1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
|
//===--- MemoryLifetimeVerifier.cpp ---------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-memory-lifetime-verifier"
#include "swift/SIL/MemoryLocations.h"
#include "swift/SIL/BitDataflow.h"
#include "swift/SIL/CalleeCache.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
llvm::cl::opt<bool> DontAbortOnMemoryLifetimeErrors(
"dont-abort-on-memory-lifetime-errors",
llvm::cl::desc("Don't abort compilation if the memory lifetime checker "
"detects an error."));
namespace {
/// A utility for verifying memory lifetime.
///
/// The MemoryLifetime utility checks the lifetime of memory locations.
/// This is limited to memory locations which can be handled by
/// `MemoryLocations`.
class MemoryLifetimeVerifier {
using Bits = MemoryLocations::Bits;
using Location = MemoryLocations::Location;
using BlockState = BitDataflow::BlockState;
SILFunction *function;
CalleeCache *calleeCache;
MemoryLocations locations;
/// alloc_stack memory locations which are used for store_borrow.
Bits storeBorrowLocations;
/// Returns true if the location \p locIdx can be proven to hold a
/// hold a trivial value (e.g. non-payload case or thin function) at
/// \p atInst.
bool isValueTrivialAt(int locIdx, SILInstruction *atInst);
/// Returns true if an instruction in the range between \p start and \p end
/// stores a trivial enum case into the enum location \p loc.
bool storesTrivialValue(int locIdx,
SILBasicBlock::reverse_iterator start,
SILBasicBlock::reverse_iterator end);
/// Returns true if \p block contains a `switch_enum` or `switch_enum_addr`
/// and \p succ is a a successor block for a enum case with no payload or a
/// trivial payload.
bool isTrivialEnumSuccessor(SILBasicBlock *block, SILBasicBlock *succ,
int locIdx);
/// Issue an error for a memory location.
void reportError(const Twine &complaint, int locationIdx,
SILInstruction *where);
/// Issue an error if any bit in \p wrongBits is set.
void require(const Bits &wrongBits, const Twine &complaint,
SILInstruction *where, bool excludeTrivialValues = false);
/// Require that all the subLocation bits of the location, associated with
/// \p addr, are clear in \p bits.
void requireBitsClear(const Bits &bits, SILValue addr, SILInstruction *where);
/// Require that all the subLocation bits of the location, associated with
/// \p addr, are set in \p bits.
void requireBitsSet(const Bits &bits, SILValue addr, SILInstruction *where);
void requireBitsSetForArgument(const Bits &bits, Operand *argOp);
bool applyMayRead(Operand *argOp, SILValue addr);
bool isStoreBorrowLocation(SILValue addr) {
auto *loc = locations.getLocation(addr);
return loc && storeBorrowLocations.anyCommon(loc->subLocations);
}
/// Require that the location of addr is not an alloc_stack used for a
/// store_borrow.
void requireNoStoreBorrowLocation(SILValue addr, SILInstruction *where);
/// Register the destination address of a store_borrow as borrowed location.
void registerStoreBorrowLocation(SILValue addr);
/// Registers all store_borrow instructions in a block.
void registerStoreBorrowsInBlock(SILBasicBlock *block);
/// Handles locations of the predecessor's terminator, which are only valid
/// in \p block.
/// Example: @out results of try_apply. They are only valid in the
/// normal-block, but not in the throw-block.
void setBitsOfPredecessor(Bits &genSet, Bits &killSet, SILBasicBlock *block);
/// Initializes the data flow bits sets in the block states for all blocks.
void initDataflow(BitDataflow &dataFlow);
/// Initializes the data flow bits sets in the block state for a single block.
void initDataflowInBlock(SILBasicBlock *block, BlockState &state);
/// Helper function to set bits for function arguments and returns.
void setFuncOperandBits(BlockState &state, Operand &op,
SILArgumentConvention convention,
bool isTryApply);
/// Perform all checks in the function after the data flow has been computed.
void checkFunction(BitDataflow &dataFlow);
/// Check all instructions in \p block, starting with \p bits as entry set.
void checkBlock(SILBasicBlock *block, Bits &bits);
/// Check a function argument against the current live \p bits at the function
/// call.
void checkFuncArgument(Bits &bits, Operand &argumentOp,
SILArgumentConvention argumentConvention,
SILInstruction *applyInst);
// Utility functions for setting and clearing gen- and kill-bits.
void genBits(BitDataflow::BlockState &blockState, SILValue addr) {
locations.genBits(blockState.genSet, blockState.killSet, addr);
}
void killBits(BitDataflow::BlockState &blockState, SILValue addr) {
locations.killBits(blockState.genSet, blockState.killSet, addr);
}
public:
MemoryLifetimeVerifier(SILFunction *function, CalleeCache *calleeCache) :
function(function),
calleeCache(calleeCache),
locations(/*handleNonTrivialProjections*/ true,
/*handleTrivialLocations*/ true) {}
/// The main entry point to verify the lifetime of all memory locations in
/// the function.
void verify();
};
bool MemoryLifetimeVerifier::isValueTrivialAt(int locIdx,
SILInstruction *atInst) {
SILBasicBlock *startBlock = atInst->getParent();
// Start at atInst an walk up the control flow.
BasicBlockWorklist worklist(startBlock);
while (SILBasicBlock *block = worklist.pop()) {
auto start = (block == atInst->getParent() ? atInst->getReverseIterator()
: block->rbegin());
if (storesTrivialValue(locIdx, start, block->rend())) {
// Stop at trivial stores to the enum.
continue;
}
if (block == function->getEntryBlock()) {
return false;
}
for (SILBasicBlock *pred : block->getPredecessorBlocks()) {
// Stop walking to the predecessor if block is a non-payload successor
// of a switch_enum/switch_enum_addr.
if (!isTrivialEnumSuccessor(pred, block, locIdx))
worklist.pushIfNotVisited(pred);
}
}
return true;
}
static bool isTrivialEnumElem(EnumElementDecl *elem, SILType enumType,
SILFunction *function) {
return !elem->hasAssociatedValues() ||
enumType.getEnumElementType(elem, function).isTrivial(*function);
}
static bool injectsNoPayloadCase(InjectEnumAddrInst *IEAI) {
if (!IEAI->getElement()->hasAssociatedValues())
return true;
SILType enumType = IEAI->getOperand()->getType();
SILFunction *function = IEAI->getFunction();
SILType elemType = enumType.getEnumElementType(IEAI->getElement(), function);
// Handle empty types (e.g. the empty tuple) as no-payload.
return elemType.isEmpty(*function);
}
bool MemoryLifetimeVerifier::storesTrivialValue(int locIdx,
SILBasicBlock::reverse_iterator start,
SILBasicBlock::reverse_iterator end) {
for (SILInstruction &inst : make_range(start, end)) {
if (auto *IEI = dyn_cast<InjectEnumAddrInst>(&inst)) {
const Location *loc = locations.getLocation(IEI->getOperand());
if (loc && loc->isSubLocation(locIdx))
return isTrivialEnumElem(IEI->getElement(),
IEI->getOperand()->getType(),
function);
}
if (auto *SI = dyn_cast<StoreInst>(&inst)) {
const Location *loc = locations.getLocation(SI->getDest());
if (loc && loc->isSubLocation(locIdx)) {
auto ty = SI->getSrc()->getType();
if (ty.isOrHasEnum() || ty.isFunction()) {
return
SI->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial;
}
}
}
}
return false;
}
bool MemoryLifetimeVerifier::isTrivialEnumSuccessor(SILBasicBlock *block,
SILBasicBlock *succ, int locIdx) {
TermInst *term = block->getTerminator();
NullablePtr<EnumElementDecl> elem;
SILType enumTy;
if (auto *switchEnum = dyn_cast<SwitchEnumInst>(term)) {
elem = switchEnum->getUniqueCaseForDestination(succ);
enumTy = switchEnum->getOperand()->getType();
} else if (auto *switchEnumAddr = dyn_cast<SwitchEnumAddrInst>(term)) {
elem = switchEnumAddr->getUniqueCaseForDestination(succ);
enumTy = switchEnumAddr->getOperand()->getType();
} else {
return false;
}
// The conservative default (if we cannot figure out the element) is to
// assume that it's a trivial element.
if (!elem)
return true;
return isTrivialEnumElem(elem.get(), enumTy, function);
}
void MemoryLifetimeVerifier::reportError(const Twine &complaint,
int locationIdx, SILInstruction *where) {
llvm::errs() << "SIL memory lifetime failure in @" << function->getName()
<< ": " << complaint << '\n';
if (locationIdx >= 0) {
llvm::errs() << "memory location: "
<< locations.getLocation(locationIdx)->representativeValue;
}
llvm::errs() << "at instruction: " << *where << '\n';
if (DontAbortOnMemoryLifetimeErrors)
return;
llvm::errs() << "in function:\n";
function->print(llvm::errs());
abort();
}
void MemoryLifetimeVerifier::require(const Bits &wrongBits,
const Twine &complaint, SILInstruction *where,
bool excludeTrivialEnums) {
for (int errorLocIdx = wrongBits.find_first(); errorLocIdx >= 0;
errorLocIdx = wrongBits.find_next(errorLocIdx)) {
if (!excludeTrivialEnums || !isValueTrivialAt(errorLocIdx, where))
reportError(complaint, errorLocIdx, where);
}
}
void MemoryLifetimeVerifier::requireBitsClear(const Bits &bits, SILValue addr,
SILInstruction *where) {
if (auto *loc = locations.getLocation(addr)) {
require(bits & loc->subLocations, "memory is initialized, but shouldn't be",
where, /*excludeTrivialEnums*/ true);
}
}
void MemoryLifetimeVerifier::requireBitsSet(const Bits &bits, SILValue addr,
SILInstruction *where) {
if (auto *loc = locations.getLocation(addr)) {
require(~bits & loc->subLocations,
"memory is not initialized, but should be", where);
}
}
void MemoryLifetimeVerifier::requireBitsSetForArgument(const Bits &bits, Operand *argOp) {
if (auto *loc = locations.getLocation(argOp->get())) {
Bits missingBits = ~bits & loc->subLocations;
for (int errorLocIdx = missingBits.find_first(); errorLocIdx >= 0;
errorLocIdx = missingBits.find_next(errorLocIdx)) {
auto *errorLoc = locations.getLocation(errorLocIdx);
if (applyMayRead(argOp, errorLoc->representativeValue)) {
reportError("memory is not initialized, but should be",
errorLocIdx, argOp->getUser());
}
}
}
}
bool MemoryLifetimeVerifier::applyMayRead(Operand *argOp, SILValue addr) {
FullApplySite as(argOp->getUser());
CalleeList callees;
if (calleeCache) {
callees = calleeCache->getCalleeList(as);
if (callees.isIncomplete())
return true;
} else if (auto *callee = as.getReferencedFunctionOrNull()) {
callees = CalleeList(callee);
} else {
return false;
}
for (SILFunction *callee : callees) {
if (callee->argumentMayRead(argOp, addr))
return true;
}
return false;
}
void MemoryLifetimeVerifier::requireNoStoreBorrowLocation(
SILValue addr, SILInstruction *where) {
if (isa<StoreBorrowInst>(addr)) {
reportError("store-borrow location cannot be written",
locations.getLocationIdx(addr), where);
}
}
void MemoryLifetimeVerifier::registerStoreBorrowLocation(SILValue addr) {
if (auto *loc = locations.getLocation(addr)) {
storeBorrowLocations.resize(locations.getNumLocations());
storeBorrowLocations |= loc->subLocations;
}
}
void MemoryLifetimeVerifier::registerStoreBorrowsInBlock(SILBasicBlock *block) {
for (SILInstruction &inst : *block) {
if (auto *sbi = dyn_cast<StoreBorrowInst>(&inst))
registerStoreBorrowLocation(sbi->getDest());
}
}
void MemoryLifetimeVerifier::initDataflow(BitDataflow &dataFlow) {
// Initialize the entry and exit sets to all-bits-set. Except for the function
// entry.
for (auto bs : dataFlow) {
if (&bs.block == function->getEntryBlock()) {
bs.data.entrySet.reset();
for (SILArgument *arg : function->getArguments()) {
SILFunctionArgument *funcArg = cast<SILFunctionArgument>(arg);
if (funcArg->getArgumentConvention() !=
SILArgumentConvention::Indirect_Out) {
locations.setBits(bs.data.entrySet, arg);
}
}
} else {
bs.data.entrySet.set();
}
bs.data.exitSet.set();
// Anything weird can happen in unreachable blocks. So just ignore them.
// Note: while solving the dataflow, unreachable blocks are implicitly
// ignored, because their entry/exit sets are all-ones and their gen/kill
// sets are all-zeroes.
if (bs.data.reachableFromEntry)
initDataflowInBlock(&bs.block, bs.data);
}
}
void MemoryLifetimeVerifier::initDataflowInBlock(SILBasicBlock *block,
BlockState &state) {
// Initialize the genSet with special cases, like the @out results of an
// try_apply in the predecessor block.
setBitsOfPredecessor(state.genSet, state.killSet, block);
for (SILInstruction &I : *block) {
switch (I.getKind()) {
case SILInstructionKind::LoadInst: {
auto *LI = cast<LoadInst>(&I);
switch (LI->getOwnershipQualifier()) {
case LoadOwnershipQualifier::Take:
killBits(state, LI->getOperand());
break;
default:
break;
}
break;
}
case SILInstructionKind::StoreInst:
genBits(state, cast<StoreInst>(&I)->getDest());
break;
case SILInstructionKind::StoreBorrowInst: {
SILValue destAddr = cast<StoreBorrowInst>(&I)->getDest();
genBits(state, destAddr);
registerStoreBorrowLocation(destAddr);
break;
}
case SILInstructionKind::CopyAddrInst: {
auto *CAI = cast<CopyAddrInst>(&I);
if (CAI->isTakeOfSrc())
killBits(state, CAI->getSrc());
genBits(state, CAI->getDest());
break;
}
case SILInstructionKind::MarkUnresolvedMoveAddrInst: {
auto *MMAI = cast<MarkUnresolvedMoveAddrInst>(&I);
// We do not treat the move addr inst as invalidating its src since we
// are going to prove that we do not inappropriately reuse the memory
// later.
genBits(state, MMAI->getDest());
break;
}
case SILInstructionKind::InjectEnumAddrInst: {
auto *IEAI = cast<InjectEnumAddrInst>(&I);
int enumIdx = locations.getLocationIdx(IEAI->getOperand());
if (enumIdx >= 0 && injectsNoPayloadCase(IEAI)) {
// This is a bit tricky: an injected no-payload case means that the
// "full" enum is initialized. So, for the purpose of dataflow, we
// treat it like a full initialization of the payload data.
genBits(state, IEAI->getOperand());
}
break;
}
case SILInstructionKind::EndBorrowInst: {
auto *ebi = cast<EndBorrowInst>(&I);
if (auto *sbi = dyn_cast<StoreBorrowInst>(ebi->getOperand())) {
killBits(state, sbi->getDest());
}
break;
}
case SILInstructionKind::TupleAddrConstructorInst: {
auto *taci = cast<TupleAddrConstructorInst>(&I);
for (SILValue elt : taci->getElements()) {
if (elt->getType().isAddress())
killBits(state, elt);
}
genBits(state, taci->getDest());
break;
}
case SILInstructionKind::DestroyAddrInst:
case SILInstructionKind::DeallocStackInst:
killBits(state, I.getOperand(0));
break;
case SILInstructionKind::UncheckedRefCastAddrInst:
case SILInstructionKind::UnconditionalCheckedCastAddrInst: {
SILValue src = I.getOperand(CopyLikeInstruction::Src);
SILValue dest = I.getOperand(CopyLikeInstruction::Dest);
killBits(state, src);
genBits(state, dest);
break;
}
case SILInstructionKind::PartialApplyInst:
case SILInstructionKind::ApplyInst:
case SILInstructionKind::TryApplyInst: {
ApplySite AS(&I);
for (Operand &op : I.getAllOperands()) {
if (AS.isArgumentOperand(op)) {
setFuncOperandBits(state, op, AS.getCaptureConvention(op),
isa<TryApplyInst>(&I));
}
}
break;
}
case SILInstructionKind::BeginApplyInst: {
auto *BAI = cast<BeginApplyInst>(&I);
auto yieldedValues = BAI->getYieldedValues();
for (auto index : indices(yieldedValues)) {
auto fnType = BAI->getSubstCalleeType();
SILArgumentConvention argConv(
fnType->getYields()[index].getConvention());
if (argConv.isIndirectConvention()) {
genBits(state, yieldedValues[index]);
}
}
break;
}
case SILInstructionKind::EndApplyInst:
case SILInstructionKind::AbortApplyInst: {
auto *BAI = [&]() {
if (auto *EAI = dyn_cast<EndApplyInst>(&I)) {
return EAI->getBeginApply();
}
auto *AAI = dyn_cast<AbortApplyInst>(&I);
return AAI->getBeginApply();
}();
auto yieldedValues = BAI->getYieldedValues();
for (auto index : indices(yieldedValues)) {
auto fnType = BAI->getSubstCalleeType();
SILArgumentConvention argConv(
fnType->getYields()[index].getConvention());
if (argConv.isIndirectConvention()) {
killBits(state, yieldedValues[index]);
}
}
break;
}
case SILInstructionKind::YieldInst: {
auto *YI = cast<YieldInst>(&I);
for (Operand &op : YI->getAllOperands()) {
setFuncOperandBits(state, op, YI->getArgumentConventionForOperand(op),
/*isTryApply=*/ false);
}
break;
}
default:
break;
}
}
}
void MemoryLifetimeVerifier::setBitsOfPredecessor(Bits &getSet, Bits &killSet,
SILBasicBlock *block) {
SILBasicBlock *pred = block->getSinglePredecessorBlock();
if (!pred)
return;
TermInst *term = pred->getTerminator();
if (auto *tai = dyn_cast<TryApplyInst>(term)) {
FullApplySite FAS(tai);
if (block == tai->getNormalBB()) {
// @out results of try_apply are only valid in the normal-block.
for (Operand &op : tai->getAllOperands()) {
if (FAS.isArgumentOperand(op) &&
FAS.isIndirectResultOperand(op)) {
locations.genBits(getSet, killSet, op.get());
}
}
} else {
// @error_indirect results of try_apply are only valid in the error-block.
assert(block == tai->getErrorBB());
for (Operand &op : tai->getAllOperands()) {
if (FAS.isArgumentOperand(op) &&
FAS.isIndirectErrorResultOperand(op)) {
locations.genBits(getSet, killSet, op.get());
}
}
}
} else if (auto *castInst = dyn_cast<CheckedCastAddrBranchInst>(term)) {
switch (castInst->getConsumptionKind()) {
case CastConsumptionKind::TakeAlways:
locations.killBits(getSet, killSet, castInst->getSrc());
break;
case CastConsumptionKind::TakeOnSuccess:
if (castInst->getSuccessBB() == block)
locations.killBits(getSet, killSet, castInst->getSrc());
break;
case CastConsumptionKind::CopyOnSuccess:
break;
case CastConsumptionKind::BorrowAlways:
llvm_unreachable("checked_cast_addr_br cannot have BorrowAlways");
}
if (castInst->getSuccessBB() == block)
locations.genBits(getSet, killSet, castInst->getDest());
}
}
void MemoryLifetimeVerifier::setFuncOperandBits(BlockState &state, Operand &op,
SILArgumentConvention convention,
bool isTryApply) {
switch (convention) {
case SILArgumentConvention::Indirect_In:
killBits(state, op.get());
break;
case SILArgumentConvention::Indirect_Out:
// try_apply is special, because an @out result is only initialized
// in the normal-block, but not in the throw-block.
// We handle the @out result of try_apply in setBitsOfPredecessor.
if (!isTryApply)
genBits(state, op.get());
break;
case SILArgumentConvention::Indirect_In_Guaranteed:
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Direct_Owned:
case SILArgumentConvention::Direct_Unowned:
case SILArgumentConvention::Direct_Guaranteed:
case SILArgumentConvention::Pack_Inout:
case SILArgumentConvention::Pack_Out:
case SILArgumentConvention::Pack_Guaranteed:
case SILArgumentConvention::Pack_Owned:
break;
}
}
void MemoryLifetimeVerifier::checkFunction(BitDataflow &dataFlow) {
// Collect the bits which we require to be set at function exits.
Bits expectedReturnBits(locations.getNumLocations());
Bits expectedThrowBits(locations.getNumLocations());
for (SILArgument *arg : function->getArguments()) {
SILFunctionArgument *funcArg = cast<SILFunctionArgument>(arg);
switch (funcArg->getArgumentConvention()) {
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_In_Guaranteed:
locations.setBits(expectedReturnBits, funcArg);
locations.setBits(expectedThrowBits, funcArg);
break;
case SILArgumentConvention::Indirect_Out:
if (funcArg->isIndirectErrorResult()) {
locations.setBits(expectedThrowBits, funcArg);
} else {
assert(funcArg->isIndirectResult());
locations.setBits(expectedReturnBits, funcArg);
}
break;
default:
break;
}
}
const Bits &nonTrivialLocations = locations.getNonTrivialLocations();
Bits bits(locations.getNumLocations());
for (auto bs : dataFlow) {
if (!bs.data.reachableFromEntry || !bs.data.exitReachable())
continue;
// Check all instructions in the block.
bits = bs.data.entrySet;
checkBlock(&bs.block, bits);
// Check if there is a mismatch in location lifetime at the merge point.
for (SILBasicBlock *pred : bs.block.getPredecessorBlocks()) {
BlockState &predState = dataFlow[pred];
if (predState.reachableFromEntry) {
require((bs.data.entrySet ^ predState.exitSet) & nonTrivialLocations,
"lifetime mismatch in predecessors", pred->getTerminator(),
/*excludeTrivialEnums*/ true);
}
}
// Check the bits at function exit.
TermInst *term = bs.block.getTerminator();
assert(bits == bs.data.exitSet || isa<TryApplyInst>(term));
switch (term->getKind()) {
case SILInstructionKind::ReturnInst:
case SILInstructionKind::UnwindInst:
require(expectedReturnBits & ~bs.data.exitSet,
"indirect argument is not alive at function return", term);
require(bs.data.exitSet & ~expectedReturnBits & nonTrivialLocations,
"memory is initialized at function return but shouldn't be",
term,
/*excludeTrivialEnums*/ true);
break;
case SILInstructionKind::ThrowInst:
require(expectedThrowBits & ~bs.data.exitSet,
"indirect argument is not alive at throw", term);
require(bs.data.exitSet & ~expectedThrowBits & nonTrivialLocations,
"memory is initialized at throw but shouldn't be", term,
/*excludeTrivialEnums*/ true);
break;
default:
break;
}
}
}
void MemoryLifetimeVerifier::checkBlock(SILBasicBlock *block, Bits &bits) {
setBitsOfPredecessor(bits, bits, block);
const Bits &nonTrivialLocations = locations.getNonTrivialLocations();
for (SILInstruction &I : *block) {
switch (I.getKind()) {
case SILInstructionKind::LoadInst: {
auto *LI = cast<LoadInst>(&I);
requireBitsSet(bits, LI->getOperand(), &I);
switch (LI->getOwnershipQualifier()) {
case LoadOwnershipQualifier::Take:
locations.clearBits(bits, LI->getOperand());
requireNoStoreBorrowLocation(LI->getOperand(), &I);
break;
case LoadOwnershipQualifier::Copy:
case LoadOwnershipQualifier::Trivial:
break;
case LoadOwnershipQualifier::Unqualified:
llvm_unreachable("unqualified load shouldn't be in ownership SIL");
}
break;
}
case SILInstructionKind::StoreInst: {
auto *SI = cast<StoreInst>(&I);
switch (SI->getOwnershipQualifier()) {
case StoreOwnershipQualifier::Init:
requireBitsClear(bits & nonTrivialLocations, SI->getDest(), &I);
locations.setBits(bits, SI->getDest());
break;
case StoreOwnershipQualifier::Assign:
requireBitsSet(bits | ~nonTrivialLocations, SI->getDest(), &I);
break;
case StoreOwnershipQualifier::Trivial:
locations.setBits(bits, SI->getDest());
break;
case StoreOwnershipQualifier::Unqualified:
llvm_unreachable("unqualified store shouldn't be in ownership SIL");
}
requireNoStoreBorrowLocation(SI->getDest(), &I);
break;
}
case SILInstructionKind::StoreBorrowInst: {
SILValue destAddr = cast<StoreBorrowInst>(&I)->getDest();
locations.setBits(bits, destAddr);
break;
}
case SILInstructionKind::CopyAddrInst: {
auto *CAI = cast<CopyAddrInst>(&I);
requireBitsSet(bits, CAI->getSrc(), &I);
if (CAI->isTakeOfSrc()) {
locations.clearBits(bits, CAI->getSrc());
requireNoStoreBorrowLocation(CAI->getSrc(), &I);
}
if (CAI->isInitializationOfDest()) {
requireBitsClear(bits & nonTrivialLocations, CAI->getDest(), &I);
} else {
requireBitsSet(bits | ~nonTrivialLocations, CAI->getDest(), &I);
}
locations.setBits(bits, CAI->getDest());
requireNoStoreBorrowLocation(CAI->getDest(), &I);
break;
}
case SILInstructionKind::InjectEnumAddrInst: {
auto *IEAI = cast<InjectEnumAddrInst>(&I);
int enumIdx = locations.getLocationIdx(IEAI->getOperand());
if (enumIdx >= 0 && injectsNoPayloadCase(IEAI)) {
// Again, an injected no-payload case is treated like a "full"
// initialization. See initDataflowInBlock().
requireBitsClear(bits & nonTrivialLocations, IEAI->getOperand(), &I);
locations.setBits(bits, IEAI->getOperand());
}
requireNoStoreBorrowLocation(IEAI->getOperand(), &I);
break;
}
case SILInstructionKind::InitExistentialAddrInst:
case SILInstructionKind::InitEnumDataAddrInst: {
SILValue addr = I.getOperand(0);
requireBitsClear(bits & nonTrivialLocations, addr, &I);
requireNoStoreBorrowLocation(addr, &I);
break;
}
case SILInstructionKind::OpenExistentialAddrInst:
case SILInstructionKind::SelectEnumAddrInst:
case SILInstructionKind::ExistentialMetatypeInst:
case SILInstructionKind::ValueMetatypeInst:
case SILInstructionKind::IsUniqueInst:
case SILInstructionKind::FixLifetimeInst:
requireBitsSet(bits, I.getOperand(0), &I);
break;
case SILInstructionKind::DebugValueInst:
// We don't want to check `debug_value` instructions that
// are used to mark variable declarations (e.g. its SSA value is
// an alloc_stack), which don't have any `op_deref` in its
// di-expression, because that memory doesn't need to be initialized
// when `debug_value` is referencing it.
if (!DebugValueInst::hasAddrVal(&I))
requireBitsSet(bits, I.getOperand(0), &I);
break;
case SILInstructionKind::UncheckedTakeEnumDataAddrInst: {
// Note that despite the name, unchecked_take_enum_data_addr does _not_
// "take" the payload of the Swift.Optional enum. This is a terrible
// hack in SIL.
auto enumInst = cast<UncheckedTakeEnumDataAddrInst>(&I);
// For some enums, projecting the enum data requires masking out
// embedded tag bits, which invalidates the value as an enum.
if (enumInst->isDestructive()) {
SILValue enumAddr = enumInst->getOperand();
int enumIdx = locations.getLocationIdx(enumAddr);
if (enumIdx >= 0)
requireBitsSet(bits, enumAddr, &I);
requireNoStoreBorrowLocation(enumAddr, &I);
}
break;
}
case SILInstructionKind::DestroyAddrInst: {
SILValue opVal = cast<DestroyAddrInst>(&I)->getOperand();
requireBitsSet(bits | ~nonTrivialLocations, opVal, &I);
locations.clearBits(bits, opVal);
requireNoStoreBorrowLocation(opVal, &I);
break;
}
case SILInstructionKind::EndBorrowInst: {
auto *ebi = cast<EndBorrowInst>(&I);
if (auto *sbi = dyn_cast<StoreBorrowInst>(ebi->getOperand())) {
requireBitsSet(bits, sbi->getDest(), &I);
locations.clearBits(bits, sbi->getDest());
} else if (auto *lbi = dyn_cast<LoadBorrowInst>(ebi->getOperand())) {
if (!lbi->isUnchecked()) {
requireBitsSet(bits, lbi->getOperand(), &I);
}
}
break;
}
case SILInstructionKind::UncheckedRefCastAddrInst:
case SILInstructionKind::UnconditionalCheckedCastAddrInst: {
SILValue src = I.getOperand(CopyLikeInstruction::Src);
SILValue dest = I.getOperand(CopyLikeInstruction::Dest);
requireBitsSet(bits, src, &I);
locations.clearBits(bits, src);
requireBitsClear(bits & nonTrivialLocations, dest, &I);
locations.setBits(bits, dest);
requireNoStoreBorrowLocation(dest, &I);
break;
}
case SILInstructionKind::CheckedCastAddrBranchInst: {
auto *castInst = cast<CheckedCastAddrBranchInst>(&I);
requireBitsSet(bits, castInst->getSrc(), &I);
requireBitsClear(bits & nonTrivialLocations, castInst->getDest(), &I);
break;
}
case SILInstructionKind::PartialApplyInst:
case SILInstructionKind::ApplyInst:
case SILInstructionKind::TryApplyInst: {
ApplySite AS(&I);
for (Operand &op : I.getAllOperands()) {
if (AS.isArgumentOperand(op))
checkFuncArgument(bits, op, AS.getCaptureConvention(op), &I);
}
break;
}
case SILInstructionKind::BeginApplyInst: {
auto *BAI = cast<BeginApplyInst>(&I);
auto yieldedValues = BAI->getYieldedValues();
for (auto index : indices(yieldedValues)) {
auto fnType = BAI->getSubstCalleeType();
SILArgumentConvention argConv(
fnType->getYields()[index].getConvention());
if (argConv.isIndirectConvention()) {
requireBitsClear(bits, yieldedValues[index], &I);
locations.setBits(bits, yieldedValues[index]);
}
}
break;
}
case SILInstructionKind::EndApplyInst:
case SILInstructionKind::AbortApplyInst: {
auto *BAI = [&]() {
if (auto *EAI = dyn_cast<EndApplyInst>(&I)) {
return EAI->getBeginApply();
}
auto *AAI = dyn_cast<AbortApplyInst>(&I);
return AAI->getBeginApply();
}();
auto yieldedValues = BAI->getYieldedValues();
for (auto index : indices(yieldedValues)) {
auto fnType = BAI->getSubstCalleeType();
SILArgumentConvention argConv(
fnType->getYields()[index].getConvention());
if (argConv.isIndirectConvention()) {
if (argConv.isInoutConvention() ||
argConv.isGuaranteedConvention()) {
requireBitsSet(bits | ~nonTrivialLocations, yieldedValues[index],
&I);
} else if (argConv.isOwnedConvention()) {
requireBitsClear(bits & nonTrivialLocations, yieldedValues[index],
&I);
}
locations.clearBits(bits, yieldedValues[index]);
}
}
break;
}
case SILInstructionKind::YieldInst: {
auto *YI = cast<YieldInst>(&I);
for (Operand &op : YI->getAllOperands()) {
checkFuncArgument(bits, op, YI->getArgumentConventionForOperand(op),
&I);
}
break;
}
case SILInstructionKind::DeallocStackInst: {
SILValue opVal = cast<DeallocStackInst>(&I)->getOperand();
requireBitsClear(bits & nonTrivialLocations, opVal, &I);
// Needed to clear any bits of trivial locations (which are not required
// to be zero).
locations.clearBits(bits, opVal);
break;
}
default:
break;
}
}
}
void MemoryLifetimeVerifier::checkFuncArgument(Bits &bits, Operand &argumentOp,
SILArgumentConvention argumentConvention,
SILInstruction *applyInst) {
if (argumentConvention != SILArgumentConvention::Indirect_In_Guaranteed)
requireNoStoreBorrowLocation(argumentOp.get(), applyInst);
switch (argumentConvention) {
case SILArgumentConvention::Indirect_In:
requireBitsSetForArgument(bits, &argumentOp);
locations.clearBits(bits, argumentOp.get());
break;
case SILArgumentConvention::Indirect_Out:
requireBitsClear(bits & locations.getNonTrivialLocations(),
argumentOp.get(), applyInst);
locations.setBits(bits, argumentOp.get());
break;
case SILArgumentConvention::Indirect_In_Guaranteed:
case SILArgumentConvention::Indirect_Inout:
requireBitsSetForArgument(bits, &argumentOp);
break;
case SILArgumentConvention::Indirect_InoutAliasable:
// We don't require any locations to be initialized for a partial_apply
// which takes an inout_aliasable argument. This is used for implicit
// closures (e.g. for the Bool '||' and '&&' operator arguments). Such
// closures capture the whole "self". When this is done in an initializer
// it can happen that not all fields of "self" are initialized, yet.
if (!isa<PartialApplyInst>(applyInst))
requireBitsSetForArgument(bits, &argumentOp);
break;
case SILArgumentConvention::Direct_Owned:
case SILArgumentConvention::Direct_Unowned:
case SILArgumentConvention::Direct_Guaranteed:
case SILArgumentConvention::Pack_Inout:
case SILArgumentConvention::Pack_Out:
case SILArgumentConvention::Pack_Guaranteed:
case SILArgumentConvention::Pack_Owned:
break;
}
}
void MemoryLifetimeVerifier::verify() {
// First step: handle memory locations which (potentially) span multiple
// blocks.
locations.analyzeLocations(function);
if (locations.getNumLocations() > 0) {
BitDataflow dataFlow(function, locations.getNumLocations());
dataFlow.entryReachabilityAnalysis();
dataFlow.exitReachableAnalysis();
initDataflow(dataFlow);
dataFlow.solveForwardWithIntersect();
checkFunction(dataFlow);
}
// Second step: handle single-block locations.
locations.handleSingleBlockLocations([this](SILBasicBlock *block) {
storeBorrowLocations.clear();
Bits bits(locations.getNumLocations());
registerStoreBorrowsInBlock(block);
checkBlock(block, bits);
});
}
} // anonymous namespace
void SILFunction::verifyMemoryLifetime(CalleeCache *calleeCache) {
MemoryLifetimeVerifier verifier(this, calleeCache);
verifier.verify();
}
|