1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
|
//===--- SILGenConvert.cpp - Type Conversion Routines ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGen.h"
#include "ArgumentSource.h"
#include "Conversion.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "Scope.h"
#include "SwitchEnumBuilder.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/Types.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/type_traits.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
using namespace Lowering;
// FIXME: With some changes to their callers, all of the below functions
// could be re-worked to use emitInjectEnum().
ManagedValue
SILGenFunction::emitInjectOptional(SILLocation loc,
const TypeLowering &optTL,
SGFContext ctxt,
llvm::function_ref<ManagedValue(SGFContext)> generator) {
SILType optTy = optTL.getLoweredType();
SILType objectTy = optTy.getOptionalObjectType();
assert(objectTy && "expected type was not optional");
auto someDecl = getASTContext().getOptionalSomeDecl();
// If the value is loadable, just emit and wrap.
// TODO: honor +0 contexts?
if (optTL.isLoadable() || !silConv.useLoweredAddresses()) {
ManagedValue objectResult = generator(SGFContext());
return B.createEnum(loc, objectResult, someDecl, optTy);
}
// Otherwise it's address-only; try to avoid spurious copies by
// evaluating into the context.
// Prepare a buffer for the object value.
return B.bufferForExpr(
loc, optTy.getObjectType(), optTL, ctxt,
[&](SILValue optBuf) {
auto objectBuf = B.createInitEnumDataAddr(loc, optBuf, someDecl, objectTy);
// Evaluate the value in-place into that buffer.
TemporaryInitialization init(objectBuf, CleanupHandle::invalid());
ManagedValue objectResult = generator(SGFContext(&init));
if (!objectResult.isInContext()) {
objectResult.ensurePlusOne(*this, loc)
.forwardInto(*this, loc, objectBuf);
}
// Finalize the outer optional buffer.
B.createInjectEnumAddr(loc, optBuf, someDecl);
});
}
void SILGenFunction::emitInjectOptionalValueInto(SILLocation loc,
ArgumentSource &&value,
SILValue dest,
const TypeLowering &optTL) {
SILType optType = optTL.getLoweredType();
assert(dest->getType() == optType.getAddressType());
auto loweredPayloadTy = optType.getOptionalObjectType();
assert(loweredPayloadTy);
// Project out the payload area.
auto someDecl = getASTContext().getOptionalSomeDecl();
auto destPayload =
B.createInitEnumDataAddr(loc, dest, someDecl,
loweredPayloadTy.getAddressType());
// Emit the value into the payload area.
TemporaryInitialization emitInto(destPayload, CleanupHandle::invalid());
std::move(value).forwardInto(*this, &emitInto);
// Inject the tag.
B.createInjectEnumAddr(loc, dest, someDecl);
}
void SILGenFunction::emitInjectOptionalNothingInto(SILLocation loc,
SILValue dest,
const TypeLowering &optTL) {
assert(optTL.getLoweredType().getOptionalObjectType());
B.createInjectEnumAddr(loc, dest, getASTContext().getOptionalNoneDecl());
}
/// Return a value for an optional ".None" of the specified type. This only
/// works for loadable enum types.
SILValue SILGenFunction::getOptionalNoneValue(SILLocation loc,
const TypeLowering &optTL) {
assert((optTL.isLoadable() || !silConv.useLoweredAddresses()) &&
"Address-only optionals cannot use this");
assert(optTL.getLoweredType().getOptionalObjectType());
return B.createEnum(loc, SILValue(), getASTContext().getOptionalNoneDecl(),
optTL.getLoweredType());
}
/// Return a value for an optional ".Some(x)" of the specified type. This only
/// works for loadable enum types.
ManagedValue SILGenFunction::
getOptionalSomeValue(SILLocation loc, ManagedValue value,
const TypeLowering &optTL) {
assert((optTL.isLoadable() || !silConv.useLoweredAddresses()) &&
"Address-only optionals cannot use this");
SILType optType = optTL.getLoweredType();
auto formalOptType = optType.getASTType();
(void)formalOptType;
assert(formalOptType.getOptionalObjectType());
auto someDecl = getASTContext().getOptionalSomeDecl();
return B.createEnum(loc, value, someDecl, optTL.getLoweredType());
}
auto SILGenFunction::emitSourceLocationArgs(SourceLoc sourceLoc,
SILLocation emitLoc)
-> SourceLocArgs {
auto &ctx = getASTContext();
std::string filename = "";
unsigned line = 0;
unsigned column = 0;
if (sourceLoc.isValid()) {
filename = getMagicFileIDString(sourceLoc);
std::tie(line, column) =
ctx.SourceMgr.getPresumedLineAndColumnForLoc(sourceLoc);
}
bool isASCII = true;
for (unsigned char c : filename) {
if (c > 127) {
isASCII = false;
break;
}
}
auto wordTy = SILType::getBuiltinWordType(ctx);
auto i1Ty = SILType::getBuiltinIntegerType(1, ctx);
SourceLocArgs result;
SILValue literal = B.createStringLiteral(emitLoc, StringRef(filename),
StringLiteralInst::Encoding::UTF8);
result.filenameStartPointer =
ManagedValue::forObjectRValueWithoutOwnership(literal);
// File length
literal = B.createIntegerLiteral(emitLoc, wordTy, filename.size());
result.filenameLength =
ManagedValue::forObjectRValueWithoutOwnership(literal);
// File is ascii
literal = B.createIntegerLiteral(emitLoc, i1Ty, isASCII);
result.filenameIsAscii =
ManagedValue::forObjectRValueWithoutOwnership(literal);
// Line
literal = B.createIntegerLiteral(emitLoc, wordTy, line);
result.line = ManagedValue::forObjectRValueWithoutOwnership(literal);
// Column
literal = B.createIntegerLiteral(emitLoc, wordTy, column);
result.column = ManagedValue::forObjectRValueWithoutOwnership(literal);
return result;
}
ManagedValue
SILGenFunction::emitPreconditionOptionalHasValue(SILLocation loc,
ManagedValue optional,
bool isImplicitUnwrap) {
// Generate code to the optional is present, and if not, abort with a message
// (provided by the stdlib).
SILBasicBlock *contBB = createBasicBlock();
SILBasicBlock *failBB = createBasicBlock();
bool hadCleanup = optional.hasCleanup();
bool hadLValue = optional.isLValue();
auto someDecl = getASTContext().getOptionalSomeDecl();
auto noneDecl = getASTContext().getOptionalNoneDecl();
bool isAddress = optional.getType().isAddress();
bool isBorrow = !optional.isPlusOneOrTrivial(*this);
SwitchEnumInst *switchEnum = nullptr;
if (isAddress) {
// We forward in the creation routine for
// unchecked_take_enum_data_addr. switch_enum_addr is a +0 operation.
B.createSwitchEnumAddr(loc, optional.getValue(),
/*defaultDest*/ nullptr,
{{someDecl, contBB}, {noneDecl, failBB}});
} else if (isBorrow) {
hadCleanup = false;
hadLValue = false;
switchEnum = B.createSwitchEnum(loc, optional.getValue(),
/*defaultDest*/ nullptr,
{{someDecl, contBB}, {noneDecl, failBB}});
} else {
optional = optional.ensurePlusOne(*this, loc);
hadCleanup = true;
hadLValue = false;
switchEnum = B.createSwitchEnum(loc, optional.forward(*this),
/*defaultDest*/ nullptr,
{{someDecl, contBB}, {noneDecl, failBB}});
}
B.emitBlock(failBB);
// Call the standard library implementation of _diagnoseUnexpectedNilOptional.
if (auto diagnoseFailure =
getASTContext().getDiagnoseUnexpectedNilOptional()) {
auto args = emitSourceLocationArgs(loc.getSourceLoc(), loc);
auto i1Ty = SILType::getBuiltinIntegerType(1, getASTContext());
auto isImplicitUnwrapLiteral =
B.createIntegerLiteral(loc, i1Ty, isImplicitUnwrap);
auto isImplicitUnwrapValue =
ManagedValue::forObjectRValueWithoutOwnership(isImplicitUnwrapLiteral);
emitApplyOfLibraryIntrinsic(loc, diagnoseFailure, SubstitutionMap(),
{
args.filenameStartPointer,
args.filenameLength,
args.filenameIsAscii,
args.line,
isImplicitUnwrapValue
},
SGFContext());
}
B.createUnreachable(ArtificialUnreachableLocation());
B.clearInsertionPoint();
B.emitBlock(contBB);
ManagedValue result;
if (isAddress) {
SILType payloadType = optional.getType().getOptionalObjectType();
result =
B.createUncheckedTakeEnumDataAddr(loc, optional, someDecl, payloadType);
} else {
result = B.createOptionalSomeResult(switchEnum);
}
if (hadCleanup) {
return result;
}
if (hadLValue) {
return ManagedValue::forLValue(result.forward(*this));
}
return ManagedValue::forBorrowedRValue(result.forward(*this));
}
SILValue SILGenFunction::emitDoesOptionalHaveValue(SILLocation loc,
SILValue addrOrValue) {
auto boolTy = SILType::getBuiltinIntegerType(1, getASTContext());
SILValue yes = B.createIntegerLiteral(loc, boolTy, 1);
SILValue no = B.createIntegerLiteral(loc, boolTy, 0);
auto someDecl = getASTContext().getOptionalSomeDecl();
if (addrOrValue->getType().isAddress())
return B.createSelectEnumAddr(loc, addrOrValue, boolTy, no,
std::make_pair(someDecl, yes));
return B.createSelectEnum(loc, addrOrValue, boolTy, no,
std::make_pair(someDecl, yes));
}
ManagedValue SILGenFunction::emitCheckedGetOptionalValueFrom(SILLocation loc,
ManagedValue src,
bool isImplicitUnwrap,
const TypeLowering &optTL,
SGFContext C) {
// TODO: Make this take optTL.
return emitPreconditionOptionalHasValue(loc, src, isImplicitUnwrap);
}
ManagedValue SILGenFunction::emitUncheckedGetOptionalValueFrom(
SILLocation loc, ManagedValue addrOrValue, const TypeLowering &optTL,
SGFContext C) {
SILType origPayloadTy = addrOrValue.getType().getOptionalObjectType();
auto someDecl = getASTContext().getOptionalSomeDecl();
// Take the payload from the optional.
if (!addrOrValue.getType().isAddress()) {
return B.createUncheckedEnumData(loc, addrOrValue, someDecl);
}
// Cheat a bit in the +0 case--UncheckedTakeEnumData will never actually
// invalidate an Optional enum value. This is specific to optionals.
ManagedValue payload = B.createUncheckedTakeEnumDataAddr(
loc, addrOrValue, someDecl, origPayloadTy);
if (!optTL.isLoadable())
return payload;
// If we do not have a cleanup on our address, use a load_borrow.
if (!payload.hasCleanup()) {
return B.createLoadBorrow(loc, payload);
}
// Otherwise, perform a load take.
return B.createLoadTake(loc, payload);
}
ManagedValue
SILGenFunction::emitOptionalSome(SILLocation loc, SILType optTy,
ValueProducerRef produceValue,
SGFContext C) {
// If we're emitting into a conversion, try to peephole the
// injection into it.
if (auto optInit = C.getAsConversion()) {
const auto &optConversion = optInit->getConversion();
auto adjustment = optConversion.adjustForInitialOptionalInjection();
// If the adjustment gives us a conversion that produces an optional
// value, that completely takes over emission. This generally happens
// only because of bridging.
if (adjustment.isInjection()) {
return optInit->emitWithAdjustedConversion(*this, loc,
adjustment.getInjectionConversion(),
produceValue);
// If the adjustment gives us a conversion that produces a non-optional
// value, we need to produce the value under that conversion and then
// inject that into an optional. We can do that by recursing. This
// will terminate because the recursive call to emitOptionalSome gets
// passed a strictly "smaller" context: the parent context of the
// converting context we were passed.
} else if (adjustment.isValue()) {
auto produceConvertedValue = [&](SILGenFunction &SGF,
SILLocation loc,
SGFContext C) {
return SGF.emitConvertedRValue(loc, adjustment.getValueConversion(),
C, produceValue);
};
auto result = emitOptionalSome(loc, optConversion.getLoweredResultType(),
produceConvertedValue,
optInit->getFinalContext());
optInit->initWithConvertedValue(*this, loc, result);
optInit->finishInitialization(*this);
return ManagedValue::forInContext();
}
}
auto &optTL = getTypeLowering(optTy);
// If the type is loadable or we're not lowering address-only types
// in SILGen, use a simple scalar pattern.
if (!silConv.useLoweredAddresses() || optTL.isLoadable()) {
auto value = produceValue(*this, loc, SGFContext());
return getOptionalSomeValue(loc, value, optTL);
}
// Otherwise, emit into memory, preferably into an address from
// the context.
// Get an address to emit into.
SILValue optAddr = getBufferForExprResult(loc, optTy, C);
auto someDecl = getASTContext().getOptionalSomeDecl();
auto valueTy = optTy.getOptionalObjectType();
auto &valueTL = getTypeLowering(valueTy);
// Project the value buffer within the address.
SILValue valueAddr =
B.createInitEnumDataAddr(loc, optAddr, someDecl,
valueTy.getAddressType());
// Emit into the value buffer.
auto valueInit = useBufferAsTemporary(valueAddr, valueTL);
ManagedValue value = produceValue(*this, loc, SGFContext(valueInit.get()));
if (!value.isInContext()) {
valueInit->copyOrInitValueInto(*this, loc, value, /*isInit*/ true);
valueInit->finishInitialization(*this);
}
// Kill the cleanup on the value.
valueInit->getManagedAddress().forward(*this);
// Finish the optional.
B.createInjectEnumAddr(loc, optAddr, someDecl);
return manageBufferForExprResult(optAddr, optTL, C);
}
/// Emit an optional-to-optional transformation.
ManagedValue
SILGenFunction::emitOptionalToOptional(SILLocation loc,
ManagedValue input,
SILType resultTy,
ValueTransformRef transformValue,
SGFContext C) {
auto &Ctx = getASTContext();
// If the input is known to be 'none' just emit a 'none' value of the right
// result type right away.
auto &resultTL = getTypeLowering(resultTy);
if (auto *EI = dyn_cast<EnumInst>(input.getValue())) {
if (EI->getElement() == Ctx.getOptionalNoneDecl()) {
if (!(resultTL.isAddressOnly() && silConv.useLoweredAddresses())) {
SILValue none = B.createEnum(loc, SILValue(), EI->getElement(),
resultTy);
return emitManagedRValueWithCleanup(none);
}
}
}
// Otherwise perform a dispatch.
auto contBB = createBasicBlock();
auto isNotPresentBB = createBasicBlock();
auto isPresentBB = createBasicBlock();
// All conversions happen at +1.
input = input.ensurePlusOne(*this, loc);
SwitchEnumBuilder SEBuilder(B, loc, input);
SILType noOptResultTy = resultTy.getOptionalObjectType();
assert(noOptResultTy);
// Create a temporary for the output optional.
//
// If the result is address-only, we need to return something in memory,
// otherwise the result is the BBArgument in the merge point.
// TODO: use the SGFContext passed in.
ManagedValue resultAddress;
bool addressOnly = resultTL.isAddressOnly() && silConv.useLoweredAddresses();
if (addressOnly) {
resultAddress = emitManagedBufferWithCleanup(
emitTemporaryAllocation(loc, resultTy), resultTL);
}
ValueOwnershipKind resultOwnership = OwnershipKind::Any;
SEBuilder.addOptionalSomeCase(
isPresentBB, contBB, [&](ManagedValue input, SwitchCaseFullExpr &&scope) {
// If we have an address only type, we want to match the old behavior of
// transforming the underlying type instead of the optional type. This
// ensures that we use the more efficient non-generic code paths when
// possible.
if (getTypeLowering(input.getType()).isAddressOnly() &&
silConv.useLoweredAddresses()) {
auto *someDecl = Ctx.getOptionalSomeDecl();
input = B.createUncheckedTakeEnumDataAddr(
loc, input, someDecl, input.getType().getOptionalObjectType());
}
ManagedValue result = transformValue(*this, loc, input, noOptResultTy,
SGFContext());
resultOwnership = result.getValue()->getOwnershipKind();
if (!addressOnly) {
SILValue some = B.createOptionalSome(loc, result).forward(*this);
return scope.exitAndBranch(loc, some);
}
RValue R(*this, loc, noOptResultTy.getASTType(), result);
ArgumentSource resultValueRV(loc, std::move(R));
emitInjectOptionalValueInto(loc, std::move(resultValueRV),
resultAddress.getValue(), resultTL);
return scope.exitAndBranch(loc);
});
SEBuilder.addOptionalNoneCase(
isNotPresentBB, contBB,
[&](ManagedValue input, SwitchCaseFullExpr &&scope) {
if (!addressOnly) {
SILValue none =
B.createManagedOptionalNone(loc, resultTy).forward(*this);
return scope.exitAndBranch(loc, none);
}
emitInjectOptionalNothingInto(loc, resultAddress.getValue(), resultTL);
return scope.exitAndBranch(loc);
});
std::move(SEBuilder).emit();
B.emitBlock(contBB);
if (addressOnly)
return resultAddress;
// This phi's ownership is derived from the transformed value's
// ownership, not the input ownership. Transformation can convert a value with
// no ownership to an owned value.
return B.createPhi(resultTL.getLoweredType(), resultOwnership);
}
SILGenFunction::OpaqueValueRAII::~OpaqueValueRAII() {
auto entry = Self.OpaqueValues.find(OpaqueValue);
assert(entry != Self.OpaqueValues.end());
Self.OpaqueValues.erase(entry);
}
RValue
SILGenFunction::emitPointerToPointer(SILLocation loc,
ManagedValue input,
CanType inputType,
CanType outputType,
SGFContext C) {
auto converter = getASTContext().getConvertPointerToPointerArgument();
auto origValue = input;
if (silConv.useLoweredAddresses()) {
// The generic function currently always requires indirection, but pointers
// are always loadable.
auto origBuf = emitTemporaryAllocation(loc, input.getType());
B.emitStoreValueOperation(loc, input.forward(*this), origBuf,
StoreOwnershipQualifier::Init);
origValue = emitManagedBufferWithCleanup(origBuf);
}
// Invoke the conversion intrinsic to convert to the destination type.
auto *M = SGM.M.getSwiftModule();
auto *proto = getPointerProtocol();
auto firstSubMap = inputType->getContextSubstitutionMap(M, proto);
auto secondSubMap = outputType->getContextSubstitutionMap(M, proto);
auto genericSig = converter->getGenericSignature();
auto subMap =
SubstitutionMap::combineSubstitutionMaps(firstSubMap,
secondSubMap,
CombineSubstitutionMaps::AtIndex,
1, 0,
genericSig);
return emitApplyOfLibraryIntrinsic(loc, converter, subMap, origValue, C);
}
namespace {
/// This is an initialization for an address-only existential in memory.
class ExistentialInitialization final : public SingleBufferInitialization {
SILValue existential;
CanType concreteFormalType;
ArrayRef<ProtocolConformanceRef> conformances;
ExistentialRepresentation repr;
// Initialized lazily when the address for initialization is demanded.
SILValue concreteBuffer;
CleanupHandle deinitExistentialCleanup;
public:
/// \param existential The existential container
/// \param concreteFormalType Unlowered AST type of value
/// \param conformances Conformances for concrete type to existential's
/// protocols
ExistentialInitialization(SILGenFunction &SGF,
SILValue existential,
CanType concreteFormalType,
ArrayRef<ProtocolConformanceRef> conformances,
ExistentialRepresentation repr)
: existential(existential),
concreteFormalType(concreteFormalType),
conformances(conformances),
repr(repr)
{
assert(existential->getType().isAddress());
// Create a cleanup to deallocate an allocated but uninitialized concrete
// type buffer.
// It won't be activated until that buffer is formed later, though.
deinitExistentialCleanup =
SGF.enterDeinitExistentialCleanup(CleanupState::Dormant,
existential, concreteFormalType, repr);
}
SILValue getAddressForInPlaceInitialization(SILGenFunction &SGF,
SILLocation loc) override {
// Create the buffer when needed, because in some cases the type may
// be the opened type from another existential that hasn't been opened
// at the point the existential destination was formed.
assert(!concreteBuffer && "concrete buffer already formed?!");
auto concreteLoweredType =
SGF.getLoweredType(AbstractionPattern::getOpaque(), concreteFormalType);
switch (repr) {
case ExistentialRepresentation::Opaque: {
concreteBuffer = SGF.B.createInitExistentialAddr(loc, existential,
concreteFormalType,
concreteLoweredType.getAddressType(),
conformances);
break;
}
case ExistentialRepresentation::Boxed: {
auto box = SGF.B.createAllocExistentialBox(loc,
existential->getType().getObjectType(),
concreteFormalType,
conformances);
concreteBuffer = SGF.B.createProjectExistentialBox(loc,
concreteLoweredType.getAddressType(),
box);
SGF.B.createStore(loc, box, existential,
StoreOwnershipQualifier::Init);
break;
}
case ExistentialRepresentation::Class:
case ExistentialRepresentation::Metatype:
case ExistentialRepresentation::None:
llvm_unreachable("not supported");
}
// Activate the cleanup to deallocate the buffer we just allocated, should
SGF.Cleanups.setCleanupState(deinitExistentialCleanup,
CleanupState::Active);
return concreteBuffer;
}
bool isInPlaceInitializationOfGlobal() const override {
return isa_and_nonnull<GlobalAddrInst>(existential);
}
void finishInitialization(SILGenFunction &SGF) override {
SingleBufferInitialization::finishInitialization(SGF);
// We've fully initialized the existential by this point, so we can
// retire the partial cleanup.
SGF.Cleanups.setCleanupState(deinitExistentialCleanup,
CleanupState::Dead);
}
};
} // end anonymous namespace
ManagedValue SILGenFunction::emitExistentialErasure(
SILLocation loc,
CanType concreteFormalType,
const TypeLowering &concreteTL,
const TypeLowering &existentialTL,
ArrayRef<ProtocolConformanceRef> conformances,
SGFContext C,
llvm::function_ref<ManagedValue (SGFContext)> F,
bool allowEmbeddedNSError) {
// Mark the needed conformances as used.
for (auto conformance : conformances)
SGM.useConformance(conformance);
// If we're erasing to the 'Error' type, we might be able to get an NSError
// representation more efficiently.
auto &ctx = getASTContext();
if (ctx.LangOpts.EnableObjCInterop && conformances.size() == 1 &&
conformances[0].getRequirement() == ctx.getErrorDecl() &&
ctx.getNSErrorDecl()) {
// If the concrete type is NSError or a subclass thereof, just erase it
// directly.
auto nsErrorType = ctx.getNSErrorType()->getCanonicalType();
if (nsErrorType->isExactSuperclassOf(concreteFormalType)) {
ManagedValue nsError = F(SGFContext());
if (nsErrorType != concreteFormalType) {
nsError = B.createUpcast(loc, nsError, getLoweredType(nsErrorType));
}
return emitBridgedToNativeError(loc, nsError);
}
// If the concrete type is known to conform to _BridgedStoredNSError,
// call the _nsError witness getter to extract the NSError directly,
// then just erase the NSError.
auto storedNSErrorConformance =
SGM.getConformanceToBridgedStoredNSError(loc, concreteFormalType);
if (storedNSErrorConformance) {
auto nsErrorVar = SGM.getNSErrorRequirement(loc);
if (!nsErrorVar) return emitUndef(existentialTL.getLoweredType());
SubstitutionMap nsErrorVarSubstitutions;
// Devirtualize. Maybe this should be done implicitly by
// emitPropertyLValue?
if (storedNSErrorConformance.isConcrete()) {
if (auto normal = dyn_cast<NormalProtocolConformance>(
storedNSErrorConformance.getConcrete())) {
if (auto witnessVar = normal->getWitness(nsErrorVar)) {
nsErrorVar = cast<VarDecl>(witnessVar.getDecl());
nsErrorVarSubstitutions = witnessVar.getSubstitutions();
}
}
}
ManagedValue nativeError = F(SGFContext());
FormalEvaluationScope writebackScope(*this);
ManagedValue nsError =
emitRValueForStorageLoad(
loc, nativeError, concreteFormalType,
/*super*/ false, nsErrorVar, PreparedArguments(),
nsErrorVarSubstitutions,
AccessSemantics::Ordinary, nsErrorType, SGFContext())
.getAsSingleValue(*this, loc);
return emitBridgedToNativeError(loc, nsError);
}
// Otherwise, if it's an archetype, try calling the _getEmbeddedNSError()
// witness to try to dig out the embedded NSError. But don't do this
// when we're being called recursively.
if (isa<ArchetypeType>(concreteFormalType) && allowEmbeddedNSError) {
auto contBB = createBasicBlock();
auto isNotPresentBB = createBasicBlock();
auto isPresentBB = createBasicBlock();
// Call swift_stdlib_getErrorEmbeddedNSError to attempt to extract an
// NSError from the value.
auto getEmbeddedNSErrorFn = SGM.getGetErrorEmbeddedNSError(loc);
if (!getEmbeddedNSErrorFn)
return emitUndef(existentialTL.getLoweredType());
auto getEmbeddedNSErrorSubstitutions =
SubstitutionMap::getProtocolSubstitutions(ctx.getErrorDecl(),
concreteFormalType,
conformances[0]);
ManagedValue concreteValue = F(SGFContext());
ManagedValue potentialNSError =
emitApplyOfLibraryIntrinsic(loc,
getEmbeddedNSErrorFn,
getEmbeddedNSErrorSubstitutions,
{ concreteValue.copy(*this, loc) },
SGFContext())
.getAsSingleValue(*this, loc);
// We're going to consume 'concreteValue' in exactly one branch,
// so kill its cleanup now and recreate it on both branches.
(void) concreteValue.forward(*this);
// Check whether we got an NSError back.
std::pair<EnumElementDecl*, SILBasicBlock*> cases[] = {
{ ctx.getOptionalSomeDecl(), isPresentBB },
{ ctx.getOptionalNoneDecl(), isNotPresentBB }
};
auto *switchEnum =
B.createSwitchEnum(loc, potentialNSError.forward(*this),
/*default*/ nullptr, cases);
// If we did get an NSError, emit the existential erasure from that
// NSError.
B.emitBlock(isPresentBB);
SILValue branchArg;
{
// Don't allow cleanups to escape the conditional block.
FullExpr presentScope(Cleanups, CleanupLocation(loc));
enterDestroyCleanup(concreteValue.getValue());
// Receive the error value. It's typed as an 'AnyObject' for
// layering reasons, so perform an unchecked cast down to NSError.
auto nsError = B.createOptionalSomeResult(switchEnum);
nsError = B.createUncheckedRefCast(loc, nsError,
getLoweredType(nsErrorType));
branchArg = emitBridgedToNativeError(loc, nsError).forward(*this);
}
B.createBranch(loc, contBB, branchArg);
// If we did not get an NSError, just directly emit the existential.
// Since this is a recursive call, make sure we don't end up in this
// path again.
B.emitBlock(isNotPresentBB);
{
FullExpr presentScope(Cleanups, CleanupLocation(loc));
concreteValue = emitManagedRValueWithCleanup(concreteValue.getValue());
branchArg = emitExistentialErasure(loc, concreteFormalType, concreteTL,
existentialTL, conformances,
SGFContext(),
[&](SGFContext C) {
return concreteValue;
},
/*allowEmbeddedNSError=*/false)
.forward(*this);
}
B.createBranch(loc, contBB, branchArg);
// Continue.
B.emitBlock(contBB);
SILValue existentialResult = contBB->createPhiArgument(
existentialTL.getLoweredType(), OwnershipKind::Owned);
return emitManagedRValueWithCleanup(existentialResult, existentialTL);
}
}
switch (existentialTL.getLoweredType().getObjectType()
.getPreferredExistentialRepresentation(concreteFormalType)) {
case ExistentialRepresentation::None:
llvm_unreachable("not an existential type");
case ExistentialRepresentation::Metatype: {
assert(existentialTL.isLoadable());
SILValue metatype = F(SGFContext()).getUnmanagedValue();
assert(metatype->getType().castTo<AnyMetatypeType>()->getRepresentation()
== MetatypeRepresentation::Thick);
auto upcast =
B.createInitExistentialMetatype(loc, metatype,
existentialTL.getLoweredType(),
conformances);
return ManagedValue::forObjectRValueWithoutOwnership(upcast);
}
case ExistentialRepresentation::Class: {
assert(existentialTL.isLoadable());
ManagedValue sub = F(SGFContext());
assert(concreteFormalType->isBridgeableObjectType());
return B.createInitExistentialRef(loc, existentialTL.getLoweredType(),
concreteFormalType, sub, conformances);
}
case ExistentialRepresentation::Boxed: {
// We defer allocation of the box to when the address is demanded.
// Create a stack slot to hold the box once it's allocated.
SILValue boxValue;
auto buf = B.bufferForExpr(
loc, existentialTL.getLoweredType(), existentialTL, C,
[&](SILValue existential) {
// Initialize the existential in-place.
ExistentialInitialization init(*this, existential,
concreteFormalType,
conformances,
ExistentialRepresentation::Boxed);
ManagedValue mv = F(SGFContext(&init));
if (!mv.isInContext()) {
init.copyOrInitValueInto(*this, loc, mv.ensurePlusOne(*this, loc),
/*init*/ true);
init.finishInitialization(*this);
}
});
if (buf.isInContext()) {
return buf;
}
auto value = B.createLoad(loc, buf.forward(*this),
LoadOwnershipQualifier::Take);
return emitManagedRValueWithCleanup(value);
}
case ExistentialRepresentation::Opaque: {
// If the concrete value is a pseudogeneric archetype, first erase it to
// its upper bound.
auto anyObjectTy = getASTContext().getAnyObjectType();
auto eraseToAnyObject =
[&, concreteFormalType, F](SGFContext C) -> ManagedValue {
auto concreteValue = F(SGFContext());
assert(concreteFormalType->isBridgeableObjectType());
return B.createInitExistentialRef(
loc, SILType::getPrimitiveObjectType(anyObjectTy), concreteFormalType,
concreteValue, conformances);
};
if (this->F.getLoweredFunctionType()->isPseudogeneric()) {
if (anyObjectTy && concreteFormalType->is<ArchetypeType>()) {
concreteFormalType = anyObjectTy;
// The original conformances are no good because they have the wrong
// (pseudogeneric) subject type.
auto *M = SGM.M.getSwiftModule();
conformances = M->collectExistentialConformances(
concreteFormalType, anyObjectTy);
F = eraseToAnyObject;
}
}
if (!silConv.useLoweredAddresses()) {
// We should never create new buffers just for init_existential under
// opaque values mode: This is a case of an opaque value that we can
// "treat" as a by-value one
ManagedValue sub = F(SGFContext());
return B.createInitExistentialValue(
loc, existentialTL.getLoweredType(), concreteFormalType,
sub, conformances);
}
// Allocate the existential.
return B.bufferForExpr(
loc, existentialTL.getLoweredType(), existentialTL, C,
[&](SILValue existential) {
// Initialize the existential in-place.
ExistentialInitialization init(*this, existential,
concreteFormalType,
conformances,
ExistentialRepresentation::Opaque);
ManagedValue mv = F(SGFContext(&init));
if (!mv.isInContext()) {
init.copyOrInitValueInto(*this, loc, mv.ensurePlusOne(*this, loc),
/*init*/ true);
init.finishInitialization(*this);
}
});
}
}
llvm_unreachable("Unhandled ExistentialRepresentation in switch.");
}
ManagedValue SILGenFunction::emitClassMetatypeToObject(SILLocation loc,
ManagedValue v,
SILType resultTy) {
SILValue value = v.getUnmanagedValue();
// Convert the metatype to objc representation.
auto metatypeTy = value->getType().castTo<MetatypeType>();
auto objcMetatypeTy = CanMetatypeType::get(metatypeTy.getInstanceType(),
MetatypeRepresentation::ObjC);
value = B.createThickToObjCMetatype(loc, value,
SILType::getPrimitiveObjectType(objcMetatypeTy));
// Convert to an object reference.
value = B.createObjCMetatypeToObject(loc, value, resultTy);
return emitManagedRValueWithCleanup(value);
}
ManagedValue SILGenFunction::emitExistentialMetatypeToObject(SILLocation loc,
ManagedValue v,
SILType resultTy) {
SILValue value = v.getUnmanagedValue();
// Convert the metatype to objc representation.
auto metatypeTy = value->getType().castTo<ExistentialMetatypeType>();
auto objcMetatypeTy = CanExistentialMetatypeType::get(
metatypeTy.getInstanceType(),
MetatypeRepresentation::ObjC);
value = B.createThickToObjCMetatype(loc, value,
SILType::getPrimitiveObjectType(objcMetatypeTy));
// Convert to an object reference.
value = B.createObjCExistentialMetatypeToObject(loc, value, resultTy);
return emitManagedRValueWithCleanup(value);
}
ManagedValue SILGenFunction::emitProtocolMetatypeToObject(SILLocation loc,
CanType inputTy,
SILType resultTy) {
auto protocolType = inputTy->castTo<MetatypeType>()->getInstanceType();
if (auto existential = protocolType->getAs<ExistentialType>())
protocolType = existential->getConstraintType();
ProtocolDecl *protocol = protocolType->castTo<ProtocolType>()->getDecl();
SILValue value = B.createObjCProtocol(loc, protocol, resultTy);
// Protocol objects, despite being global objects, inherit default reference
// counting semantics from NSObject, so we need to retain the protocol
// reference when we use it to prevent it being released and attempting to
// deallocate itself. It doesn't matter if we ever actually clean up that
// retain though.
value = B.createCopyValue(loc, value);
return emitManagedRValueWithCleanup(value);
}
ManagedValue
SILGenFunction::emitOpenExistential(
SILLocation loc,
ManagedValue existentialValue,
SILType loweredOpenedType,
AccessKind accessKind) {
assert(isInFormalEvaluationScope());
SILType existentialType = existentialValue.getType();
switch (existentialType.getPreferredExistentialRepresentation()) {
case ExistentialRepresentation::Opaque: {
// With CoW existentials we can't consume the boxed value inside of
// the existential. (We could only do so after a uniqueness check on
// the box holding the value).
if (existentialType.isAddress()) {
OpenedExistentialAccess allowedAccess =
getOpenedExistentialAccessFor(accessKind);
if (!loweredOpenedType.isAddress()) {
assert(!silConv.useLoweredAddresses() &&
"Non-address loweredOpenedType is only allowed under opaque "
"value mode");
loweredOpenedType = loweredOpenedType.getAddressType();
}
SILValue archetypeValue =
B.createOpenExistentialAddr(loc, existentialValue.getValue(),
loweredOpenedType, allowedAccess);
return ManagedValue::forBorrowedAddressRValue(archetypeValue);
} else {
// borrow the existential and return an unmanaged opened value.
return B.createOpenExistentialValue(
loc, existentialValue, loweredOpenedType);
}
}
case ExistentialRepresentation::Metatype:
assert(existentialType.isObject());
return B.createOpenExistentialMetatype(
loc, existentialValue, loweredOpenedType);
case ExistentialRepresentation::Class:
assert(existentialType.isObject());
return B.createOpenExistentialRef(loc, existentialValue, loweredOpenedType);
case ExistentialRepresentation::Boxed:
if (existentialType.isAddress()) {
existentialValue = emitLoad(loc, existentialValue.getValue(),
getTypeLowering(existentialType),
SGFContext::AllowGuaranteedPlusZero,
IsNotTake);
}
existentialType = existentialValue.getType();
assert(existentialType.isObject());
if (loweredOpenedType.isAddress()) {
return B.createOpenExistentialBox(loc, existentialValue,
loweredOpenedType);
} else {
assert(!silConv.useLoweredAddresses());
return B.createOpenExistentialBoxValue(
loc, existentialValue, loweredOpenedType);
}
case ExistentialRepresentation::None:
llvm_unreachable("not existential");
}
llvm_unreachable("covered switch");
}
ManagedValue SILGenFunction::manageOpaqueValue(ManagedValue value,
SILLocation loc,
SGFContext C) {
// If the opaque value is consumable, we can just return the
// value with a cleanup. There is no need to retain it separately.
if (value.isPlusOneOrTrivial(*this))
return value;
// If the context wants a +0 value, guaranteed or immediate, we can
// give it to them, because OpenExistential emission guarantees the
// value.
if (C.isGuaranteedPlusZeroOk())
return value;
// If the context has an initialization a buffer, copy there instead
// of making a temporary allocation.
if (auto I = C.getEmitInto()) {
I->copyOrInitValueInto(*this, loc, value, /*init*/ false);
I->finishInitialization(*this);
return ManagedValue::forInContext();
}
// Otherwise, copy the value into a temporary.
return value.copyUnmanaged(*this, loc);
}
ManagedValue SILGenFunction::emitAsOrig(SILLocation loc,
AbstractionPattern origType,
CanType substType,
SILType expectedTy,
SGFContext C,
ValueProducerRef produceValue) {
// If the lowered substituted type already matches the substitution,
// we can just emit directly.
auto loweredSubstTy = getLoweredType(substType);
if (loweredSubstTy.getASTType() == expectedTy.getASTType()) {
auto result = produceValue(*this, loc, C);
// For convenience, force the result into the destination.
if (auto init = C.getEmitInto(); init && !result.isInContext()) {
result.forwardInto(*this, loc, init);
return ManagedValue::forInContext();
}
return result;
}
auto conversion =
Conversion::getSubstToOrig(origType, substType, loweredSubstTy, expectedTy);
auto result = emitConvertedRValue(loc, conversion, C, produceValue);
// emitConvertedRValue always forces results into the context.
assert((C.getEmitInto() != nullptr) == result.isInContext());
return result;
}
ManagedValue SILGenFunction::emitConvertedRValue(Expr *E,
const Conversion &conversion,
SGFContext C) {
return emitConvertedRValue(E, conversion, C,
[&](SILGenFunction &SGF, SILLocation loc, SGFContext C) {
return emitRValueAsSingleValue(E, C);
});
}
ManagedValue SILGenFunction::emitConvertedRValue(SILLocation loc,
const Conversion &conversion,
SGFContext C,
ValueProducerRef produceValue){
// If we're emitting into a converting context, check whether we can
// peephole the conversions together.
if (auto outerConversion = C.getAsConversion()) {
if (outerConversion->tryPeephole(*this, loc, conversion, produceValue)) {
outerConversion->finishInitialization(*this);
return ManagedValue::forInContext();
}
}
// Otherwise, set up a reabstracting context and try to emit into that.
ConvertingInitialization init(conversion, C);
auto result = produceValue(*this, loc, SGFContext(&init));
auto finishedResult = init.finishEmission(*this, loc, result);
return finishedResult;
}
ManagedValue
ConvertingInitialization::finishEmission(SILGenFunction &SGF,
SILLocation loc,
ManagedValue formalResult) {
switch (getState()) {
case Uninitialized:
assert(!formalResult.isInContext());
State = Extracted;
return TheConversion.emit(SGF, loc, formalResult, FinalContext);
case Initialized:
llvm_unreachable("initialization never finished");
case PackExpanding:
case FinishedPackExpanding:
llvm_unreachable("cannot mix this with pack emission");
case Finished:
assert(formalResult.isInContext());
assert(!Value.isInContext() || FinalContext.getEmitInto());
State = Extracted;
return Value;
case Extracted:
llvm_unreachable("value already extracted");
}
llvm_unreachable("bad state");
}
void ConvertingInitialization::
performPackExpansionInitialization(SILGenFunction &SGF,
SILLocation loc,
SILValue indexWithinComponent,
llvm::function_ref<void(Initialization *into)> fn) {
// Bookkeeping.
assert(getState() == Uninitialized);
State = PackExpanding;
auto finalInit = FinalContext.getEmitInto();
assert(finalInit); // checked by canPerformPackExpansionInitialization
finalInit->performPackExpansionInitialization(
SGF, loc, indexWithinComponent,
[&](Initialization *subEltInit) {
// FIXME: translate the subst types into the element context.
ConvertingInitialization eltInit(getConversion(), SGFContext(subEltInit));
fn(&eltInit);
});
}
static std::optional<CombinedConversions>
combineConversions(SILGenFunction &SGF, const Conversion &outer,
const Conversion &inner);
bool ConvertingInitialization::tryPeephole(SILGenFunction &SGF,
SILLocation loc,
ManagedValue origValue,
Conversion innerConversion) {
return tryPeephole(SGF, loc, innerConversion,
[&](SILGenFunction &SGF, SILLocation loc, SGFContext C) {
return origValue;
});
}
bool ConvertingInitialization::tryPeephole(SILGenFunction &SGF,
Expr *E,
Conversion innerConversion) {
return tryPeephole(SGF, E, innerConversion,
[&](SILGenFunction &SGF, SILLocation loc, SGFContext C) {
return SGF.emitRValueAsSingleValue(E, C);
});
}
bool ConvertingInitialization::tryPeephole(SILGenFunction &SGF, SILLocation loc,
Conversion innerConversion,
ValueProducerRef produceOrigValue) {
const auto &outerConversion = getConversion();
auto combined = combineConversions(SGF, outerConversion, innerConversion);
if (!combined)
return false;
assert(!combined->second || combined->first);
ManagedValue result;
if (!combined->first) {
result = produceOrigValue(SGF, loc, FinalContext);
} else if (!combined->second) {
result = SGF.emitConvertedRValue(loc, *combined->first, FinalContext,
produceOrigValue);
} else {
// Compute the first result without any context. We know that we won't
// be able to combine these conversions, so computing them together
// is just a waste of time, and it runs the risk of an infinite recursion
// if we screwed something up.
auto firstResult =
SGF.emitConvertedRValue(loc, *combined->first, SGFContext(),
produceOrigValue);
result = combined->second->emit(SGF, loc, firstResult, FinalContext);
}
initWithConvertedValue(SGF, loc, result);
return true;
}
void ConvertingInitialization::copyOrInitValueInto(SILGenFunction &SGF,
SILLocation loc,
ManagedValue formalValue,
bool isInit) {
assert(getState() == Uninitialized && "already have saved value?");
// TODO: take advantage of borrowed inputs?
if (!isInit) formalValue = formalValue.copy(SGF, loc);
// Convert the value.
auto value = TheConversion.emit(SGF, loc, formalValue, FinalContext);
initWithConvertedValue(SGF, loc, value);
}
void ConvertingInitialization::initWithConvertedValue(SILGenFunction &SGF,
SILLocation loc,
ManagedValue value) {
assert(getState() == Uninitialized);
auto finalInit = FinalContext.getEmitInto();
if (value.isInContext()) {
assert(finalInit);
} else if (finalInit) {
value.ensurePlusOne(SGF, loc).forwardInto(SGF, loc, finalInit);
value = ManagedValue::forInContext();
}
assert(value.isInContext() == (finalInit != nullptr));
Value = value;
State = Initialized;
}
ManagedValue
ConvertingInitialization::emitWithAdjustedConversion(SILGenFunction &SGF,
SILLocation loc,
Conversion adjustedConversion,
ValueProducerRef produceValue) {
ConvertingInitialization init(adjustedConversion, getFinalContext());
auto result = produceValue(SGF, loc, SGFContext(&init));
result = init.finishEmission(SGF, loc, result);
initWithConvertedValue(SGF, loc, result);
finishInitialization(SGF);
return ManagedValue::forInContext();
}
ManagedValue Conversion::emit(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, SGFContext C) const {
switch (getKind()) {
case AnyErasure:
case BridgingSubtype:
case Subtype:
return SGF.emitTransformedValue(loc, value, getSourceType(),
getResultType(), C);
case ForceOptional: {
auto &optTL = SGF.getTypeLowering(value.getType());
return SGF.emitCheckedGetOptionalValueFrom(loc, value,
/*isForceUnwrap*/ true,
optTL, C);
}
case BridgeToObjC:
return SGF.emitNativeToBridgedValue(loc, value,
getSourceType(),
getResultType(),
getLoweredResultType(), C);
case ForceAndBridgeToObjC: {
auto &tl = SGF.getTypeLowering(value.getType());
auto sourceValueType = getSourceType().getOptionalObjectType();
value = SGF.emitCheckedGetOptionalValueFrom(loc, value,
/*isImplicitUnwrap*/ true,
tl, SGFContext());
return SGF.emitNativeToBridgedValue(loc, value, sourceValueType,
getResultType(),
getLoweredResultType(), C);
}
case BridgeFromObjC:
return SGF.emitBridgedToNativeValue(loc, value,
getSourceType(), getResultType(),
getLoweredResultType(), C);
case BridgeResultFromObjC:
return SGF.emitBridgedToNativeValue(loc, value,
getSourceType(), getResultType(),
getLoweredResultType(), C,
/*isResult*/ true);
case Reabstract:
assert(value.getType().getObjectType() ==
getReabstractionInputLoweredType().getObjectType());
return SGF.emitTransformedValue(loc, value,
getReabstractionInputOrigType(),
getReabstractionInputSubstType(),
getReabstractionOutputOrigType(),
getReabstractionOutputSubstType(),
getReabstractionOutputLoweredType(), C);
}
llvm_unreachable("bad kind");
}
OptionalInjectionConversion
Conversion::adjustForInitialOptionalInjection() const {
switch (getKind()) {
case Reabstract:
return OptionalInjectionConversion::forValue(
getReabstract(
getReabstractionInputOrigType().getOptionalObjectType(),
getReabstractionInputSubstType().getOptionalObjectType(),
getReabstractionInputLoweredType().getOptionalObjectType(),
getReabstractionOutputOrigType().getOptionalObjectType(),
getReabstractionOutputSubstType().getOptionalObjectType(),
getReabstractionOutputLoweredType().getOptionalObjectType())
);
case Subtype:
return OptionalInjectionConversion::forValue(
getSubtype(
getSourceType().getOptionalObjectType(),
getResultType().getOptionalObjectType(),
getLoweredResultType().getOptionalObjectType())
);
// TODO: can these actually happen?
case ForceOptional:
case ForceAndBridgeToObjC:
case BridgingSubtype:
return OptionalInjectionConversion();
case AnyErasure:
case BridgeToObjC:
case BridgeFromObjC:
case BridgeResultFromObjC:
return OptionalInjectionConversion::forInjection(
getBridging(getKind(), getSourceType().getOptionalObjectType(),
getResultType(), getLoweredResultType(),
isBridgingExplicit())
);
}
llvm_unreachable("bad kind");
}
std::optional<Conversion>
Conversion::adjustForInitialOptionalConversions(CanType newSourceType) const {
switch (getKind()) {
case Reabstract:
// TODO: handle reabstraction conversions here, too.
return std::nullopt;
case ForceOptional:
case ForceAndBridgeToObjC:
return std::nullopt;
case BridgingSubtype:
case Subtype:
case AnyErasure:
case BridgeToObjC:
case BridgeFromObjC:
case BridgeResultFromObjC:
return Conversion::getBridging(getKind(), newSourceType,
getResultType(), getLoweredResultType(),
isBridgingExplicit());
}
llvm_unreachable("bad kind");
}
std::optional<Conversion> Conversion::adjustForInitialForceValue() const {
switch (getKind()) {
case Reabstract:
case AnyErasure:
case BridgeFromObjC:
case BridgeResultFromObjC:
case ForceOptional:
case ForceAndBridgeToObjC:
case BridgingSubtype:
case Subtype:
return std::nullopt;
case BridgeToObjC: {
auto sourceOptType = getSourceType().wrapInOptionalType();
return Conversion::getBridging(ForceAndBridgeToObjC,
sourceOptType, getResultType(),
getLoweredResultType(),
isBridgingExplicit());
}
}
llvm_unreachable("bad kind");
}
void Conversion::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
static void printReabstraction(const Conversion &conversion,
llvm::raw_ostream &out, StringRef name) {
out << name << "(inputOrig: ";
conversion.getReabstractionInputOrigType().print(out);
out << ", inputSubst: ";
conversion.getReabstractionInputSubstType().print(out);
out << ", inputLowered: ";
conversion.getReabstractionInputLoweredType().print(out);
out << ", outputOrig: ";
conversion.getReabstractionOutputOrigType().print(out);
out << ", outputSubst: ";
conversion.getReabstractionOutputSubstType().print(out);
out << ", outputLowered: ";
conversion.getReabstractionOutputLoweredType().print(out);
out << ')';
}
static void printBridging(const Conversion &conversion, llvm::raw_ostream &out,
StringRef name) {
out << name << "(from: ";
conversion.getSourceType().print(out);
out << ", to: ";
conversion.getResultType().print(out);
out << ", explicit: " << conversion.isBridgingExplicit() << ')';
}
void Conversion::print(llvm::raw_ostream &out) const {
switch (getKind()) {
case Reabstract:
return printReabstraction(*this, out, "Reabstract");
case AnyErasure:
return printBridging(*this, out, "AnyErasure");
case BridgingSubtype:
return printBridging(*this, out, "BridgingSubtype");
case Subtype:
return printBridging(*this, out, "Subtype");
case ForceOptional:
return printBridging(*this, out, "ForceOptional");
case BridgeToObjC:
return printBridging(*this, out, "BridgeToObjC");
case ForceAndBridgeToObjC:
return printBridging(*this, out, "ForceAndBridgeToObjC");
case BridgeFromObjC:
return printBridging(*this, out, "BridgeFromObjC");
case BridgeResultFromObjC:
return printBridging(*this, out, "BridgeResultFromObjC");
}
llvm_unreachable("bad kind");
}
static bool areRelatedTypesForBridgingPeephole(CanType sourceType,
CanType resultType) {
if (sourceType == resultType)
return true;
if (auto resultObjType = resultType.getOptionalObjectType()) {
// Optional-to-optional.
if (auto sourceObjType = sourceType.getOptionalObjectType()) {
return areRelatedTypesForBridgingPeephole(sourceObjType, resultObjType);
}
// Optional injection.
return areRelatedTypesForBridgingPeephole(sourceType, resultObjType);
}
// If the result type is AnyObject, then we can always apply the bridge
// via Any.
if (resultType->isAnyObject()) {
// ... as long as the source type is not an Optional.
if (sourceType->isBridgeableObjectType())
return true;
}
// TODO: maybe other class existentials? Existential conversions?
// They probably aren't important here.
// All the other rules only apply to class types.
if (!sourceType->mayHaveSuperclass() ||
!resultType->mayHaveSuperclass())
return false;
// Walk up the class hierarchy looking for an exact match.
while (auto superclass = sourceType->getSuperclass()) {
sourceType = superclass->getCanonicalType();
if (sourceType == resultType)
return true;
}
// Otherwise, we don't know how to do this conversion.
return false;
}
/// Does the given conversion turn a non-class type into Any, taking into
/// account optional-to-optional conversions?
static bool isValueToAnyConversion(CanType from, CanType to) {
while (auto toObj = to.getOptionalObjectType()) {
to = toObj;
if (auto fromObj = from.getOptionalObjectType()) {
from = fromObj;
}
}
assert(to->isAny());
// Types that we can easily transform into AnyObject:
// - classes and class-bounded archetypes
// - class existentials, even if not pure-@objc
// - @convention(objc) metatypes
// - @convention(block) functions
return !from->isAnyClassReferenceType() &&
!from->isBridgeableObjectType();
}
/// Check whether this conversion is Any??? to AnyObject???. If the result
/// type is less optional, it doesn't count.
static bool isMatchedAnyToAnyObjectConversion(CanType from, CanType to) {
while (auto fromObject = from.getOptionalObjectType()) {
auto toObject = to.getOptionalObjectType();
if (!toObject) return false;
from = fromObject;
to = toObject;
}
if (from->isAny()) {
assert(to->lookThroughAllOptionalTypes()->isAnyObject());
return true;
}
return false;
}
Conversion
Conversion::withSourceType(SILGenFunction &SGF, CanType substType) const {
return withSourceType(AbstractionPattern(substType), substType,
SGF.getLoweredType(substType));
}
Conversion
Conversion::withSourceType(AbstractionPattern origType,
CanType substType, SILType loweredType) const {
switch (getKind()) {
case Reabstract:
return getReabstract(origType, substType, loweredType,
getReabstractionOutputOrigType(),
getReabstractionOutputSubstType(),
getReabstractionOutputLoweredType());
case Subtype:
return getSubtype(substType, getResultType(), getLoweredResultType());
default:
llvm_unreachable("operation not supported on specialized bridging "
"conversions");
}
}
Conversion
Conversion::withResultType(AbstractionPattern origType,
CanType substType, SILType loweredType) const {
switch (getKind()) {
case Reabstract:
return getReabstract(getReabstractionInputOrigType(),
getReabstractionInputSubstType(),
getReabstractionInputLoweredType(),
origType, substType, loweredType);
case Subtype:
return getSubtype(getSourceType(), substType, loweredType);
default:
llvm_unreachable("operation not supported on specialized bridging "
"conversions");
}
}
/// Can a sequence of conversions from type1 -> type2 -> type3 be represented
/// as a conversion from type1 -> type3, or does that lose critical information?
static bool isCombinableConversionImpl(CanType type1,
CanType type2,
CanType type3) {
if (type1 == type2 || type2 == type3) return true;
// If the final result type is optional, then either we've got two
// optional->optional conversions or we injected into optional in at
// least one of the stages. Our analysis of how to do the conversion is
// going to be sensitive to the static optional depth, so make sure we
// don't lose that.
if (auto object3 = type3.getOptionalObjectType()) {
if (auto object2 = type2.getOptionalObjectType()) {
// If we have optional -> optional conversions at both stages,
// look through them all.
if (auto object1 = type1.getOptionalObjectType()) {
return isCombinableConversionImpl(object1, object2, object3);
// If we have an injection in the first stage, we'll still know we have
// an injection in the overall conversion.
} else {
return isCombinableConversionImpl(type1, object2, object3);
}
// We have an injection in the second stage. If we lose optionality
// in the first stage (i.e. we're converting an optional to an
// existential), then the combined conversion will be misinterpreted
// as an optional-to-optional conversion.
} else if (type1.getOptionalObjectType()) {
return false;
// Otherwise, we're preserving that we have an injection overall.
} else {
return isCombinableConversionImpl(type1, type2, object3);
}
}
// When we open an existential, we bind the erased type; this type should
// not change if we combine the conversions. The binding looks
// polymorphically through certain types but not through others.
if (type3.isExistentialType()) {
// We need to consider type2 to see if it has structure that
// would make it non-polymorphic, like if it's an optional.
// Existentials (including existential metatypes) are polymorphic.
if (type2.isAnyExistentialType())
return true;
// Class types are polymorphic.
if (type2.isAnyClassReferenceType())
return true;
// Metatypes are polymorphic.
if (isa<MetatypeType>(type2))
return true;
// Otherwise, no. Since we know that type1 != type2, we know that type2
// must have some kind of subtype-supporting structure; with the cases
// above ruled out, that must be either an optional or a function type.
// Note that, with an optional, we can probably still dynamically cast
// successfully, but that's not the standard we need to enforce here.
return false;
}
// If we have a function or tuple type, we need to see if we have a
// non-peepholeable conversion in the subconversions.
if (auto tuple3 = dyn_cast<TupleType>(type3)) {
auto tuple2 = cast<TupleType>(type2);
auto tuple1 = cast<TupleType>(type1);
assert(tuple1->getNumElements() == tuple3->getNumElements());
assert(tuple2->getNumElements() == tuple3->getNumElements());
for (auto i : range(tuple3->getNumElements())) {
if (!isCombinableConversionImpl(tuple1.getElementType(i),
tuple2.getElementType(i),
tuple3.getElementType(i)))
return false;
}
return true;
}
if (auto fn3 = dyn_cast<AnyFunctionType>(type3)) {
auto fn2 = cast<AnyFunctionType>(type2);
auto fn1 = cast<AnyFunctionType>(type1);
assert(fn1->getNumParams() == fn3->getNumParams());
assert(fn2->getNumParams() == fn3->getNumParams());
if (!isCombinableConversionImpl(fn1.getResult(),
fn2.getResult(),
fn3.getResult()))
return false;
for (auto i : range(fn3->getNumParams())) {
// Note the reversal for invariance.
if (!isCombinableConversionImpl(fn3.getParams()[i].getParameterType(),
fn2.getParams()[i].getParameterType(),
fn1.getParams()[i].getParameterType()))
return false;
}
return true;
}
if (auto exp3 = dyn_cast<PackExpansionType>(type3)) {
auto exp2 = cast<PackExpansionType>(type2);
auto exp1 = cast<PackExpansionType>(type1);
return isCombinableConversionImpl(exp1.getPatternType(),
exp2.getPatternType(),
exp3.getPatternType());
}
// The only remaining types that support subtyping are classes and
// metatypes, and we can definitely just convert those.
return true;
}
/// Can we combine the given conversions so that we go straight from
/// innerSrcType to outerDestType, or does that lose information?
static bool isCombinableConversion(const Conversion &inner,
const Conversion &outer) {
assert(inner.getResultType() == outer.getSourceType() &&
"unexpected intermediate conversion");
return isCombinableConversionImpl(inner.getSourceType(),
inner.getResultType(),
outer.getResultType());
}
/// Given that we cannot combine the given conversions, at least
/// "salvage" them to propagate semantically-critical contextual
/// type information inward.
static std::optional<CombinedConversions>
salvageUncombinableConversion(SILGenFunction &SGF,
const Conversion &inner,
const Conversion &outer) {
// If the outer type is `@isolated(any)`, and the intermediate type
// is non-isolated, propagate the `@isolated(any)` conversion inwards.
// We don't want to do this if the intermediate function has some
// explicit isolation because we need to honor that conversion even
// if it's not the formal isolation of the source function (e.g. if
// the user coerces a nonisolated function to a @MainActor function
// type). But if the intermediate function type is non-isolated, the
// actual closure might still be isolated, either because we're
// type-checking in some mode that doesn't propagate isolation in types
// or because the isolation isn't representable in the type system
// (e.g. it's isolated to some capture).
if (auto outerOutputFnType =
dyn_cast<AnyFunctionType>(outer.getResultType())) {
auto intermediateFnType = cast<AnyFunctionType>(outer.getSourceType());
if (outerOutputFnType->getIsolation().isErased() &&
intermediateFnType->getIsolation().isNonIsolated()) {
// Construct new intermediate orig/subst/lowered types that are
// just the old intermediate type with `@isolated(any)`.
auto newIntermediateSubstType = intermediateFnType.withExtInfo(
intermediateFnType->getExtInfo().withIsolation(
FunctionTypeIsolation::forErased()));
auto newIntermediateOrigType =
AbstractionPattern(newIntermediateSubstType);
auto newIntermediateLoweredType =
SGF.getLoweredType(newIntermediateSubstType);
// Construct the new conversions with the new intermediate type.
return CombinedConversions(
inner.withResultType(newIntermediateOrigType,
newIntermediateSubstType,
newIntermediateLoweredType),
outer.withSourceType(SGF, newIntermediateSubstType));
}
}
return std::nullopt;
}
static std::optional<CombinedConversions>
combineReabstract(SILGenFunction &SGF,
const Conversion &outer,
const Conversion &inner) {
// We can never combine conversions in a way that would lose information
// about the intermediate types.
if (!isCombinableConversion(inner, outer))
return salvageUncombinableConversion(SGF, inner, outer);
// Recognize when the whole conversion is an identity.
if (inner.getReabstractionInputLoweredType().getObjectType() ==
outer.getReabstractionOutputLoweredType().getObjectType())
return CombinedConversions();
// Produce a single conversion that goes straight from the inner input
// to the outer output.
return CombinedConversions(
Conversion::getReabstract(inner.getReabstractionInputOrigType(),
inner.getReabstractionInputSubstType(),
inner.getReabstractionInputLoweredType(),
outer.getReabstractionOutputOrigType(),
outer.getReabstractionOutputSubstType(),
outer.getReabstractionOutputLoweredType())
);
}
static std::optional<CombinedConversions>
combineSubtypeIntoReabstract(SILGenFunction &SGF,
const Conversion &outer,
const Conversion &inner) {
// We can never combine conversions in a way that would lose information
// about the intermediate types.
if (!isCombinableConversion(inner, outer))
return salvageUncombinableConversion(SGF, inner, outer);
auto inputSubstType = inner.getSourceType();
auto inputOrigType = AbstractionPattern(inputSubstType);
auto inputLoweredTy = SGF.getLoweredType(inputOrigType, inputSubstType);
return CombinedConversions(
Conversion::getReabstract(
inputOrigType, inputSubstType, inputLoweredTy,
outer.getReabstractionOutputOrigType(),
outer.getReabstractionOutputSubstType(),
outer.getReabstractionOutputLoweredType())
);
}
static std::optional<CombinedConversions>
combineSubtype(SILGenFunction &SGF,
const Conversion &outer, const Conversion &inner) {
if (!isCombinableConversion(inner, outer))
return salvageUncombinableConversion(SGF, inner, outer);
return CombinedConversions(
Conversion::getSubtype(inner.getSourceType(), outer.getResultType(),
outer.getLoweredResultType())
);
}
static std::optional<CombinedConversions>
combineBridging(SILGenFunction &SGF,
const Conversion &outer, const Conversion &inner) {
bool outerExplicit = outer.isBridgingExplicit();
bool innerExplicit = inner.isBridgingExplicit();
// Never peephole if both conversions are explicit; there might be
// something the user's trying to do which we don't understand.
if (outerExplicit && innerExplicit)
return std::nullopt;
// Otherwise, we can peephole if we understand the resulting conversion
// and applying the peephole doesn't change semantics.
CanType sourceType = inner.getSourceType();
CanType intermediateType = inner.getResultType();
assert(intermediateType == outer.getSourceType());
// If we're doing a peephole involving a force, we want to propagate
// the force to the source value. If it's not in fact optional, that
// won't work.
bool forced = outer.getKind() == Conversion::ForceAndBridgeToObjC;
if (forced) {
sourceType = sourceType.getOptionalObjectType();
if (!sourceType)
return std::nullopt;
intermediateType = intermediateType.getOptionalObjectType();
assert(intermediateType);
}
CanType resultType = outer.getResultType();
SILType loweredSourceTy = SGF.getLoweredType(sourceType);
SILType loweredResultTy = outer.getLoweredResultType();
auto applyPeephole = [&](const std::optional<Conversion> &conversion) {
if (!forced) {
if (!conversion)
return CombinedConversions();
return CombinedConversions(*conversion);
}
auto forceConversion =
Conversion::getBridging(Conversion::ForceOptional,
inner.getSourceType(), sourceType,
loweredSourceTy);
if (conversion)
return CombinedConversions(forceConversion, *conversion);
return CombinedConversions(forceConversion);
};
// Converting to Any doesn't do anything semantically special, so we
// can apply the peephole unconditionally.
if (isMatchedAnyToAnyObjectConversion(intermediateType, resultType)) {
if (loweredSourceTy == loweredResultTy) {
return applyPeephole(std::nullopt);
} else if (isValueToAnyConversion(sourceType, intermediateType)) {
return applyPeephole(
Conversion::getBridging(Conversion::BridgeToObjC,
sourceType, resultType, loweredResultTy));
} else {
return applyPeephole(
Conversion::getBridging(Conversion::BridgingSubtype,
sourceType, resultType, loweredResultTy));
}
}
// Otherwise, undoing a bridging conversions can change semantics by
// e.g. removing a copy, so we shouldn't do it unless the special
// syntactic bridging peephole applies. That requires one of the
// conversions to be explicit.
// TODO: use special SILGen to preserve semantics in this case,
// e.g. by making a copy.
if (!outerExplicit && !innerExplicit) {
return std::nullopt;
}
// Okay, now we're in the domain of the bridging peephole: an
// explicit bridging conversion can cancel out an implicit bridge
// between related types.
// If the source and destination types have exactly the same
// representation, then (1) they're related and (2) we can directly
// emit into the context.
if (loweredSourceTy.getObjectType() == loweredResultTy.getObjectType()) {
return applyPeephole(std::nullopt);
}
// Look for a subtype relationship between the source and destination.
if (areRelatedTypesForBridgingPeephole(sourceType, resultType)) {
return applyPeephole(
Conversion::getBridging(Conversion::BridgingSubtype,
sourceType, resultType, loweredResultTy));
}
// If the inner conversion is a result conversion that removes
// optionality, and the non-optional source type is a subtype of the
// value type, this is just an implicit force.
if (!forced &&
inner.getKind() == Conversion::BridgeResultFromObjC) {
if (auto sourceValueType = sourceType.getOptionalObjectType()) {
if (!intermediateType.getOptionalObjectType() &&
areRelatedTypesForBridgingPeephole(sourceValueType, resultType)) {
forced = true;
sourceType = sourceValueType;
loweredSourceTy = loweredSourceTy.getOptionalObjectType();
return applyPeephole(
Conversion::getBridging(Conversion::BridgingSubtype,
sourceValueType, resultType, loweredResultTy));
}
}
}
return std::nullopt;
}
/// TODO: this would really be a lot cleaner if it just returned a
/// std::optional<Conversion>.
static std::optional<CombinedConversions>
combineConversions(SILGenFunction &SGF, const Conversion &outer,
const Conversion &inner) {
switch (outer.getKind()) {
case Conversion::Reabstract:
switch (inner.getKind()) {
case Conversion::Reabstract:
return combineReabstract(SGF, outer, inner);
case Conversion::Subtype:
return combineSubtypeIntoReabstract(SGF, outer, inner);
default:
return std::nullopt;
}
case Conversion::Subtype:
if (inner.getKind() == Conversion::Subtype)
return combineSubtype(SGF, outer, inner);
return std::nullopt;
case Conversion::AnyErasure:
case Conversion::BridgingSubtype:
case Conversion::BridgeFromObjC:
case Conversion::BridgeResultFromObjC:
// TODO: maybe peephole bridging through a Swift type?
// This isn't actually something that happens in normal code generation.
return std::nullopt;
case Conversion::ForceOptional:
return std::nullopt;
case Conversion::ForceAndBridgeToObjC:
case Conversion::BridgeToObjC:
switch (inner.getKind()) {
case Conversion::AnyErasure:
case Conversion::BridgeFromObjC:
case Conversion::BridgeResultFromObjC:
return combineBridging(SGF, outer, inner);
default:
return std::nullopt;
}
}
llvm_unreachable("bad kind");
}
bool Lowering::canPeepholeConversions(SILGenFunction &SGF,
const Conversion &outer,
const Conversion &inner) {
return combineConversions(SGF, outer, inner).has_value();
}
|