propagateNewlyReachableBlocks(unsigned startIdx) {
for (unsigned idx = startIdx; idx < reachableBlocks.size(); ++idx) {
const SILBasicBlock *bb = reachableBlocks[idx];
for (SILBasicBlock *predBB : bb->getPredecessorBlocks())
reachableBlocks.insert(predBB);
}
}
void DeadEndBlocks::compute() {
assert(reachableBlocks.empty() && "Computed twice");
// First step: find blocks which end up in a no-return block (terminated by
// an unreachable instruction).
// Search for function-exiting blocks, i.e. return and throw.
for (const SILBasicBlock &BB : *f) {
const TermInst *TI = BB.getTerminator();
if (TI->isFunctionExiting())
reachableBlocks.insert(&BB);
}
propagateNewlyReachableBlocks(0);
}
void DeadEndBlocks::updateForReachableBlock(SILBasicBlock *reachableBB) {
if (!didComputeValue)
return;
assert(reachableBlocks.count(reachableBB));
unsigned numReachable = reachableBlocks.size();
for (SILBasicBlock *predBB : reachableBB->getPredecessorBlocks()) {
reachableBlocks.insert(predBB);
}
propagateNewlyReachableBlocks(numReachable);
}
void DeadEndBlocks::updateForNewBlock(SILBasicBlock *newBB) {
if (!didComputeValue)
return;
assert(reachableBlocks.count(newBB) == 0);
unsigned numReachable = reachableBlocks.size();
reachableBlocks.insert(newBB);
propagateNewlyReachableBlocks(numReachable);
}
bool DeadEndBlocks::triviallyEndsInUnreachable(SILBasicBlock *block) {
// Handle the case where a single "unreachable" block (e.g. containing a call
// to fatalError()), is jumped to from multiple source blocks.
if (SILBasicBlock *singleSucc = block->getSingleSuccessorBlock())
block = singleSucc;
return isa<UnreachableInst>(block->getTerminator());
}
namespace swift::test {
// Arguments:
// - none
// Dumps:
// - the function
// - the blocks which are dead-end blocks
static FunctionTest DeadEndBlocksTest("dead_end_blocks", [](auto &function,
auto &arguments,
auto &test) {
std::unique_ptr<DeadEndBlocks> DeadEnds;
DeadEnds.reset(new DeadEndBlocks(&function));
function.print(llvm::outs());
#ifndef NDEBUG
for (auto &block : function) {
if (DeadEnds->isDeadEnd(&block))
block.printID(llvm::outs(), true);
}
#endif
});
} // end namespace swift::test
//===----------------------------------------------------------------------===//
// Post Dominance Set Completion Utilities
//===----------------------------------------------------------------------===//
void swift::findJointPostDominatingSet(
SILBasicBlock *dominatingBlock, ArrayRef<SILBasicBlock *> dominatedBlockSet,
function_ref<void(SILBasicBlock *)> inputBlocksFoundDuringWalk,
function_ref<void(SILBasicBlock *)> foundJointPostDomSetCompletionBlocks,
function_ref<void(SILBasicBlock *)> inputBlocksInJointPostDomSet) {
// If our reachable block set is empty, assert. This is most likely programmer
// error.
assert(dominatedBlockSet.size() != 0);
// If we have a reachable block set with a single block and that block is
// dominatingBlock, then we return success since a block post-doms its self so
// it is already complete.
//
// NOTE: We do not consider this a visited
if (dominatedBlockSet.size() == 1 && dominatingBlock == dominatedBlockSet[0]) {
if (inputBlocksInJointPostDomSet)
inputBlocksInJointPostDomSet(dominatingBlock);
return;
}
/// The worklist that drives the algorithm.
SmallVector<SILBasicBlock *, 32> worklist;
/// All blocks visited during the backwards walk of the CFG, but not including
/// the initial blocks in `dominatedBlockSet`.
BasicBlockSet visitedBlocks(dominatingBlock->getParent());
/// All blocks in `dominatedBlockSet` (= blocks where we begin our walk).
BasicBlockSet initialBlocks(visitedBlocks.getFunction());
// Compute our joint post dominating set. We do this by performing a backwards
// walk up the CFG tracking back liveness until we find our dominating block.
for (auto *block : dominatedBlockSet) {
// We require dominatedBlockSet to be a set and thus assert if we hit it to
// flag user error to our caller.
assert(!initialBlocks.contains(block) &&
"dominatedBlockSet must not contain duplicate elements");
initialBlocks.insert(block);
worklist.push_back(block);
}
// Then until we run out of blocks...
while (!worklist.empty()) {
auto *block = worklist.pop_back_val();
// If we are the dominating block, we are done.
if (dominatingBlock == block)
continue;
for (auto *predBlock : block->getPredecessorBlocks()) {
if (visitedBlocks.insert(predBlock))
worklist.push_back(predBlock);
}
}
// Do the same walk over all visited blocks again to find the "leaking"
// blocks. These leaking blocks are the completion of the post dom set.
//
// Note that we could also keep all visited blocks in a SmallVector in the
// first run. But the worklist algorithm is fast and we don't want
// to risk that the small vector overflows (the set of visited blocks can be
// much larger than the maximum worklist size).
BasicBlockSet visitedBlocksInSecondRun(visitedBlocks.getFunction());
assert(worklist.empty());
worklist.append(dominatedBlockSet.begin(), dominatedBlockSet.end());
while (!worklist.empty()) {
auto *block = worklist.pop_back_val();
if (dominatingBlock == block)
continue;
for (auto *predBlock : block->getPredecessorBlocks()) {
assert(visitedBlocks.contains(predBlock));
if (visitedBlocksInSecondRun.insert(predBlock)) {
worklist.push_back(predBlock);
for (auto *succBlock : predBlock->getSuccessorBlocks()) {
// All not-visited successors of a visited block are "leaking" blocks.
if (!visitedBlocks.contains(succBlock) &&
// For this purpose also the initial blocks count as "visited",
// although they are not added to the visitedBlocks set.
!initialBlocks.contains(succBlock) &&
// Ignore blocks which end in an unreachable. This is a very
// simple check, but covers most of the cases, e.g. block which
// calls fatalError().
!DeadEndBlocks::triviallyEndsInUnreachable(succBlock)) {
assert(succBlock->getSinglePredecessorBlock() == predBlock &&
"CFG must not contain critical edge");
// Note that since there are no critical edges in the CFG, we are
// not calling the closure for a leaking successor block twice.
foundJointPostDomSetCompletionBlocks(succBlock);
}
}
}
}
}
// Pass back the reachable input blocks that were not reachable from other
// input blocks to.
for (auto *block : dominatedBlockSet) {
if (visitedBlocks.contains(block)) {
inputBlocksFoundDuringWalk(block);
} else if (inputBlocksInJointPostDomSet) {
inputBlocksInJointPostDomSet(block);
}
}
}
//===----------------------------------------------------------------------===//
// checkReachingBlockDominance
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
/// Check that \p sourceBlock dominates \p destBlock.
///
/// Useful for *temporary* assertions when Dominance is unavailable. This is
/// worst case O(numberOfBlocksInFunction). It should only be used when \p
/// sourceBlock is expected to be "close to" \p destBlock in almost all
/// cases. Because of the potential for quadratic behavior, it should only be
/// used during feature development, never as a permanent check. If a dominance
/// check is required for correctness, then DominanceInfo should be passed down
/// to the utility function that needs this check.
bool
swift::checkDominates(SILBasicBlock *sourceBlock, SILBasicBlock *destBlock) {
SILBasicBlock *entryBlock = sourceBlock->getParent()->getEntryBlock();
BasicBlockWorklist worklist(destBlock);
bool reaches = false;
while (SILBasicBlock *block = worklist.pop()) {
if (block == sourceBlock) {
reaches = true;
continue;
}
if (block == entryBlock) {
return false; // does not dominate
}
for (auto *predBlock : block->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predBlock);
}
}
return reaches;
}
#endif
|