1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
|
//===--- SILGenConcurrency.cpp - Concurrency-specific SILGen --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ArgumentSource.h"
#include "ExecutorBreadcrumb.h"
#include "RValue.h"
#include "Scope.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Availability.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Range.h"
using namespace swift;
using namespace Lowering;
void SILGenFunction::emitExpectedExecutor() {
// Whether the given declaration context is nested within an actor's
// destructor.
auto isInActorDestructor = [](DeclContext *dc) {
while (!dc->isModuleScopeContext() && !dc->isTypeContext()) {
if (auto destructor = dyn_cast<DestructorDecl>(dc)) {
switch (getActorIsolation(destructor)) {
case ActorIsolation::ActorInstance:
return true;
case ActorIsolation::GlobalActor:
// Global-actor-isolated types should likely have deinits that
// are not themselves actor-isolated, yet still have access to
// the instance properties of the class.
return false;
case ActorIsolation::Nonisolated:
case ActorIsolation::NonisolatedUnsafe:
case ActorIsolation::Unspecified:
return false;
case ActorIsolation::Erased:
llvm_unreachable("deinit cannot have erased isolation");
}
}
dc = dc->getParent();
}
return false;
};
// Initialize ExpectedExecutor if:
// - this function is async or
// - this function is sync and isolated to an actor, and we want to
// dynamically check that we're on the right executor.
//
// Actor destructors are isolated in the sense that we now have a
// unique reference to the actor, but we probably aren't running on
// the actor's executor, so we cannot safely do this check.
//
// Defer bodies are always called synchronously within their enclosing
// function, so the check is unnecessary; in addition, we cannot
// necessarily perform the check because the defer may not have
// captured the isolated parameter of the enclosing function.
bool wantDataRaceChecks = getOptions().EnableActorDataRaceChecks &&
!F.isAsync() &&
!isInActorDestructor(FunctionDC) &&
!F.isDefer();
// FIXME: Avoid loading and checking the expected executor if concurrency is
// unavailable. This is specifically relevant for MainActor isolated contexts,
// which are allowed to be available on OSes where concurrency is not
// available. rdar://106827064
// Local function to load the expected executor from a local actor
auto loadExpectedExecutorForLocalVar = [&](VarDecl *var) {
auto loc = RegularLocation::getAutoGeneratedLocation(F.getLocation());
Type actorType = var->getTypeInContext();
RValue actorInstanceRV = emitRValueForDecl(
loc, var, actorType, AccessSemantics::Ordinary);
ManagedValue actorInstance =
std::move(actorInstanceRV).getScalarValue();
ExpectedExecutor = emitLoadActorExecutor(loc, actorInstance);
};
if (auto *funcDecl =
dyn_cast_or_null<AbstractFunctionDecl>(FunctionDC->getAsDecl())) {
auto actorIsolation = getActorIsolation(funcDecl);
switch (actorIsolation.getKind()) {
case ActorIsolation::Unspecified:
case ActorIsolation::Nonisolated:
case ActorIsolation::NonisolatedUnsafe:
break;
case ActorIsolation::Erased:
llvm_unreachable("method cannot have erased isolation");
case ActorIsolation::ActorInstance: {
// Only produce an executor for actor-isolated functions that are async
// or are local functions. The former require a hop, while the latter
// are prone to dynamic data races in code that does not enforce Sendable
// completely.
if (F.isAsync() ||
(wantDataRaceChecks && funcDecl->isLocalCapture())) {
if (auto isolatedParam = funcDecl->getCaptureInfo()
.getIsolatedParamCapture()) {
loadExpectedExecutorForLocalVar(isolatedParam);
} else {
auto loc = RegularLocation::getAutoGeneratedLocation(F.getLocation());
ManagedValue actorArg;
if (actorIsolation.getActorInstanceParameter() == 0) {
ManagedValue selfArg;
if (F.getSelfArgument()->getOwnershipKind() ==
OwnershipKind::Guaranteed) {
selfArg = ManagedValue::forBorrowedRValue(F.getSelfArgument());
} else {
selfArg =
ManagedValue::forUnmanagedOwnedValue(F.getSelfArgument());
}
ExpectedExecutor = emitLoadActorExecutor(loc, selfArg);
} else {
unsigned isolatedParamIdx =
actorIsolation.getActorInstanceParameter() - 1;
auto param = funcDecl->getParameters()->get(isolatedParamIdx);
assert(param->isIsolated());
loadExpectedExecutorForLocalVar(param);
}
}
}
break;
}
case ActorIsolation::GlobalActor:
if (F.isAsync() || wantDataRaceChecks) {
ExpectedExecutor =
emitLoadGlobalActorExecutor(actorIsolation.getGlobalActor());
}
break;
}
} else if (auto *closureExpr = dyn_cast<AbstractClosureExpr>(FunctionDC)) {
bool wantExecutor = F.isAsync() || wantDataRaceChecks;
auto actorIsolation = closureExpr->getActorIsolation();
switch (actorIsolation.getKind()) {
case ActorIsolation::Unspecified:
case ActorIsolation::Nonisolated:
case ActorIsolation::NonisolatedUnsafe:
break;
case ActorIsolation::Erased:
llvm_unreachable("closure cannot have erased isolation");
case ActorIsolation::ActorInstance: {
if (wantExecutor) {
loadExpectedExecutorForLocalVar(actorIsolation.getActorInstance());
}
break;
}
case ActorIsolation::GlobalActor:
if (wantExecutor) {
ExpectedExecutor =
emitLoadGlobalActorExecutor(actorIsolation.getGlobalActor());
break;
}
}
}
// In async functions, the generic executor is our expected executor
// if we don't have any sort of isolation.
if (!ExpectedExecutor && F.isAsync() && !unsafelyInheritsExecutor()) {
ExpectedExecutor = emitGenericExecutor(
RegularLocation::getAutoGeneratedLocation(F.getLocation()));
}
// Jump to the expected executor.
if (ExpectedExecutor) {
if (F.isAsync()) {
// For an async function, hop to the executor.
B.createHopToExecutor(
RegularLocation::getDebugOnlyLocation(F.getLocation(), getModule()),
ExpectedExecutor,
/*mandatory*/ false);
} else {
// For a synchronous function, check that we're on the same executor.
// Note: if we "know" that the code is completely Sendable-safe, this
// is unnecessary. The type checker will need to make this determination.
emitPreconditionCheckExpectedExecutor(
RegularLocation::getAutoGeneratedLocation(F.getLocation()),
ExpectedExecutor);
}
}
}
void SILGenFunction::emitConstructorPrologActorHop(
SILLocation loc, std::optional<ActorIsolation> maybeIso) {
loc = loc.asAutoGenerated();
if (maybeIso) {
if (auto executor = emitExecutor(loc, *maybeIso, std::nullopt)) {
ExpectedExecutor = *executor;
}
}
if (!ExpectedExecutor)
ExpectedExecutor = emitGenericExecutor(loc);
B.createHopToExecutor(loc, ExpectedExecutor, /*mandatory*/ false);
}
void SILGenFunction::emitPrologGlobalActorHop(SILLocation loc,
Type globalActor) {
ExpectedExecutor = emitLoadGlobalActorExecutor(globalActor);
B.createHopToExecutor(RegularLocation::getDebugOnlyLocation(loc, getModule()),
ExpectedExecutor, /*mandatory*/ false);
}
SILValue SILGenFunction::emitMainExecutor(SILLocation loc) {
auto &ctx = getASTContext();
auto builtinName = ctx.getIdentifier(
getBuiltinName(BuiltinValueKind::BuildMainActorExecutorRef));
auto resultType = SILType::getPrimitiveObjectType(ctx.TheExecutorType);
return B.createBuiltin(loc, builtinName, resultType, {}, {});
}
SILValue SILGenFunction::emitGenericExecutor(SILLocation loc) {
// The generic executor is encoded as the nil value of
// std::optional<Builtin.SerialExecutor>.
auto ty = SILType::getOptionalType(
SILType::getPrimitiveObjectType(
getASTContext().TheExecutorType));
return B.createOptionalNone(loc, ty);
}
ManagedValue SILGenFunction::emitNonIsolatedIsolation(SILLocation loc) {
return B.createManagedOptionalNone(loc,
SILType::getOpaqueIsolationType(getASTContext()));
}
SILValue SILGenFunction::emitLoadGlobalActorExecutor(Type globalActor) {
auto loc = RegularLocation::getAutoGeneratedLocation(F.getLocation());
auto actorAndFormalType =
emitLoadOfGlobalActorShared(loc, globalActor->getCanonicalType());
return emitLoadActorExecutor(loc, actorAndFormalType.first);
}
std::pair<ManagedValue, CanType>
SILGenFunction::emitLoadOfGlobalActorShared(SILLocation loc, CanType actorType) {
NominalTypeDecl *nominal = actorType->getNominalOrBoundGenericNominal();
VarDecl *sharedInstanceDecl = nominal->getGlobalActorInstance();
assert(sharedInstanceDecl && "no shared actor field in global actor");
SubstitutionMap subs =
actorType->getContextSubstitutionMap(SGM.SwiftModule, nominal);
Type instanceType =
actorType->getTypeOfMember(SGM.SwiftModule, sharedInstanceDecl);
auto metaRepr =
nominal->isResilient(SGM.SwiftModule, F.getResilienceExpansion())
? MetatypeRepresentation::Thick
: MetatypeRepresentation::Thin;
CanType actorMetaType = CanMetatypeType::get(actorType, metaRepr);
ManagedValue actorMetaTypeValue =
ManagedValue::forObjectRValueWithoutOwnership(B.createMetatype(
loc, SILType::getPrimitiveObjectType(actorMetaType)));
RValue actorInstanceRV = emitRValueForStorageLoad(loc, actorMetaTypeValue,
actorMetaType, /*isSuper*/ false, sharedInstanceDecl, PreparedArguments(),
subs, AccessSemantics::Ordinary, instanceType, SGFContext());
ManagedValue actorInstance = std::move(actorInstanceRV).getScalarValue();
return {actorInstance, instanceType->getCanonicalType()};
}
ManagedValue
SILGenFunction::emitGlobalActorIsolation(SILLocation loc,
CanType globalActorType) {
// Load the .shared property. Note that this isn't necessarily a value
// of the global actor type.
auto actorAndFormalType = emitLoadOfGlobalActorShared(loc, globalActorType);
// Since it's just a normal actor instance, we can use the normal path.
return emitActorInstanceIsolation(loc, actorAndFormalType.first,
actorAndFormalType.second);
}
/// Given a value of some non-optional distributed actor type, convert it
/// to the non-optional `any Actor` type.
static ManagedValue
emitDistributedActorIsolation(SILGenFunction &SGF, SILLocation loc,
ManagedValue actor, CanType actorType) {
// First, open the actor type if it's an existential type.
if (actorType->isExistentialType()) {
CanType openedType = OpenedArchetypeType::getAny(actorType,
SGF.F.getGenericSignature());
SILType loweredOpenedType = SGF.getLoweredType(openedType);
actor = SGF.emitOpenExistential(loc, actor, loweredOpenedType,
AccessKind::Read);
actorType = openedType;
}
auto &ctx = SGF.getASTContext();
auto distributedActorProto =
ctx.getProtocol(KnownProtocolKind::DistributedActor);
// Build <T: DistributedActor> and its substitutions for actorType.
// Doing this manually is ill-advised in general, but this is such a
// simple case that it's okay.
auto sig = distributedActorProto->getGenericSignature();
auto distributedActorConf =
SGF.SGM.SwiftModule->lookupConformance(actorType, distributedActorProto);
auto distributedActorSubs = SubstitutionMap::get(sig, {actorType},
{distributedActorConf});
// Use that to build the magical conformance to Actor for the distributed
// actor type.
return SGF.emitDistributedActorAsAnyActor(loc, distributedActorSubs, actor);
}
/// Given a value of some non-optional actor type, convert it to
/// non-optional `any Actor` type.
static ManagedValue
emitNonOptionalActorInstanceIsolation(SILGenFunction &SGF, SILLocation loc,
ManagedValue actor, CanType actorType,
SILType anyActorTy) {
// If we have an `any Actor` already, we're done.
if (actor.getType() == anyActorTy)
return actor;
CanType anyActorType = anyActorTy.getASTType();
// If the actor is a distributed actor, (1) it had better be local
// and (2) we need to use the special conformance.
if (actorType->isDistributedActor()) {
return emitDistributedActorIsolation(SGF, loc, actor, actorType);
}
return SGF.emitTransformExistential(loc, actor, actorType, anyActorType);
}
ManagedValue
SILGenFunction::emitActorInstanceIsolation(SILLocation loc, ManagedValue actor,
CanType actorType) {
// $Optional<any Actor>
auto optionalAnyActorTy = SILType::getOpaqueIsolationType(getASTContext());
// Optional<any Actor> as a formal type (it's invariant to lowering)
auto optionalAnyActorType = optionalAnyActorTy.getASTType();
// If we started with an Optional<any Actor>, we're done.
if (actorType == optionalAnyActorType) {
return actor;
}
// Otherwise, if we have an optional value, we need to transform the payload.
auto actorObjectType = actorType.getOptionalObjectType();
if (actorObjectType) {
return emitOptionalToOptional(loc, actor, optionalAnyActorTy,
[&](SILGenFunction &SGF, SILLocation loc, ManagedValue actorObject,
SILType anyActorTy, SGFContext C) {
return emitNonOptionalActorInstanceIsolation(*this, loc, actorObject,
actorObjectType, anyActorTy);
});
}
// Otherwise, transform the non-optional value we have, then inject that
// into Optional.
SILType anyActorTy = optionalAnyActorTy.getOptionalObjectType();
ManagedValue anyActor =
emitNonOptionalActorInstanceIsolation(*this, loc, actor, actorType,
anyActorTy);
// Inject into `Optional`.
auto result = B.createOptionalSome(loc, anyActor);
return result;
}
SILValue SILGenFunction::emitLoadActorExecutor(SILLocation loc,
ManagedValue actor) {
// FIXME: Checking for whether we're in a formal evaluation scope
// like this doesn't seem like a good pattern.
SILValue actorV;
if (isInFormalEvaluationScope())
actorV = actor.formalAccessBorrow(*this, loc).getValue();
else
actorV = actor.borrow(*this, loc).getValue();
// For now, we just want to emit a hop_to_executor directly to the
// actor; LowerHopToActor will add the emission logic necessary later.
return actorV;
}
SILValue SILGenFunction::emitLoadErasedExecutor(SILLocation loc,
ManagedValue fn) {
// As with emitLoadActorExecutor, we just emit the actor reference
// for now and let LowerHopToActor deal with the executor projection.
return emitLoadErasedIsolation(loc, fn).getUnmanagedValue();
}
ManagedValue
SILGenFunction::emitLoadErasedIsolation(SILLocation loc,
ManagedValue fn) {
fn = fn.borrow(*this, loc);
// This expects a borrowed function and returns a borrowed (any Actor)?.
auto actor = B.createFunctionExtractIsolation(loc, fn.getValue());
return ManagedValue::forBorrowedObjectRValue(actor);
}
ManagedValue
SILGenFunction::emitFunctionTypeIsolation(SILLocation loc,
FunctionTypeIsolation isolation,
ManagedValue fn) {
switch (isolation.getKind()) {
// Parameter-isolated functions don't have a specific actor they're isolated
// to; they're essentially polymorphic over isolation.
case FunctionTypeIsolation::Kind::Parameter:
llvm_unreachable("cannot load isolation from parameter-isoaltion function "
"reference");
// Emit nonisolated by simply emitting Optional.none in the result type.
case FunctionTypeIsolation::Kind::NonIsolated:
return emitNonIsolatedIsolation(loc);
// Emit global actor isolation by loading .shared from the global actor,
// erasing it into `any Actor`, and injecting that into Optional.
case FunctionTypeIsolation::Kind::GlobalActor:
return emitGlobalActorIsolation(loc,
isolation.getGlobalActorType()->getCanonicalType());
// Emit @isolated(any) isolation by loading the actor reference from the
// function.
case FunctionTypeIsolation::Kind::Erased: {
Scope scope(*this, CleanupLocation(loc));
auto value = emitLoadErasedIsolation(loc, fn).copy(*this, loc);
return scope.popPreservingValue(value);
}
}
llvm_unreachable("bad kind");
}
static ActorIsolation getClosureIsolationInfo(SILDeclRef constant) {
if (auto closure = constant.getAbstractClosureExpr()) {
return closure->getActorIsolation();
}
auto func = constant.getAbstractFunctionDecl();
assert(func && "unexpected closure constant");
return getActorIsolation(func);
}
static ManagedValue emitLoadOfCaptureIsolation(SILGenFunction &SGF,
SILLocation loc,
VarDecl *isolatedCapture,
SILDeclRef constant,
ArrayRef<ManagedValue> captureArgs) {
auto &TC = SGF.SGM.Types;
auto captureInfo = TC.getLoweredLocalCaptures(constant);
auto isolatedVarType = isolatedCapture->getTypeInContext()->getCanonicalType();
// Capture arguments are 1-1 with the lowered capture info.
auto captures = captureInfo.getCaptures();
for (auto i : indices(captures)) {
const auto &capture = captures[i];
if (capture.isDynamicSelfMetadata()) continue;
auto capturedVar = capture.getDecl();
if (capturedVar != isolatedCapture) continue;
// Captured actor references should always be captured as constants.
assert(TC.getDeclCaptureKind(capture,
TC.getCaptureTypeExpansionContext(constant))
== CaptureKind::Constant);
auto value = captureArgs[i].copy(SGF, loc);
return SGF.emitActorInstanceIsolation(loc, value, isolatedVarType);
}
// The capture not being a lowered capture can happen in global code.
auto value = SGF.emitRValueForDecl(loc, isolatedCapture, isolatedVarType,
AccessSemantics::Ordinary)
.getAsSingleValue(SGF, loc);
return SGF.emitActorInstanceIsolation(loc, value, isolatedVarType);
}
ManagedValue
SILGenFunction::emitClosureIsolation(SILLocation loc, SILDeclRef constant,
ArrayRef<ManagedValue> captures) {
auto isolation = getClosureIsolationInfo(constant);
switch (isolation) {
case ActorIsolation::Unspecified:
case ActorIsolation::Nonisolated:
case ActorIsolation::NonisolatedUnsafe:
return emitNonIsolatedIsolation(loc);
case ActorIsolation::Erased:
llvm_unreachable("closures cannot directly have erased isolation");
case ActorIsolation::GlobalActor:
return emitGlobalActorIsolation(loc,
isolation.getGlobalActor()->getCanonicalType());
case ActorIsolation::ActorInstance: {
// This should always be a capture. That's not expressed super-cleanly
// in ActorIsolation, unfortunately.
assert(isolation.getActorInstanceParameter() == 0);
auto capture = isolation.getActorInstance();
assert(capture);
return emitLoadOfCaptureIsolation(*this, loc, capture, constant, captures);
}
}
llvm_unreachable("bad kind");
}
ExecutorBreadcrumb
SILGenFunction::emitHopToTargetActor(SILLocation loc,
std::optional<ActorIsolation> maybeIso,
std::optional<ManagedValue> maybeSelf) {
if (!maybeIso)
return ExecutorBreadcrumb();
if (auto executor = emitExecutor(loc, *maybeIso, maybeSelf)) {
return emitHopToTargetExecutor(loc, *executor);
} else {
return ExecutorBreadcrumb();
}
}
ExecutorBreadcrumb SILGenFunction::emitHopToTargetExecutor(
SILLocation loc, SILValue executor) {
// Record that we need to hop back to the current executor.
auto breadcrumb = ExecutorBreadcrumb(true);
B.createHopToExecutor(RegularLocation::getDebugOnlyLocation(loc, getModule()),
executor, /*mandatory*/ false);
return breadcrumb;
}
std::optional<SILValue>
SILGenFunction::emitExecutor(SILLocation loc, ActorIsolation isolation,
std::optional<ManagedValue> maybeSelf) {
switch (isolation.getKind()) {
case ActorIsolation::Unspecified:
case ActorIsolation::Nonisolated:
case ActorIsolation::NonisolatedUnsafe:
return std::nullopt;
case ActorIsolation::Erased:
llvm_unreachable("executor emission for erased isolation is unimplemented");
case ActorIsolation::ActorInstance: {
// "self" here means the actor instance's "self" value.
assert(maybeSelf.has_value() && "actor-instance but no self provided?");
auto self = maybeSelf.value();
return emitLoadActorExecutor(loc, self);
}
case ActorIsolation::GlobalActor:
return emitLoadGlobalActorExecutor(isolation.getGlobalActor());
}
llvm_unreachable("covered switch");
}
void SILGenFunction::emitHopToActorValue(SILLocation loc, ManagedValue actor) {
// TODO: can the type system enforce this async requirement?
if (!F.isAsync()) {
llvm::report_fatal_error("Builtin.hopToActor must be in an async function");
}
auto isolation =
getActorIsolationOfContext(FunctionDC, [](AbstractClosureExpr *CE) {
return CE->getActorIsolation();
});
if (isolation != ActorIsolation::Nonisolated &&
isolation != ActorIsolation::NonisolatedUnsafe &&
isolation != ActorIsolation::Unspecified) {
// TODO: Explicit hop with no hop-back should only be allowed in nonisolated
// async functions. But it needs work for any closure passed to
// Task.detached, which currently has unspecified isolation.
llvm::report_fatal_error(
"Builtin.hopToActor must be in an actor-independent function");
}
SILValue executor = emitLoadActorExecutor(loc, actor);
B.createHopToExecutor(RegularLocation::getDebugOnlyLocation(loc, getModule()),
executor, /*mandatory*/ true);
}
static bool isCheckExpectedExecutorIntrinsicAvailable(SILGenModule &SGM) {
auto checkExecutor = SGM.getCheckExpectedExecutor();
if (!checkExecutor)
return false;
// Forego a check if instrinsic is unavailable, this could happen
// in main-actor context.
auto &C = checkExecutor->getASTContext();
if (!C.LangOpts.DisableAvailabilityChecking) {
auto deploymentAvailability = AvailabilityContext::forDeploymentTarget(C);
auto declAvailability =
AvailabilityInference::availableRange(checkExecutor, C);
return deploymentAvailability.isContainedIn(declAvailability);
}
return true;
}
void SILGenFunction::emitPreconditionCheckExpectedExecutor(
SILLocation loc, ActorIsolation isolation,
std::optional<ManagedValue> actorSelf) {
if (!isCheckExpectedExecutorIntrinsicAvailable(SGM))
return;
auto executor = emitExecutor(loc, isolation, actorSelf);
assert(executor);
emitPreconditionCheckExpectedExecutor(loc, *executor);
}
void SILGenFunction::emitPreconditionCheckExpectedExecutor(
SILLocation loc, SILValue executorOrActor) {
if (!isCheckExpectedExecutorIntrinsicAvailable(SGM))
return;
// We don't want the debugger to step into these.
loc.markAutoGenerated();
// Get the executor.
SILValue executor = B.createExtractExecutor(loc, executorOrActor);
// Call the library function that performs the checking.
auto args = emitSourceLocationArgs(loc.getSourceLoc(), loc);
emitApplyOfLibraryIntrinsic(
loc, SGM.getCheckExpectedExecutor(), SubstitutionMap(),
{args.filenameStartPointer, args.filenameLength, args.filenameIsAscii,
args.line, ManagedValue::forObjectRValueWithoutOwnership(executor)},
SGFContext());
}
bool SILGenFunction::unsafelyInheritsExecutor() {
if (auto fn = dyn_cast<AbstractFunctionDecl>(FunctionDC))
return fn->getAttrs().hasAttribute<UnsafeInheritExecutorAttr>();
return false;
}
void ExecutorBreadcrumb::emit(SILGenFunction &SGF, SILLocation loc) {
if (mustReturnToExecutor) {
assert(SGF.ExpectedExecutor || SGF.unsafelyInheritsExecutor());
if (auto executor = SGF.ExpectedExecutor)
SGF.B.createHopToExecutor(
RegularLocation::getDebugOnlyLocation(loc, SGF.getModule()), executor,
/*mandatory*/ false);
}
}
SILValue SILGenFunction::emitGetCurrentExecutor(SILLocation loc) {
assert(ExpectedExecutor && "prolog failed to set up expected executor?");
return ExpectedExecutor;
}
ManagedValue
SILGenFunction::emitDistributedActorAsAnyActor(SILLocation loc,
SubstitutionMap distributedActorSubs,
ManagedValue actorValue) {
auto &ctx = SGM.getASTContext();
auto distributedActorAsActorConformance =
getDistributedActorAsActorConformance(ctx);
auto actorProto = ctx.getProtocol(KnownProtocolKind::Actor);
auto distributedActorType = distributedActorSubs.getReplacementTypes()[0];
auto ref = ProtocolConformanceRef(
actorProto, ctx.getSpecializedConformance(
distributedActorType, distributedActorAsActorConformance,
distributedActorSubs));
ProtocolConformanceRef conformances[1] = {ref};
// Erase the distributed actor instance into an `any Actor` existential with
// the special conformance.
CanType distributedActorCanType = distributedActorType->getCanonicalType();
auto &distributedActorTL = getTypeLowering(distributedActorCanType);
auto &anyActorTL = getTypeLowering(actorProto->getDeclaredExistentialType());
return emitExistentialErasure(
loc, distributedActorCanType, distributedActorTL, anyActorTL,
ctx.AllocateCopy(conformances), SGFContext(),
[actorValue](SGFContext) { return actorValue; });
}
|