1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
//===--- RValue.cpp - Exploded RValue Representation ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// A storage structure for holding a destructured rvalue with an optional
// cleanup(s).
// Ownership of the rvalue can be "forwarded" to disable the associated
// cleanup(s).
//
//===----------------------------------------------------------------------===//
#include "RValue.h"
#include "Initialization.h"
#include "SILGenFunction.h"
#include "swift/AST/CanTypeVisitor.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/AbstractionPattern.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/TypeLowering.h"
using namespace swift;
using namespace Lowering;
//===----------------------------------------------------------------------===//
// Helper Routines
//===----------------------------------------------------------------------===//
static unsigned getTupleSize(CanType t) {
if (auto tt = dyn_cast<TupleType>(t))
return tt->getNumElements();
return 1;
}
unsigned RValue::getRValueSize(AbstractionPattern pattern, CanType formalType) {
if (pattern.isTuple()) {
if (pattern.doesTupleContainPackExpansionType())
return 1;
// We can use the naive parallel walk here because of the check above.
unsigned count = 0;
auto formalTupleType = cast<TupleType>(formalType);
for (auto i : indices(formalTupleType.getElementTypes())) {
count += getRValueSize(pattern.getTupleElementType(i),
formalTupleType.getElementType(i));
}
return count;
}
return 1;
}
/// Return the number of rvalue elements in the given canonical type.
unsigned RValue::getRValueSize(CanType type) {
if (auto tupleType = dyn_cast<TupleType>(type)) {
// Don't recursively expand tuples containing pack expansions.
if (tupleType.containsPackExpansionType())
return 1;
unsigned count = 0;
for (auto eltType : tupleType.getElementTypes())
count += getRValueSize(eltType);
return count;
}
return 1;
}
namespace {
class ExplodeTupleValue
: public CanTypeVisitor<ExplodeTupleValue,
/*RetTy=*/ void,
/*Args...=*/ ManagedValue>
{
public:
std::vector<ManagedValue> &values;
SILGenFunction &SGF;
SILLocation loc;
ExplodeTupleValue(std::vector<ManagedValue> &values,
SILGenFunction &SGF, SILLocation loc)
: values(values), SGF(SGF), loc(loc)
{
}
void visitType(CanType formalType, ManagedValue v) {
// If we have a loadable type that has not been loaded, actually load it.
if (!v.getType().isObject()) {
v = SGF.B.createLoadIfLoadable(loc, v);
}
values.push_back(v);
}
void visitObjectTupleType(CanTupleType tupleFormalType, ManagedValue tuple) {
// If we have an object, destructure the object using ownership APIs to
// propagate cleanups.
SGF.B.emitDestructureValueOperation(
loc, tuple, [&](unsigned index, ManagedValue elt) {
CanType eltFormalType = tupleFormalType.getElementType(index);
assert(eltFormalType->isMaterializable());
auto eltTy = tuple.getType().getTupleElementType(index);
assert(eltTy.isAddress() == tuple.getType().isAddress());
auto &eltTI = SGF.getTypeLowering(eltTy);
(void)eltTI;
assert(eltTI.isLoadable() || !SGF.silConv.useLoweredAddresses());
// Project the element.
visit(eltFormalType, elt);
});
}
void visitAddressTupleType(CanTupleType tupleFormalType, ManagedValue tuple) {
bool isPlusOne = tuple.isPlusOne(SGF);
for (unsigned i : indices(tupleFormalType->getElements())) {
CanType eltFormalType = tupleFormalType.getElementType(i);
assert(eltFormalType->isMaterializable());
auto eltTy = tuple.getType().getTupleElementType(i);
assert(eltTy.isAddress() == tuple.getType().isAddress());
auto &eltTI = SGF.getTypeLowering(eltTy);
// Project the element.
ManagedValue elt = SGF.B.createTupleElementAddr(loc, tuple, i, eltTy);
// RValue has an invariant that loadable values have been loaded. Except
// it's not really an invariant, because argument emission likes to lie
// sometimes.
if (eltTI.isLoadable()) {
if (isPlusOne) {
elt = SGF.B.createLoadTake(loc, elt);
} else {
elt = SGF.B.createLoadBorrow(loc, elt);
}
} else {
// In contrast if we have an address only type, we can not rely on
// ownership APIs to help us. So, manually create a cleanup to make up
// for the cleanup that we will forward on the tuple.
if (isPlusOne)
elt = SGF.emitManagedRValueWithCleanup(elt.getValue(), eltTI);
}
visit(eltFormalType, elt);
}
// Then forward the underlying tuple's cleanup since we have appropriately
// pushed its cleanups onto its subcomponents.
tuple.forward(SGF);
}
void visitTupleType(CanTupleType tupleFormalType, ManagedValue tuple) {
// Don't recursively expand tuples containing pack expansions.
if (tupleFormalType.containsPackExpansionType())
return visitType(tupleFormalType, tuple);
if (tuple.getType().isObject()) {
return visitObjectTupleType(tupleFormalType, tuple);
}
visitAddressTupleType(tupleFormalType, tuple);
}
};
enum class ImplodeKind { Unmanaged, Forward, Copy };
template <ImplodeKind KIND>
class ImplodeLoadableTupleValue
: public CanTypeVisitor<ImplodeLoadableTupleValue<KIND>,
/*RetTy=*/ManagedValue,
/*Args...=*/SILLocation> {
public:
ArrayRef<ManagedValue> values;
SILGenFunction &SGF;
static ManagedValue getValue(SILGenFunction &SGF, ManagedValue v,
SILLocation l) {
switch (KIND) {
case ImplodeKind::Unmanaged:
assert(!v.hasCleanup());
return v.unmanagedBorrow();
case ImplodeKind::Forward:
return v.ensurePlusOne(SGF, l);
case ImplodeKind::Copy:
return v.copy(SGF, l);
}
llvm_unreachable("Unhandled ImplodeKind in switch.");
}
ImplodeLoadableTupleValue(ArrayRef<ManagedValue> values,
SILGenFunction &SGF)
: values(values), SGF(SGF)
{}
ManagedValue visitType(CanType t, SILLocation l) {
ManagedValue result = getValue(SGF, values[0], l);
values = values.slice(1);
return result;
}
ManagedValue visitTupleType(CanTupleType t, SILLocation l) {
// Tuples with pack expansions aren't exploded.
if (t.containsPackExpansionType())
return visitType(t, l);
SmallVector<ManagedValue, 4> elts;
for (auto fieldTy : t.getElementTypes())
elts.push_back(this->visit(fieldTy, l));
SILType ty = SGF.getLoweredLoadableType(t);
return SGF.B.createTuple(l, ty, elts);
}
~ImplodeLoadableTupleValue() {
}
};
template <ImplodeKind KIND>
class ImplodeAddressOnlyTuple
: public CanTypeVisitor<ImplodeAddressOnlyTuple<KIND>,
/*RetTy=*/void,
/*Args...=*/Initialization *, SILLocation> {
public:
ArrayRef<ManagedValue> values;
SILGenFunction &SGF;
ImplodeAddressOnlyTuple(ArrayRef<ManagedValue> values,
SILGenFunction &SGF)
: values(values), SGF(SGF)
{}
void visitType(CanType t, Initialization *address, SILLocation l) {
ManagedValue v = values[0];
switch (KIND) {
case ImplodeKind::Unmanaged:
llvm_unreachable("address-only types always managed!");
case ImplodeKind::Forward:
// If a value is forwarded into, we require the value to be at +1. If the
// the value is already at +1, we just forward. Otherwise, we perform the
// copy.
address->copyOrInitValueInto(SGF, l, v.ensurePlusOne(SGF, l),
true /*isInit*/);
break;
case ImplodeKind::Copy:
address->copyOrInitValueInto(SGF, l, v, false /*isInit*/);
break;
}
address->finishInitialization(SGF);
values = values.slice(1);
}
void visitTupleType(CanTupleType t, Initialization *address, SILLocation l) {
// Tuples containing pack expansions shouldn't be exploded.
if (t.containsPackExpansionType())
return visitType(t, address, l);
assert(address->canSplitIntoTupleElements());
llvm::SmallVector<InitializationPtr, 4> buf;
auto bufResult = address->splitIntoTupleElements(SGF, l, t, buf);
for (unsigned i : range(t->getNumElements())) {
CanType fieldCanTy = t.getElementType(i);
this->visit(fieldCanTy, bufResult[i].get(), l);
}
address->finishInitialization(SGF);
}
~ImplodeAddressOnlyTuple() {
assert(values.empty() && "values not exhausted imploding tuple?!");
}
};
} // end anonymous namespace
template <ImplodeKind KIND>
static ManagedValue implodeTupleValues(ArrayRef<ManagedValue> values,
SILGenFunction &SGF, CanType type,
SILLocation l) {
// Non-tuples don't need to be imploded.
auto tupleType = dyn_cast<TupleType>(type);
if (!tupleType || tupleType.containsPackExpansionType()) {
assert(values.size() == 1 && "exploded non-tuple value?!");
return ImplodeLoadableTupleValue<KIND>::getValue(SGF, values[0], l);
}
const auto &TL = SGF.getTypeLowering(tupleType);
// To implode an address-only tuple, we need to create a buffer to hold the
// result tuple.
if (TL.isAddressOnly() && SGF.silConv.useLoweredAddresses()) {
assert(KIND != ImplodeKind::Unmanaged &&
"address-only values are always managed!");
auto buffer = SGF.emitTemporary(l, TL);
ImplodeAddressOnlyTuple<KIND>(values, SGF)
.visitTupleType(tupleType, buffer.get(), l);
return buffer->getManagedAddress();
}
// To implode loadable tuples, we just need to combine the elements with
// TupleInsts.
return ImplodeLoadableTupleValue<KIND>(values, SGF).visitTupleType(tupleType, l);
}
/// Perform a copy or init operation from an array of ManagedValue (from an
/// RValue) into an initialization. The RValue will have one scalar ManagedValue
/// for each exploded tuple element in the RValue, so this needs to make the
/// shape of the initialization match the available elements. This can be done
/// one of two ways:
///
/// 1) recursively scalarize down the initialization on demand if the type of
/// the RValue is tuple type and the initialization supports it.
/// 2) implode the corresponding values in the RValue to a scalar value of
/// tuple type and process them as a unit.
///
/// We prefer to use approach #1 since it generates better code.
///
template <ImplodeKind KIND>
static void copyOrInitValuesInto(Initialization *init,
ArrayRef<ManagedValue> &values, CanType type,
SILLocation loc, SILGenFunction &SGF) {
static_assert(KIND == ImplodeKind::Forward ||
KIND == ImplodeKind::Copy, "Not handled by init");
bool isInit = (KIND == ImplodeKind::Forward);
// If the element has non-tuple type, just serve it up to the initialization.
auto tupleType = dyn_cast<TupleType>(type);
if (!tupleType || tupleType.containsPackExpansionType()) {
// We take the first value.
ManagedValue result = values[0];
values = values.slice(1);
init->copyOrInitValueInto(SGF, loc, result, isInit);
init->finishInitialization(SGF);
return;
}
bool implodeTuple = false;
if (init->canPerformInPlaceInitialization() &&
init->isInPlaceInitializationOfGlobal() &&
SGF.getTypeLowering(type).isTrivial()) {
// Implode tuples in initialization of globals if they are
// of trivial types.
implodeTuple = true;
}
// If we can satisfy the tuple type by breaking up the aggregate
// initialization, do so.
if (!implodeTuple && init->canSplitIntoTupleElements()) {
SmallVector<InitializationPtr, 4> subInitBuf;
auto subInits = init->splitIntoTupleElements(SGF, loc, type, subInitBuf);
assert(subInits.size() == tupleType->getNumElements() &&
"initialization does not match tuple?!");
for (unsigned i = 0, e = subInits.size(); i < e; ++i)
copyOrInitValuesInto<KIND>(subInits[i].get(), values,
tupleType.getElementType(i), loc, SGF);
init->finishInitialization(SGF);
return;
}
// Otherwise, process this by turning the values corresponding to the tuple
// into a single value (through an implosion) and then binding that value to
// our initialization.
ManagedValue scalar = implodeTupleValues<KIND>(values, SGF, type, loc);
// This will have just used up the first values in the list, pop them off.
values = values.slice(RValue::getRValueSize(type));
init->copyOrInitValueInto(SGF, loc, scalar, isInit);
init->finishInitialization(SGF);
}
LLVM_ATTRIBUTE_UNUSED
static unsigned
expectedExplosionSize(CanType type) {
auto tuple = dyn_cast<TupleType>(type);
if (!tuple || tuple.containsPackExpansionType())
return 1;
unsigned total = 0;
for (unsigned i = 0; i < tuple->getNumElements(); ++i) {
total += expectedExplosionSize(tuple.getElementType(i));
}
return total;
}
/// This is separate from the main verification routine, so I can minimize the
/// amount of places that need to use SILGenFunction &SGF.
static void verifyHelper(ArrayRef<ManagedValue> values,
NullablePtr<SILGenFunction> SGF = nullptr) {
// This is a no-op in non-assert builds.
#ifndef NDEBUG
ValueOwnershipKind result = OwnershipKind::None;
std::optional<bool> sameHaveCleanups;
for (ManagedValue v : values) {
assert((!SGF || !v.getType().isLoadable(SGF.get()->F) ||
v.getType().isObject()) &&
"All loadable values in an RValue must be an object");
ValueOwnershipKind kind = v.getOwnershipKind();
if (kind == OwnershipKind::None)
continue;
// Merge together whether or not the RValue has cleanups.
if (!sameHaveCleanups.has_value()) {
sameHaveCleanups = v.hasCleanup();
} else {
assert(*sameHaveCleanups == v.hasCleanup());
}
// This variable is here so that if the assert below fires, the current
// reduction value is still available.
auto newResult = result.merge(kind);
assert(newResult);
result = newResult;
}
#endif
}
//===----------------------------------------------------------------------===//
// RValue Implementation
//===----------------------------------------------------------------------===//
// Private helper constructor. Please see RValue.h for more information.
RValue::RValue(SILGenFunction *SGF, ArrayRef<ManagedValue> values, CanType type)
: values(values.begin(), values.end()), type(type), elementsToBeAdded(0) {
assert(values.size() == expectedExplosionSize(type)
&& "creating rvalue with wrong number of pre-exploded elements");
if (values.size() == 1 && values[0].isInContext()) {
values = ArrayRef<ManagedValue>();
type = CanType();
elementsToBeAdded = InContext;
return;
}
verifyHelper(values, SGF);
}
RValue::RValue(SILGenFunction &SGF, SILLocation l, CanType formalType,
ManagedValue v)
: type(formalType), elementsToBeAdded(0)
{
assert(v && "creating r-value with consumed value");
if (v.isInContext()) {
type = CanType();
elementsToBeAdded = InContext;
return;
}
ExplodeTupleValue(values, SGF, l).visit(formalType, v);
assert(values.size() == getRValueSize(type));
verify(SGF);
}
RValue::RValue(SILGenFunction &SGF, Expr *expr, ManagedValue v)
: type(expr->getType()->getCanonicalType()), elementsToBeAdded(0) {
if (v.isInContext()) {
type = CanType();
elementsToBeAdded = InContext;
return;
}
assert(v && "creating r-value with consumed value");
ExplodeTupleValue(values, SGF, expr).visit(type, v);
assert(values.size() == getRValueSize(type));
verify(SGF);
}
RValue::RValue(CanType type)
: type(type), elementsToBeAdded(getTupleSize(type)) {
}
RValue::RValue(AbstractionPattern pattern, CanType type)
: type(type), elementsToBeAdded(getRValueSize(pattern, type)) {
}
void RValue::addElement(RValue &&element) & {
assert(!element.isUsed() && "adding consumed value to r-value");
assert(!element.isInSpecialState() && "adding special value to r-value");
assert(!isComplete() && "rvalue already complete");
assert(!isInSpecialState() && "cannot add elements to a special r-value");
--elementsToBeAdded;
values.insert(values.end(),
element.values.begin(), element.values.end());
element.makeUsed();
assert(!isComplete() || values.size() == getRValueSize(type));
// Call into the verifier helper directly without an SGF since we know that
// all of our loadable values are already loaded and thus we do not need to
// recheck that. On the other hand, we need to check the consistency of
// cleanups and ownership.
verifyHelper(values);
}
void RValue::addElement(SILGenFunction &SGF, ManagedValue element,
CanType formalType, SILLocation l) & {
assert(element && "adding consumed value to r-value");
assert(!element.isInContext() && "adding in-context value to r-value");
assert(!isComplete() && "rvalue already complete");
assert(!isInSpecialState() && "cannot add elements to an in-context r-value");
--elementsToBeAdded;
ExplodeTupleValue(values, SGF, l).visit(formalType, element);
assert(!isComplete() || values.size() == getRValueSize(type));
verify(SGF);
}
SILValue RValue::forwardAsSingleValue(SILGenFunction &SGF, SILLocation l) && {
assert(isComplete() && "rvalue is not complete");
assert(!isUsed() && "rvalue was used?!");
ManagedValue mv = std::move(*this).getAsSingleValue(SGF, l);
makeUsed();
return mv.forward(SGF);
}
SILValue RValue::forwardAsSingleStorageValue(SILGenFunction &SGF,
SILType storageType,
SILLocation l) && {
assert(isComplete() && "rvalue is not complete");
// Conversions must always be done at +1.
SILValue result =
std::move(*this).ensurePlusOne(SGF, l).forwardAsSingleValue(SGF, l);
return SGF.emitConversionFromSemanticValue(l, result, storageType);
}
void RValue::forwardInto(SILGenFunction &SGF, SILLocation loc,
Initialization *I) && {
assert(isComplete() && "rvalue is not complete");
assert(isPlusOneOrTrivial(SGF) && "Can not forward borrowed RValues");
ArrayRef<ManagedValue> elts = values;
copyOrInitValuesInto<ImplodeKind::Forward>(I, elts, type, loc, SGF);
}
void RValue::copyInto(SILGenFunction &SGF, SILLocation loc,
Initialization *I) const & {
assert(isComplete() && "rvalue is not complete");
ArrayRef<ManagedValue> elts = values;
copyOrInitValuesInto<ImplodeKind::Copy>(I, elts, type, loc, SGF);
}
void RValue::assignInto(SILGenFunction &SGF, SILLocation loc,
SILValue destAddr) && {
assert(isComplete() && "rvalue is not complete");
assert(isPlusOneOrTrivial(SGF) && "Can not assign borrowed RValues");
ArrayRef<ManagedValue> srcMvValues = values;
SWIFT_DEFER { assert(srcMvValues.empty() && "didn't claim all elements!"); };
// If we do not have a tuple, just bail early.
auto srcTupleType = dyn_cast<TupleType>(type);
if (!srcTupleType || srcTupleType.containsPackExpansionType()) {
// Otherwise, pull the front value off the list.
auto srcValue = srcMvValues.front();
srcMvValues = srcMvValues.slice(1);
srcValue.assignInto(SGF, loc, destAddr);
return;
}
assert(destAddr->getType().castTo<TupleType>()->getNumElements() ==
srcTupleType->getNumElements());
// If there are sourced managed values, initialize the address with a tuple.
if (srcMvValues.size()) {
if (SGF.useLoweredAddresses()) {
// Without opaque values, a tuple_addr_constructor is used to initialize
// the memory all at once.
SGF.B.createTupleAddrConstructor(loc, destAddr, srcMvValues,
IsNotInitialization);
} else {
// With opaque values, a tuple can always be formed and assigned to the
// memory.
auto tupleTy = destAddr->getType().getObjectType();
auto tuple = SGF.B.createTuple(loc, tupleTy, srcMvValues);
SGF.B.createAssign(loc, tuple.forward(SGF), destAddr,
AssignOwnershipQualifier::Unknown);
}
}
srcMvValues = ArrayRef<ManagedValue>();
}
ManagedValue RValue::getAsSingleValue(SILGenFunction &SGF, SILLocation loc) && {
assert(!isUsed() && "r-value already used");
SWIFT_DEFER {
makeUsed();
};
if (isInContext()) {
return ManagedValue::forInContext();
}
// Avoid killing and re-emitting the cleanup if the enclosed value isn't a
// tuple.
if (!isa<TupleType>(type)) {
assert(values.size() == 1 && "exploded non-tuple?!");
return values[0];
}
// *NOTE* Inside implodeTupleValues, we copy our values if they are not at +1.
return implodeTupleValues<ImplodeKind::Forward>(values, SGF, type, loc);
}
SILValue RValue::getUnmanagedSingleValue(SILGenFunction &SGF,
SILLocation l) const & {
assert(isComplete() && "rvalue is not complete");
ManagedValue mv =
implodeTupleValues<ImplodeKind::Unmanaged>(values, SGF, type, l);
return mv.getValue();
}
void RValue::forwardAll(SILGenFunction &SGF,
SmallVectorImpl<SILValue> &dest) && {
assert(isComplete() && "rvalue is not complete");
for (auto value : values)
dest.push_back(value.forward(SGF));
makeUsed();
}
void RValue::getAll(SmallVectorImpl<ManagedValue> &dest) && {
assert(isComplete() && "rvalue is not complete");
dest.append(values.begin(), values.end());
makeUsed();
}
void RValue::getAllUnmanaged(SmallVectorImpl<SILValue> &dest) const & {
assert(isComplete() && "rvalue is not complete");
for (auto value : values)
dest.push_back(value.getUnmanagedValue());
}
/// Return the range of indexes for the given tuple type element.
static std::pair<unsigned,unsigned>
getElementRange(CanTupleType tupleType, unsigned eltIndex) {
assert(eltIndex < tupleType->getNumElements());
unsigned begin = 0;
for (unsigned i = 0; i < eltIndex; ++i) {
begin += RValue::getRValueSize(tupleType.getElementType(i));
}
unsigned end =
begin + RValue::getRValueSize(tupleType.getElementType(eltIndex));
return { begin, end };
}
RValue RValue::extractElement(unsigned n) && {
assert(isComplete() && "rvalue is not complete");
CanTupleType tupleTy = dyn_cast<TupleType>(type);
if (!tupleTy) {
assert(n == 0);
unsigned to = getRValueSize(type);
assert(to == values.size());
RValue element(nullptr, llvm::ArrayRef(values).slice(0, to), type);
makeUsed();
return element;
}
// This is implementable, but we can do it lazily if we add that kind
// of projection.
assert(!tupleTy.containsPackExpansionType() &&
"can't extract elements from tuples containing pack expansions "
"right now");
auto range = getElementRange(tupleTy, n);
unsigned from = range.first, to = range.second;
CanType eltType = tupleTy.getElementType(n);
RValue element(nullptr, llvm::ArrayRef(values).slice(from, to - from),
eltType);
makeUsed();
return element;
}
void RValue::extractElements(SmallVectorImpl<RValue> &elements) && {
assert(isComplete() && "rvalue is not complete");
CanTupleType tupleTy = dyn_cast<TupleType>(type);
if (!tupleTy) {
unsigned to = getRValueSize(type);
assert(to == values.size());
// We use push_back instead of emplace_back since emplace_back can not
// invoke the private constructor we are attempting to invoke.
elements.push_back({nullptr, llvm::ArrayRef(values).slice(0, to), type});
makeUsed();
return;
}
// This is implementable, but we can do it lazily if we add that kind
// of decomposition.
assert(!tupleTy.containsPackExpansionType() &&
"can't extract elements from tuples containing pack expansions "
"right now");
unsigned from = 0;
for (auto eltType : tupleTy.getElementTypes()) {
unsigned to = from + getRValueSize(eltType);
// We use push_back instead of emplace_back since emplace_back can not
// invoke the private constructor we are attempting to invoke.
elements.push_back(
{nullptr, llvm::ArrayRef(values).slice(from, to - from), eltType});
from = to;
}
assert(from == values.size());
makeUsed();
}
RValue RValue::copy(SILGenFunction &SGF, SILLocation loc) const & {
assert((isComplete() || isInSpecialState()) &&
"can't copy an incomplete rvalue");
std::vector<ManagedValue> copiedValues;
copiedValues.reserve(values.size());
for (ManagedValue v : values) {
copiedValues.emplace_back(v.copy(SGF, loc));
}
return RValue(SGF, std::move(copiedValues), type, elementsToBeAdded);
}
RValue RValue::ensurePlusOne(SILGenFunction &SGF, SILLocation loc) && {
if (!isPlusOneOrTrivial(SGF))
return copy(SGF, loc);
return std::move(*this);
}
RValue RValue::borrow(SILGenFunction &SGF, SILLocation loc) const & {
assert((isComplete() || isInSpecialState()) &&
"can't borrow incomplete rvalue");
std::vector<ManagedValue> borrowedValues;
borrowedValues.reserve(values.size());
for (ManagedValue v : values) {
borrowedValues.emplace_back(v.borrow(SGF, loc));
}
return RValue(SGF, std::move(borrowedValues), type, elementsToBeAdded);
}
ManagedValue RValue::materialize(SILGenFunction &SGF, SILLocation loc) && {
assert(isPlusOneOrTrivial(SGF) &&
"Can not materialize a non-plus one RValue");
auto ¶mTL = SGF.getTypeLowering(getType());
// If we're already materialized, we're done.
if (values.size() == 1 &&
values[0].getType() == paramTL.getLoweredType().getAddressType()) {
auto value = values[0];
makeUsed();
return value;
}
// Otherwise, emit to a temporary.
auto temp = SGF.emitTemporary(loc, paramTL);
std::move(*this).forwardInto(SGF, loc, temp.get());
return temp->getManagedAddress();
}
bool RValue::isObviouslyEqual(const RValue &rhs) const {
assert(isComplete() && rhs.isComplete() && "Comparing incomplete rvalues");
// Compare the count of elements instead of the type.
if (values.size() != rhs.values.size())
return false;
return std::equal(values.begin(), values.end(), rhs.values.begin(),
[](const ManagedValue &lhs, const ManagedValue &rhs) -> bool {
return areObviouslySameValue(lhs.getValue(), rhs.getValue());
});
}
static SILValue getCanonicalValueSource(SILValue value) {
while (true) {
if (auto access = dyn_cast<BeginAccessInst>(value)) {
value = access->getSource();
} else {
return value;
}
}
}
bool RValue::areObviouslySameValue(SILValue lhs, SILValue rhs) {
return getCanonicalValueSource(lhs) == getCanonicalValueSource(rhs);
}
void RValue::dump() const {
dump(llvm::errs());
}
void RValue::dump(raw_ostream &OS, unsigned indent) const {
if (isInContext()) {
OS.indent(indent) << "InContext\n";
return;
}
getType().dump(OS, indent);
for (auto &value : values) {
value.dump(OS, indent + 2);
}
}
void RValue::verify(SILGenFunction &SGF) const & {
// This is a no-op in non-assert builds.
#ifndef NDEBUG
verifyHelper(values, &SGF);
#endif
}
bool RValue::isPlusOne(SILGenFunction &SGF) const & {
return llvm::all_of(
values, [&SGF](ManagedValue mv) -> bool { return mv.isPlusOne(SGF); });
}
bool RValue::isPlusOneOrTrivial(SILGenFunction &SGF) const & {
return llvm::all_of(
values, [&SGF](ManagedValue mv) -> bool {
return mv.isPlusOneOrTrivial(SGF);
});
}
bool RValue::isPlusZero(SILGenFunction &SGF) const & {
return llvm::none_of(values,
[](ManagedValue mv) -> bool { return mv.isPlusZero(); });
}
const TypeLowering &RValue::getTypeLowering(SILGenFunction &SGF) const & {
return SGF.getTypeLowering(getType());
}
SILType RValue::getLoweredType(SILGenFunction &SGF) const & {
return getTypeLowering(SGF).getLoweredType();
}
SILType RValue::getLoweredImplodedTupleType(SILGenFunction &SGF) const & {
SILType loweredType = getLoweredType(SGF);
if (loweredType.isAddressOnly(SGF.F) &&
SGF.silConv.useLoweredAddresses())
return loweredType.getAddressType();
return loweredType.getObjectType();
}
RValue RValue::copyForDiagnostics() const {
assert(!isInSpecialState());
assert(isComplete());
RValue result(type);
for (auto value : values)
result.values.push_back(value);
result.elementsToBeAdded = 0;
return result;
}
|