1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
|
//===--- DynamicCasts.cpp - Utilities for dynamic casts -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/DynamicCasts.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Types.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/TypeLowering.h"
using namespace swift;
using namespace Lowering;
static unsigned getAnyMetatypeDepth(CanType type) {
unsigned depth = 0;
while (auto metatype = dyn_cast<AnyMetatypeType>(type)) {
type = metatype.getInstanceType();
++depth;
}
return depth;
}
static bool
mayBridgeToObjectiveC(ModuleDecl *M, CanType T) {
// FIXME: Disable when we don't support Objective-C interoperability?
return true;
}
static bool
mustBridgeToSwiftValueBox(ModuleDecl *M, CanType T) {
// If the target type is either an unknown dynamic type, or statically
// known to bridge, the cast may succeed.
if (T->hasArchetype())
return false;
if (T->isAnyExistentialType())
return false;
// getBridgedToObjC() might return a null-type for some types
// whose bridging implementation is allowed to live elsewhere. Exclude this
// case here.
if (auto N = T->getAnyNominal())
if (M->getASTContext().isTypeBridgedInExternalModule(N))
return false;
return !M->getASTContext().getBridgedToObjC(M, T);
}
static bool canClassOrSuperclassesHaveUnknownSubclasses(ClassDecl *CD,
bool isWholeModuleOpts) {
while (CD) {
// Open classes can always have unknown subclasses.
if (CD->getEffectiveAccess() == AccessLevel::Open)
return true;
// Internal and public classes may have unknown subclasses if we are not in
// whole-module-optimization mode.
if (CD->getEffectiveAccess() >= AccessLevel::Internal &&
!isWholeModuleOpts)
return true;
if (!CD->hasSuperclass())
break;
CD = CD->getSuperclassDecl();
}
return false;
}
static CanType unwrapExistential(CanType e) {
assert(e.isExistentialType());
if (auto et = dyn_cast<ExistentialType>(e))
return et.getConstraintType();
return e;
}
/// Try to classify a conversion from non-existential type
/// into an existential type by performing a static check
/// of protocol conformances if it is possible.
static DynamicCastFeasibility
classifyDynamicCastToProtocol(ModuleDecl *M, CanType source, CanType target,
bool isWholeModuleOpts) {
assert(target.isExistentialType() &&
"target should be an existential type");
if (source == target)
return DynamicCastFeasibility::WillSucceed;
auto *TargetProtocol = cast_or_null<ProtocolDecl>(target.getAnyNominal());
if (!TargetProtocol)
return DynamicCastFeasibility::MaySucceed;
// If the target is a parameterized protocol type, checkConformance
// is insufficient to prove the feasibility of the cast as it does not
// check the additional requirements.
// FIXME: This is a weak predicate that doesn't take into account
// class compositions - since any C & P<T> doesn't work yet anyways.
if (isa<ParameterizedProtocolType>(unwrapExistential(target)))
return DynamicCastFeasibility::MaySucceed;
// If checkConformance() returns a valid conformance, then all conditional
// requirements were satisfied.
if (M->checkConformance(source, TargetProtocol))
return DynamicCastFeasibility::WillSucceed;
auto *SourceNominalTy = source.getAnyNominal();
if (!SourceNominalTy)
return DynamicCastFeasibility::MaySucceed;
// Protocol types may conform to their own protocols (or other protocols)
// in the future.
if (source->isAnyExistentialType()) {
return DynamicCastFeasibility::MaySucceed;
}
// If it is a class and it can be proven that this class and its
// superclasses cannot have unknown subclasses, then it is safe to proceed.
if (auto *CD = source.getClassOrBoundGenericClass()) {
if (canClassOrSuperclassesHaveUnknownSubclasses(CD, isWholeModuleOpts))
return DynamicCastFeasibility::MaySucceed;
// Derived types may conform to the protocol.
if (!CD->isFinal()) {
// TODO: If it is a private type or internal type and we
// can prove that there are no derived types conforming to a
// protocol, then we can still return WillFail.
return DynamicCastFeasibility::MaySucceed;
}
}
// The WillFail conditions below assume any possible conformance on the
// nominal source type has been ruled out. The prior checkConformance query
// identified any definite conformance. Now check if there is already a known
// conditional conformance on the nominal type with requirements that were
// not proven.
//
// TODO: The TypeChecker can easily prove that some requirements cannot be
// met. Returning WillFail in those cases would be more optimal. To do that,
// the checkConformance interface needs to be reformulated as a query, and
// the implementation, including checkGenericArguments, needs to be taught to
// recognize that types with archetypes may potentially succeed.
if (auto conformance = M->lookupConformance(source, TargetProtocol)) {
assert(!conformance.getConditionalRequirements().empty());
return DynamicCastFeasibility::MaySucceed;
}
// If the source type is file-private or target protocol is file-private,
// then conformances cannot be changed at run-time, because only this
// file could have implemented them, but no conformances were found.
// Therefore it is safe to make a negative decision at compile-time.
if (SourceNominalTy->getEffectiveAccess() <= AccessLevel::FilePrivate ||
TargetProtocol->getEffectiveAccess() <= AccessLevel::FilePrivate) {
// This cast is always false. Replace it with a branch to the
// failure block.
return DynamicCastFeasibility::WillFail;
}
// AnyHashable is a special case: although it's a struct, there maybe another
// type conforming to it and to the TargetProtocol at the same time.
if (source->isAnyHashable())
return DynamicCastFeasibility::MaySucceed;
// If we are in a whole-module compilation and
// if the source type is internal or target protocol is internal,
// then conformances cannot be changed at run-time, because only this
// module could have implemented them, but no conformances were found.
// Therefore it is safe to make a negative decision at compile-time.
if (isWholeModuleOpts &&
(SourceNominalTy->getEffectiveAccess() <= AccessLevel::Internal ||
TargetProtocol->getEffectiveAccess() <= AccessLevel::Internal)) {
return DynamicCastFeasibility::WillFail;
}
return DynamicCastFeasibility::MaySucceed;
}
static DynamicCastFeasibility
classifyDynamicCastFromProtocol(ModuleDecl *M, CanType source, CanType target,
bool isWholeModuleOpts) {
assert(source.isExistentialType() &&
"source should be an existential type");
if (source == target)
return DynamicCastFeasibility::WillSucceed;
// Casts from class existential into a non-class can never succeed.
if (source->isClassExistentialType() &&
!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass() &&
!isa<ArchetypeType>(target) &&
!mayBridgeToObjectiveC(M, target)) {
assert((target.getEnumOrBoundGenericEnum() ||
target.getStructOrBoundGenericStruct() ||
isa<TupleType>(target) ||
isa<SILFunctionType>(target) ||
isa<FunctionType>(target) ||
isa<MetatypeType>(target)) &&
"Target should be an enum, struct, tuple, metatype or function type");
return DynamicCastFeasibility::WillFail;
}
// TODO: maybe prove that certain conformances are impossible?
return DynamicCastFeasibility::MaySucceed;
}
/// Returns the existential type associated with the Hashable
/// protocol, if it can be found.
static CanType getHashableExistentialType(ModuleDecl *M) {
auto hashable =
M->getASTContext().getProtocol(KnownProtocolKind::Hashable);
if (!hashable) return CanType();
return hashable->getDeclaredInterfaceType()->getCanonicalType();
}
// Distinguish between class-bound types that might be AnyObject vs other
// class-bound types. Only types that are potentially AnyObject might have a
// transparent runtime type wrapper like __SwiftValue. This must look through
// all optional types because dynamic casting sees through them.
static bool isPotentiallyAnyObject(Type type) {
Type unwrappedTy = type->lookThroughAllOptionalTypes();
if (auto archetype = unwrappedTy->getAs<ArchetypeType>()) {
for (auto *proto : archetype->getConformsTo()) {
if (!proto->getInvertibleProtocolKind())
return false;
}
return !archetype->getSuperclass();
}
return unwrappedTy->isAnyObject();
}
// Returns true if casting \p sourceFormalType to \p targetFormalType preserves
// ownership.
//
// Casting preserves ownership when all references from the source value are
// forwarded into the result value (without unbalanced retains or releases).
//
// When both the source and target types of checked-cast preserve ownership,
// then the cast is compatible with guaranteed ownership. A guaranteed
// compatible cast cannot release any references within its operand's value
// and cannot retain any references owned by its result.
//
// A type's ownership might not be preserved by a dynamic cast if it is either
// (A) a potentially bridged value
// or
// (B) potentially wrapped in a transparent type, which is equivalent to
// isPotentiallyAnyObject()
//
// Given:
// let source: sourceType
// let dest = source as! targetType
//
// Ownership conversion happens when
//
// (A) one type is a bridged value and the other is an object:
//
// (A1) Boxing: <trivial> as! Object instantiates references in Object
// Presumably, Object's type must be class-bound, but this is not
// currently checked.
//
// (A2) Unboxing: Object as! <trivial> destroys references in Object
// Object may be any type that can hold an object, including
// non-class-bound archetypes and existentials.
//
// (B) one type is transparently wrapped in __SwiftValue, while the other is
// unwrapped. Given:
//
// class C : Hashable {}
// let a = AnyHashable(C())
//
// (B1) When the substituted source type is AnyHashable and the
// substituted destination type is AnyObject, the cast
// instantiates an owned __SwiftValue:
//
// // instantiates __SwiftValue
// let b = a as! AnyObject
// or
// let b = a as! T where T.self == AnyObject.self
//
// (B2) When the substituted source type is Any or AnyObject, and the
// substituted destination type is not Any or AnyObject, the cast
// releases the owned __SwiftValue:
//
// let c = b as! C // releases __SwiftValue
//
// After unwrapping Optional, the type may fall into one of
// the following categories that are relevant for cast ownership:
//
// Class-bound types (hasReferenceSemantics() && !isPotentiallyAnyObject())
// - includes classes, class-bound existentials other than AnyObject,
// class-bound archetypes with a superclass or protocol constraint,
// objc types, blocks, Builtin.NativeObject, etc.
// - excludes any type that are potentially AnyObject after substitution
// - the value is a single reference
// - the single reference is "known unwrapped". It never transparently wraps the
// underlying dynamically typed value in another type, such as __SwiftValue
// - casting directly forwards the reference
//
// Potentially bridged values:
// - includes struct, enum, non-class archetype, non-class existential,
// and non-objc-metatype
// - these types are potentially trivial after substitution. If so, then they
// convert to a reference when casting to AnyObject or certain classes
//
// Any and AnyObject existentials:
// - although called existentials, their type is a protocol composition
// - these do not include existentials with constraints
// - these are very special types, unlike normal existentials...
// - the immediately erased value may itself be an existential
// (an AnyObject existential can be wrapped within an Any existential!)
// - the underlying dynamically typed value may be transparently wrapped in
// __SwiftValue
//
// These type categories are disjoint, except that a non-class archetype is both
// potentially bridged and potentially Any or AnyObject after substitution.
//
// TODO: In the future, when the runtime stops wrapping nontrivial types inside
// __SwiftValue, cases (B1) and (B2) above will no longer apply. At that time,
// expand ownership preserving cast types to AnyObject. Then remove the
// isPotentiallyAnyObject() check.
bool swift::doesCastPreserveOwnershipForTypes(SILModule &module,
CanType sourceType,
CanType targetType) {
if (!canIRGenUseScalarCheckedCastInstructions(module, sourceType, targetType))
return false;
// (B2) unwrapping
if (isPotentiallyAnyObject(sourceType))
return false;
// (B1) wrapping
if (isPotentiallyAnyObject(targetType)) {
// A class type cannot be wrapped in __SwiftValue, so casting
// from a class to AnyObject preserves ownership.
return
sourceType->mayHaveSuperclass() || sourceType->isClassExistentialType();
}
return true;
}
bool SILDynamicCastInst::isRCIdentityPreserving() const {
// Casts which cast from a trivial type, like a metatype, to something which
// is retainable (or vice versa), like an AnyObject, are not RC identity
// preserving.
// On some platforms such casts dynamically allocate a ref-counted box for the
// metatype. Naturally that is the place where a new rc-identity begins.
// Therefore such a cast is introducing a new rc identical object.
//
// If RCIdentityAnalysis would look through such a cast, ARC optimizations
// would get confused and might eliminate a retain of such an object
// completely.
SILFunction &f = *getFunction();
if (getSourceLoweredType().isTrivial(f)
&& getTargetLoweredType().isTrivial(f)) {
return true;
}
return doesCastPreserveOwnershipForTypes(f.getModule(), getSourceFormalType(),
getTargetFormalType());
}
/// Check if a given type conforms to _BridgedToObjectiveC protocol.
bool swift::isObjectiveCBridgeable(ModuleDecl *M, CanType Ty) {
// Retrieve the _BridgedToObjectiveC protocol.
auto bridgedProto =
M->getASTContext().getProtocol(KnownProtocolKind::ObjectiveCBridgeable);
if (bridgedProto) {
// Find the conformance of the value type to _BridgedToObjectiveC.
// Check whether the type conforms to _BridgedToObjectiveC.
return (bool)M->lookupConformance(Ty, bridgedProto);
}
return false;
}
/// Check if a given type conforms to _Error protocol.
bool swift::isError(ModuleDecl *M, CanType Ty) {
// Retrieve the Error protocol.
auto errorTypeProto =
M->getASTContext().getProtocol(KnownProtocolKind::Error);
if (errorTypeProto) {
// Find the conformance of the value type to Error.
// Check whether the type conforms to Error.
return (bool)M->lookupConformance(Ty, errorTypeProto);
}
return false;
}
/// Given that a type is not statically known to be an optional type, check
/// whether it might dynamically be able to store an optional.
static bool canDynamicallyStoreOptional(CanType type) {
assert(!type.getOptionalObjectType());
return type->canDynamicallyBeOptionalType(/* includeExistential */ true);
}
/// Given two class types, check whether there's a hierarchy relationship
/// between them.
static DynamicCastFeasibility
classifyClassHierarchyCast(CanType source, CanType target) {
// Upcast: if the target type statically matches a type in the
// source type's hierarchy, this is a static upcast and the cast
// will always succeed.
if (target->isExactSuperclassOf(source))
return DynamicCastFeasibility::WillSucceed;
// Upcast: if the target type might dynamically match a type in the
// source type's hierarchy, this might be an upcast, in which
// case the cast might succeed.
if (target->isBindableToSuperclassOf(source))
return DynamicCastFeasibility::MaySucceed;
// Downcast: if the source type might dynamically match a type in the
// target type's hierarchy, this might be a downcast, in which case
// the cast might succeed. Note that this also covers the case where
// the source type statically matches a type in the target type's
// hierarchy; since it's a downcast, the cast still at best might succeed.
if (source->isBindableToSuperclassOf(target))
return DynamicCastFeasibility::MaySucceed;
// Otherwise, the classes are unrelated and the cast will fail (at least
// on these grounds).
return DynamicCastFeasibility::WillFail;
}
CanType swift::getNSBridgedClassOfCFClass(ModuleDecl *M, CanType type) {
if (auto classDecl = type->getClassOrBoundGenericClass()) {
if (classDecl->getForeignClassKind() == ClassDecl::ForeignKind::CFType) {
if (auto bridgedAttr =
classDecl->getAttrs().getAttribute<ObjCBridgedAttr>()) {
auto bridgedClass = bridgedAttr->getObjCClass();
// TODO: this should handle generic classes properly.
if (!bridgedClass->isGenericContext()) {
return bridgedClass->getDeclaredInterfaceType()->getCanonicalType();
}
}
}
}
return CanType();
}
static bool isCFBridgingConversion(ModuleDecl *M,
CanType sourceFormalType,
CanType targetFormalType) {
if (auto bridgedTarget =
getNSBridgedClassOfCFClass(M, targetFormalType)) {
return bridgedTarget->isExactSuperclassOf(sourceFormalType);
}
if (auto bridgedSource =
getNSBridgedClassOfCFClass(M, sourceFormalType)) {
return targetFormalType->isExactSuperclassOf(bridgedSource);
}
return false;
}
/// Try to classify the dynamic-cast relationship between two types.
DynamicCastFeasibility
swift::classifyDynamicCast(ModuleDecl *M,
CanType source,
CanType target,
bool isSourceTypeExact,
bool isWholeModuleOpts) {
if (source == target) return DynamicCastFeasibility::WillSucceed;
// Return a conservative answer for opaque archetypes for now.
if (source->hasOpaqueArchetype() || target->hasOpaqueArchetype())
return DynamicCastFeasibility::MaySucceed;
auto sourceObject = source.getOptionalObjectType();
auto targetObject = target.getOptionalObjectType();
// A common level of optionality doesn't affect the feasibility,
// except that we can't fold things to failure because nil inhabits
// both types.
if (sourceObject && targetObject) {
return atWorst(classifyDynamicCast(M, sourceObject, targetObject),
DynamicCastFeasibility::MaySucceed);
// Casting to a more optional type follows the same rule unless we
// know that the source cannot dynamically be an optional value,
// in which case we'll always just cast and inject into an optional.
} else if (targetObject) {
auto result = classifyDynamicCast(M, source, targetObject,
/* isSourceTypeExact */ false,
isWholeModuleOpts);
if (canDynamicallyStoreOptional(source))
result = atWorst(result, DynamicCastFeasibility::MaySucceed);
return result;
// Casting to a less-optional type can always fail.
} else if (sourceObject) {
auto result = atBest(classifyDynamicCast(M, sourceObject, target,
/* isSourceTypeExact */ false,
isWholeModuleOpts),
DynamicCastFeasibility::MaySucceed);
if (target.isExistentialType()) {
result = atWorst(result, classifyDynamicCastToProtocol(
M, source, target, isWholeModuleOpts));
}
return result;
}
assert(!sourceObject && !targetObject);
// Assume that casts to or from existential types or involving
// dependent types can always succeed. This is over-conservative.
if (source->hasArchetype() || source.isExistentialType() ||
target->hasArchetype() || target.isExistentialType()) {
// Check conversions from non-protocol types into protocol types.
if (!source.isExistentialType() &&
target.isExistentialType())
return classifyDynamicCastToProtocol(M, source, target,
isWholeModuleOpts);
// Check conversions from protocol types to non-protocol types.
if (source.isExistentialType() &&
!target.isExistentialType())
return classifyDynamicCastFromProtocol(M, source, target,
isWholeModuleOpts);
return DynamicCastFeasibility::MaySucceed;
}
// Casts from AnyHashable.
if (auto sourceStruct = dyn_cast<StructType>(source)) {
if (sourceStruct->isAnyHashable()) {
if (auto hashable = getHashableExistentialType(M)) {
// Succeeds if Hashable can be cast to the target type.
return classifyDynamicCastFromProtocol(M, hashable, target,
isWholeModuleOpts);
}
}
}
// Casts to AnyHashable.
if (auto targetStruct = dyn_cast<StructType>(target)) {
if (targetStruct->isAnyHashable()) {
// Succeeds if the source type can be dynamically cast to Hashable.
// Hashable is not actually a legal existential type right now, but
// the check doesn't care about that.
if (auto hashable = getHashableExistentialType(M)) {
return classifyDynamicCastToProtocol(M, source, hashable,
isWholeModuleOpts);
}
}
}
// Metatype casts.
if (auto sourceMetatype = dyn_cast<AnyMetatypeType>(source)) {
auto targetMetatype = dyn_cast<AnyMetatypeType>(target);
if (!targetMetatype) return DynamicCastFeasibility::WillFail;
source = sourceMetatype.getInstanceType();
target = targetMetatype.getInstanceType();
if (source == target &&
targetMetatype.isAnyExistentialType() ==
sourceMetatype.isAnyExistentialType())
return DynamicCastFeasibility::WillSucceed;
// If the source and target are the same existential type, but the source is
// P.Protocol and the dest is P.Type, then we need to consider whether the
// protocol is self-conforming.
// The only cases where a protocol self-conforms are objc protocols, but
// we're going to expect P.Type to hold a class object. And this case
// doesn't matter since for a self-conforming protocol type there can't be
// any type-level methods.
// Thus we consider this kind of cast to always fail. The only exception
// from this rule is when the target is Any.Type, because *.Protocol
// can always be casted to Any.Type.
if (source->isAnyExistentialType() && isa<MetatypeType>(sourceMetatype) &&
isa<ExistentialMetatypeType>(targetMetatype)) {
return target->isAny() ? DynamicCastFeasibility::WillSucceed
: DynamicCastFeasibility::WillFail;
}
if (targetMetatype.isAnyExistentialType() && target->isExistentialType()) {
auto Feasibility =
classifyDynamicCastToProtocol(M, source, target, isWholeModuleOpts);
// Cast from existential metatype to existential metatype may still
// succeed, even if we cannot prove anything statically.
if (Feasibility != DynamicCastFeasibility::WillFail ||
!sourceMetatype.isAnyExistentialType())
return Feasibility;
}
// If isSourceTypeExact is true, we know we are casting the result of a
// MetatypeInst instruction.
if (isSourceTypeExact) {
// If source or target are existentials, then it can be cast
// successfully only into itself.
if ((target.isAnyExistentialType() || source.isAnyExistentialType()) &&
target != source)
return DynamicCastFeasibility::WillFail;
}
// Casts from class existential metatype into a concrete non-class metatype
// can never succeed.
if (source->isClassExistentialType() &&
!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass())
return DynamicCastFeasibility::WillFail;
// TODO: prove that some conversions to existential metatype will
// obviously succeed/fail.
// TODO: prove that some conversions from class existential metatype
// to a concrete non-class metatype will obviously fail.
// TODO: class metatype to/from AnyObject
// TODO: protocol concrete metatype to/from ObjCProtocol
if (isa<ExistentialMetatypeType>(sourceMetatype) ||
isa<ExistentialMetatypeType>(targetMetatype))
return (getAnyMetatypeDepth(source) == getAnyMetatypeDepth(target)
? DynamicCastFeasibility::MaySucceed
: DynamicCastFeasibility::WillFail);
// If both metatypes are class metatypes, check if classes can be
// cast.
if (source.getClassOrBoundGenericClass() &&
target.getClassOrBoundGenericClass())
return classifyClassHierarchyCast(source, target);
// Different structs cannot be cast to each other.
if (source.getStructOrBoundGenericStruct() &&
target.getStructOrBoundGenericStruct() &&
source != target)
return DynamicCastFeasibility::WillFail;
// Different enums cannot be cast to each other.
if (source.getEnumOrBoundGenericEnum() &&
target.getEnumOrBoundGenericEnum() &&
source != target)
return DynamicCastFeasibility::WillFail;
// If we don't know any better, assume that the cast may succeed.
return DynamicCastFeasibility::MaySucceed;
}
// Function casts.
if (auto sourceFunction = dyn_cast<FunctionType>(source)) {
if (auto targetFunction = dyn_cast<FunctionType>(target)) {
// A function cast can succeed if the function types can be identical,
// or if the target type is throwier than the original.
// An async function cannot be cast to a non-async function and
// vice-versa.
if (sourceFunction->isAsync() != targetFunction->isAsync())
return DynamicCastFeasibility::WillFail;
// A non-throwing source function can be cast to a throwing target type,
// but not vice versa.
if (sourceFunction->isThrowing() && !targetFunction->isThrowing())
return DynamicCastFeasibility::WillFail;
// The cast can't change the representation at runtime.
if (targetFunction->getRepresentation()
!= sourceFunction->getRepresentation())
return DynamicCastFeasibility::WillFail;
if (AnyFunctionType::equalParams(sourceFunction.getParams(),
targetFunction.getParams()) &&
sourceFunction.getResult() == targetFunction.getResult())
return DynamicCastFeasibility::WillSucceed;
// Be conservative about function type relationships we may add in
// the future.
return DynamicCastFeasibility::MaySucceed;
}
}
// Tuple casts.
if (auto sourceTuple = dyn_cast<TupleType>(source)) {
if (auto targetTuple = dyn_cast<TupleType>(target)) {
// # of elements must coincide.
if (sourceTuple->getNumElements() != targetTuple->getNumElements())
return DynamicCastFeasibility::WillFail;
DynamicCastFeasibility result = DynamicCastFeasibility::WillSucceed;
for (unsigned i : range(sourceTuple->getNumElements())) {
const auto &sourceElt = sourceTuple->getElement(i);
const auto &targetElt = targetTuple->getElement(i);
// If both have names and the names mismatch, the cast will fail.
if (sourceElt.hasName() && targetElt.hasName() &&
sourceElt.getName() != targetElt.getName())
return DynamicCastFeasibility::WillFail;
// Combine the result of prior elements with this element type.
result = std::max(result,
classifyDynamicCast(M,
sourceElt.getType()->getCanonicalType(),
targetElt.getType()->getCanonicalType(),
isSourceTypeExact,
isWholeModuleOpts));
// If this element failed, we're done.
if (result == DynamicCastFeasibility::WillFail)
break;
}
return result;
}
}
// Class casts.
auto sourceClass = source.getClassOrBoundGenericClass();
auto targetClass = target.getClassOrBoundGenericClass();
if (sourceClass) {
if (targetClass) {
// Imported Objective-C generics don't check the generic parameters, which
// are lost at runtime.
if (sourceClass->isTypeErasedGenericClass()) {
if (sourceClass == targetClass)
return DynamicCastFeasibility::WillSucceed;
if (targetClass->isTypeErasedGenericClass()) {
// If both classes are ObjC generics, the cast may succeed if the
// classes are related, irrespective of their generic parameters.
if (sourceClass->isSuperclassOf(targetClass))
return DynamicCastFeasibility::MaySucceed;
if (targetClass->isSuperclassOf(sourceClass))
return DynamicCastFeasibility::WillSucceed;
return DynamicCastFeasibility::WillFail;
}
}
// Try a hierarchy cast. If that isn't failure, we can report it.
auto hierarchyResult = classifyClassHierarchyCast(source, target);
if (hierarchyResult != DynamicCastFeasibility::WillFail)
return hierarchyResult;
// As a backup, consider whether either type is a CF class type
// with an NS bridged equivalent.
CanType bridgedSource = getNSBridgedClassOfCFClass(M, source);
CanType bridgedTarget = getNSBridgedClassOfCFClass(M, target);
// If neither type qualifies, we're done.
if (!bridgedSource && !bridgedTarget)
return DynamicCastFeasibility::WillFail;
// Otherwise, map over to the bridged types and try to answer the
// question there.
if (bridgedSource) source = bridgedSource;
if (bridgedTarget) target = bridgedTarget;
return classifyDynamicCast(M, source, target, false, isWholeModuleOpts);
}
// Casts from a class into a non-class can never succeed if the target must
// be bridged to a SwiftValueBox. You would need an AnyObject source for
// that.
if (!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass() &&
!isa<ArchetypeType>(target) &&
mustBridgeToSwiftValueBox(M, target)) {
assert((target.getEnumOrBoundGenericEnum() ||
target.getStructOrBoundGenericStruct() ||
isa<TupleType>(target) ||
isa<SILFunctionType>(target) ||
isa<FunctionType>(target) ||
isa<MetatypeType>(target)) &&
"Target should be an enum, struct, tuple, metatype or function type");
return DynamicCastFeasibility::WillFail;
}
// In the Objective-C runtime, class metatypes are also class instances.
// The cast may succeed if the target type can be inhabited by a class
// metatype.
// TODO: Narrow this to the sourceClass being exactly NSObject.
if (M->getASTContext().LangOpts.EnableObjCInterop) {
if (auto targetMeta = dyn_cast<MetatypeType>(target)) {
if (isa<ArchetypeType>(targetMeta.getInstanceType())
|| targetMeta.getInstanceType()->mayHaveSuperclass())
return DynamicCastFeasibility::MaySucceed;
} else if (isa<ExistentialMetatypeType>(target)) {
return DynamicCastFeasibility::MaySucceed;
}
}
}
// If the source is not existential, an archetype, or (under the ObjC runtime)
// a class, and the destination is a metatype, there is no way the cast can
// succeed.
if (target->is<AnyMetatypeType>()) return DynamicCastFeasibility::WillFail;
// FIXME: Be more careful with bridging conversions from
// NSArray, NSDictionary and NSSet as they may fail?
// We know that a cast from Int -> class foobar will fail.
if (targetClass &&
!source.isAnyExistentialType() &&
!source.getClassOrBoundGenericClass() &&
!isa<ArchetypeType>(source) &&
mustBridgeToSwiftValueBox(M, source)) {
assert((source.getEnumOrBoundGenericEnum() ||
source.getStructOrBoundGenericStruct() ||
isa<TupleType>(source) ||
isa<SILFunctionType>(source) ||
isa<FunctionType>(source) ||
isa<MetatypeType>(source)) &&
"Source should be an enum, struct, tuple, metatype or function type");
return DynamicCastFeasibility::WillFail;
}
// Check if there might be a bridging conversion.
if (source->isBridgeableObjectType() && mayBridgeToObjectiveC(M, target)) {
// Try to get the ObjC type which is bridged to target type.
assert(!target.isAnyExistentialType());
// ObjC-to-Swift casts may fail. And in most cases it is impossible to
// statically predict the outcome. So, let's be conservative here.
return DynamicCastFeasibility::MaySucceed;
}
if (target->isBridgeableObjectType() && mayBridgeToObjectiveC(M, source)) {
// Try to get the ObjC type which is bridged to source type.
assert(!source.isAnyExistentialType());
if (Type ObjCTy = M->getASTContext().getBridgedToObjC(M, source)) {
// If the bridged ObjC type is known, check if
// this type can be cast into target type.
return classifyDynamicCast(M,
ObjCTy->getCanonicalType(),
target,
/* isSourceTypeExact */ false, isWholeModuleOpts);
}
return DynamicCastFeasibility::MaySucceed;
}
// Check if it is a cast between bridged error types.
if (isError(M, source) && isError(M, target)) {
// TODO: Cast to NSError succeeds always.
return DynamicCastFeasibility::MaySucceed;
}
// Check for a viable collection cast.
if (auto sourceStruct = dyn_cast<BoundGenericStructType>(source)) {
if (auto targetStruct = dyn_cast<BoundGenericStructType>(target)) {
// Both types have to be the same kind of collection.
if (sourceStruct->getDecl() == targetStruct->getDecl()) {
auto sourceArgs = sourceStruct.getGenericArgs();
auto targetArgs = targetStruct.getGenericArgs();
// Note that we can never say that a collection cast is impossible:
// a cast can always succeed on an empty collection.
// Arrays and sets.
if (sourceStruct->isArray() || sourceStruct->isSet()) {
auto valueFeasibility =
classifyDynamicCast(M, sourceArgs[0], targetArgs[0]);
return atWorst(valueFeasibility,
DynamicCastFeasibility::MaySucceed);
// Dictionaries.
} else if (sourceStruct->isDictionary()) {
auto keyFeasibility =
classifyDynamicCast(M, sourceArgs[0], targetArgs[0]);
auto valueFeasibility =
classifyDynamicCast(M, sourceArgs[1], targetArgs[1]);
return atWorst(atBest(keyFeasibility, valueFeasibility),
DynamicCastFeasibility::MaySucceed);
}
}
}
}
return DynamicCastFeasibility::WillFail;
}
static unsigned getOptionalDepth(CanType type) {
unsigned depth = 0;
while (CanType objectType = type.getOptionalObjectType()) {
++depth;
type = objectType;
}
return depth;
}
namespace {
struct Source {
SILValue Value;
CanType FormalType;
bool isAddress() const { return Value->getType().isAddress(); }
SILType getSILType() const { return Value->getType(); }
Source() = default;
Source(SILValue value, CanType formalType)
: Value(value), FormalType(formalType) {}
};
struct Target {
SILValue Address;
SILType LoweredType;
CanType FormalType;
bool isAddress() const { return (bool) Address; }
Source asAddressSource() const {
assert(isAddress());
return { Address, FormalType };
}
Source asScalarSource(SILValue value) const {
assert(!isAddress());
assert(!value->getType().isAddress());
return { value, FormalType };
}
SILType getSILType() const {
if (isAddress())
return Address->getType();
else
return LoweredType;
}
Target() = default;
Target(SILValue address, CanType formalType)
: Address(address), LoweredType(address->getType()),
FormalType(formalType) {
assert(LoweredType.isAddress());
}
Target(SILType loweredType, CanType formalType)
: Address(), LoweredType(loweredType), FormalType(formalType) {
assert(!loweredType.isAddress());
}
};
class CastEmitter {
SILBuilder &B;
SILModule &M;
ASTContext &Ctx;
SILLocation Loc;
ModuleDecl *SwiftModule;
public:
CastEmitter(SILBuilder &B, ModuleDecl *swiftModule, SILLocation loc)
: B(B), M(B.getModule()), Ctx(M.getASTContext()), Loc(loc),
SwiftModule(swiftModule) {}
Source emitTopLevel(Source source, Target target) {
unsigned sourceOptDepth = getOptionalDepth(source.FormalType);
unsigned targetOptDepth = getOptionalDepth(target.FormalType);
assert(sourceOptDepth <= targetOptDepth);
return emitAndInjectIntoOptionals(source, target,
targetOptDepth - sourceOptDepth);
}
private:
const TypeLowering &getTypeLowering(SILType type) {
return B.getFunction().getTypeLowering(type);
}
SILValue getOwnedScalar(Source source, const TypeLowering &srcTL) {
assert(!source.isAddress());
auto value = source.Value;
if (value->getOwnershipKind() == OwnershipKind::Guaranteed)
value = B.emitCopyValueOperation(Loc, value);
return value;
}
Source emitSameType(Source source, Target target) {
assert(source.FormalType == target.FormalType ||
source.getSILType() == target.getSILType());
auto &srcTL = getTypeLowering(source.Value->getType());
// The destination always wants a +1 value, so make the source
// +1 if it's a scalar.
if (!source.isAddress()) {
source.Value = getOwnedScalar(source, srcTL);
}
// If we've got a scalar and want a scalar, the source is
// exactly right.
if (!target.isAddress() && !source.isAddress())
return source;
// If the destination wants a non-address value, load
if (!target.isAddress()) {
SILValue value = srcTL.emitLoadOfCopy(B, Loc, source.Value, IsTake);
return target.asScalarSource(value);
}
if (source.isAddress()) {
srcTL.emitCopyInto(B, Loc, source.Value, target.Address,
IsTake, IsInitialization);
} else {
srcTL.emitStoreOfCopy(B, Loc, source.Value, target.Address,
IsInitialization);
}
return target.asAddressSource();
}
Source emit(Source source, Target target) {
if (source.FormalType == target.FormalType ||
source.getSILType() == target.getSILType())
return emitSameType(source, target);
// Handle subtype conversions involving optionals.
if (auto sourceObjectType = source.FormalType.getOptionalObjectType()) {
return emitOptionalToOptional(source, sourceObjectType, target);
}
assert(!target.FormalType.getOptionalObjectType());
// The only other things we return WillSucceed for currently is
// an upcast or CF/NS toll-free-bridging conversion.
// FIXME: Upcasts between existential metatypes are not handled yet.
// We should generate for it:
// %openedSrcMetatype = open_existential srcMetatype
// init_existential dstMetatype, %openedSrcMetatype
auto &srcTL = getTypeLowering(source.Value->getType());
SILValue value;
if (source.isAddress()) {
value = srcTL.emitLoadOfCopy(B, Loc, source.Value, IsTake);
} else {
// May have any valid ownership.
value = source.Value;
}
auto targetFormalTy = target.FormalType;
auto targetLoweredTy =
SILType::getPrimitiveObjectType(target.LoweredType.getASTType());
if (isCFBridgingConversion(SwiftModule,
source.FormalType,
targetFormalTy)) {
value = B.createUncheckedRefCast(Loc, value, targetLoweredTy);
} else {
value = B.createUpcast(Loc, value, targetLoweredTy);
}
// If the target is an address, then scalar must be Owned. Otherwise, it
// may be Guaranteed.
assert(value->getType() == target.LoweredType.getObjectType());
if (!target.isAddress())
return target.asScalarSource(value);
auto &targetTL = getTypeLowering(target.LoweredType);
targetTL.emitStoreOfCopy(B, Loc, value, target.Address, IsInitialization);
return target.asAddressSource();
}
Source emitAndInjectIntoOptionals(Source source, Target target,
unsigned depth) {
if (depth == 0)
return emit(source, target);
// Recurse.
EmitSomeState state;
Target objectTarget = prepareForEmitSome(target, state);
Source objectSource =
emitAndInjectIntoOptionals(source, objectTarget, depth - 1);
return emitSome(objectSource, target, state);
}
Source emitOptionalToOptional(Source source,
CanType sourceObjectType,
Target target) {
// Switch on the incoming value.
SILBasicBlock *contBB = B.splitBlockForFallthrough();
SILBasicBlock *noneBB = B.splitBlockForFallthrough();
SILBasicBlock *someBB = B.splitBlockForFallthrough();
// Emit the switch.
std::pair<EnumElementDecl*, SILBasicBlock*> cases[] = {
{ Ctx.getOptionalSomeDecl(), someBB },
{ Ctx.getOptionalNoneDecl(), noneBB },
};
if (source.isAddress()) {
B.createSwitchEnumAddr(Loc, source.Value, /*default*/ nullptr, cases);
} else {
auto *switchEnum =
B.createSwitchEnum(Loc, source.Value, /*default*/ nullptr, cases);
switchEnum->createOptionalSomeResult();
}
// Create the Some block, which recurses.
B.setInsertionPoint(someBB);
{
auto sourceSomeDecl = Ctx.getOptionalSomeDecl();
SILType loweredSourceObjectType =
source.Value->getType().getEnumElementType(
sourceSomeDecl, M, B.getTypeExpansionContext());
// Form the target for the optional object.
EmitSomeState state;
Target objectTarget = prepareForEmitSome(target, state);
// Form the source value.
AllocStackInst *sourceTemp = nullptr;
Source objectSource;
if (source.isAddress()) {
// TODO: add an instruction for non-destructively getting a
// specific element's data.
SILValue sourceAddr = source.Value;
sourceAddr = B.createUncheckedTakeEnumDataAddr(Loc, sourceAddr,
sourceSomeDecl, loweredSourceObjectType);
objectSource = Source(sourceAddr, sourceObjectType);
} else {
objectSource = Source(someBB->getArgument(0), sourceObjectType);
}
Source resultObject = emit(objectSource, objectTarget);
// Deallocate the source temporary if we needed one.
if (sourceTemp) {
B.createDeallocStack(Loc, sourceTemp);
}
Source result = emitSome(resultObject, target, state);
assert(result.isAddress() == target.isAddress());
if (target.isAddress()) {
B.createBranch(Loc, contBB);
} else {
auto &resultTL = getTypeLowering(result.Value->getType());
SILValue resultVal = getOwnedScalar(source, resultTL);
B.createBranch(Loc, contBB, {resultVal});
}
}
// Create the None block.
B.setInsertionPoint(noneBB);
{
Source result = emitNone(target);
assert(result.isAddress() == target.isAddress());
if (target.isAddress()) {
B.createBranch(Loc, contBB);
} else {
B.createBranch(Loc, contBB, { result.Value });
}
}
// Continuation block.
B.setInsertionPoint(contBB);
if (target.isAddress()) {
return target.asAddressSource();
} else {
SILValue result =
contBB->createPhiArgument(target.LoweredType, OwnershipKind::Owned);
return target.asScalarSource(result);
}
}
struct EmitSomeState {
EnumElementDecl *SomeDecl;
};
Target prepareForEmitSome(Target target, EmitSomeState &state) {
auto objectType = target.FormalType.getOptionalObjectType();
assert(objectType && "emitting Some into non-optional type");
auto someDecl = Ctx.getOptionalSomeDecl();
state.SomeDecl = someDecl;
SILType loweredObjectType = target.LoweredType.getEnumElementType(
someDecl, M, B.getTypeExpansionContext());
if (target.isAddress()) {
SILValue objectAddr =
B.createInitEnumDataAddr(Loc, target.Address, someDecl,
loweredObjectType);
return { objectAddr, objectType };
} else {
return { loweredObjectType, objectType };
}
}
// May return an Owned or Guaranteed result. If source is has ownership
// None, then the result may still be Guaranteed for nontrivial types.
Source emitSome(Source source, Target target, EmitSomeState &state) {
// If our target is an address, prepareForEmitSome should have set this
// up so that we emitted directly into
if (target.isAddress()) {
B.createInjectEnumAddr(Loc, target.Address, state.SomeDecl);
return target.asAddressSource();
} else {
auto someEnum =
B.createEnum(Loc, source.Value, state.SomeDecl, target.LoweredType);
return target.asScalarSource(someEnum);
}
}
Source emitNone(Target target) {
auto noneDecl = Ctx.getOptionalNoneDecl();
if (target.isAddress()) {
B.createInjectEnumAddr(Loc, target.Address, noneDecl);
return target.asAddressSource();
} else {
SILValue res = B.createEnum(Loc, nullptr, noneDecl, target.LoweredType);
return target.asScalarSource(res);
}
}
};
} // end anonymous namespace
SILValue
swift::emitSuccessfulScalarUnconditionalCast(SILBuilder &B, SILLocation loc,
SILDynamicCastInst dynamicCast) {
return emitSuccessfulScalarUnconditionalCast(
B, B.getModule().getSwiftModule(), loc, dynamicCast.getSource(),
dynamicCast.getTargetLoweredType(), dynamicCast.getSourceFormalType(),
dynamicCast.getTargetFormalType(), dynamicCast.getInstruction());
}
/// Emit an unconditional scalar cast that's known to succeed.
SILValue
swift::emitSuccessfulScalarUnconditionalCast(SILBuilder &B, ModuleDecl *M,
SILLocation loc, SILValue value,
SILType targetLoweredType,
CanType sourceFormalType,
CanType targetFormalType,
SILInstruction *existingCast) {
assert(classifyDynamicCast(M, sourceFormalType, targetFormalType)
== DynamicCastFeasibility::WillSucceed);
// Casts to/from existential types cannot be further improved.
if (sourceFormalType.isAnyExistentialType() ||
targetFormalType.isAnyExistentialType()) {
if (existingCast)
// Indicate that the existing cast cannot be further improved.
return SILValue();
llvm_unreachable("Casts to/from existentials are not supported yet");
}
// Fast path changes that don't change the type.
if (sourceFormalType == targetFormalType)
return value;
Source source(value, sourceFormalType);
Target target(targetLoweredType, targetFormalType);
Source result = CastEmitter(B, M, loc).emitTopLevel(source, target);
assert(!result.isAddress());
assert(result.Value->getType() == targetLoweredType);
return result.Value;
}
bool swift::emitSuccessfulIndirectUnconditionalCast(
SILBuilder &B, SILLocation loc, SILDynamicCastInst dynamicCast) {
return emitSuccessfulIndirectUnconditionalCast(
B, B.getModule().getSwiftModule(), loc, dynamicCast.getSource(),
dynamicCast.getSourceFormalType(), dynamicCast.getDest(),
dynamicCast.getTargetFormalType(), dynamicCast.getInstruction());
}
bool swift::emitSuccessfulIndirectUnconditionalCast(
SILBuilder &B, ModuleDecl *M, SILLocation loc, SILValue src,
CanType sourceFormalType, SILValue dest, CanType targetFormalType,
SILInstruction *existingCast) {
assert(classifyDynamicCast(M, sourceFormalType, targetFormalType)
== DynamicCastFeasibility::WillSucceed);
assert(src->getType().isAddress());
assert(dest->getType().isAddress());
// Casts between the same types can be always handled here.
// Casts from non-existentials into existentials and
// vice-versa cannot be improved yet.
// Casts between a value type and a class cannot be optimized.
// Therefore generate a simple unconditional_checked_cast_aadr.
if (src->getType() != dest->getType())
if (src->getType().isAnyExistentialType() !=
dest->getType().isAnyExistentialType() ||
!(src->getType().getClassOrBoundGenericClass() &&
dest->getType().getClassOrBoundGenericClass())) {
// If there is an existing cast with the same arguments,
// indicate we cannot improve it.
if (existingCast) {
auto *UCCAI = dyn_cast<UnconditionalCheckedCastAddrInst>(existingCast);
if (UCCAI && UCCAI->getSrc() == src && UCCAI->getDest() == dest
&& UCCAI->getSourceFormalType() == sourceFormalType
&& UCCAI->getTargetFormalType() == targetFormalType) {
// Indicate that the existing cast cannot be further improved.
return false;
}
}
B.createUnconditionalCheckedCastAddr(loc,
src, sourceFormalType,
dest, targetFormalType);
return true;
}
Source source(src, sourceFormalType);
Target target(dest, targetFormalType);
Source result = CastEmitter(B, M, loc).emitTopLevel(source, target);
assert(result.isAddress());
assert(result.Value == dest);
(void) result;
return true;
}
/// Can the given cast be performed by the scalar checked-cast
/// instructions at the current SIL stage?
///
/// Always returns true for !useLoweredAddresses. Scalar casts are always
/// valid for owned values. If the operand is +1, the case will always destroy
/// or forward it. The result is always either +1 or trivial. The cast never
/// hides a copy. doesCastPreserveOwnershipForTypes determines whether the
/// scalar cast is also compatible with guaranteed values.
bool swift::canSILUseScalarCheckedCastInstructions(SILModule &M,
CanType sourceFormalType,
CanType targetFormalType) {
if (!M.useLoweredAddresses())
return true;
return canIRGenUseScalarCheckedCastInstructions(M, sourceFormalType,
targetFormalType);
}
/// Can the given cast be performed by the scalar checked-cast
/// instructions?
bool swift::canIRGenUseScalarCheckedCastInstructions(SILModule &M,
CanType sourceFormalType,
CanType targetFormalType) {
// If the cast involves any kind of generalized existential we
// need to use the indirect-cast path to handle checking the extra
// constraints there as the scalar path does not (yet) know how to do it.
if (sourceFormalType->hasParameterizedExistential() ||
targetFormalType->hasParameterizedExistential()) {
return false;
}
// Look through one level of optionality on the source.
auto objectType = sourceFormalType;
if (auto type = objectType.getOptionalObjectType())
objectType = type;
// Casting to NSError needs to go through the indirect-cast case,
// since it may conform to Error and require Error-to-NSError
// bridging, unless we can statically see that the source type inherits
// NSError.
// A class-constrained archetype may be bound to NSError, unless it has a
// non-NSError superclass constraint. Casts to archetypes thus must always be
// indirect.
if (auto archetype = targetFormalType->getAs<ArchetypeType>()) {
// Only ever permit this if the source type is a reference type.
if (!objectType.isAnyClassReferenceType())
return false;
auto super = archetype->getSuperclass();
if (super.isNull())
return false;
// A base class constraint that isn't NSError rules out the archetype being
// bound to NSError.
if (M.getASTContext().LangOpts.EnableObjCInterop) {
if (auto nserror = M.Types.getNSErrorType())
return !super->isEqual(nserror);
}
// If NSError wasn't loaded, any base class constraint must not be NSError.
return true;
}
if (M.getASTContext().LangOpts.EnableObjCInterop
&& targetFormalType == M.Types.getNSErrorType()) {
// If we statically know the source is an NSError subclass, then the cast
// can go through the scalar path (and it's trivially true so can be
// killed).
return targetFormalType->isExactSuperclassOf(objectType);
}
// Three supported cases:
// - metatype to metatype
// - metatype to object
// - object to object
if ((objectType.isAnyClassReferenceType() || isa<AnyMetatypeType>(objectType))
&& targetFormalType.isAnyClassReferenceType())
return true;
if (isa<AnyMetatypeType>(objectType) && isa<AnyMetatypeType>(targetFormalType))
return true;
// Otherwise, we need to use the general indirect-cast functions.
return false;
}
/// Carry out the operations required for an indirect conditional cast
/// using a scalar cast operation.
void swift::emitIndirectConditionalCastWithScalar(
SILBuilder &B, ModuleDecl *M, SILLocation loc,
CastConsumptionKind consumption,
SILValue srcAddr, CanType sourceFormalType,
SILValue destAddr, CanType targetFormalType,
SILBasicBlock *indirectSuccBB, SILBasicBlock *indirectFailBB,
ProfileCounter TrueCount, ProfileCounter FalseCount) {
assert(canSILUseScalarCheckedCastInstructions(B.getModule(),
sourceFormalType,
targetFormalType));
// Create our successor and fail blocks.
SILBasicBlock *scalarFailBB = B.splitBlockForFallthrough();
SILBasicBlock *scalarSuccBB = B.splitBlockForFallthrough();
// Always take; this works under an assumption that retaining the result is
// equivalent to retaining the source. That means that these casts would not
// be appropriate for bridging-like conversions.
//
// Our plan is:
//
// 1. If the original cast was a take_always cast, then we take from our
// memory location in the caller, store the value into dest in the success
// block, and perform a destroy of our default argument in the failure block.
//
// 2. If the original cast was copy_on_success, then with ownership we borrow,
// copy in the success path and store back into the source slot after copying.
//
// 3. If the original cast was take_on_success, then on success we place the
// casted value into dest and on failure, store the original value back into
// src.
SILType targetLoweredType = destAddr->getType().getObjectType();
// Inline constructor
auto srcValue = ([&]() -> SILValue {
if (consumption == CastConsumptionKind::CopyOnSuccess)
return B.emitLoadBorrowOperation(loc, srcAddr);
return B.emitLoadValueOperation(loc, srcAddr, LoadOwnershipQualifier::Take);
})();
auto *ccb = B.createCheckedCastBranch(
loc, /*exact*/ false, srcValue, sourceFormalType, targetLoweredType,
targetFormalType, scalarSuccBB, scalarFailBB, TrueCount, FalseCount);
// Emit the success block.
B.setInsertionPoint(scalarSuccBB); {
SILValue succValue = scalarSuccBB->createPhiArgument(
targetLoweredType, ccb->getForwardingOwnershipKind());
switch (consumption) {
// On success, we take with both take_always and take_on_success.
case CastConsumptionKind::TakeAlways:
case CastConsumptionKind::TakeOnSuccess:
break;
case CastConsumptionKind::CopyOnSuccess: {
succValue = B.emitCopyValueOperation(loc, succValue);
B.emitEndBorrowOperation(loc, srcValue);
break;
}
case CastConsumptionKind::BorrowAlways:
llvm_unreachable("should never see a borrow_always here");
}
// And then store the succValue into dest.
B.emitStoreValueOperation(loc, succValue, destAddr,
StoreOwnershipQualifier::Init);
B.createBranch(loc, indirectSuccBB);
}
// Emit the failure block.
B.setInsertionPoint(scalarFailBB);
{
SILValue failValue = srcValue;
// If we have ownership, we need to create something for the default
// argument. Otherwise, we just use the input argument to the
// checked_cast_br.
if (B.hasOwnership()) {
failValue = scalarFailBB->createPhiArgument(srcValue->getType(),
srcValue->getOwnershipKind());
}
switch (consumption) {
case CastConsumptionKind::TakeAlways:
// We need to destroy the fail value if we have take_always.
B.emitDestroyValueOperation(loc, failValue);
break;
case CastConsumptionKind::TakeOnSuccess:
// If we have take_on_success, since we failed, just store the value back
// into the src location that we originally took from.
B.emitStoreValueOperation(loc, failValue, srcAddr,
StoreOwnershipQualifier::Init);
break;
case CastConsumptionKind::CopyOnSuccess:
B.emitEndBorrowOperation(loc, srcValue);
break;
case CastConsumptionKind::BorrowAlways:
llvm_unreachable("borrow_on_success should never appear here");
}
B.createBranch(loc, indirectFailBB);
}
}
|