1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
|
//===--- Projection.cpp ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-projection"
#include "swift/SIL/Projection.h"
#include "swift/Basic/IndexTrie.h"
#include "swift/Basic/NullablePtr.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILUndef.h"
#include "llvm/Support/Debug.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Projection Static Asserts
//===----------------------------------------------------------------------===//
/// These are just for performance and verification. If one needs to make
/// changes that cause the asserts the fire, please update them. The purpose is
/// to prevent these predicates from changing values by mistake.
static_assert(std::is_standard_layout<Projection>::value,
"Expected projection to be a standard layout type");
//===----------------------------------------------------------------------===//
// Utility
//===----------------------------------------------------------------------===//
/// Extract an integer index from a SILValue.
///
/// Return true if IndexVal is a constant index representable as unsigned
/// int. We do not support symbolic projections yet, only 32-bit unsigned
/// integers.
bool swift::getIntegerIndex(SILValue IndexVal, int &IndexConst) {
auto *IndexLiteral = dyn_cast<IntegerLiteralInst>(IndexVal);
if (!IndexLiteral)
return false;
APInt ConstInt = IndexLiteral->getValue();
// Reserve 1 bit for encoding. See AccessPath::Index.
if (!ConstInt.isSignedIntN(31))
return false;
IndexConst = ConstInt.getSExtValue();
assert(((IndexConst << 1) >> 1) == IndexConst);
return true;
}
//===----------------------------------------------------------------------===//
// Projection
//===----------------------------------------------------------------------===//
constexpr int ProjectionIndex::TailIndex;
Projection::Projection(SingleValueInstruction *I) : Value() {
if (!I)
return;
/// Initialize given the specific instruction type and verify with asserts
/// that we constructed it correctly.
switch (I->getKind()) {
// If we do not support this instruction kind, then just bail. Index will
// be None so the Projection will be invalid.
default:
return;
case SILInstructionKind::StructElementAddrInst: {
auto *SEAI = cast<StructElementAddrInst>(I);
Value = ValueTy(ProjectionKind::Struct, SEAI->getFieldIndex());
assert(getKind() == ProjectionKind::Struct);
assert(getIndex() == int(SEAI->getFieldIndex()));
break;
}
case SILInstructionKind::StructExtractInst: {
auto *SEI = cast<StructExtractInst>(I);
Value = ValueTy(ProjectionKind::Struct, SEI->getFieldIndex());
assert(getKind() == ProjectionKind::Struct);
assert(getIndex() == int(SEI->getFieldIndex()));
break;
}
case SILInstructionKind::RefElementAddrInst: {
auto *REAI = cast<RefElementAddrInst>(I);
Value = ValueTy(ProjectionKind::Class, REAI->getFieldIndex());
assert(getKind() == ProjectionKind::Class);
assert(getIndex() == int(REAI->getFieldIndex()));
break;
}
case SILInstructionKind::RefTailAddrInst: {
auto *RTAI = cast<RefTailAddrInst>(I);
auto *Ty = RTAI->getTailType().getASTType().getPointer();
Value = ValueTy(ProjectionKind::TailElems, Ty);
assert(getKind() == ProjectionKind::TailElems);
break;
}
case SILInstructionKind::ProjectBoxInst: {
auto *PBI = cast<ProjectBoxInst>(I);
Value = ValueTy(ProjectionKind::Box, static_cast<uintptr_t>(0));
assert(getKind() == ProjectionKind::Box);
assert(getIndex() == 0);
(void) PBI;
break;
}
case SILInstructionKind::TupleExtractInst: {
auto *TEI = cast<TupleExtractInst>(I);
Value = ValueTy(ProjectionKind::Tuple, TEI->getFieldIndex());
assert(getKind() == ProjectionKind::Tuple);
assert(getIndex() == int(TEI->getFieldIndex()));
break;
}
case SILInstructionKind::TupleElementAddrInst: {
auto *TEAI = cast<TupleElementAddrInst>(I);
Value = ValueTy(ProjectionKind::Tuple, TEAI->getFieldIndex());
assert(getKind() == ProjectionKind::Tuple);
assert(getIndex() == int(TEAI->getFieldIndex()));
break;
}
case SILInstructionKind::UncheckedEnumDataInst: {
auto *UEDI = cast<UncheckedEnumDataInst>(I);
Value = ValueTy(ProjectionKind::Enum, UEDI->getElementNo());
assert(getKind() == ProjectionKind::Enum);
assert(getIndex() == int(UEDI->getElementNo()));
break;
}
case SILInstructionKind::UncheckedTakeEnumDataAddrInst: {
auto *UTEDAI = cast<UncheckedTakeEnumDataAddrInst>(I);
Value = ValueTy(ProjectionKind::Enum, UTEDAI->getCaseIndex());
assert(getKind() == ProjectionKind::Enum);
assert(getIndex() == int(UTEDAI->getCaseIndex()));
break;
}
case SILInstructionKind::IndexAddrInst: {
// We can represent all integers provided here since getIntegerIndex only
// returns 32 bit values. When that changes, this code will need to be
// updated and a MaxLargeIndex will need to be used here. Currently we
// represent large Indexes using a 64 bit integer, so we don't need to mess
// with anything.
int NewIndex = 0;
auto *IAI = cast<IndexAddrInst>(I);
// TODO: handle negative indices
if (getIntegerIndex(IAI->getIndex(), NewIndex) && NewIndex >= 0) {
Value = ValueTy(ProjectionKind::Index, NewIndex);
assert(getKind() == ProjectionKind::Index);
assert(getIndex() == NewIndex);
}
break;
}
case SILInstructionKind::ProjectBlockStorageInst: {
auto *Ty = I->getType().getASTType().getPointer();
assert(Ty->isCanonical());
Value = ValueTy(ProjectionKind::BlockStorageCast, Ty);
assert(getKind() == ProjectionKind::BlockStorageCast);
break;
}
case SILInstructionKind::UpcastInst: {
auto *Ty = I->getType().getASTType().getPointer();
assert(Ty->isCanonical());
Value = ValueTy(ProjectionKind::Upcast, Ty);
assert(getKind() == ProjectionKind::Upcast);
break;
}
case SILInstructionKind::UncheckedRefCastInst: {
auto *Ty = I->getType().getASTType().getPointer();
assert(Ty->isCanonical());
Value = ValueTy(ProjectionKind::RefCast, Ty);
assert(getKind() == ProjectionKind::RefCast);
break;
}
case SILInstructionKind::UncheckedBitwiseCastInst:
case SILInstructionKind::UncheckedAddrCastInst: {
auto *Ty = I->getType().getASTType().getPointer();
assert(Ty->isCanonical());
Value = ValueTy(ProjectionKind::BitwiseCast, Ty);
assert(getKind() == ProjectionKind::BitwiseCast);
break;
}
}
}
/// Apply this projection to \p BaseType and return the relevant subfield's
/// SILType if BaseField has less subtypes than projection's offset.
///
/// WARNING: This is not a constant time operation because it is implemented
/// in terms of getVarDecl, which requests all BaseType's stored properties.
SILType Projection::getType(SILType BaseType, SILModule &M,
TypeExpansionContext context) const {
assert(isValid());
switch (getKind()) {
case ProjectionKind::Struct:
case ProjectionKind::Class:
return BaseType.getFieldType(getVarDecl(BaseType), M, context);
case ProjectionKind::Enum:
return BaseType.getEnumElementType(getEnumElementDecl(BaseType), M, context);
case ProjectionKind::Box:
return getSILBoxFieldType(context, BaseType.castTo<SILBoxType>(), M.Types,
getIndex());
case ProjectionKind::Tuple:
return BaseType.getTupleElementType(getIndex());
case ProjectionKind::Upcast:
case ProjectionKind::BlockStorageCast:
case ProjectionKind::RefCast:
case ProjectionKind::BitwiseCast:
case ProjectionKind::TailElems:
return getCastType(BaseType);
case ProjectionKind::Index:
// Index types do not change the underlying type.
return BaseType;
}
llvm_unreachable("Unhandled ProjectionKind in switch.");
}
NullablePtr<SingleValueInstruction>
Projection::createObjectProjection(SILBuilder &B, SILLocation Loc,
SILValue Base) const {
SILType BaseTy = Base->getType();
// We can only create a value projection from an object.
if (!BaseTy.isObject())
return nullptr;
// Ok, we now know that the type of Base and the type represented by the base
// of this projection match and that this projection can be represented as
// value. Create the instruction if we can. Otherwise, return nullptr.
switch (getKind()) {
case ProjectionKind::Struct:
return B.createStructExtract(Loc, Base, getVarDecl(BaseTy));
case ProjectionKind::Tuple:
return B.createTupleExtract(Loc, Base, getIndex());
case ProjectionKind::Index:
return nullptr;
case ProjectionKind::Enum:
return B.createUncheckedEnumData(Loc, Base, getEnumElementDecl(BaseTy));
case ProjectionKind::Class:
return nullptr;
case ProjectionKind::TailElems:
return nullptr;
case ProjectionKind::Box:
return nullptr;
case ProjectionKind::BlockStorageCast:
return nullptr;
case ProjectionKind::Upcast:
return B.createUpcast(Loc, Base, getCastType(BaseTy));
case ProjectionKind::RefCast:
return B.createUncheckedRefCast(Loc, Base, getCastType(BaseTy));
case ProjectionKind::BitwiseCast:
return B.createUncheckedBitwiseCast(Loc, Base, getCastType(BaseTy));
}
llvm_unreachable("Unhandled ProjectionKind in switch.");
}
NullablePtr<SingleValueInstruction>
Projection::createAddressProjection(SILBuilder &B, SILLocation Loc,
SILValue Base) const {
SILType BaseTy = Base->getType();
// We can only create an address projection from an object, unless we have a
// class.
if (BaseTy.getClassOrBoundGenericClass() || !BaseTy.isAddress())
return nullptr;
// Ok, we now know that the type of Base and the type represented by the base
// of this projection match and that this projection can be represented as
// value. Create the instruction if we can. Otherwise, return nullptr.
switch (getKind()) {
case ProjectionKind::Struct:
return B.createStructElementAddr(Loc, Base, getVarDecl(BaseTy));
case ProjectionKind::Tuple:
return B.createTupleElementAddr(Loc, Base, getIndex());
case ProjectionKind::Index: {
auto IntLiteralTy =
SILType::getBuiltinIntegerType(64, B.getModule().getASTContext());
auto IntLiteralIndex =
B.createIntegerLiteral(Loc, IntLiteralTy, getIndex());
return B.createIndexAddr(Loc, Base, IntLiteralIndex,
// TODO: do we need to be conservative here?
/*needsStackProtection=*/ true);
}
case ProjectionKind::Enum:
return B.createUncheckedTakeEnumDataAddr(Loc, Base,
getEnumElementDecl(BaseTy));
case ProjectionKind::Class:
return B.createRefElementAddr(Loc, Base, getVarDecl(BaseTy));
case ProjectionKind::TailElems:
return B.createRefTailAddr(Loc, Base, getCastType(BaseTy));
case ProjectionKind::Box:
return B.createProjectBox(Loc, Base, getIndex());
case ProjectionKind::BlockStorageCast:
return B.createProjectBlockStorage(Loc, Base);
case ProjectionKind::Upcast:
return B.createUpcast(Loc, Base, getCastType(BaseTy));
case ProjectionKind::RefCast:
case ProjectionKind::BitwiseCast:
return B.createUncheckedAddrCast(Loc, Base, getCastType(BaseTy));
}
llvm_unreachable("Unhandled ProjectionKind in switch.");
}
void Projection::getFirstLevelProjections(
SILType Ty, SILModule &Mod, TypeExpansionContext context,
llvm::SmallVectorImpl<Projection> &Out) {
if (auto *S = Ty.getStructOrBoundGenericStruct()) {
unsigned Count = 0;
for (auto *VDecl : S->getStoredProperties()) {
(void) VDecl;
Projection P(ProjectionKind::Struct, Count++);
LLVM_DEBUG(ProjectionPath X(Ty);
assert(X.getMostDerivedType(Mod, context) == Ty);
X.append(P);
assert(X.getMostDerivedType(Mod, context) ==
Ty.getFieldType(VDecl, Mod, context));
X.verify(Mod, context););
Out.push_back(P);
}
return;
}
if (auto TT = Ty.getAs<TupleType>()) {
for (unsigned i = 0, e = TT->getNumElements(); i != e; ++i) {
Projection P(ProjectionKind::Tuple, i);
LLVM_DEBUG(ProjectionPath X(Ty);
assert(X.getMostDerivedType(Mod, context) == Ty);
X.append(P);
assert(X.getMostDerivedType(Mod, context) ==
Ty.getTupleElementType(i));
X.verify(Mod, context););
Out.push_back(P);
}
return;
}
if (auto *C = Ty.getClassOrBoundGenericClass()) {
unsigned Count = 0;
for (auto *VDecl : C->getStoredProperties()) {
(void) VDecl;
Projection P(ProjectionKind::Class, Count++);
LLVM_DEBUG(ProjectionPath X(Ty);
assert(X.getMostDerivedType(Mod, context) == Ty);
X.append(P);
assert(X.getMostDerivedType(Mod, context) ==
Ty.getFieldType(VDecl, Mod, context));
X.verify(Mod, context););
Out.push_back(P);
}
return;
}
if (auto Box = Ty.getAs<SILBoxType>()) {
for (unsigned field : indices(Box->getLayout()->getFields())) {
Projection P(ProjectionKind::Box, field);
LLVM_DEBUG(ProjectionPath X(Ty);
assert(X.getMostDerivedType(Mod, context) == Ty); X.append(P);
assert(X.getMostDerivedType(Mod, context) ==
getSILBoxFieldType(context, Box, Mod.Types, field));
X.verify(Mod, context););
(void)Box;
Out.push_back(P);
}
return;
}
}
//===----------------------------------------------------------------------===//
// Projection Path
//===----------------------------------------------------------------------===//
std::optional<ProjectionPath> ProjectionPath::getProjectionPath(SILValue Start,
SILValue End) {
ProjectionPath P(Start->getType(), End->getType());
// If Start == End, there is a "trivial" projection path in between the
// two. This is represented by returning an empty ProjectionPath.
if (Start == End)
return std::move(P);
// Do not inspect the body of types with unreferenced types such as bitfields
// and unions. This is currently only associated with structs.
if (Start->getType().aggregateHasUnreferenceableStorage() ||
End->getType().aggregateHasUnreferenceableStorage())
return std::nullopt;
auto Iter = End;
while (Start != Iter) {
if (auto *mvr = dyn_cast<MultipleValueInstructionResult>(Iter)) {
if (auto *bci = dyn_cast<BeginCOWMutationInst>(mvr->getParent())) {
Iter = bci->getOperand();
continue;
}
break;
}
// end_cow_mutation and begin_access are not projections, but we need to be
// able to form valid ProjectionPaths across them, otherwise optimization
// passes like RLE/DSE cannot recognize their locations.
//
// TODO: migrate users to getProjectionPath to the AccessPath utility to
// avoid this hack.
if (!isa<EndCOWMutationInst>(Iter) && !isa<BeginAccessInst>(Iter) &&
!isa<BeginBorrowInst>(Iter) && !isa<MoveValueInst>(Iter)) {
Projection AP(Iter);
if (!AP.isValid())
break;
// We _must_ ignore zero-indexing projections so that alias analysis
// recognizes an "alias" between two addresses where one has such an
// `index_addr 0` instruction and the other doesn't.
if (AP.getKind() != ProjectionKind::Index || AP.getIndex() != 0)
P.Path.push_back(AP);
}
Iter = cast<SingleValueInstruction>(*Iter).getOperand(0);
}
// Return None if we have an empty projection list or if Start == Iter.
// We do not worry about th implicit #0 in case of index_addr, as the
// ProjectionPath never allow paths to be compared as a list of indices.
// Only the encoded type+index pair will be compared.
if (P.empty() || Start != Iter)
return std::nullopt;
// Reverse to get a path from base to most-derived.
std::reverse(P.Path.begin(), P.Path.end());
// Otherwise, return P.
return std::move(P);
}
/// Returns true if the two paths have a non-empty symmetric difference.
///
/// This means that the two objects have the same base but access different
/// fields of the base object.
bool
ProjectionPath::hasNonEmptySymmetricDifference(const ProjectionPath &RHS) const{
// First make sure that both of our base types are the same.
if (BaseType != RHS.BaseType)
return false;
// Otherwise, we have a common base and perhaps some common subpath.
auto LHSIter = Path.begin();
auto RHSIter = RHS.Path.begin();
bool FoundDifferingProjections = false;
// For each index i until min path size...
unsigned i = 0;
for (unsigned e = std::min(size(), RHS.size()); i != e; ++i) {
// Grab the current projections.
const Projection &LHSProj = *LHSIter;
const Projection &RHSProj = *RHSIter;
// If we are accessing different fields of a common object, the two
// projection paths may have a non-empty symmetric difference. We check if
if (LHSProj != RHSProj) {
LLVM_DEBUG(llvm::dbgs() << " Path different at index: "
<< i << '\n');
FoundDifferingProjections = true;
break;
}
// Continue if we are accessing the same field.
++LHSIter;
++RHSIter;
}
// All path elements are the same. The symmetric difference is empty.
if (!FoundDifferingProjections)
return false;
// We found differing projections, but we need to make sure that there are no
// casts in the symmetric difference. To be conservative, we only wish to
// allow for casts to appear in the common parts of projections.
for (unsigned li = i, e = size(); li != e; ++li) {
if (LHSIter->isAliasingCast())
return false;
++LHSIter;
}
for (unsigned ri = i, e = RHS.size(); ri != e; ++ri) {
if (RHSIter->isAliasingCast())
return false;
++RHSIter;
}
// If we don't have any casts in our symmetric difference (i.e. only typed
// GEPs), then we can say that these actually have a symmetric difference we
// can understand. The fundamental issue here is that since we do not have any
// notion of size, we cannot know the effect of a cast + gep on the final
// location that we are reaching.
return true;
}
/// TODO: Integrate has empty non-symmetric difference into here.
SubSeqRelation_t
ProjectionPath::computeSubSeqRelation(const ProjectionPath &RHS) const {
// Make sure that both base types are the same. Otherwise, we can not compare
// the projections as sequences.
if (BaseType != RHS.BaseType)
return SubSeqRelation_t::Unknown;
// If both paths are empty, return Equal.
if (empty() && RHS.empty())
return SubSeqRelation_t::Equal;
auto LHSIter = begin();
auto RHSIter = RHS.begin();
unsigned MinPathSize = std::min(size(), RHS.size());
// For each index i until min path size...
for (unsigned i = 0; i != MinPathSize; ++i) {
// Grab the current projections.
const Projection &LHSProj = *LHSIter;
const Projection &RHSProj = *RHSIter;
// If the two projections do not equal exactly, return Unrelated.
//
// TODO: If Index equals zero, then we know that the two lists have nothing
// in common and should return unrelated. If Index is greater than zero,
// then we know that the two projection paths have a common base but a
// non-empty symmetric difference. For now we just return Unrelated since I
// can not remember why I had the special check in the
// hasNonEmptySymmetricDifference code.
if (LHSProj != RHSProj)
return SubSeqRelation_t::Unknown;
// Otherwise increment reverse iterators.
++LHSIter;
++RHSIter;
}
// Ok, we now know that one of the paths is a subsequence of the other. If
// both size() and RHS.size() equal then we know that the entire sequences
// equal.
if (size() == RHS.size())
return SubSeqRelation_t::Equal;
// If MinPathSize == size(), then we know that LHS is a strict subsequence of
// RHS.
if (MinPathSize == size())
return SubSeqRelation_t::LHSStrictSubSeqOfRHS;
// Otherwise, we know that MinPathSize must be RHS.size() and RHS must be a
// strict subsequence of LHS. Assert to check this and return.
assert(MinPathSize == RHS.size() &&
"Since LHS and RHS don't equal and size() != MinPathSize, RHS.size() "
"must equal MinPathSize");
return SubSeqRelation_t::RHSStrictSubSeqOfLHS;
}
std::optional<ProjectionPath>
ProjectionPath::removePrefix(const ProjectionPath &Path,
const ProjectionPath &Prefix) {
// We can only subtract paths that have the same base.
if (Path.BaseType != Prefix.BaseType)
return std::nullopt;
// If Prefix is greater than or equal to Path in size, Prefix can not be a
// prefix of Path. Return None.
unsigned PrefixSize = Prefix.size();
unsigned PathSize = Path.size();
if (PrefixSize >= PathSize)
return std::nullopt;
// First make sure that the prefix matches.
std::optional<ProjectionPath> P = ProjectionPath(Path.BaseType);
for (unsigned i = 0; i < PrefixSize; ++i) {
if (Path.Path[i] != Prefix.Path[i]) {
P.reset();
return P;
}
}
// Add the rest of Path to P and return P.
for (unsigned i = PrefixSize, e = PathSize; i != e; ++i) {
P->Path.push_back(Path.Path[i]);
}
return P;
}
void Projection::print(raw_ostream &os, SILType baseType) const {
switch (getKind()) {
case ProjectionKind::Struct:
case ProjectionKind::Class: {
auto *Decl = getVarDecl(baseType);
os << "Field: ";
Decl->print(os);
break;
}
case ProjectionKind::Enum: {
auto *Decl = getEnumElementDecl(baseType);
os << "Enum: ";
Decl->print(os);
break;
}
case ProjectionKind::Index:
case ProjectionKind::Tuple: {
os << "Index: " << getIndex();
break;
}
case ProjectionKind::Box: {
os << " Box over";
break;
}
case ProjectionKind::BlockStorageCast: {
os << "BlockStorageCast";
break;
}
case ProjectionKind::Upcast: {
os << "UpCast";
break;
}
case ProjectionKind::RefCast: {
os << "RefCast";
break;
}
case ProjectionKind::BitwiseCast: {
os << "BitwiseCast";
break;
}
case ProjectionKind::TailElems: {
os << " TailElems";
break;
}
}
}
raw_ostream &ProjectionPath::print(raw_ostream &os, SILModule &M,
TypeExpansionContext context) const {
os << "Projection Path [";
SILType IterType = getBaseType();
for (const Projection &IterProj : Path) {
SILType BaseType = IterType;
IterType = IterProj.getType(IterType, M, context);
os << BaseType.getAddressType() << "\n ";
IterProj.print(os, BaseType);
os << " in: ";
}
os << IterType.getAddressType() << "]\n";
return os;
}
void ProjectionPath::dump(SILModule &M, TypeExpansionContext context) const {
print(llvm::dbgs(), M, context);
}
void ProjectionPath::verify(SILModule &M, TypeExpansionContext context) {
#ifndef NDEBUG
SILType IterTy = getBaseType();
assert(IterTy);
for (auto &Proj : Path) {
IterTy = Proj.getType(IterTy, M, context);
assert(IterTy);
}
#endif
}
void
ProjectionPath::expandTypeIntoLeafProjectionPaths(SILType B, SILModule *Mod,
TypeExpansionContext context,
ProjectionPathList &Paths) {
// Perform a BFS to expand the given type into projectionpath each of
// which contains 1 field from the type.
llvm::SmallVector<ProjectionPath, 8> Worklist;
llvm::SmallVector<Projection, 8> Projections;
// Push an empty projection path to get started.
ProjectionPath P(B);
Worklist.push_back(P);
do {
// Get the next level projections based on current projection's type.
ProjectionPath PP = Worklist.pop_back_val();
// Get the current type to process.
SILType Ty = PP.getMostDerivedType(*Mod, context);
LLVM_DEBUG(llvm::dbgs() << "Visiting type: " << Ty << "\n");
// If this is a class type, we have reached the end of the type
// tree for this type.
//
// We do not push its next level projection into the worklist,
// if we do that, we could run into an infinite loop, e.g.
//
// class SelfLoop {
// var p : SelfLoop
// }
//
// struct XYZ {
// var x : Int
// var y : SelfLoop
// }
//
// The worklist would never be empty in this case !.
//
if (Ty.getClassOrBoundGenericClass()) {
LLVM_DEBUG(llvm::dbgs() << " Found class. Finished projection list\n");
Paths.push_back(PP);
continue;
}
// Get the first level projection of the current type.
Projections.clear();
Projection::getFirstLevelProjections(Ty, *Mod, context, Projections);
// Reached the end of the projection tree, this field can not be expanded
// anymore.
if (Projections.empty()) {
LLVM_DEBUG(llvm::dbgs() << " No projections. "
"Finished projection list\n");
Paths.push_back(PP);
continue;
}
// Keep expanding the location.
for (auto &P : Projections) {
ProjectionPath X(B);
X.append(PP);
///assert(PP.getMostDerivedType(*Mod) == X.getMostDerivedType(*Mod));
X.append(P);
Worklist.push_back(X);
}
// Keep iterating if the worklist is not empty.
} while (!Worklist.empty());
}
bool ProjectionPath::hasUncoveredNonTrivials(SILType B, const SILFunction &F,
ProjectionPathSet &CPaths) {
auto &Mod = F.getModule();
llvm::SmallVector<ProjectionPath, 4> Worklist, Paths;
// Push an empty projection path to get started.
ProjectionPath P(B);
Worklist.push_back(P);
do {
// Get the next level projections based on current projection's type.
ProjectionPath PP = Worklist.pop_back_val();
// If this path is part of the covered path, then continue.
if (CPaths.find(PP) != CPaths.end())
continue;
// Get the current type to process.
SILType Ty = PP.getMostDerivedType(Mod, F.getTypeExpansionContext());
// Get the first level projection of the current type.
llvm::SmallVector<Projection, 4> Projections;
Projection::getFirstLevelProjections(Ty, Mod, F.getTypeExpansionContext(),
Projections);
// Reached the end of the projection tree, this field can not be expanded
// anymore.
if (Projections.empty()) {
Paths.push_back(PP);
continue;
}
// There is at least one projection path that leads to a type with
// reference semantics.
if (Ty.getClassOrBoundGenericClass()) {
Paths.push_back(PP);
continue;
}
// Keep expanding the location.
for (auto &P : Projections) {
ProjectionPath X(B);
X.append(PP);
assert(PP.getMostDerivedType(Mod, F.getTypeExpansionContext()) ==
X.getMostDerivedType(Mod, F.getTypeExpansionContext()));
X.append(P);
Worklist.push_back(X);
}
// Keep iterating if the worklist is not empty.
} while (!Worklist.empty());
// Check whether any path leads to a non-trivial type.
for (auto &X : Paths) {
if (!X.getMostDerivedType(Mod, F.getTypeExpansionContext()).isTrivial(F))
return true;
}
return false;
}
SILValue
ProjectionPath::
createExtract(SILValue Base, SILInstruction *Inst, bool IsVal) const {
// If we found a projection path, but there are no projections, then the two
// loads must be the same, return PrevLI.
if (Path.empty())
return Base;
// Ok, at this point we know that we can construct our aggregate projections
// from our list of address projections.
SILValue LastExtract = Base;
SILBuilder Builder(Inst);
Builder.setCurrentDebugScope(Inst->getFunction()->getDebugScope());
// We use an auto-generated SILLocation for now.
// TODO: make the sil location more precise.
SILLocation Loc = RegularLocation::getAutoGeneratedLocation();
// Construct the path!
for (auto PI = Path.begin(), PE = Path.end(); PI != PE; ++PI) {
if (IsVal) {
LastExtract =
PI->createObjectProjection(Builder, Loc, LastExtract).get();
continue;
}
LastExtract =
PI->createAddressProjection(Builder, Loc, LastExtract).get();
}
// Return the last extract we created.
return LastExtract;
}
bool
Projection::operator<(const Projection &Other) const {
// If we have a nominal kind...
if (isNominalKind()) {
// And Other is also nominal...
if (Other.isNominalKind()) {
// Just compare the value decl pointers.
return getIndex() < Other.getIndex();
}
// Otherwise if Other is not nominal, return true since we always sort
// decls before indices.
return true;
} else {
// If this is not a nominal kind and Other is nominal, return
// false. Nominal kinds are always sorted before non-nominal kinds.
if (Other.isNominalKind())
return false;
// Otherwise, we are both index projections. Compare the indices.
return getIndex() < Other.getIndex();
}
}
NullablePtr<SingleValueInstruction>
Projection::createAggFromFirstLevelProjections(
SILBuilder &B, SILLocation Loc, SILType BaseType,
ArrayRef<SILValue> Values) {
if (BaseType.getStructOrBoundGenericStruct()) {
return B.createStruct(Loc, BaseType, Values);
}
if (BaseType.is<TupleType>()) {
return B.createTuple(Loc, BaseType, Values);
}
return nullptr;
}
SILValue Projection::getOperandForAggregate(SILInstruction *I) const {
switch (getKind()) {
case ProjectionKind::Struct:
if (isa<StructInst>(I))
return I->getOperand(getIndex());
break;
case ProjectionKind::Tuple:
if (isa<TupleInst>(I))
return I->getOperand(getIndex());
break;
case ProjectionKind::Index:
break;
case ProjectionKind::Enum:
if (auto *EI = dyn_cast<EnumInst>(I)) {
if (EI->getElement() == getEnumElementDecl(EI->getType())) {
assert(EI->hasOperand() && "expected data operand");
return EI->getOperand();
}
}
break;
case ProjectionKind::Class:
case ProjectionKind::TailElems:
case ProjectionKind::Box:
case ProjectionKind::BlockStorageCast:
case ProjectionKind::Upcast:
case ProjectionKind::RefCast:
case ProjectionKind::BitwiseCast:
// There is no SIL instruction to create a class or box by aggregating
// values.
break;
}
return SILValue();
}
//===----------------------------------------------------------------------===//
// ProjectionTreeNode
//===----------------------------------------------------------------------===//
ProjectionTreeNode *
ProjectionTreeNode::getChildForProjection(ProjectionTree &Tree,
const Projection &P) {
for (unsigned Index : ChildProjections) {
ProjectionTreeNode *N = Tree.getNode(Index);
if (N->Proj && N->Proj.value() == P) {
return N;
}
}
return nullptr;
}
ProjectionTreeNode *
ProjectionTreeNode::getParent(ProjectionTree &Tree) {
if (!Parent)
return nullptr;
return Tree.getNode(Parent.value());
}
const ProjectionTreeNode *
ProjectionTreeNode::getParent(const ProjectionTree &Tree) const {
if (!Parent)
return nullptr;
return Tree.getNode(Parent.value());
}
NullablePtr<SingleValueInstruction>
ProjectionTreeNode::
createProjection(SILBuilder &B, SILLocation Loc, SILValue Arg) const {
if (!Proj)
return nullptr;
return Proj->createProjection(B, Loc, Arg);
}
// Projection tree only supports structs and tuples today.
static bool isSupportedProjection(const Projection &p) {
switch (p.getKind()) {
case ProjectionKind::Struct:
case ProjectionKind::Tuple:
return true;
case ProjectionKind::Class:
case ProjectionKind::Enum:
case ProjectionKind::Box:
case ProjectionKind::Upcast:
case ProjectionKind::BlockStorageCast:
case ProjectionKind::RefCast:
case ProjectionKind::BitwiseCast:
case ProjectionKind::TailElems:
case ProjectionKind::Index:
return false;
}
llvm_unreachable("unhandled kind");
}
void
ProjectionTreeNode::
processUsersOfValue(ProjectionTree &Tree,
llvm::SmallVectorImpl<ValueNodePair> &Worklist,
SILValue Value) {
LLVM_DEBUG(llvm::dbgs() << " Looking at Users:\n");
// For all uses of V...
for (Operand *Op : getNonDebugUses(Value)) {
// Grab the User of V.
SILInstruction *User = Op->getUser();
LLVM_DEBUG(llvm::dbgs() << " " << *User);
// The projections we can handle are always single-value instructions.
auto projectionInst = dyn_cast<SingleValueInstruction>(User);
if (!projectionInst) {
LLVM_DEBUG(llvm::dbgs() << " Failed to create projection. "
"Adding to non projection user!\n");
addNonProjectionUser(Op);
continue;
}
auto P = Projection(projectionInst);
// If we fail to create a projection or this is a type of projection that we
// do not support, add User as a user to this node and continue.
if (!P.isValid() || !isSupportedProjection(P)) {
LLVM_DEBUG(llvm::dbgs() << " Failed to create projection. "
"Adding to non projection user!\n");
addNonProjectionUser(Op);
continue;
}
LLVM_DEBUG(llvm::dbgs() << " Created projection.\n");
// we have a projection to the next level children, create the next
// level children nodes lazily.
if (!Initialized)
createNextLevelChildren(
Tree, TypeExpansionContext(*projectionInst->getFunction()));
// Look up the Node for this projection add {User, ChildNode} to the
// worklist.
//
// *NOTE* This means that we will process ChildNode multiple times
// potentially with different projection users.
if (auto *ChildNode = getChildForProjection(Tree, P)) {
LLVM_DEBUG(llvm::dbgs() << " Found child for projection: "
<< ChildNode->getType() << "\n");
SILValue V = SILValue(projectionInst);
Worklist.push_back({V, ChildNode});
} else {
LLVM_DEBUG(llvm::dbgs() << " Did not find a child for "
"projection!. Adding to non projection user!\n");
// The only projection which we do not currently handle are enums since we
// may not know the correct case. This can be extended in the future.
// Is the user an epilogue release ?
addNonProjectionUser(Op);
}
}
}
void ProjectionTreeNode::createNextLevelChildrenForStruct(
ProjectionTree &Tree, TypeExpansionContext context, StructDecl *SD) {
SILModule &Mod = Tree.getModule();
unsigned ChildIndex = 0;
SILType Ty = getType();
for (VarDecl *VD : SD->getStoredProperties()) {
assert(Tree.getNode(Index) == this && "Node is not mapped to itself?");
SILType NodeTy = Ty.getFieldType(VD, Mod, context);
auto *Node = Tree.createChildForStruct(this, NodeTy, VD, ChildIndex++);
LLVM_DEBUG(llvm::dbgs() << " Creating child for: " <<NodeTy << "\n");
LLVM_DEBUG(llvm::dbgs() << " Projection: "
<< Node->getProjection().value().getIndex() << "\n");
ChildProjections.push_back(Node->getIndex());
assert(getChildForProjection(Tree, Node->getProjection().value()) == Node &&
"Child not matched to its projection in parent!");
assert(Node->getParent(Tree) == this && "Parent of Child is not Parent?!");
}
}
void
ProjectionTreeNode::
createNextLevelChildrenForTuple(ProjectionTree &Tree, TupleType *TT) {
SILType Ty = getType();
for (unsigned i = 0, e = TT->getNumElements(); i != e; ++i) {
assert(Tree.getNode(Index) == this && "Node is not mapped to itself?");
SILType NodeTy = Ty.getTupleElementType(i);
auto *Node = Tree.createChildForTuple(this, NodeTy, i);
LLVM_DEBUG(llvm::dbgs() << " Creating child for: " << NodeTy <<"\n");
LLVM_DEBUG(llvm::dbgs() << " Projection: "
<< Node->getProjection().value().getIndex() << "\n");
ChildProjections.push_back(Node->getIndex());
assert(getChildForProjection(Tree, Node->getProjection().value()) == Node &&
"Child not matched to its projection in parent!");
assert(Node->getParent(Tree) == this && "Parent of Child is not Parent?!");
}
}
void ProjectionTreeNode::createNextLevelChildren(ProjectionTree &Tree,
TypeExpansionContext context) {
LLVM_DEBUG(llvm::dbgs() << " Creating children for: " << getType() <<"\n");
if (Initialized) {
LLVM_DEBUG(llvm::dbgs() << " Already initialized! bailing!\n");
return;
}
Initialized = true;
SILType Ty = getType();
if (Ty.aggregateHasUnreferenceableStorage()) {
LLVM_DEBUG(llvm::dbgs() << " Has unreferenced storage bailing!\n");
return;
}
if (auto *SD = Ty.getStructOrBoundGenericStruct()) {
LLVM_DEBUG(llvm::dbgs() << " Found a struct!\n");
createNextLevelChildrenForStruct(Tree, context, SD);
return;
}
auto TT = Ty.getAs<TupleType>();
if (!TT) {
LLVM_DEBUG(llvm::dbgs() << " Did not find a tuple or struct, "
"bailing!\n");
return;
}
LLVM_DEBUG(llvm::dbgs() << " Found a tuple.");
createNextLevelChildrenForTuple(Tree, TT);
}
SingleValueInstruction *
ProjectionTreeNode::
createAggregate(SILBuilder &B, SILLocation Loc, ArrayRef<SILValue> Args) const {
assert(Initialized && "Node must be initialized to create aggregates");
SILType Ty = getType();
if (Ty.getStructOrBoundGenericStruct()) {
return B.createStruct(Loc, Ty, Args);
}
if (Ty.is<TupleType>()) {
return B.createTuple(Loc, Ty, Args);
}
llvm_unreachable("Unhandled type");
}
class ProjectionTreeNode::NewAggregateBuilder {
ProjectionTreeNode *Node;
SILBuilder &Builder;
SILLocation Loc;
llvm::SmallVector<SILValue, 8> Values;
// Did this aggregate already create an aggregate and thus is "invalidated".
bool Invalidated;
public:
NewAggregateBuilder(ProjectionTreeNode *N, SILBuilder &B, SILLocation L)
: Node(N), Builder(B), Loc(L), Values(), Invalidated(false) {
assert(N->Initialized && "N must be initialized since we are mapping Node "
"Children -> SILValues");
// Initialize the Values array with empty SILValues.
for (unsigned Child : N->ChildProjections) {
(void)Child;
Values.push_back(SILValue());
}
}
bool isInvalidated() const { return Invalidated; }
/// If all SILValues have been set, we are complete.
bool isComplete() const {
return std::all_of(Values.begin(), Values.end(), [](SILValue V) -> bool {
return V;
});
}
SingleValueInstruction *createInstruction() const {
assert(isComplete() && "Cannot create instruction until the aggregate is "
"complete");
assert(!Invalidated && "Must not be invalidated to create an instruction");
const_cast<NewAggregateBuilder *>(this)->Invalidated = true;
return Node->createAggregate(Builder, Loc, Values);
}
void setValueForChild(ProjectionTreeNode *Child, SILValue V) {
assert(!Invalidated && "Must not be invalidated to set value for child");
Values[Child->Proj.value().getIndex()] = V;
}
};
namespace {
using NewAggregateBuilder = ProjectionTreeNode::NewAggregateBuilder;
/// A wrapper around a MapVector with generalized operations on the map.
///
/// TODO: Replace this with a simple RPOT and use GraphUtils. Since we do not
/// look through enums or classes, in the current type system it should not be
/// possible to have a cycle implying that a RPOT should be fine.
class NewAggregateBuilderMap {
SILBuilder &Builder;
SILLocation Loc;
llvm::MapVector<ProjectionTreeNode *, NewAggregateBuilder> NodeBuilderMap;
public:
NewAggregateBuilderMap(SILBuilder &B, SILLocation Loc)
: Builder(B), Loc(Loc), NodeBuilderMap() {}
/// Get the NewAggregateBuilder associated with Node or if none is created,
/// create one for Node.
NewAggregateBuilder &getBuilder(ProjectionTreeNode *Node) {
auto I = NodeBuilderMap.find(Node);
if (I != NodeBuilderMap.end()) {
return I->second;
} else {
auto AggIt = NodeBuilderMap.insert({Node, NewAggregateBuilder(Node, Builder,
Loc)});
return AggIt.first->second;
}
}
/// Get the NewAggregateBuilder associated with Node. Assert on failure.
NewAggregateBuilder &get(ProjectionTreeNode *Node) {
auto It = NodeBuilderMap.find(Node);
assert(It != NodeBuilderMap.end() && "Every item in the worklist should have "
"an NewAggregateBuilder associated with it");
return It->second;
}
bool isComplete(ProjectionTreeNode *Node) {
return get(Node).isComplete();
}
bool isInvalidated(ProjectionTreeNode *Node) {
return get(Node).isInvalidated();
}
ProjectionTreeNode *
getNextValidNode(llvm::SmallVectorImpl<ProjectionTreeNode *> &Worklist,
bool CheckForDeadLock=false);
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// ProjectionTree
//===----------------------------------------------------------------------===//
ProjectionTree::ProjectionTree(
SILModule &Mod, SILType BaseTy,
llvm::SpecificBumpPtrAllocator<ProjectionTreeNode> &Allocator)
: Mod(&Mod), Allocator(&Allocator) {
LLVM_DEBUG(llvm::dbgs() << "Constructing Projection Tree For : " << BaseTy
<< "\n");
// Create the root node of the tree with our base type.
createRoot(BaseTy);
// Create the rest of the type tree lazily based on uses.
}
ProjectionTree::~ProjectionTree() {
// Do nothing !. Eventually the all the projection tree nodes will be freed
// when the BPA allocator is free.
}
SILValue
ProjectionTree::computeExplodedArgumentValueInner(SILBuilder &Builder,
SILLocation Loc,
ProjectionTreeNode *Node,
LeafValueMapTy &LeafValues) {
// Use the child node value if the child is alive.
if (Node->ChildProjections.empty()) {
auto Iter = LeafValues.find(Node->getIndex());
if (Iter != LeafValues.end())
return Iter->second;
// Return undef for dead node.
return SILUndef::get(Builder.getFunction(), Node->getType());
}
// This is an aggregate node, construct its value from its children
// recursively.
//
// NOTE: We do not expect to have too many levels of nesting, so
// recursion should be fine.
llvm::SmallVector<SILValue, 8> ChildValues;
for (unsigned ChildIdx : Node->ChildProjections) {
ProjectionTreeNode *Child = getNode(ChildIdx);
ChildValues.push_back(computeExplodedArgumentValueInner(Builder, Loc, Child,
LeafValues));
}
// Form and return the aggregate.
NullablePtr<SingleValueInstruction> AI =
Projection::createAggFromFirstLevelProjections(Builder, Loc,
Node->getType(),
ChildValues);
assert(AI.get() && "Failed to get a part of value");
return SILValue(AI.get());
}
SILValue
ProjectionTree::computeExplodedArgumentValue(
SILBuilder &Builder, SILLocation Loc,
llvm::SmallVector<SILValue, 8> &LeafValues) {
// Construct the leaf index to leaf value map.
llvm::DenseMap<unsigned, SILValue> LeafIndexToValue;
for (unsigned i = 0; i < LeafValues.size(); ++i) {
LeafIndexToValue[LiveLeafIndices[i]] = LeafValues[i];
}
// Compute the full root node debug node by walking down the projection tree.
return computeExplodedArgumentValueInner(Builder, Loc, getRoot(),
LeafIndexToValue);
}
void
ProjectionTree::
computeUsesAndLiveness(SILValue Base) {
// Propagate liveness and users through the tree.
llvm::SmallVector<ProjectionTreeNode::ValueNodePair, 32> UseWorklist;
UseWorklist.push_back({Base, getRoot()});
// Then until the worklist is empty...
while (!UseWorklist.empty()) {
LLVM_DEBUG(llvm::dbgs() << "Current Worklist:\n");
LLVM_DEBUG(for (auto &T : UseWorklist) {
llvm::dbgs() << " Type: " << T.second->getType() << "; Value: ";
if (T.first) {
llvm::dbgs() << T.first;
} else {
llvm::dbgs() << "<null>\n";
}
});
SILValue Value;
ProjectionTreeNode *Node;
// Pop off the top type, value, and node.
std::tie(Value, Node) = UseWorklist.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << Node->getType() << "\n");
// If Value is not null, collate all users of Value the appropriate child
// nodes and add such items to the worklist.
if (Value) {
Node->processUsersOfValue(*this, UseWorklist, Value);
}
// If this node is live due to a non projection user, propagate down its
// liveness to its children and its children with an empty value to the
// worklist so we propagate liveness down to any further descendants.
if (Node->IsLive) {
LLVM_DEBUG(llvm::dbgs() << "Node Is Live. Marking Children Live!\n");
for (unsigned ChildIdx : Node->ChildProjections) {
ProjectionTreeNode *Child = getNode(ChildIdx);
Child->IsLive = true;
LLVM_DEBUG(llvm::dbgs() << " Marking child live: "
<< Child->getType() << "\n");
UseWorklist.push_back({SILValue(), Child});
}
}
}
// Then setup the leaf list by iterating through our Nodes looking for live
// leafs. We use a DFS order, always processing the left leafs first so that
// we match the order in which we will lay out arguments.
llvm::SmallVector<ProjectionTreeNode *, 8> Worklist;
Worklist.push_back(getRoot());
while (!Worklist.empty()) {
ProjectionTreeNode *Node = Worklist.pop_back_val();
// If node is not a leaf, add its children to the worklist and continue.
if (!Node->ChildProjections.empty()) {
for (unsigned ChildIdx : llvm::reverse(Node->ChildProjections)) {
Worklist.push_back(getNode(ChildIdx));
}
continue;
}
// If the node is a leaf and is not a live, continue.
if (!Node->IsLive)
continue;
// Otherwise we have a live leaf, add its index to our LiveLeafIndices list.
LiveLeafIndices.push_back(Node->getIndex());
}
#ifndef NDEBUG
LLVM_DEBUG(llvm::dbgs() << "Final Leafs: \n");
llvm::SmallVector<SILType, 8> LeafTypes;
getLiveLeafTypes(LeafTypes);
for (SILType Leafs : LeafTypes) {
LLVM_DEBUG(llvm::dbgs() << " " << Leafs << "\n");
}
#endif
}
void
ProjectionTree::
createTreeFromValue(SILBuilder &B, SILLocation Loc, SILValue NewBase,
llvm::SmallVectorImpl<SILValue> &Leafs) const {
LLVM_DEBUG(llvm::dbgs() << "Recreating tree from value: " << NewBase);
using WorklistEntry =
std::tuple<const ProjectionTreeNode *, SILValue>;
llvm::SmallVector<WorklistEntry, 32> Worklist;
// Start our worklist with NewBase and Root.
Worklist.push_back(std::make_tuple(getRoot(), NewBase));
// Then until our worklist is clear...
while (Worklist.size()) {
// Pop off the top of the list.
const ProjectionTreeNode *Node = std::get<0>(Worklist.back());
SILValue V = std::get<1>(Worklist.back());
Worklist.pop_back();
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << V->getType() << ": " << V);
// If we have any children...
unsigned NumChildren = Node->ChildProjections.size();
if (NumChildren) {
LLVM_DEBUG(llvm::dbgs() << " Not Leaf! Adding children to list.\n");
// Create projections for each one of them and the child node and
// projection to the worklist for processing.
for (unsigned ChildIdx : llvm::reverse(Node->ChildProjections)) {
const ProjectionTreeNode *ChildNode = getNode(ChildIdx);
auto I = ChildNode->createProjection(B, Loc, V).get();
LLVM_DEBUG(llvm::dbgs() << " Adding Child: " << I->getType() << ": "
<< *I);
Worklist.push_back(std::make_tuple(ChildNode, SILValue(I)));
}
} else {
// Otherwise, we have a leaf node. If the leaf node is not alive, do not
// add it to our leaf list.
if (!Node->IsLive)
continue;
// Otherwise add it to our leaf list.
LLVM_DEBUG(llvm::dbgs() << " Is a Leaf! Adding to leaf list\n");
Leafs.push_back(V);
}
}
}
ProjectionTreeNode *
NewAggregateBuilderMap::
getNextValidNode(llvm::SmallVectorImpl<ProjectionTreeNode *> &Worklist,
bool CheckForDeadLock) {
if (Worklist.empty())
return nullptr;
ProjectionTreeNode *Node = Worklist.back();
// If the Node is not complete, then we have reached a dead lock. This should
// never happen.
//
// TODO: Prove this and put the proof here.
if (CheckForDeadLock && !isComplete(Node)) {
llvm_unreachable("Algorithm Dead Locked!");
}
// This block of code, performs the pop back and also if the Node has been
// invalidated, skips until we find a non invalidated value.
while (isInvalidated(Node)) {
assert(isComplete(Node) && "Invalidated values must be complete");
// Pop Node off the back of the worklist.
Worklist.pop_back();
if (Worklist.empty())
return nullptr;
Node = Worklist.back();
}
return Node;
}
void
ProjectionTree::
replaceValueUsesWithLeafUses(SILBuilder &Builder, SILLocation Loc,
llvm::SmallVectorImpl<SILValue> &Leafs) {
assert(Leafs.size() == LiveLeafIndices.size() && "Leafs and leaf indices must "
"equal in size.");
NewAggregateBuilderMap AggBuilderMap(Builder, Loc);
llvm::SmallVector<ProjectionTreeNode *, 8> Worklist;
LLVM_DEBUG(llvm::dbgs() << "Replacing all uses in callee with leafs!\n");
// For each Leaf we have as input...
for (unsigned i = 0, e = Leafs.size(); i != e; ++i) {
SILValue Leaf = Leafs[i];
ProjectionTreeNode *Node = getNode(LiveLeafIndices[i]);
LLVM_DEBUG(llvm::dbgs() << " Visiting leaf: " << Leaf);
assert(Node->IsLive && "Unexpected dead node in LiveLeafIndices!");
// Otherwise replace all uses at this level of the tree with uses of the
// Leaf value.
LLVM_DEBUG(llvm::dbgs() << " Replacing operands with leaf!\n");
for (auto *Op : Node->NonProjUsers) {
LLVM_DEBUG(llvm::dbgs() << " User: " << *Op->getUser());
Op->set(Leaf);
}
// Grab the parent of this node.
ProjectionTreeNode *Parent = Node->getParent(*this);
// If the parent is dead, continue.
if (!Parent || !Parent->IsLive) {
LLVM_DEBUG(llvm::dbgs() << " Parent is dead... continuing.\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << " Parent is alive! Adding to parent "
"builder\n");
// Otherwise either create an aggregate builder for the parent or reuse one
// that has already been created for it.
AggBuilderMap.getBuilder(Parent).setValueForChild(Node, Leaf);
LLVM_DEBUG(llvm::dbgs() << " Is parent complete: "
<< (AggBuilderMap.isComplete(Parent)? "yes" : "no") << "\n");
// Finally add the parent to the worklist.
Worklist.push_back(Parent);
}
// A utility array to add new Nodes to the list so we maintain while
// processing the current worklist we maintain only completed items at the end
// of the list.
llvm::SmallVector<ProjectionTreeNode *, 8> NewNodes;
LLVM_DEBUG(llvm::dbgs() << "Processing worklist!\n");
// Then until we have no work left...
while (!Worklist.empty()) {
// Sort the worklist so that complete items are first.
//
// TODO: Just change this into a partition method. Should be significantly
// faster.
std::sort(Worklist.begin(), Worklist.end(),
[&AggBuilderMap](ProjectionTreeNode *N1,
ProjectionTreeNode *N2) -> bool {
bool IsComplete1 = AggBuilderMap.isComplete(N1);
bool IsComplete2 = AggBuilderMap.isComplete(N2);
// Sort N1 after N2 if N1 is complete and N2 is not. This puts
// complete items at the end of our list.
return unsigned(IsComplete1) < unsigned(IsComplete2);
});
LLVM_DEBUG(llvm::dbgs() << " Current Worklist:\n");
#ifndef NDEBUG
for (auto *_work : Worklist) {
LLVM_DEBUG(llvm::dbgs() << " Type: " << _work->getType()
<< "; Complete: "
<< (AggBuilderMap.isComplete(_work)? "yes" : "no")
<< "; Invalidated: "
<< (AggBuilderMap.isInvalidated(_work)? "yes" : "no") << "\n");
}
#endif
// Find the first non invalidated node. If we have all invalidated nodes,
// this will return nullptr.
ProjectionTreeNode *Node = AggBuilderMap.getNextValidNode(Worklist, true);
// Then until we find a node that is not complete...
while (Node && AggBuilderMap.isComplete(Node)) {
// Create the aggregate for the current complete Node we are processing...
SILValue Agg = AggBuilderMap.get(Node).createInstruction();
// Replace all uses at this level of the tree with uses of the newly
// constructed aggregate.
for (auto *Op : Node->NonProjUsers) {
Op->set(Agg);
}
// If this node has a parent and that parent is alive...
ProjectionTreeNode *Parent = Node->getParentOrNull(*this);
if (Parent && Parent->IsLive) {
// Create or lookup the node builder for the parent and associate the
// newly created aggregate with this node.
AggBuilderMap.getBuilder(Parent).setValueForChild(Node, SILValue(Agg));
// Then add the parent to NewNodes to be added to our list.
NewNodes.push_back(Parent);
}
// Grab the next non-invalidated node for the next iteration. If we had
// all invalidated nodes, this will return nullptr.
Node = AggBuilderMap.getNextValidNode(Worklist);
}
// Copy NewNodes onto the back of our Worklist now that we have finished
// this iteration.
std::copy(NewNodes.begin(), NewNodes.end(), std::back_inserter(Worklist));
NewNodes.clear();
}
}
void ProjectionTree::getUsers(SmallPtrSetImpl<SILInstruction *> &users) const {
for (auto *node : ProjectionTreeNodes) {
for (auto *op : node->getNonProjUsers()) {
users.insert(op->getUser());
}
}
}
|