File: SILGenConstructor.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1804 lines) | stat: -rw-r--r-- 71,026 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
//===--- SILGenConstructor.cpp - SILGen for constructors ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

#include "ArgumentSource.h"
#include "Conversion.h"
#include "ExecutorBreadcrumb.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "SILGenFunction.h"
#include "SILGenFunctionBuilder.h"
#include "Scope.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Generators.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TypeLowering.h"
#include <map>

using namespace swift;
using namespace Lowering;

namespace {

class LoweredParamsInContextGenerator {
  SILGenFunction &SGF;
  ArrayRefGenerator<ArrayRef<SILParameterInfo>> loweredParams;

public:
  LoweredParamsInContextGenerator(SILGenFunction &SGF)
    : SGF(SGF),
      loweredParams(SGF.F.getLoweredFunctionType()->getParameters()) {
  }

  using reference = SILType;

  /// Get the original (unsubstituted into context) lowered parameter
  /// type information.
  SILParameterInfo getOrigInfo() const {
    return loweredParams.get();
  }

  SILType get() const {
    return SGF.getSILTypeInContext(loweredParams.get(),
                                   SGF.F.getLoweredFunctionType());
  }

  SILType claimNext() {
    auto param = get();
    advance();
    return param;
  }

  bool isFinished() const {
    return loweredParams.isFinished();
  }

  void advance() {
    loweredParams.advance();
  }

  void finish() {
    loweredParams.finish();
  }
};

} // end anonymous namespace

static ManagedValue emitManagedParameter(SILGenFunction &SGF,
                                         SILValue value, bool isOwned) {
  if (isOwned) {
    return SGF.emitManagedRValueWithCleanup(value);
  } else {
    return ManagedValue::forBorrowedRValue(value);
  }
}

static SILValue emitConstructorMetatypeArg(SILGenFunction &SGF,
                                           ValueDecl *decl) {
  // In addition to the declared arguments, the constructor implicitly takes
  // the metatype as its first argument, like a static function.
  auto metatypeTy = MetatypeType::get(
      decl->getDeclContext()->getSelfInterfaceType());
  auto *DC = decl->getInnermostDeclContext();
  auto &ctx = SGF.getASTContext();
  auto VD =
      new (ctx) ParamDecl(SourceLoc(), SourceLoc(),
                          ctx.getIdentifier("$metatype"), SourceLoc(),
                          ctx.getIdentifier("$metatype"), DC);
  VD->setSpecifier(ParamSpecifier::Default);
  VD->setInterfaceType(metatypeTy);

  return SGF.F.begin()->createFunctionArgument(
      SGF.getLoweredTypeForFunctionArgument(DC->mapTypeIntoContext(metatypeTy)),
      VD);
}

// FIXME: Consolidate this with SILGenProlog
static RValue emitImplicitValueConstructorArg(SILGenFunction &SGF,
                                              SILLocation loc,
                                              CanType interfaceType,
                                              DeclContext *DC,
                      LoweredParamsInContextGenerator &loweredParamTypes,
                                        Initialization *argInit = nullptr) {
  auto type = DC->mapTypeIntoContext(interfaceType)->getCanonicalType();

  // Restructure tuple arguments.
  if (auto tupleIfaceTy = dyn_cast<TupleType>(interfaceType)) {
    // If we don't have a context to emit into, but we have a tuple
    // that contains pack expansions, create a temporary.
    TemporaryInitializationPtr tempInit;
    if (!argInit && tupleIfaceTy.containsPackExpansionType()) {
      tempInit = SGF.emitTemporary(loc, SGF.getTypeLowering(type));
      argInit = tempInit.get();
    }

    // Split the initialization into element initializations if we have
    // one.  We should never have to deal with an initialization that
    // can't be split here.
    assert(!argInit || argInit->canSplitIntoTupleElements());
    SmallVector<InitializationPtr> initsBuf;
    MutableArrayRef<InitializationPtr> eltInits;
    if (argInit) {
      eltInits = argInit->splitIntoTupleElements(SGF, loc, type, initsBuf);
      assert(eltInits.size() == tupleIfaceTy->getNumElements());
    }

    RValue tuple(type);

    for (auto eltIndex : range(tupleIfaceTy->getNumElements())) {
      auto eltIfaceType = tupleIfaceTy.getElementType(eltIndex);
      auto eltInit = (argInit ? eltInits[eltIndex].get() : nullptr);
      RValue element = emitImplicitValueConstructorArg(SGF, loc, eltIfaceType,
                                                       DC, loweredParamTypes,
                                                       eltInit);
      if (argInit) {
        assert(element.isInContext());
      } else {
        tuple.addElement(std::move(element));
      }
    }

    // If we created a temporary initializer above, finish it and claim
    // the managed buffer.
    if (tempInit) {
      tempInit->finishInitialization(SGF);

      auto tupleValue = tempInit->getManagedAddress();
      if (tupleValue.getType().isLoadable(SGF.F)) {
        tupleValue = SGF.B.createLoadTake(loc, tupleValue);
      }

      return RValue(SGF, loc, type, tupleValue);

    // Otherwise, if we have an emitInto, return forInContext().
    } else if (argInit) {
      argInit->finishInitialization(SGF);
      return RValue::forInContext();
    }

    return tuple;
  }

  auto &AC = SGF.getASTContext();
  auto VD = new (AC) ParamDecl(SourceLoc(), SourceLoc(),
                               AC.getIdentifier("$implicit_value"),
                               SourceLoc(),
                               AC.getIdentifier("$implicit_value"),
                               DC);
  VD->setSpecifier(ParamSpecifier::Default);
  VD->setInterfaceType(interfaceType);

  auto origParamInfo = loweredParamTypes.getOrigInfo();
  auto argType = loweredParamTypes.claimNext();

  auto *arg = SGF.F.begin()->createFunctionArgument(argType, VD);
  bool argIsConsumed = origParamInfo.isConsumed();

  // If the lowered parameter is a pack expansion, copy/move the pack
  // into the initialization, which we assume is there.
  if (auto packTy = argType.getAs<SILPackType>()) {
    assert(isa<PackExpansionType>(interfaceType));
    assert(packTy->getNumElements() == 1);
    assert(argInit);
    assert(argInit->canPerformPackExpansionInitialization());

    auto expansionTy = packTy->getSILElementType(0);
    auto openedEnvAndEltTy =
      SGF.createOpenedElementValueEnvironment(expansionTy);
    auto openedEnv = openedEnvAndEltTy.first;
    auto eltTy = openedEnvAndEltTy.second;
    auto formalPackType = CanPackType::get(SGF.getASTContext(), {type});

    SGF.emitDynamicPackLoop(loc, formalPackType, /*component*/0, openedEnv,
                            [&](SILValue indexWithinComponent,
                                SILValue packExpansionIndex,
                                SILValue packIndex) {
      argInit->performPackExpansionInitialization(SGF, loc,
                                                  indexWithinComponent,
                                              [&](Initialization *eltInit) {
        auto eltAddr =
          SGF.B.createPackElementGet(loc, packIndex, arg, eltTy);
        ManagedValue eltMV = emitManagedParameter(SGF, eltAddr, argIsConsumed);
        eltMV = SGF.B.createLoadIfLoadable(loc, eltMV);
        eltInit->copyOrInitValueInto(SGF, loc, eltMV, argIsConsumed);
        eltInit->finishInitialization(SGF);
      });
    });
    argInit->finishInitialization(SGF);
    return RValue::forInContext();
  }

  ManagedValue mvArg = emitManagedParameter(SGF, arg, argIsConsumed);

  // This can happen if the value is resilient in the calling convention
  // but not resilient locally.
  if (argType.isAddress()) {
    mvArg = SGF.B.createLoadIfLoadable(loc, mvArg);
  }

  if (argInit) {
    argInit->copyOrInitValueInto(SGF, loc, mvArg, argIsConsumed);
    argInit->finishInitialization(SGF);
    return RValue::forInContext();
  }

  return RValue(SGF, loc, type, mvArg);
}

/// If the field has a property wrapper for which we will need to call the
/// wrapper type's init(wrappedValue:, ...), call the function that performs
/// that initialization and return the result. Otherwise, return \c arg.
static RValue maybeEmitPropertyWrapperInitFromValue(
    SILGenFunction &SGF,
    SILLocation loc,
    VarDecl *field,
    SubstitutionMap subs,
    RValue &&arg) {
  auto originalProperty = field->getOriginalWrappedProperty();
  if (!originalProperty ||
      !originalProperty->isPropertyMemberwiseInitializedWithWrappedType())
    return std::move(arg);

  auto initInfo = originalProperty->getPropertyWrapperInitializerInfo();
  if (!initInfo.hasInitFromWrappedValue())
    return std::move(arg);

  return SGF.emitApplyOfPropertyWrapperBackingInitializer(loc, originalProperty,
                                                          subs, std::move(arg));
}

static void
emitApplyOfInitAccessor(SILGenFunction &SGF, SILLocation loc,
                        AccessorDecl *accessor, SILValue selfValue,
                        Type selfIfaceTy, SILType selfTy,
                        RValue &&initialValue) {
  SmallVector<SILValue> arguments;

  auto emitFieldReference = [&](VarDecl *field, bool forInit = false) {
    auto fieldTy =
        selfTy.getFieldType(field, SGF.SGM.M, SGF.getTypeExpansionContext());
    return SGF.B.createStructElementAddr(loc, selfValue, field,
                                         fieldTy.getAddressType());
  };

  // First, let's emit all of the indirect results.
  for (auto *property : accessor->getInitializedProperties()) {
    arguments.push_back(emitFieldReference(property, /*forInit=*/true));
  }

  // `initialValue`
  std::move(initialValue).forwardAll(SGF, arguments);

  // And finally, all of the properties in `accesses` list which are
  // `inout` arguments.
  for (auto *property : accessor->getAccessedProperties()) {
    arguments.push_back(emitFieldReference(property));
  }

  // The `self` metatype.
  auto metatypeTy = MetatypeType::get(accessor->mapTypeIntoContext(selfIfaceTy));
  arguments.push_back(SGF.B.createMetatype(loc, SGF.getLoweredType(metatypeTy)));

  SubstitutionMap subs;
  if (auto *env =
          accessor->getDeclContext()->getGenericEnvironmentOfContext()) {
    subs = env->getForwardingSubstitutionMap();
  }

  SILValue accessorRef =
      SGF.emitGlobalFunctionRef(loc, SGF.getAccessorDeclRef(accessor));
  (void)SGF.B.createApply(loc, accessorRef, subs, arguments, ApplyOptions());
}

static SubstitutionMap getSubstitutionsForPropertyInitializer(
    DeclContext *dc,
    NominalTypeDecl *nominal) {
  // We want a substitution list written in terms of the generic
  // signature of the type, with replacement archetypes from the
  // constructor's context (which might be in an extension of
  // the type, which adds additional generic requirements).
  if (auto *genericEnv = dc->getGenericEnvironmentOfContext()) {
    // Generate a set of substitutions for the initialization function,
    // whose generic signature is that of the type context, and whose
    // replacement types are the archetypes of the initializer itself.
    return SubstitutionMap::get(
      nominal->getGenericSignatureOfContext(),
      QuerySubstitutionMap{genericEnv->getForwardingSubstitutionMap()},
      LookUpConformanceInModule(dc->getParentModule()));
  }

  return SubstitutionMap();
}

static void emitImplicitValueConstructor(SILGenFunction &SGF,
                                         ConstructorDecl *ctor) {
  RegularLocation Loc(ctor);
  Loc.markAutoGenerated();

  if (ctor->requiresUnavailableDeclABICompatibilityStubs())
    SGF.emitApplyOfUnavailableCodeReached();

  AssertingManualScope functionLevelScope(SGF.Cleanups,
                                          CleanupLocation(Loc));

  auto loweredFunctionTy = SGF.F.getLoweredFunctionType();

  // FIXME: Handle 'self' along with the other arguments.
  assert(loweredFunctionTy->getNumResults() == 1);
  auto selfResultInfo = loweredFunctionTy->getResults()[0];
  auto *paramList = ctor->getParameters();
  auto *selfDecl = ctor->getImplicitSelfDecl();
  auto selfIfaceTy = selfDecl->getInterfaceType();
  SILType selfTy = SGF.getSILTypeInContext(selfResultInfo, loweredFunctionTy);

  auto *decl = selfTy.getStructOrBoundGenericStruct();
  assert(decl && "not a struct?!");

  std::multimap<VarDecl *, VarDecl *> initializedViaAccessor;
  decl->collectPropertiesInitializableByInitAccessors(initializedViaAccessor);

  // Emit the indirect return argument, if any.
  bool hasInitAccessors = !decl->getInitAccessorProperties().empty();
  SILValue resultSlot;
  if (selfTy.isAddress()) {
    auto &AC = SGF.getASTContext();
    auto VD = new (AC) ParamDecl(SourceLoc(), SourceLoc(),
                                 AC.getIdentifier("$return_value"),
                                 SourceLoc(),
                                 AC.getIdentifier("$return_value"),
                                 ctor);
    VD->setSpecifier(ParamSpecifier::InOut);
    VD->setInterfaceType(selfIfaceTy);
    resultSlot = SGF.F.begin()->createFunctionArgument(selfTy, VD);
  } else if (hasInitAccessors) {
    // Allocate "self" on stack which we are going to use to
    // reference/init fields and then load to return.
    resultSlot = SGF.emitTemporaryAllocation(Loc, selfTy);
  }

  LoweredParamsInContextGenerator loweredParams(SGF);

  // Emit the elementwise arguments.
  SmallVector<RValue, 4> elements;
  for (size_t i = 0, size = paramList->size(); i < size; ++i) {
    auto &param = paramList->get(i);

    elements.push_back(
      emitImplicitValueConstructorArg(
          SGF, Loc, param->getInterfaceType()->getCanonicalType(), ctor,
          loweredParams));
  }

  SGF.AllocatorMetatype = emitConstructorMetatypeArg(SGF, ctor);
  (void) loweredParams.claimNext();
  loweredParams.finish();

  auto subs = getSubstitutionsForPropertyInitializer(decl, decl);

  // If we have an indirect return slot, initialize it in-place.
  if (resultSlot) {
    auto elti = elements.begin(), eltEnd = elements.end();

    llvm::SmallPtrSet<VarDecl *, 4> storedProperties;
    {
      auto properties = decl->getStoredProperties();
      storedProperties.insert(properties.begin(), properties.end());
    }

    for (auto *member : decl->getAllMembers()) {
      auto *field = dyn_cast<VarDecl>(member);
      if (!field)
        continue;

      if (initializedViaAccessor.count(field))
        continue;

      // Handle situations where this stored propery is initialized
      // via a call to an init accessor on some other property.
      if (auto *initAccessor = field->getAccessor(AccessorKind::Init)) {
        if (field->isMemberwiseInitialized(/*preferDeclaredProperties=*/true)) {
          assert(elti != eltEnd &&
                 "number of args does not match number of fields");

          emitApplyOfInitAccessor(SGF, Loc, initAccessor, resultSlot,
                                  selfIfaceTy, selfTy, std::move(*elti));
          ++elti;
          continue;
        }
      }

      // If this is not one of the stored properties, let's move on.
      if (!storedProperties.count(field))
        continue;

      auto fieldTy =
          selfTy.getFieldType(field, SGF.SGM.M, SGF.getTypeExpansionContext());
      SILValue slot =
        SGF.B.createStructElementAddr(Loc, resultSlot, field,
                                      fieldTy.getAddressType());

      if (SGF.getOptions().EnableImportPtrauthFieldFunctionPointers &&
          field->getPointerAuthQualifier().isPresent()) {
        slot = SGF.B.createBeginAccess(
            Loc, slot, SILAccessKind::Init, SILAccessEnforcement::Signed,
            /* noNestedConflict */ false, /* fromBuiltin */ false);
      }
      InitializationPtr init(new KnownAddressInitialization(slot));

      // If it's memberwise initialized, do so now.
      if (field->isMemberwiseInitialized(/*preferDeclaredProperties=*/false)) {
        assert(elti != eltEnd &&
               "number of args does not match number of fields");
        (void)eltEnd;
        FullExpr scope(SGF.Cleanups, field->getParentPatternBinding());

        RValue arg = std::move(*elti);

        // If the stored property has an attached result builder and its
        // type is not a function type, the argument is a noescape closure
        // that needs to be called.
        if (field->getResultBuilderType()) {
          if (!field->getValueInterfaceType()
                  ->lookThroughAllOptionalTypes()->is<AnyFunctionType>()) {
            auto resultTy = cast<FunctionType>(arg.getType()).getResult();
            arg = SGF.emitMonomorphicApply(
                Loc, std::move(arg).getAsSingleValue(SGF, Loc), {}, resultTy,
                resultTy, ApplyOptions(), std::nullopt, std::nullopt);
          }
        }

        maybeEmitPropertyWrapperInitFromValue(SGF, Loc, field, subs,
                                              std::move(arg))
          .forwardInto(SGF, Loc, init.get());
        ++elti;
      } else {
        // TODO: This doesn't correctly take into account destructuring
        // pattern bindings on `let`s, for example `let (a, b) = foo()`. In
        // cases like that, we ought to evaluate the initializer expression once
        // and then do a pattern assignment to the variables in the pattern.
        // That case is currently forbidden with an "unsupported" error message
        // in Sema.
        
        assert(field->getTypeInContext()->getReferenceStorageReferent()->isEqual(
                   field->getParentExecutableInitializer()->getType()) &&
               "Initialization of field with mismatched type!");

        // Cleanup after this initialization.
        FullExpr scope(SGF.Cleanups, field->getParentPatternBinding());

        // If this is a property wrapper backing storage var that isn't
        // memberwise initialized and has an original wrapped value, apply
        // the property wrapper backing initializer.
        if (auto *wrappedVar = field->getOriginalWrappedProperty()) {
          auto initInfo = wrappedVar->getPropertyWrapperInitializerInfo();
          auto *placeholder = initInfo.getWrappedValuePlaceholder();
          if (placeholder && placeholder->getOriginalWrappedValue()) {
            auto arg = SGF.emitRValue(placeholder->getOriginalWrappedValue());
            maybeEmitPropertyWrapperInitFromValue(SGF, Loc, field, subs,
                                                  std::move(arg))
              .forwardInto(SGF, Loc, init.get());
            continue;
          }
        }

        SGF.emitExprInto(field->getParentExecutableInitializer(), init.get());
      }
      if (SGF.getOptions().EnableImportPtrauthFieldFunctionPointers &&
          field->getPointerAuthQualifier().isPresent()) {
        SGF.B.createEndAccess(Loc, slot, /* aborted */ false);
      }
    }

    // Load as "take" from our stack allocation and return.
    if (!selfTy.isAddress() && hasInitAccessors) {
      auto resultValue = SGF.B.emitLoadValueOperation(
          Loc, resultSlot, LoadOwnershipQualifier::Take);

      SGF.B.createReturn(ImplicitReturnLocation(Loc), resultValue,
                         std::move(functionLevelScope));
      return;
    }

    SGF.B.createReturn(ImplicitReturnLocation(Loc),
                       SGF.emitEmptyTuple(Loc), std::move(functionLevelScope));
    return;
  }

  // Otherwise, build a struct value directly from the elements.
  SmallVector<SILValue, 4> eltValues;

  auto elti = elements.begin(), eltEnd = elements.end();
  for (VarDecl *field : decl->getStoredProperties()) {
    auto fieldTy =
        selfTy.getFieldType(field, SGF.SGM.M, SGF.getTypeExpansionContext());
    RValue value;

    FullExpr scope(SGF.Cleanups, field->getParentPatternBinding());

    // If it's memberwise initialized, do so now.
    if (field->isMemberwiseInitialized(/*preferDeclaredProperties=*/false)) {
      assert(elti != eltEnd && "number of args does not match number of fields");
      (void)eltEnd;
      value = std::move(*elti);
      ++elti;
    } else {
      // Otherwise, use its initializer.
      // TODO: This doesn't correctly take into account destructuring
      // pattern bindings on `let`s, for example `let (a, b) = foo()`. In
      // cases like that, we ought to evaluate the initializer expression once
      // and then do a pattern assignment to the variables in the pattern.
      // That case is currently forbidden with an "unsupported" error message
      // in Sema.

      assert(field->isParentExecutabledInitialized());
      Expr *init = field->getParentExecutableInitializer();

      // If this is a property wrapper backing storage var that isn't
      // memberwise initialized, use the original wrapped value if it exists.
      if (auto *wrappedVar = field->getOriginalWrappedProperty()) {
        auto initInfo = wrappedVar->getPropertyWrapperInitializerInfo();
        auto *placeholder = initInfo.getWrappedValuePlaceholder();
        if (placeholder && placeholder->getOriginalWrappedValue()) {
          init = placeholder->getOriginalWrappedValue();
        }
      }

      value = SGF.emitRValue(init);
    }

    // Cleanup after this initialization.
    SILValue v = maybeEmitPropertyWrapperInitFromValue(SGF, Loc, field, subs,
                                                       std::move(value))
        .forwardAsSingleStorageValue(SGF, fieldTy, Loc);

    eltValues.push_back(v);
  }

  SILValue selfValue = SGF.B.createStruct(Loc, selfTy, eltValues);
  SGF.B.createReturn(ImplicitReturnLocation(Loc),
                     selfValue, std::move(functionLevelScope));
  return;
}

// FIXME: the callers of ctorHopsInjectedByDefiniteInit is not correct (rdar://87485045)
// we must still set the SGF.ExpectedExecutor field to say that we must
// hop to the executor after every apply in the constructor. This seems to
// happen for the main actor isolated async inits, but not for the plain ones,
// where 'self' is not going to directly be the instance. We have to extend the
// ExecutorBreadcrumb class to detect whether it needs to do a load or not
// in it's emit method.
//
// So, the big problem right now is that for a delegating async actor init,
// after calling an async function, no hop-back is being emitted.

/// Returns true if the given async constructor will have its
/// required actor hops injected later by definite initialization.
static bool ctorHopsInjectedByDefiniteInit(ConstructorDecl *ctor,
                                           ActorIsolation const& isolation) {
  // must be async, but we can assume that.
  assert(ctor->hasAsync());

  auto *dc = ctor->getDeclContext();
  auto selfClassDecl = dc->getSelfClassDecl();

  // must be an actor
  if (!selfClassDecl || !selfClassDecl->isAnyActor())
    return false;

  // must be instance isolated
  switch (isolation) {
    case ActorIsolation::ActorInstance:
      return true;

    case ActorIsolation::Erased:
      llvm_unreachable("constructor cannot have erased isolation");

    case ActorIsolation::Unspecified:
    case ActorIsolation::Nonisolated:
    case ActorIsolation::NonisolatedUnsafe:
    case ActorIsolation::GlobalActor:
      return false;
  }
}

void SILGenFunction::emitValueConstructor(ConstructorDecl *ctor) {
  MagicFunctionName = SILGenModule::getMagicFunctionName(ctor);

  if (ctor->isMemberwiseInitializer())
    return emitImplicitValueConstructor(*this, ctor);

  // True if this constructor delegates to a peer constructor with self.init().
  bool isDelegating = ctor->getDelegatingOrChainedInitKind().initKind ==
      BodyInitKind::Delegating;

  if (ctor->requiresUnavailableDeclABICompatibilityStubs())
    emitApplyOfUnavailableCodeReached();

  // Get the 'self' decl and type.
  VarDecl *selfDecl = ctor->getImplicitSelfDecl();
  auto &lowering = getTypeLowering(selfDecl->getTypeInContext());

  // Decide if we need to do extra work to warn on unsafe behavior in pre-Swift-5
  // modes.
  MarkUninitializedInst::Kind MUIKind;
  if (isDelegating) {
    MUIKind = MarkUninitializedInst::DelegatingSelf;
  } else if (getASTContext().isSwiftVersionAtLeast(5)) {
    MUIKind = MarkUninitializedInst::RootSelf;
  } else {
    auto *dc = ctor->getParent();
    if (isa<ExtensionDecl>(dc) &&
        dc->getSelfStructDecl()->getParentModule() != dc->getParentModule()) {
      MUIKind = MarkUninitializedInst::CrossModuleRootSelf;
    } else {
      MUIKind = MarkUninitializedInst::RootSelf;
    }
  }

  // Allocate the local variable for 'self'.
  emitLocalVariableWithCleanup(selfDecl, MUIKind)->finishInitialization(*this);

  ManagedValue selfLV =
      maybeEmitValueOfLocalVarDecl(selfDecl, AccessKind::ReadWrite);
  assert(selfLV);

  // Emit the prolog.
  emitBasicProlog(ctor,
                  ctor->getParameters(),
                  /*selfParam=*/nullptr,
                  ctor->getResultInterfaceType(),
                  ctor->getEffectiveThrownErrorType(),
                  ctor->getThrowsLoc(),
                  /*ignored parameters*/ 1);
  AllocatorMetatype = emitConstructorMetatypeArg(*this, ctor);

  // Make sure we've hopped to the right global actor, if any.
  if (ctor->hasAsync()) {
    auto isolation = getActorIsolation(ctor);
    // if it's not injected by definite init, we do it in the prologue now.
    if (!ctorHopsInjectedByDefiniteInit(ctor, isolation)) {
      SILLocation prologueLoc(selfDecl);
      prologueLoc.markAsPrologue();
      emitConstructorPrologActorHop(prologueLoc, isolation);
    }
  }

  // Create a basic block to jump to for the implicit 'self' return.
  // We won't emit this until after we've emitted the body.
  // The epilog takes a void return because the return of 'self' is implicit.
  prepareEpilog(ctor, std::nullopt, ctor->getEffectiveThrownErrorType(),
                CleanupLocation(ctor));

  // If the constructor can fail, set up an alternative epilog for constructor
  // failure.
  SILBasicBlock *failureExitBB = nullptr;
  SILArgument *failureExitArg = nullptr;
  auto resultType = ctor->mapTypeIntoContext(ctor->getResultInterfaceType());
  auto &resultLowering = getTypeLowering(resultType);

  if (ctor->isFailable()) {
    SILBasicBlock *failureBB = createBasicBlock(FunctionSection::Postmatter);

    // On failure, we'll clean up everything (except self, which should have
    // been cleaned up before jumping here) and return nil instead.
    SILGenSavedInsertionPoint savedIP(*this, failureBB,
                                      FunctionSection::Postmatter);
    failureExitBB = createBasicBlock();
    Cleanups.emitCleanupsForReturn(ctor, IsForUnwind);
    // Return nil.
    if (F.getConventions().hasIndirectSILResults()) {
      // Inject 'nil' into the indirect return.
      assert(F.getIndirectResults().size() == 1);
      B.createInjectEnumAddr(ctor, F.getIndirectResults()[0],
                             getASTContext().getOptionalNoneDecl());
      B.createBranch(ctor, failureExitBB);

      B.setInsertionPoint(failureExitBB);
      B.createReturn(ctor, emitEmptyTuple(ctor));
    } else {
      // Pass 'nil' as the return value to the exit BB.
      failureExitArg = failureExitBB->createPhiArgument(
          resultLowering.getLoweredType(), OwnershipKind::Owned);
      SILValue nilResult =
          B.createEnum(ctor, SILValue(), getASTContext().getOptionalNoneDecl(),
                       resultLowering.getLoweredType());
      B.createBranch(ctor, failureExitBB, nilResult);

      B.setInsertionPoint(failureExitBB);
      B.createReturn(ctor, failureExitArg);
    }

    FailDest = JumpDest(failureBB, Cleanups.getCleanupsDepth(), ctor);
  }

  // If this is not a delegating constructor, emit member initializers.
  if (!isDelegating) {
    auto *typeDC = ctor->getDeclContext();
    auto *nominal = typeDC->getSelfNominalTypeDecl();

    // If we have an empty move only struct, then we will not initialize it with
    // any member initializers, breaking SIL. So in that case, just construct a
    // SIL struct value and initialize the memory with that.
    //
    // DISCUSSION: This only happens with noncopyable types since the memory
    // lifetime checker doesn't seem to process trivial locations. But empty
    // move only structs are non-trivial, so we need to handle this here.
    if (nominal->getAttrs().hasAttribute<RawLayoutAttr>()) {
      auto *module = ctor->getParentModule();

      // Raw memory is not directly decomposable, but we still want to mark
      // it as initialized. Use a zero initializer.
      auto &C = ctor->getASTContext();
      auto zeroInit = getBuiltinValueDecl(C, C.getIdentifier("zeroInitializer"));
      B.createBuiltin(ctor, zeroInit->getBaseIdentifier(),
                      SILType::getEmptyTupleType(C),
                      SubstitutionMap::get(zeroInit->getInnermostDeclContext()
                                               ->getGenericSignatureOfContext(),
                                           {selfDecl->getTypeInContext()},
                                           LookUpConformanceInModule(module)),
                      selfLV.getLValueAddress());
    } else if (isa<StructDecl>(nominal)
               && lowering.getLoweredType().isMoveOnly()
               && nominal->getStoredProperties().empty()) {
      auto *si = B.createStruct(ctor, lowering.getLoweredType(), {});
      B.emitStoreValueOperation(ctor, si, selfLV.getLValueAddress(),
                                StoreOwnershipQualifier::Init);
    } else {
      emitMemberInitializers(ctor, selfDecl, nominal);
    }
  }

  emitProfilerIncrement(ctor->getTypecheckedBody());
  // Emit the constructor body.
  emitStmt(ctor->getTypecheckedBody());

  // Build a custom epilog block, since the AST representation of the
  // constructor decl (which has no self in the return type) doesn't match the
  // SIL representation.
  SILValue selfValue;
  {
    SILGenSavedInsertionPoint savedIP(*this, ReturnDest.getBlock());
    assert(B.getInsertionBB()->empty() && "Epilog already set up?");
    
    auto cleanupLoc = CleanupLocation(ctor);

    if (!F.getConventions().hasIndirectSILResults()) {
      // Otherwise, load and return the final 'self' value.
      if (selfLV.getType().isMoveOnly()) {
        selfLV = B.createMarkUnresolvedNonCopyableValueInst(
            cleanupLoc, selfLV,
            MarkUnresolvedNonCopyableValueInst::CheckKind::
                AssignableButNotConsumable);
      }

      selfValue = lowering.emitLoad(B, cleanupLoc, selfLV.getValue(),
                                    LoadOwnershipQualifier::Copy);

      // Inject the self value into an optional if the constructor is failable.
      if (ctor->isFailable()) {
        selfValue = B.createEnum(cleanupLoc, selfValue,
                                 getASTContext().getOptionalSomeDecl(),
                                 getLoweredLoadableType(resultType));
      }
    } else {
      // If 'self' is address-only, copy 'self' into the indirect return slot.
      assert(F.getConventions().getNumIndirectSILResults() == 1
             && "no indirect return for address-only ctor?!");

      // Get the address to which to store the result.
      SILValue completeReturnAddress = F.getIndirectResults()[0];
      SILValue returnAddress;
      if  (!ctor->isFailable()) {
        // For non-failable initializers, store to the return address directly.
        returnAddress = completeReturnAddress;
      } else {
        // If this is a failable initializer, project out the payload.
        returnAddress = B.createInitEnumDataAddr(
            cleanupLoc, completeReturnAddress,
            getASTContext().getOptionalSomeDecl(), selfLV.getType());
      }
      
      // We have to do a non-take copy because someone else may be using the
      // box (e.g. someone could have closed over it).
      B.createCopyAddr(cleanupLoc, selfLV.getLValueAddress(), returnAddress,
                       IsNotTake, IsInitialization);

      // Inject the enum tag if the result is optional because of failability.
      if (ctor->isFailable()) {
        // Inject the 'Some' tag.
        B.createInjectEnumAddr(cleanupLoc, completeReturnAddress,
                               getASTContext().getOptionalSomeDecl());
      }
    }
  }
  
  // Finally, emit the epilog and post-matter.
  auto returnLoc = emitEpilog(ctor, /*UsesCustomEpilog*/true);

  // Finish off the epilog by returning.  If this is a failable ctor, then we
  // actually jump to the failure epilog to keep the invariant that there is
  // only one SIL return instruction per SIL function.
  if (B.hasValidInsertionPoint()) {
    if (!failureExitBB) {
      // If we're not returning self, then return () since we're returning Void.
      if (!selfValue) {
        CleanupLocation loc(ctor);
        loc.markAutoGenerated();
        selfValue = emitEmptyTuple(loc);
      }
      
      B.createReturn(returnLoc, selfValue);
    } else {
      if (selfValue)
        B.createBranch(returnLoc, failureExitBB, selfValue);
      else
        B.createBranch(returnLoc, failureExitBB);
    }
  }
}

void SILGenFunction::emitEnumConstructor(EnumElementDecl *element) {
  Type enumIfaceTy = element->getParentEnum()->getDeclaredInterfaceType();
  Type enumTy = F.mapTypeIntoContext(enumIfaceTy);
  auto &enumTI =
      SGM.Types.getTypeLowering(enumTy, TypeExpansionContext::minimal());

  if (element->requiresUnavailableDeclABICompatibilityStubs())
    emitApplyOfUnavailableCodeReached();

  RegularLocation Loc(element);
  CleanupLocation CleanupLoc(element);
  Loc.markAutoGenerated();

  // Emit the indirect return slot.
  std::unique_ptr<Initialization> dest;
  if (enumTI.isAddressOnly() && silConv.useLoweredAddresses()) {
    auto &AC = getASTContext();
    auto VD = new (AC) ParamDecl(SourceLoc(), SourceLoc(),
                                 AC.getIdentifier("$return_value"),
                                 SourceLoc(),
                                 AC.getIdentifier("$return_value"),
                                 element->getDeclContext());  
    VD->setSpecifier(ParamSpecifier::InOut);
    VD->setInterfaceType(enumIfaceTy);
    auto resultSlot =
        F.begin()->createFunctionArgument(enumTI.getLoweredType(), VD);
    dest = std::unique_ptr<Initialization>(
        new KnownAddressInitialization(resultSlot));
  }

  Scope scope(Cleanups, CleanupLoc);

  LoweredParamsInContextGenerator loweredParams(*this);

  // Emit the exploded constructor argument.
  SmallVector<ArgumentSource, 2> payloads;
  if (element->hasAssociatedValues()) {
    auto elementFnTy =
      cast<AnyFunctionType>(
        cast<AnyFunctionType>(element->getInterfaceType()->getCanonicalType())
          .getResult());
    auto elementParams = elementFnTy.getParams();
    payloads.reserve(elementParams.size());

    for (auto param: elementParams) {
      auto paramType = param.getParameterType();
      RValue arg = emitImplicitValueConstructorArg(*this, Loc, paramType,
                                                   element, loweredParams);
      payloads.emplace_back(Loc, std::move(arg));
    }
  }

  // Emit the metatype argument.
  AllocatorMetatype = emitConstructorMetatypeArg(*this, element);
  (void) loweredParams.claimNext();
  loweredParams.finish();

  // If possible, emit the enum directly into the indirect return.
  SGFContext C = (dest ? SGFContext(dest.get()) : SGFContext());
  ManagedValue mv = emitInjectEnum(Loc, payloads,
                                   enumTI.getLoweredType(),
                                   element, C);

  // Return the enum.
  auto ReturnLoc = ImplicitReturnLocation(Loc);

  if (dest) {
    if (!mv.isInContext()) {
      dest->copyOrInitValueInto(*this, Loc, mv, /*isInit*/ true);
      dest->finishInitialization(*this);
    }
    scope.pop();
    B.createReturn(ReturnLoc, emitEmptyTuple(CleanupLocation(Loc)));
  } else {
    assert(enumTI.isLoadable() || !silConv.useLoweredAddresses());
    SILValue result = mv.ensurePlusOne(*this, ReturnLoc).forward(*this);
    scope.pop();
    B.createReturn(ReturnLoc, result);
  }
}

void SILGenFunction::emitClassConstructorAllocator(ConstructorDecl *ctor) {
  assert(!ctor->isFactoryInit() && "factories should not be emitted here");

  // Emit the prolog. Since we're just going to forward our args directly
  // to the initializer, don't allocate local variables for them.
  RegularLocation Loc(ctor);
  Loc.markAutoGenerated();

  // Forward the constructor arguments.
  // FIXME: Handle 'self' along with the other body patterns.
  SmallVector<SILValue, 8> args;

  // If the function we're calling has an indirect error result, create an
  // argument for it.
  if (F.getConventions().hasIndirectSILErrorResults()) {
    assert(F.getConventions().getNumIndirectSILErrorResults() == 1);
    auto paramTy = F.mapTypeIntoContext(
                       F.getConventions().getSILErrorType(getTypeExpansionContext()));
    auto inContextParamTy = F.getLoweredType(paramTy.getASTType())
                                .getCategoryType(paramTy.getCategory());
    SILArgument *arg = F.begin()->createFunctionArgument(inContextParamTy);

    IndirectErrorResult = arg;

    args.push_back(arg);
  }

  bindParametersForForwarding(ctor->getParameters(), args);

  if (ctor->requiresUnavailableDeclABICompatibilityStubs())
    emitApplyOfUnavailableCodeReached();

  AllocatorMetatype = emitConstructorMetatypeArg(*this, ctor);
  SILValue selfMetaValue = AllocatorMetatype;

  // Allocate the "self" value.
  VarDecl *selfDecl = ctor->getImplicitSelfDecl();
  SILType selfTy = getLoweredType(selfDecl->getTypeInContext());
  assert(selfTy.hasReferenceSemantics() &&
         "can't emit a value type ctor here");

  // Use alloc_ref to allocate the object.
  // TODO: allow custom allocation?
  // FIXME: should have a cleanup in case of exception
  auto selfClassDecl = ctor->getDeclContext()->getSelfClassDecl();

  SILValue selfValue;

  // Allocate the 'self' value.
  bool useObjCAllocation = usesObjCAllocator(selfClassDecl);

  if (ctor->hasClangNode() ||
      ctor->shouldUseObjCDispatch() ||
      ctor->isConvenienceInit()) {
    assert(ctor->hasClangNode() || ctor->isObjC());
    // For an allocator thunk synthesized for an @objc convenience initializer
    // or imported Objective-C init method, allocate using the metatype.
    SILValue allocArg = selfMetaValue;

    // When using Objective-C allocation, convert the metatype
    // argument to an Objective-C metatype.
    if (useObjCAllocation) {
      auto metaTy = allocArg->getType().castTo<MetatypeType>();
      metaTy = CanMetatypeType::get(metaTy.getInstanceType(),
                                    MetatypeRepresentation::ObjC);
      allocArg = B.createThickToObjCMetatype(Loc, allocArg,
                                             getLoweredType(metaTy));
    }

    selfValue = B.createAllocRefDynamic(Loc, allocArg, selfTy,
                                        useObjCAllocation, false, {}, {});
  } else {
    assert(ctor->isDesignatedInit());
    // For a designated initializer, we know that the static type being
    // allocated is the type of the class that defines the designated
    // initializer.
    F.setIsExactSelfClass(IsExactSelfClass);
    selfValue = B.createAllocRef(Loc, selfTy, useObjCAllocation, false, false,
                                 ArrayRef<SILType>(), ArrayRef<SILValue>());
  }
  args.push_back(selfValue);

  // Call the initializer. Always use the Swift entry point, which will be a
  // bridging thunk if we're calling ObjC.
  auto initConstant = SILDeclRef(ctor, SILDeclRef::Kind::Initializer);

  ManagedValue initVal;
  SILType initTy;

  // Call the initializer.
  auto subMap = F.getForwardingSubstitutionMap();

  std::tie(initVal, initTy)
    = emitSiblingMethodRef(Loc, selfValue, initConstant, subMap);

  SILValue initedSelfValue = emitApplyWithRethrow(
      CleanupLocation(Loc), initVal.forward(*this), initTy, subMap, args);

  // Return the initialized 'self'.
  B.createReturn(ImplicitReturnLocation(Loc), initedSelfValue);
}

static void emitDefaultActorInitialization(
    SILGenFunction &SGF, SILLocation loc, ManagedValue self) {
  auto &ctx = SGF.getASTContext();
  auto builtinName = ctx.getIdentifier(
    getBuiltinName(BuiltinValueKind::InitializeDefaultActor));
  auto resultTy = SGF.SGM.Types.getEmptyTupleType();

  FullExpr scope(SGF.Cleanups, CleanupLocation(loc));
  SGF.B.createBuiltin(loc, builtinName, resultTy, /*subs*/{},
                      { self.borrow(SGF, loc).getValue() });
}

static void emitNonDefaultDistributedActorInitialization(
    SILGenFunction &SGF, SILLocation loc, ManagedValue self) {
  auto &ctx = SGF.getASTContext();
  auto builtinName = ctx.getIdentifier(
    getBuiltinName(BuiltinValueKind::InitializeNonDefaultDistributedActor));
  auto resultTy = SGF.SGM.Types.getEmptyTupleType();

  FullExpr scope(SGF.Cleanups, CleanupLocation(loc));
  SGF.B.createBuiltin(loc, builtinName, resultTy, /*subs*/{},
                      { self.borrow(SGF, loc).getValue() });
}

// MARK: class constructor

void SILGenFunction::emitClassConstructorInitializer(ConstructorDecl *ctor) {
  MagicFunctionName = SILGenModule::getMagicFunctionName(ctor);

  assert(ctor->getTypecheckedBody() && "Class constructor without a body?");

  if (ctor->requiresUnavailableDeclABICompatibilityStubs())
    emitApplyOfUnavailableCodeReached();

  // True if this constructor delegates to a peer constructor with self.init().
  bool isDelegating = false;
  if (!ctor->hasStubImplementation()) {
    isDelegating = ctor->getDelegatingOrChainedInitKind().initKind ==
        BodyInitKind::Delegating;
  }

  // Set up the 'self' argument.  If this class has a superclass, we set up
  // self as a box.  This allows "self reassignment" to happen in super init
  // method chains, which is important for interoperating with Objective-C
  // classes.  We also use a box for delegating constructors, since the
  // delegated-to initializer may also replace self.
  //
  // TODO: If we could require Objective-C classes to have an attribute to get
  // this behavior, we could avoid runtime overhead here.
  VarDecl *selfDecl = ctor->getImplicitSelfDecl();
  auto *dc = ctor->getDeclContext();
  auto selfClassDecl = dc->getSelfClassDecl();
  bool NeedsBoxForSelf = isDelegating ||
    (selfClassDecl->hasSuperclass() && !ctor->hasStubImplementation());
  bool usesObjCAllocator = Lowering::usesObjCAllocator(selfClassDecl);

  // If needed, mark 'self' as uninitialized so that DI knows to
  // enforce its DI properties on stored properties.
  MarkUninitializedInst::Kind MUKind;

  if (isDelegating) {
    if (ctor->isObjC())
      MUKind = MarkUninitializedInst::DelegatingSelfAllocated;
    else
      MUKind = MarkUninitializedInst::DelegatingSelf;
  } else if (selfClassDecl->requiresStoredPropertyInits() &&
             usesObjCAllocator) {
    // Stored properties will be initialized in a separate
    // .cxx_construct method called by the Objective-C runtime.
    assert(selfClassDecl->hasSuperclass() &&
           "Cannot use ObjC allocation without a superclass");
    MUKind = MarkUninitializedInst::DerivedSelfOnly;
  } else if (selfClassDecl->hasSuperclass())
    MUKind = MarkUninitializedInst::DerivedSelf;
  else
    MUKind = MarkUninitializedInst::RootSelf;

  if (NeedsBoxForSelf) {
    // Allocate the local variable for 'self'.
    emitLocalVariableWithCleanup(selfDecl, MUKind)->finishInitialization(*this);
  }

  // Emit the prolog for the non-self arguments.
  // FIXME: Handle self along with the other body patterns.
  uint16_t ArgNo = emitBasicProlog(ctor,
                                   ctor->getParameters(), /*selfParam=*/nullptr,
                                   TupleType::getEmpty(F.getASTContext()),
                                   ctor->getEffectiveThrownErrorType(),
                                   ctor->getThrowsLoc(),
                                   /*ignored parameters*/ 1);

  SILType selfTy = getLoweredLoadableType(selfDecl->getTypeInContext());
  ManagedValue selfArg = B.createInputFunctionArgument(selfTy, selfDecl);
  
  // is this a designated initializer for a distributed actor?
  const bool isDesignatedDistActorInit =
    selfClassDecl->isDistributedActor() && !isDelegating;

  // Make sure we've hopped to the right global actor, if any.
  if (ctor->hasAsync()) {
    auto isolation = getActorIsolation(ctor);
    // if it's not injected by definite init, we do it in the prologue now.
    if (!ctorHopsInjectedByDefiniteInit(ctor, isolation)) {
      SILLocation prologueLoc(selfDecl);
      prologueLoc.markAsPrologue();
      emitConstructorPrologActorHop(prologueLoc, isolation);
    }
  }

  if (!NeedsBoxForSelf) {
    SILLocation PrologueLoc(selfDecl);
    PrologueLoc.markAsPrologue();
    SILDebugVariable DbgVar(selfDecl->isLet(), ++ArgNo);
    B.createDebugValue(PrologueLoc, selfArg.getValue(), DbgVar);
  }

  if (selfClassDecl->isRootDefaultActor() && !isDelegating) {
    // Initialize the default-actor instance.
    SILLocation PrologueLoc(selfDecl);
    PrologueLoc.markAsPrologue();
    emitDefaultActorInitialization(*this, PrologueLoc, selfArg);
  } else if (selfClassDecl->isNonDefaultExplicitDistributedActor() && !isDelegating) {
    // Initialize the distributed local actor with custom executor,
    // with additional storage such that we can store the local/remote bit.
    //
    // We do this because normally non-default actors do not get any synthesized storage,
    // as their executor is provided via user implementation. However, a distributed actor
    // always needs additional storage for e.g. the isRemote/isLocal information.
    SILLocation PrologueLoc(selfDecl);
    PrologueLoc.markAsPrologue();
    emitNonDefaultDistributedActorInitialization(*this, PrologueLoc, selfArg);
  }

  if (!ctor->hasStubImplementation()) {
    assert(selfTy.hasReferenceSemantics() &&
           "can't emit a value type ctor here");
    if (NeedsBoxForSelf) {
      SILLocation prologueLoc = RegularLocation(ctor);
      prologueLoc.markAsPrologue();
      B.emitStoreValueOperation(prologueLoc, selfArg.forward(*this),
                                VarLocs[selfDecl].value,
                                StoreOwnershipQualifier::Init);
    } else {
      selfArg = B.createMarkUninitialized(selfDecl, selfArg, MUKind);
      if (selfArg.getType().isMoveOnly()) {
        assert(selfArg.getOwnershipKind() == OwnershipKind::Owned);
        selfArg = B.createMarkUnresolvedNonCopyableValueInst(
            selfDecl, selfArg,
            MarkUnresolvedNonCopyableValueInst::CheckKind::
                ConsumableAndAssignable);
      }
      VarLocs[selfDecl] = VarLoc::get(selfArg.getValue());
    }
  }

  // Some distributed actor initializers need to init the actorSystem & id now
  if (isDesignatedDistActorInit) {
    emitDistributedActorImplicitPropertyInits(ctor, selfArg);
  }

  // Prepare the end of initializer location.
  SILLocation endOfInitLoc = RegularLocation(ctor);
  endOfInitLoc.pointToEnd();

  // Create a basic block to jump to for the implicit 'self' return.
  // We won't emit the block until after we've emitted the body.
  prepareEpilog(ctor, std::nullopt, ctor->getEffectiveThrownErrorType(),
                CleanupLocation(endOfInitLoc));

  auto resultType = ctor->mapTypeIntoContext(ctor->getResultInterfaceType());

  // If the constructor can fail, set up an alternative epilog for constructor
  // failure.
  SILBasicBlock *failureExitBB = nullptr;
  SILArgument *failureExitArg = nullptr;
  auto &resultLowering = getTypeLowering(resultType);

  if (ctor->isFailable()) {
    SILBasicBlock *failureBB = createBasicBlock(FunctionSection::Postmatter);

    RegularLocation loc(ctor);
    loc.markAutoGenerated();

    // On failure, we'll clean up everything and return nil instead.
    SILGenSavedInsertionPoint savedIP(*this, failureBB,
                                      FunctionSection::Postmatter);

    failureExitBB = createBasicBlock();
    failureExitArg = failureExitBB->createPhiArgument(
        resultLowering.getLoweredType(), OwnershipKind::Owned);

    Cleanups.emitCleanupsForReturn(ctor, IsForUnwind);
    SILValue nilResult =
        B.createEnum(loc, SILValue(), getASTContext().getOptionalNoneDecl(),
                     resultLowering.getLoweredType());
    B.createBranch(loc, failureExitBB, nilResult);

    B.setInsertionPoint(failureExitBB);
    B.createReturn(loc, failureExitArg);

    FailDest = JumpDest(failureBB, Cleanups.getCleanupsDepth(), ctor);
  }

  // Handle member initializers.
  if (isDelegating) {
    // A delegating initializer does not initialize instance
    // variables.
  } else if (ctor->hasStubImplementation()) {
    // Nor does a stub implementation.
  } else if (selfClassDecl->requiresStoredPropertyInits() &&
             usesObjCAllocator) {
    // When the class requires all stored properties to have initial
    // values and we're using Objective-C's allocation, stored
    // properties are initialized via the .cxx_construct method, which
    // will be called by the runtime.

    // Note that 'self' has been fully initialized at this point.
  } else {
    // Emit the member initializers.
    emitMemberInitializers(ctor, selfDecl, selfClassDecl);
  }

  emitProfilerIncrement(ctor->getTypecheckedBody());
  // Emit the constructor body.
  emitStmt(ctor->getTypecheckedBody());

  // Emit the call to super.init() right before exiting from the initializer.
  if (NeedsBoxForSelf) {
    if (auto *SI = ctor->getSuperInitCall()) {
      B.setInsertionPoint(ReturnDest.getBlock());

      emitRValue(SI);

      B.emitBlock(B.splitBlockForFallthrough(), ctor);

      ReturnDest = JumpDest(B.getInsertionBB(),
                            ReturnDest.getDepth(),
                            ReturnDest.getCleanupLocation());
      B.clearInsertionPoint();
    }
  }
  
  // For distributed actors, their synchronous initializers invoke "actor ready"
  // at the very end, just before returning on a successful initialization.
  if (isDesignatedDistActorInit && !ctor->hasAsync()) {
    RegularLocation loc(ctor);
    loc.markAutoGenerated();
    
    SILGenSavedInsertionPoint savedIP(*this, ReturnDest.getBlock());
    emitDistributedActorReady(loc, ctor, selfArg);
  }

  CleanupStateRestorationScope SelfCleanupSave(Cleanups);

  // Build a custom epilog block, since the AST representation of the
  // constructor decl (which has no self in the return type) doesn't match the
  // SIL representation.
  {
    // Ensure that before we add additional cleanups, that we have emitted all
    // cleanups at this point.
    assert(!Cleanups.hasAnyActiveCleanups(getCleanupsDepth(),
                                          ReturnDest.getDepth()) &&
           "emitting epilog in wrong scope");

    SILGenSavedInsertionPoint savedIP(*this, ReturnDest.getBlock());
    auto cleanupLoc = CleanupLocation(ctor);

    // If we're using a box for self, reload the value at the end of the init
    // method.
    if (NeedsBoxForSelf) {
      ManagedValue storedSelf =
          ManagedValue::forBorrowedAddressRValue(VarLocs[selfDecl].value);
      selfArg = B.createLoadCopy(cleanupLoc, storedSelf);
    } else {
      // We have to do a retain because we are returning the pointer +1.
      //
      // SEMANTIC ARC TODO: When the verifier is complete, we will need to
      // change this to selfArg = B.emitCopyValueOperation(...). Currently due
      // to the way that SILGen performs folding of copy_value, destroy_value,
      // the returned selfArg may be deleted causing us to have a
      // dead-pointer. Instead just use the old self value since we have a
      // class.
      selfArg = B.createCopyValue(cleanupLoc, selfArg);
    }

    // Inject the self value into an optional if the constructor is failable.
    if (ctor->isFailable())
      selfArg = B.createEnum(cleanupLoc, selfArg,
                             getASTContext().getOptionalSomeDecl(),
                             getLoweredLoadableType(resultType));

    // Save our cleanup state. We want all other potential cleanups to fire, but
    // not this one.
    if (selfArg.hasCleanup())
      SelfCleanupSave.pushCleanupState(selfArg.getCleanup(),
                                       CleanupState::Dormant);

    // Translate our cleanup to the new top cleanup.
    //
    // This is needed to preserve the invariant in getEpilogBB that when
    // cleanups are emitted, everything above ReturnDest.getDepth() has been
    // emitted. This is not true if we use ManagedValue and friends in the
    // epilogBB, thus the translation. We perform the same check above that
    // getEpilogBB performs to ensure that we still do not have the same
    // problem.
    ReturnDest = std::move(ReturnDest).translate(getTopCleanup());
  }

  // Emit the epilog and post-matter.
  auto returnLoc = emitEpilog(ctor, /*UsesCustomEpilog*/true);

  // Unpop our selfArg cleanup, so we can forward.
  std::move(SelfCleanupSave).pop();

  // Finish off the epilog by returning.  If this is a failable ctor, then we
  // actually jump to the failure epilog to keep the invariant that there is
  // only one SIL return instruction per SIL function.
  if (B.hasValidInsertionPoint()) {
    if (failureExitBB)
      B.createBranch(returnLoc, failureExitBB, selfArg.forward(*this));
    else
      B.createReturn(returnLoc, selfArg.forward(*this));
  }
}

static ManagedValue emitSelfForMemberInit(SILGenFunction &SGF, SILLocation loc,
                                          VarDecl *selfDecl) {
  CanType selfFormalType = selfDecl->getTypeInContext()->getCanonicalType();
  if (selfFormalType->hasReferenceSemantics()) {
    return SGF.emitRValueForDecl(loc, selfDecl, selfFormalType,
                                 AccessSemantics::DirectToStorage,
                                 SGFContext::AllowImmediatePlusZero)
      .getAsSingleValue(SGF, loc);
  } else {
    return SGF.emitAddressOfLocalVarDecl(loc, selfDecl, selfFormalType,
                                         SGFAccessKind::Write);
  }
}

// FIXME: Can emitMemberInit() share code with InitializationForPattern in
// SILGenDecl.cpp? Note that this version operates on stored properties of
// types, whereas the former only knows how to handle local bindings, but
// we could generalize it.
static InitializationPtr
emitMemberInit(SILGenFunction &SGF, VarDecl *selfDecl, Pattern *pattern) {
  switch (pattern->getKind()) {
  case PatternKind::Paren:
    return emitMemberInit(SGF, selfDecl,
                          cast<ParenPattern>(pattern)->getSubPattern());

  case PatternKind::Tuple: {
    TupleInitialization *init = new TupleInitialization(
        cast<TupleType>(pattern->getType()->getCanonicalType()));
    auto tuple = cast<TuplePattern>(pattern);
    for (auto &elt : tuple->getElements()) {
      init->SubInitializations.push_back(
        emitMemberInit(SGF, selfDecl, elt.getPattern()));
    }
    return InitializationPtr(init);
  }

  case PatternKind::Named: {
    auto named = cast<NamedPattern>(pattern);

    auto self = emitSelfForMemberInit(SGF, pattern, selfDecl);

    auto *field = named->getDecl();

    auto selfTy = self.getType();
    auto fieldTy =
      selfTy.getFieldType(field, SGF.SGM.M, SGF.getTypeExpansionContext());
    SILValue slot;

    if (auto *structDecl = dyn_cast<StructDecl>(field->getDeclContext())) {
      slot = SGF.B.createStructElementAddr(pattern, self.forward(SGF), field,
                                           fieldTy.getAddressType());
    } else {
      assert(isa<ClassDecl>(field->getDeclContext()->
                                getImplementedObjCContext()));
      slot = SGF.B.createRefElementAddr(pattern, self.forward(SGF), field,
                                        fieldTy.getAddressType());
    }

    return InitializationPtr(new KnownAddressInitialization(slot));
  }

  case PatternKind::Any:
    return InitializationPtr(new BlackHoleInitialization());;

  case PatternKind::Typed:
    return emitMemberInit(SGF, selfDecl,
                          cast<TypedPattern>(pattern)->getSubPattern());

  case PatternKind::Binding:
    return emitMemberInit(SGF, selfDecl,
                          cast<BindingPattern>(pattern)->getSubPattern());

#define PATTERN(Name, Parent)
#define REFUTABLE_PATTERN(Name, Parent) case PatternKind::Name:
#include "swift/AST/PatternNodes.def"
    llvm_unreachable("Refutable pattern in stored property pattern binding");
  }
  llvm_unreachable("covered switch");
}

static std::pair<AbstractionPattern, CanType>
getInitializationTypeInContext(
    DeclContext *fromDC, DeclContext *toDC,
    Pattern *pattern) {
  auto interfaceType = pattern->getType()->mapTypeOutOfContext();

  // If this pattern is initializing the backing storage for a property
  // with an attached wrapper that is initialized with `=`, the
  // initialization type is the original property type.
  if (auto singleVar = pattern->getSingleVar()) {
    if (auto originalProperty = singleVar->getOriginalWrappedProperty()) {
      if (originalProperty->isPropertyMemberwiseInitializedWithWrappedType())
        interfaceType = originalProperty->getPropertyWrapperInitValueInterfaceType();
    }
  }

  AbstractionPattern origType(
    fromDC->getGenericSignatureOfContext().getCanonicalSignature(),
    interfaceType->getCanonicalType());

  auto substType = toDC->mapTypeIntoContext(interfaceType)->getCanonicalType();

  return std::make_pair(origType, substType);
}

static void
emitAndStoreInitialValueInto(SILGenFunction &SGF,
                             SILLocation loc,
                             PatternBindingDecl *pbd, unsigned i,
                             SubstitutionMap subs,
                             AbstractionPattern origType,
                             CanType substType,
                             Initialization *init) {
  bool injectIntoWrapper = false;
  if (auto singleVar = pbd->getSingleVar()) {
    auto originalVar = singleVar->getOriginalWrappedProperty();
    if (originalVar &&
        originalVar->isPropertyMemberwiseInitializedWithWrappedType()) {
      injectIntoWrapper = true;
    }
  }

  SGFContext C = (injectIntoWrapper ? SGFContext() : SGFContext(init));

  RValue result = SGF.emitApplyOfStoredPropertyInitializer(
                            pbd->getExecutableInit(i),
                            pbd->getAnchoringVarDecl(i),
                            subs, substType, origType, C);

  // need to store result into the init if its in context

  // If we have the backing storage for a property with an attached
  // property wrapper initialized with `=`, inject the value into an
  // instance of the wrapper.
  if (injectIntoWrapper) {
    auto *singleVar = pbd->getSingleVar();
    result = maybeEmitPropertyWrapperInitFromValue(
        SGF, pbd->getExecutableInit(i),
        singleVar, subs, std::move(result));
  }

  if (!result.isInContext())
    std::move(result).forwardInto(SGF, loc, init);
}

void SILGenFunction::emitMemberInitializationViaInitAccessor(
    DeclContext *dc, VarDecl *selfDecl, PatternBindingDecl *member,
    SubstitutionMap subs) {
  auto *var = member->getSingleVar();
  assert(var->hasInitAccessor());

  auto init = member->getExecutableInit(0);
  if (!init)
    return;

  auto *varPattern = member->getPattern(0);

  // Cleanup after this initialization.
  FullExpr scope(Cleanups, varPattern);

  auto resultType =
      getInitializationTypeInContext(member->getDeclContext(), dc, varPattern);

  RValue initResult = emitApplyOfStoredPropertyInitializer(
    init, var, subs, resultType.second, resultType.first, SGFContext());

  SILLocation loc(init);
  loc.markAutoGenerated();

  auto selfValue = emitSelfForMemberInit(*this, varPattern, selfDecl);

  ManagedValue selfRef = selfValue;
  if (selfValue.isLValue()) {
    auto accessToSelf =
      B.createBeginAccess(loc, selfValue.getValue(), SILAccessKind::Modify,
                          SILAccessEnforcement::Unknown,
                          /*noNestedConflict=*/false,
                          /*fromBuiltin=*/false);
    selfRef = ManagedValue::forBorrowedAddressRValue(accessToSelf);
  }

  emitAssignOrInit(loc, selfRef, var,
                   std::move(initResult).getAsSingleValue(*this, loc), subs);

  if (selfValue.isLValue())
    B.createEndAccess(loc, selfRef.getValue(), /*aborted=*/false);
}

void SILGenFunction::emitMemberInitializer(DeclContext *dc, VarDecl *selfDecl,
                                           PatternBindingDecl *field,
                                           SubstitutionMap substitutions) {
  assert(!field->isStatic());

  for (auto i : range(field->getNumPatternEntries())) {
    auto init = field->getExecutableInit(i);
    if (!init)
      continue;

    // Member initializer expressions are only used in a constructor with
    // matching actor isolation. If the isolation prohibits the member
    // initializer from being evaluated synchronously (or propagating required
    // isolation through closure bodies), then the default value cannot be used
    // and the member must be explicitly initialized in the constructor.
    auto *var = field->getAnchoringVarDecl(i);
    auto requiredIsolation = var->getInitializerIsolation();
    auto contextIsolation = getActorIsolationOfContext(dc);
    switch (requiredIsolation) {
    // 'nonisolated' expressions can be evaluated from anywhere
    case ActorIsolation::Unspecified:
    case ActorIsolation::Nonisolated:
    case ActorIsolation::NonisolatedUnsafe:
      break;

    case ActorIsolation::Erased:
      llvm_unreachable("context cannot have erased isolation");

    case ActorIsolation::GlobalActor:
    case ActorIsolation::ActorInstance: {
      if (requiredIsolation != contextIsolation) {
        // Implicit initializers diagnose actor isolation violations
        // for property initializers in Sema. Still emit the invalid
        // member initializer here to avoid duplicate diagnostics and
        // to preserve warn-until-Swift-6 behavior.
        auto *init =
            dyn_cast_or_null<ConstructorDecl>(dc->getAsDecl());
        if (init && init->isImplicit())
          break;

        continue;
      }
    }
    }

    auto *varPattern = field->getPattern(i);

    // Cleanup after this initialization.
    FullExpr scope(Cleanups, varPattern);

    // Get the type of the initialization result, in terms
    // of the constructor context's archetypes.
    auto resultType =
        getInitializationTypeInContext(field->getDeclContext(), dc, varPattern);
    AbstractionPattern origType = resultType.first;
    CanType substType = resultType.second;

    // Figure out what we're initializing.
    auto memberInit = emitMemberInit(*this, selfDecl, varPattern);

    // This whole conversion thing is about eliminating the
    // paired orig-to-subst subst-to-orig conversions that
    // will happen if the storage is at a different abstraction
    // level than the constructor. When emitApply() is used
    // to call the stored property initializer, it naturally
    // wants to convert the result back to the most substituted
    // abstraction level. To undo this, we use a converting
    // initialization and rely on the peephole that optimizes
    // out the redundant conversion.
    SILType loweredResultTy;
    SILType loweredSubstTy;

    // A converting initialization isn't necessary if the member is
    // a property wrapper. Though the initial value can have a
    // reabstractable type, the result of the initialization is
    // always the property wrapper type, which is never reabstractable.
    bool needsConvertingInit = false;
    auto *singleVar = varPattern->getSingleVar();
    if (!(singleVar && singleVar->getOriginalWrappedProperty())) {
      loweredResultTy = getLoweredType(origType, substType);
      loweredSubstTy = getLoweredType(substType);
      needsConvertingInit = loweredResultTy != loweredSubstTy;
    }

    if (needsConvertingInit) {
      Conversion conversion =
          Conversion::getSubstToOrig(origType, substType,
                                     loweredSubstTy, loweredResultTy);

      ConvertingInitialization convertingInit(conversion,
                                              SGFContext(memberInit.get()));

      emitAndStoreInitialValueInto(*this, varPattern, field, i, substitutions,
                                   origType, substType, &convertingInit);

      auto finalValue = convertingInit.finishEmission(
          *this, varPattern, ManagedValue::forInContext());
      if (!finalValue.isInContext())
        finalValue.forwardInto(*this, varPattern, memberInit.get());
    } else {
      emitAndStoreInitialValueInto(*this, varPattern, field, i, substitutions,
                                   origType, substType, memberInit.get());
    }
  }
}

void SILGenFunction::emitMemberInitializers(DeclContext *dc,
                                            VarDecl *selfDecl,
                                            NominalTypeDecl *nominal) {
  auto subs = getSubstitutionsForPropertyInitializer(dc, nominal);

  llvm::SmallPtrSet<PatternBindingDecl *, 4> alreadyInitialized;
  for (auto member : nominal->getImplementationContext()->getAllMembers()) {
    // Find instance pattern binding declarations that have initializers.
    if (auto pbd = dyn_cast<PatternBindingDecl>(member)) {
      if (pbd->isStatic()) continue;

      if (alreadyInitialized.count(pbd))
        continue;

      // Emit default initialization for an init accessor property.
      if (auto *var = pbd->getSingleVar()) {
        if (var->hasInitAccessor()) {
          auto initAccessor = var->getAccessor(AccessorKind::Init);

          // Make sure that initializations for the accessed properties
          // are emitted before the init accessor that uses them.
          for (auto *property : initAccessor->getAccessedProperties()) {
            auto *PBD = property->getParentPatternBinding();
            if (alreadyInitialized.insert(PBD).second)
              emitMemberInitializer(dc, selfDecl, PBD, subs);
          }

          emitMemberInitializationViaInitAccessor(dc, selfDecl, pbd, subs);
          continue;
        }
      }

      emitMemberInitializer(dc, selfDecl, pbd, subs);
    }
  }
}

void SILGenFunction::emitIVarInitializer(SILDeclRef ivarInitializer) {
  auto cd = cast<ClassDecl>(ivarInitializer.getDecl());
  RegularLocation loc(cd);
  loc.markAutoGenerated();

  // Emit 'self', then mark it uninitialized.
  auto selfDecl = cd->getDestructor()->getImplicitSelfDecl();
  SILType selfTy = getLoweredLoadableType(selfDecl->getTypeInContext());
  SILValue selfArg = F.begin()->createFunctionArgument(selfTy, selfDecl);
  SILLocation PrologueLoc(selfDecl);
  PrologueLoc.markAsPrologue();
  // Hard-code self as argument number 1.
  SILDebugVariable DbgVar(selfDecl->isLet(), 1);
  B.createDebugValue(PrologueLoc, selfArg, DbgVar);
  selfArg = B.createMarkUninitialized(selfDecl, selfArg,
                                      MarkUninitializedInst::RootSelf);
  assert(selfTy.hasReferenceSemantics() && "can't emit a value type ctor here");
  VarLocs[selfDecl] = VarLoc::get(selfArg);

  auto cleanupLoc = CleanupLocation(loc);
  prepareEpilog(cd, std::nullopt, std::nullopt, cleanupLoc);

  // Emit the initializers.
  emitMemberInitializers(cd, selfDecl, cd);

  // Return 'self'.
  B.createReturn(loc, selfArg);

  emitEpilog(loc);
}

void SILGenFunction::emitInitAccessor(AccessorDecl *accessor) {
  RegularLocation loc(accessor);
  loc.markAutoGenerated();

  auto accessorTy = F.getLoweredFunctionType();

  auto createArgument = [&](VarDecl *property, SILType type,
                            bool markUninitialized = false) {
    auto *arg = ParamDecl::createImplicit(
        getASTContext(), property->getBaseIdentifier(),
        property->getBaseIdentifier(), property->getInterfaceType(), accessor,
        ParamSpecifier::InOut);

    RegularLocation loc(property);
    loc.markAutoGenerated();

    SILValue argValue = F.begin()->createFunctionArgument(type, arg);
    VarLocs[arg] =
        markUninitialized
            ? VarLoc::get(B.createMarkUninitializedOut(loc, argValue))
            : VarLoc::get(argValue);

    InitAccessorArgumentMappings[property] = arg;
  };

  // First, emit results, this is our "initializes" properties and
  // require DI to check that each property is fully initialized.
  auto initializedProperties = accessor->getInitializedProperties();
  for (unsigned i = 0, n = initializedProperties.size(); i != n; ++i) {
    auto *property = initializedProperties[i];
    auto propertyTy =
        getSILTypeInContext(accessorTy->getResults()[i], accessorTy);
    createArgument(property, propertyTy, /*markUninitialized=*/true);
  }

  // Collect all of the parameters that represent properties listed by
  // "accesses" attribute. They have to be emitted in order of arguments which
  // means after the "newValue" which is emitted by \c emitBasicProlog.
  auto accessedProperties = accessor->getAccessedProperties();

  // Emit `newValue` argument.
  emitBasicProlog(accessor, accessor->getParameters(),
                  /*selfParam=*/nullptr, TupleType::getEmpty(F.getASTContext()),
                  /*errorType=*/std::nullopt,
                  /*throwsLoc=*/SourceLoc(),
                  /*ignored parameters*/
                  accessedProperties.size() + 1);

  // Emit arguments for all `accesses` properties.
  if (!accessedProperties.empty()) {
    auto propertyIter = accessedProperties.begin();
    auto propertyArgs = accessorTy->getParameters().slice(
        accessorTy->getNumParameters() - accessedProperties.size() - 1,
        accessedProperties.size());

    for (const auto &argument : propertyArgs) {
      createArgument(*propertyIter, getSILTypeInContext(argument, accessorTy));
      ++propertyIter;
    }
  }

  // Emit `self` argument.
  emitConstructorMetatypeArg(*this, accessor);

  prepareEpilog(accessor,
                accessor->getResultInterfaceType(),
                accessor->getEffectiveThrownErrorType(),
                CleanupLocation(accessor));

  emitProfilerIncrement(accessor->getTypecheckedBody());

  // Emit the actual function body as usual
  emitStmt(accessor->getTypecheckedBody());

  emitEpilog(accessor);

  mergeCleanupBlocks();
}