File: SILGenDecl.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (2311 lines) | stat: -rw-r--r-- 88,853 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
//===--- SILGenDecl.cpp - Implements Lowering of ASTs -> SIL for Decls ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "SILGen.h"
#include "SILGenDynamicCast.h"
#include "Scope.h"
#include "SwitchEnumBuilder.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/ProfileCounter.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILDebuggerClient.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILSymbolVisitor.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/SmallString.h"
#include <iterator>

using namespace swift;
using namespace Lowering;

// Utility for emitting diagnostics.
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
                     U &&...args) {
  Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}

void Initialization::_anchor() {}
void SILDebuggerClient::anchor() {}

static void copyOrInitPackExpansionInto(SILGenFunction &SGF,
                                        SILLocation loc,
                                        SILValue tupleAddr,
                                        CanPackType formalPackType,
                                        unsigned componentIndex,
                                        CleanupHandle componentCleanup,
                                        Initialization *expansionInit,
                                        bool isInit) {
  auto expansionTy = tupleAddr->getType().getTupleElementType(componentIndex);
  assert(expansionTy.is<PackExpansionType>());

  auto opening = SGF.createOpenedElementValueEnvironment(expansionTy);
  auto openedEnv = opening.first;
  auto eltTy = opening.second;

  assert(expansionInit);
  assert(expansionInit->canPerformPackExpansionInitialization());

  // Exit the component-wide cleanup for the expansion component.
  if (componentCleanup.isValid())
    SGF.Cleanups.forwardCleanup(componentCleanup);

  SGF.emitDynamicPackLoop(loc, formalPackType, componentIndex, openedEnv,
                          [&](SILValue indexWithinComponent,
                              SILValue packExpansionIndex,
                              SILValue packIndex) {
    expansionInit->performPackExpansionInitialization(SGF, loc,
                                                      indexWithinComponent,
                                                [&](Initialization *eltInit) {
      // Project the current tuple element.
      auto eltAddr =
        SGF.B.createTuplePackElementAddr(loc, packIndex, tupleAddr, eltTy);

      SILValue elt = eltAddr;
      if (!eltTy.isAddressOnly(SGF.F)) {
        elt = SGF.B.emitLoadValueOperation(loc, elt,
                                           LoadOwnershipQualifier::Take);
      }

      // Enter a cleanup for the current element, which we need to consume
      // on this iteration of the loop, and the remaining elements in the
      // expansion component, which we need to destroy if we throw from
      // the initialization.
      CleanupHandle eltCleanup = CleanupHandle::invalid();
      CleanupHandle tailCleanup = CleanupHandle::invalid();
      if (componentCleanup.isValid()) {
        eltCleanup = SGF.enterDestroyCleanup(elt);
        tailCleanup = SGF.enterPartialDestroyRemainingTupleCleanup(tupleAddr,
                        formalPackType, componentIndex, indexWithinComponent);
      }

      ManagedValue eltMV;
      if (eltCleanup == CleanupHandle::invalid()) {
        eltMV = ManagedValue::forRValueWithoutOwnership(elt);
      } else {
        eltMV = ManagedValue::forOwnedRValue(elt, eltCleanup);
      }

      // Perform the initialization.  If this doesn't consume the
      // element value, that's fine, we'll just destroy it as part of
      // leaving the iteration.
      eltInit->copyOrInitValueInto(SGF, loc, eltMV, isInit);
      eltInit->finishInitialization(SGF);

      // Deactivate the tail cleanup before continuing the loop.
      if (tailCleanup.isValid())
        SGF.Cleanups.forwardCleanup(tailCleanup);
    });
  });

  expansionInit->finishInitialization(SGF);
}

void TupleInitialization::copyOrInitValueInto(SILGenFunction &SGF,
                                              SILLocation loc,
                                              ManagedValue value, bool isInit) {
  auto sourceType = value.getType().castTo<TupleType>();
  assert(sourceType->getNumElements() == SubInitializations.size());

  // We have to emit a different pattern when there are pack expansions.
  // Fortunately, we can assume this doesn't happen with objects because
  // tuples contain pack expansions are address-only.
  auto containsPackExpansion = sourceType.containsPackExpansionType();

  CanPackType formalPackType;
  if (containsPackExpansion)
    formalPackType = FormalTupleType.getInducedPackType();

  // Process all values before initialization all at once to ensure
  // all cleanups are setup on all tuple elements before a potential
  // early exit.
  SmallVector<ManagedValue, 8> destructuredValues;

  // In the object case, destructure the tuple.
  if (value.getType().isObject()) {
    assert(!containsPackExpansion);
    SGF.B.emitDestructureValueOperation(loc, value, destructuredValues);
  } else {
    // In the address case, we forward the underlying value and store it
    // into memory and then create a +1 cleanup. since we assume here
    // that we have a +1 value since we are forwarding into memory.
    assert(value.isPlusOneOrTrivial(SGF) &&
           "Can not store a +0 value into memory?!");
    CleanupCloner cloner(SGF, value);
    SILValue v = value.forward(SGF);

    auto sourceSILType = value.getType();
    for (auto i : range(sourceType->getNumElements())) {
      SILType fieldTy = sourceSILType.getTupleElementType(i);
      if (containsPackExpansion && fieldTy.is<PackExpansionType>()) {
        destructuredValues.push_back(
          cloner.cloneForTuplePackExpansionComponent(v, formalPackType, i));
        continue;
      }

      SILValue elt;
      if (containsPackExpansion) {
        auto packIndex = SGF.B.createScalarPackIndex(loc, i, formalPackType);
        elt = SGF.B.createTuplePackElementAddr(loc, packIndex, v, fieldTy);
      } else {
        elt = SGF.B.createTupleElementAddr(loc, v, i, fieldTy);
      }

      if (!fieldTy.isAddressOnly(SGF.F)) {
        elt = SGF.B.emitLoadValueOperation(loc, elt,
                                           LoadOwnershipQualifier::Take);
      }
      destructuredValues.push_back(cloner.clone(elt));
    }
  }

  assert(destructuredValues.size() == SubInitializations.size());

  for (auto i : indices(destructuredValues)) {
    if (containsPackExpansion) {
      bool isPackExpansion =
        (destructuredValues[i].getValue() == value.getValue());
      assert(isPackExpansion ==
               isa<PackExpansionType>(sourceType.getElementType(i)));
      if (isPackExpansion) {
        auto packAddr = destructuredValues[i].getValue();
        auto componentCleanup = destructuredValues[i].getCleanup();
        copyOrInitPackExpansionInto(SGF, loc, packAddr, formalPackType,
                                    i, componentCleanup,
                                    SubInitializations[i].get(), isInit);
        continue;
      }
    }

    SubInitializations[i]->copyOrInitValueInto(SGF, loc, destructuredValues[i],
                                               isInit);
    SubInitializations[i]->finishInitialization(SGF);
  }
}

void TupleInitialization::finishUninitialized(SILGenFunction &SGF) {
  for (auto &subInit : SubInitializations) {
    subInit->finishUninitialized(SGF);
  }
}

namespace {
  class CleanupClosureConstant : public Cleanup {
    SILValue closure;
  public:
    CleanupClosureConstant(SILValue closure) : closure(closure) {}
    void emit(SILGenFunction &SGF, CleanupLocation l,
              ForUnwind_t forUnwind) override {
      SGF.B.emitDestroyValueOperation(l, closure);
    }
    void dump(SILGenFunction &) const override {
#ifndef NDEBUG
      llvm::errs() << "CleanupClosureConstant\n"
                   << "State:" << getState() << "\n"
                   << "closure:" << closure << "\n";
#endif
    }
  };
} // end anonymous namespace

SubstitutionMap SILGenFunction::getForwardingSubstitutionMap() {
  return F.getForwardingSubstitutionMap();
}

void SILGenFunction::visitFuncDecl(FuncDecl *fd) {
  // Generate the local function body.
  SGM.emitFunction(fd);
}

MutableArrayRef<InitializationPtr>
SingleBufferInitialization::
splitIntoTupleElements(SILGenFunction &SGF, SILLocation loc, CanType type,
                       SmallVectorImpl<InitializationPtr> &buf) {
  assert(SplitCleanups.empty() && "getting sub-initializations twice?");
  auto address = getAddressForInPlaceInitialization(SGF, loc);
  return splitSingleBufferIntoTupleElements(SGF, loc, type, address,
                                            buf, SplitCleanups);
}

MutableArrayRef<InitializationPtr>
SingleBufferInitialization::
splitSingleBufferIntoTupleElements(SILGenFunction &SGF, SILLocation loc,
                                   CanType type, SILValue baseAddr,
                                   SmallVectorImpl<InitializationPtr> &buf,
                     TinyPtrVector<CleanupHandle::AsPointer> &splitCleanups) {
  auto tupleType = cast<TupleType>(type);

  // We can still split the initialization of a tuple with a pack
  // expansion component (as long as the initializer is cooperative),
  // but we have to emit a different code pattern.
  bool hasExpansion = tupleType.containsPackExpansionType();

  // If there's an expansion in the tuple, we'll need the induced pack
  // type for the tuple elements below.
  CanPackType inducedPackType;
  if (hasExpansion) {
    inducedPackType = tupleType.getInducedPackType();
  }

  // Destructure the buffer into per-element buffers.
  for (auto i : indices(tupleType->getElementTypes())) {
    // Project the element.
    SILValue eltAddr;

    // If this element is a pack expansion, we have to produce an
    // Initialization that will drill appropriately to the right tuple
    // element within a dynamic pack loop.
    if (hasExpansion && isa<PackExpansionType>(tupleType.getElementType(i))) {
      auto expansionInit =
        TuplePackExpansionInitialization::create(SGF, baseAddr,
                                                 inducedPackType, i);
      auto expansionCleanup = expansionInit->getExpansionCleanup();
      if (expansionCleanup.isValid())
        splitCleanups.push_back(expansionCleanup);
      buf.emplace_back(expansionInit.release());
      continue;

    // If this element is scalar, but it's into a tuple with pack
    // expansions, produce a structural pack index into the induced
    // pack type and use that to project the right element.
    } else if (hasExpansion) {
      auto packIndex = SGF.B.createScalarPackIndex(loc, i, inducedPackType);
      auto eltTy = baseAddr->getType().getTupleElementType(i);
      eltAddr = SGF.B.createTuplePackElementAddr(loc, packIndex, baseAddr,
                                                 eltTy);

    // Otherwise, we can just use simple projection.
    } else {
      eltAddr = SGF.B.createTupleElementAddr(loc, baseAddr, i);
    }

    // Create an initialization to initialize the element.
    auto &eltTL = SGF.getTypeLowering(eltAddr->getType());
    auto eltInit = SGF.useBufferAsTemporary(eltAddr, eltTL);

    // Remember the element cleanup.
    auto eltCleanup = eltInit->getInitializedCleanup();
    if (eltCleanup.isValid())
      splitCleanups.push_back(eltCleanup);

    buf.emplace_back(eltInit.release());
  }

  return buf;
}

void SingleBufferInitialization::
copyOrInitValueIntoSingleBuffer(SILGenFunction &SGF, SILLocation loc,
                                ManagedValue value, bool isInit,
                                SILValue destAddr) {
  // Emit an unchecked access around initialization of the local buffer to
  // silence access marker verification.
  //
  // FIXME: This is not a good place for FormalEvaluationScope +
  // UnenforcedFormalAccess.  However, there's no way to identify the buffer
  // initialization sequence after SILGen, and no easy way to wrap the
  // Initialization in an access during top-level expression evaluation.
  FormalEvaluationScope scope(SGF);
  if (!isInit) {
    assert(value.getValue() != destAddr && "copying in place?!");
    SILValue accessAddr =
      UnenforcedFormalAccess::enter(SGF, loc, destAddr, SILAccessKind::Modify);
    value.copyInto(SGF, loc, accessAddr);
    return;
  }
  
  // If we didn't evaluate into the initialization buffer, do so now.
  if (value.getValue() != destAddr) {
    SILValue accessAddr =
      UnenforcedFormalAccess::enter(SGF, loc, destAddr, SILAccessKind::Modify);
    value.forwardInto(SGF, loc, accessAddr);
  } else {
    // If we did evaluate into the initialization buffer, disable the
    // cleanup.
    value.forwardCleanup(SGF);
  }
}

void SingleBufferInitialization::finishInitialization(SILGenFunction &SGF) {
  // Forward all of the split element cleanups, assuming we made any.
  for (CleanupHandle eltCleanup : SplitCleanups)
    SGF.Cleanups.forwardCleanup(eltCleanup);
}

bool KnownAddressInitialization::isInPlaceInitializationOfGlobal() const {
  return isa<GlobalAddrInst>(address);
}

bool TemporaryInitialization::isInPlaceInitializationOfGlobal() const {
  return isa<GlobalAddrInst>(Addr);
}

void TemporaryInitialization::finishInitialization(SILGenFunction &SGF) {
  SingleBufferInitialization::finishInitialization(SGF);
  if (Cleanup.isValid())
    SGF.Cleanups.setCleanupState(Cleanup, CleanupState::Active);
}

StoreBorrowInitialization::StoreBorrowInitialization(SILValue address)
    : address(address) {
  assert(isa<AllocStackInst>(address) ||
         isa<MarkUnresolvedNonCopyableValueInst>(address) &&
             "invalid destination for store_borrow initialization!?");
}

void StoreBorrowInitialization::copyOrInitValueInto(SILGenFunction &SGF,
                                                    SILLocation loc,
                                                    ManagedValue mv,
                                                    bool isInit) {
  auto value = mv.getValue();
  auto &lowering = SGF.getTypeLowering(value->getType());
  if (lowering.isAddressOnly() && SGF.silConv.useLoweredAddresses()) {
    llvm::report_fatal_error(
        "Attempting to store_borrow an address-only value!?");
  }
  if (value->getType().isAddress()) {
    value = SGF.emitManagedLoadBorrow(loc, value).getValue();
  }
  if (!isInit) {
    value = lowering.emitCopyValue(SGF.B, loc, value);
  }
  storeBorrow = SGF.emitManagedStoreBorrow(loc, value, address);
}

SILValue StoreBorrowInitialization::getAddress() const {
  if (storeBorrow) {
    return storeBorrow.getValue();
  }
  return address;
}

ManagedValue StoreBorrowInitialization::getManagedAddress() const {
  return storeBorrow;
}

namespace {
class ReleaseValueCleanup : public Cleanup {
  SILValue v;
public:
  ReleaseValueCleanup(SILValue v) : v(v) {}

  void emit(SILGenFunction &SGF, CleanupLocation l,
            ForUnwind_t forUnwind) override {
    if (v->getType().isAddress())
      SGF.B.createDestroyAddr(l, v);
    else
      SGF.B.emitDestroyValueOperation(l, v);
  }

  void dump(SILGenFunction &) const override {
#ifndef NDEBUG
    llvm::errs() << "ReleaseValueCleanup\n"
                 << "State:" << getState() << "\n"
                 << "Value:" << v << "\n";
#endif
  }
};
} // end anonymous namespace

namespace {
/// Cleanup to deallocate a now-uninitialized variable.
class DeallocStackCleanup : public Cleanup {
  SILValue Addr;
public:
  DeallocStackCleanup(SILValue addr) : Addr(addr) {}

  void emit(SILGenFunction &SGF, CleanupLocation l,
            ForUnwind_t forUnwind) override {
    SGF.B.createDeallocStack(l, Addr);
  }

  void dump(SILGenFunction &) const override {
#ifndef NDEBUG
    llvm::errs() << "DeallocStackCleanup\n"
                 << "State:" << getState() << "\n"
                 << "Addr:" << Addr << "\n";
#endif
  }
};
} // end anonymous namespace

namespace {
/// Cleanup to destroy an initialized 'var' variable.
class DestroyLocalVariable : public Cleanup {
  VarDecl *Var;
public:
  DestroyLocalVariable(VarDecl *var) : Var(var) {}

  void emit(SILGenFunction &SGF, CleanupLocation l,
            ForUnwind_t forUnwind) override {
    SGF.destroyLocalVariable(l, Var);
  }

  void dump(SILGenFunction &SGF) const override {
#ifndef NDEBUG
    llvm::errs() << "DestroyLocalVariable\n"
                 << "State:" << getState() << "\n"
                 << "Decl: ";
    Var->print(llvm::errs());
    llvm::errs() << "\n";
    if (isActive()) {
      auto loc = SGF.VarLocs[Var];
      assert((loc.box || loc.value) && "One of box or value should be set");
      if (loc.box) {
        llvm::errs() << "Box: " << loc.box << "\n";
      } else {
        llvm::errs() << "Value: " << loc.value << "\n";
      }
    }
    llvm::errs() << "\n";
#endif
  }
};
} // end anonymous namespace

namespace {
/// Cleanup to destroy an uninitialized local variable.
class DeallocateUninitializedLocalVariable : public Cleanup {
  SILValue Box;
public:
  DeallocateUninitializedLocalVariable(SILValue box) : Box(box) {}

  void emit(SILGenFunction &SGF, CleanupLocation l,
            ForUnwind_t forUnwind) override {
    auto box = Box;
    if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule())) {
      if (auto *bbi = dyn_cast<BeginBorrowInst>(box)) {
        SGF.B.createEndBorrow(l, bbi);
        box = bbi->getOperand();
      }
    }
    SGF.B.createDeallocBox(l, box);
  }

  void dump(SILGenFunction &) const override {
#ifndef NDEBUG
    llvm::errs() << "DeallocateUninitializedLocalVariable\n"
                 << "State:" << getState() << "\n";
    // TODO: Make sure we dump var.
    llvm::errs() << "\n";
#endif
  }
};
} // end anonymous namespace

namespace {
/// An initialization of a local 'var'.
class LocalVariableInitialization : public SingleBufferInitialization {
  /// The local variable decl being initialized.
  VarDecl *decl;

  /// The alloc_box instruction.
  SILValue Box;

  /// The projected address.
  SILValue Addr;

  /// The cleanup we pushed to deallocate the local variable before it
  /// gets initialized.
  CleanupHandle DeallocCleanup;

  /// The cleanup we pushed to destroy and deallocate the local variable.
  CleanupHandle ReleaseCleanup;

  bool DidFinish = false;
public:
  /// Sets up an initialization for the allocated box. This pushes a
  /// CleanupUninitializedBox cleanup that will be replaced when
  /// initialization is completed.
  LocalVariableInitialization(VarDecl *decl,
                              std::optional<MarkUninitializedInst::Kind> kind,
                              uint16_t ArgNo, bool generateDebugInfo,
                              SILGenFunction &SGF)
      : decl(decl) {
    assert(decl->getDeclContext()->isLocalContext() &&
           "can't emit a local var for a non-local var decl");
    assert(decl->hasStorage() && "can't emit storage for a computed variable");
    assert(!SGF.VarLocs.count(decl) && "Already have an entry for this decl?");

    // The box type's context is lowered in the minimal resilience domain.
    auto instanceType = SGF.SGM.Types.getLoweredRValueType(
        TypeExpansionContext::minimal(), decl->getTypeInContext());


    bool isNoImplicitCopy = instanceType->is<SILMoveOnlyWrappedType>();

    // If our instance type is not already @moveOnly wrapped, and it's a
    // no-implicit-copy parameter, wrap it.
    if (!isNoImplicitCopy && !instanceType->isNoncopyable()) {
      if (auto *pd = dyn_cast<ParamDecl>(decl)) {
        isNoImplicitCopy = pd->isNoImplicitCopy();
        isNoImplicitCopy |= pd->getSpecifier() == ParamSpecifier::Consuming;
        if (pd->isSelfParameter()) {
          auto *dc = pd->getDeclContext();
          if (auto *fn = dyn_cast<FuncDecl>(dc)) {
            auto accessKind = fn->getSelfAccessKind();
            isNoImplicitCopy |= accessKind == SelfAccessKind::Consuming;
          }
        }
        if (isNoImplicitCopy)
          instanceType = SILMoveOnlyWrappedType::get(instanceType);
      }
    }

    const bool isCopyable = isNoImplicitCopy || !instanceType->isNoncopyable();

    auto boxType = SGF.SGM.Types.getContextBoxTypeForCapture(
        decl, instanceType, SGF.F.getGenericEnvironment(),
        /*mutable=*/ isCopyable || !decl->isLet());

    // The variable may have its lifetime extended by a closure, heap-allocate
    // it using a box.

    std::optional<SILDebugVariable> DbgVar;
    if (generateDebugInfo)
      DbgVar = SILDebugVariable(decl->isLet(), ArgNo);
    Box = SGF.B.createAllocBox(
        decl, boxType, DbgVar, DoesNotHaveDynamicLifetime,
        /*reflection*/ false, DoesNotUseMoveableValueDebugInfo,
        !generateDebugInfo);

    // Mark the memory as uninitialized, so DI will track it for us.
    if (kind)
      Box = SGF.B.createMarkUninitialized(decl, Box, kind.value());

    // If we have a reference binding, mark it.
    if (decl->getIntroducer() == VarDecl::Introducer::InOut)
      Box = SGF.B.createMarkUnresolvedReferenceBindingInst(
          decl, Box, MarkUnresolvedReferenceBindingInst::Kind::InOut);

    if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule())) {
      auto loweredType = SGF.getTypeLowering(decl->getTypeInContext()).getLoweredType();
      auto lifetime = SGF.F.getLifetime(decl, loweredType);
      // The box itself isn't lexical--neither a weak reference nor an unsafe
      // pointer to a box can be formed; and the box doesn't synchronize on
      // deinit.
      //
      // Only add a lexical lifetime to the box if the variable it stores
      // requires one.
      Box =
          SGF.B.createBeginBorrow(decl, Box, IsLexical_t(lifetime.isLexical()),
                                  DoesNotHavePointerEscape, IsFromVarDecl);
    }

    Addr = SGF.B.createProjectBox(decl, Box, 0);

    // Push a cleanup to destroy the local variable.  This has to be
    // inactive until the variable is initialized.
    SGF.Cleanups.pushCleanupInState<DestroyLocalVariable>(CleanupState::Dormant,
                                                          decl);
    ReleaseCleanup = SGF.Cleanups.getTopCleanup();

    // Push a cleanup to deallocate the local variable. This references the
    // box directly since it might be activated before we update
    // SGF.VarLocs.
    SGF.Cleanups.pushCleanup<DeallocateUninitializedLocalVariable>(Box);
    DeallocCleanup = SGF.Cleanups.getTopCleanup();
  }

  ~LocalVariableInitialization() override {
    assert(DidFinish && "did not call VarInit::finishInitialization!");
  }

  SILValue getAddress() const {
    assert(Addr);
    return Addr;
  }

  /// If we have an address, returns the address. Otherwise, if we only have a
  /// box, lazily projects it out and returns it.
  SILValue getAddressForInPlaceInitialization(SILGenFunction &SGF,
                                              SILLocation loc) override {
    if (!Addr && Box) {
      auto pbi = SGF.B.createProjectBox(loc, Box, 0);
      return pbi;
    }

    return getAddress();
  }

  bool isInPlaceInitializationOfGlobal() const override {
    return dyn_cast_or_null<GlobalAddrInst>(Addr);
  }

  void finishUninitialized(SILGenFunction &SGF) override {
    LocalVariableInitialization::finishInitialization(SGF);
  }

  void finishInitialization(SILGenFunction &SGF) override {
    /// Remember that this is the memory location that we've emitted the
    /// decl to.
    assert(SGF.VarLocs.count(decl) == 0 && "Already emitted the local?");

    SGF.VarLocs[decl] = SILGenFunction::VarLoc::get(Addr, Box);

    SingleBufferInitialization::finishInitialization(SGF);
    assert(!DidFinish &&
           "called LocalVariableInitialization::finishInitialization twice!");
    SGF.Cleanups.setCleanupState(DeallocCleanup, CleanupState::Dead);
    SGF.Cleanups.setCleanupState(ReleaseCleanup, CleanupState::Active);
    DidFinish = true;
  }
};
} // end anonymous namespace

namespace {
/// Initialize a writeback buffer that receives the value of a 'let'
/// declaration.
class LetValueInitialization : public Initialization {
  /// The VarDecl for the let decl.
  VarDecl *vd;

  /// The address of the buffer used for the binding, if this is an address-only
  /// let.
  SILValue address;

  /// The cleanup we pushed to destroy the local variable.
  CleanupHandle DestroyCleanup;

  /// Cleanups we introduced when splitting.
  TinyPtrVector<CleanupHandle::AsPointer> SplitCleanups;

  bool DidFinish = false;

public:
  LetValueInitialization(VarDecl *vd, SILGenFunction &SGF) : vd(vd) {
    const TypeLowering *lowering = nullptr;
    if (vd->isNoImplicitCopy()) {
      lowering = &SGF.getTypeLowering(
          SILMoveOnlyWrappedType::get(vd->getTypeInContext()->getCanonicalType()));
    } else {
      lowering = &SGF.getTypeLowering(vd->getTypeInContext());
    }

    // Decide whether we need a temporary stack buffer to evaluate this 'let'.
    // There are four cases we need to handle here: parameters, initialized (or
    // bound) decls, uninitialized ones, and async let declarations.
    bool needsTemporaryBuffer;
    bool isUninitialized = false;

    assert(!isa<ParamDecl>(vd)
           && "should not bind function params on this path");
    if (vd->getParentPatternBinding() &&
        !vd->getParentExecutableInitializer()) {
      // If this is a let-value without an initializer, then we need a temporary
      // buffer.  DI will make sure it is only assigned to once.
      needsTemporaryBuffer = true;
      isUninitialized = true;
    } else if (vd->isAsyncLet()) {
      // If this is an async let, treat it like a let-value without an
      // initializer. The initializer runs concurrently in a child task,
      // and value will be initialized at the point the variable in the
      // async let is used.
      needsTemporaryBuffer = true;
      isUninitialized = true;
    } else {
      // If this is a let with an initializer or bound value, we only need a
      // buffer if the type is address only or is noncopyable.
      //
      // For noncopyable types, we always need to box them.
      needsTemporaryBuffer =
          (lowering->isAddressOnly() && SGF.silConv.useLoweredAddresses()) ||
              lowering->getLoweredType().isMoveOnly(/*orWrapped=*/false);
    }

    // Make sure that we have a non-address only type when binding a
    // @_noImplicitCopy let.
    if (lowering->isAddressOnly() && vd->isNoImplicitCopy()) {
      auto d = diag::noimplicitcopy_used_on_generic_or_existential;
      diagnose(SGF.getASTContext(), vd->getLoc(), d);
    }

    if (needsTemporaryBuffer) {
      bool lexicalLifetimesEnabled =
          SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule());
      auto lifetime = SGF.F.getLifetime(vd, lowering->getLoweredType());
      auto isLexical =
          IsLexical_t(lexicalLifetimesEnabled && lifetime.isLexical());
      address = SGF.emitTemporaryAllocation(vd, lowering->getLoweredType(),
                                            DoesNotHaveDynamicLifetime,
                                            isLexical, IsFromVarDecl);
      if (isUninitialized)
        address = SGF.B.createMarkUninitializedVar(vd, address);
      DestroyCleanup = SGF.enterDormantTemporaryCleanup(address, *lowering);
      SGF.VarLocs[vd] = SILGenFunction::VarLoc::get(address);
    } else if (!lowering->isTrivial()) {
      // Push a cleanup to destroy the let declaration.  This has to be
      // inactive until the variable is initialized: if control flow exits the
      // before the value is bound, we don't want to destroy the value.
      SGF.Cleanups.pushCleanupInState<DestroyLocalVariable>(
                                                    CleanupState::Dormant, vd);
      DestroyCleanup = SGF.Cleanups.getTopCleanup();
    } else {
      DestroyCleanup = CleanupHandle::invalid();
    }
  }

  ~LetValueInitialization() override {
    assert(DidFinish && "did not call LetValueInit::finishInitialization!");
  }

  bool hasAddress() const { return (bool)address; }

  bool canPerformInPlaceInitialization() const override {
    return hasAddress();
  }

  bool isInPlaceInitializationOfGlobal() const override {
    return isa<GlobalAddrInst>(address);
  }
  
  SILValue getAddressForInPlaceInitialization(SILGenFunction &SGF,
                                              SILLocation loc) override {
    // Emit into the buffer that 'let's produce for address-only values if
    // we have it.
    assert(hasAddress());
    return address;
  }

  /// Return true if we can get the addresses of elements with the
  /// 'getSubInitializationsForTuple' method.
  ///
  /// Let-value initializations cannot be broken into constituent pieces if a
  /// scalar value needs to be bound.  If there is an address in play, then we
  /// can initialize the address elements of the tuple though.
  bool canSplitIntoTupleElements() const override {
    return hasAddress();
  }
  
  MutableArrayRef<InitializationPtr>
  splitIntoTupleElements(SILGenFunction &SGF, SILLocation loc, CanType type,
                         SmallVectorImpl<InitializationPtr> &buf) override {
    assert(SplitCleanups.empty());
    auto address = getAddressForInPlaceInitialization(SGF, loc);
    return SingleBufferInitialization
       ::splitSingleBufferIntoTupleElements(SGF, loc, type, address, buf,
                                            SplitCleanups);
  }

  /// This is a helper method for bindValue that handles any changes to the
  /// value needed for lexical lifetime or no implicit copy purposes.
  SILValue getValueForLexicalLifetimeBinding(SILGenFunction &SGF,
                                             SILLocation PrologueLoc,
                                             SILValue value, bool wasPlusOne) {
    // If we have none...
    if (value->getOwnershipKind() == OwnershipKind::None) {
      // Then check if we have a pure move only type. In that case, we need to
      // insert a no implicit copy
      if (value->getType().isMoveOnly(/*orWrapped=*/false)) {
        value = SGF.B.createMoveValue(PrologueLoc, value, IsLexical);
        return SGF.B.createMarkUnresolvedNonCopyableValueInst(
            PrologueLoc, value,
            MarkUnresolvedNonCopyableValueInst::CheckKind::
                ConsumableAndAssignable);
      }

      // If we have a no implicit copy trivial type, wrap it in the move only
      // wrapper and mark it as needing checking by the move checker.
      if (vd->isNoImplicitCopy() && value->getType().isTrivial(SGF.F)) {
        value =
            SGF.B.createOwnedCopyableToMoveOnlyWrapperValue(PrologueLoc, value);
        value = SGF.B.createMoveValue(PrologueLoc, value, IsLexical);
        return SGF.B.createMarkUnresolvedNonCopyableValueInst(
            PrologueLoc, value,
            MarkUnresolvedNonCopyableValueInst::CheckKind::
                ConsumableAndAssignable);
      }

      if (!value->getType().isTrivial(SGF.F)) {
        // A value without ownership of non-trivial type, e.g. Optional<K>.none.
        // Mark that it is from a VarDecl.
        return SGF.B.createMoveValue(PrologueLoc, value, IsNotLexical,
                                     DoesNotHavePointerEscape, IsFromVarDecl);
      }

      return value;
    }

    // Otherwise, we need to perform some additional processing. First, if we
    // have an owned moveonly value that had a cleanup, then create a move_value
    // that acts as a consuming use of the value. The reason why we want this is
    // even if we are only performing a borrow for our lexical lifetime, we want
    // to ensure that our defs see this initialization as consuming this value.
    if (value->getOwnershipKind() == OwnershipKind::Owned &&
        value->getType().isMoveOnlyWrapped()) {
      assert(wasPlusOne);
      // NOTE: If our type is trivial when not wrapped in a
      // SILMoveOnlyWrappedType, this will return a trivial value. We rely
      // on the checker to determine if this is an acceptable use of the
      // value.
      value =
          SGF.B.createOwnedMoveOnlyWrapperToCopyableValue(PrologueLoc, value);
    }

    // If we still have a trivial thing, just return that.
    if (value->getType().isTrivial(SGF.F))
      return value;

    // Check if we have a move only type. In that case, we perform a lexical
    // move and insert a mark_unresolved_non_copyable_value.
    //
    // We do this before the begin_borrow "normal" path below since move only
    // types do not have no implicit copy attr on them.
    if (value->getOwnershipKind() == OwnershipKind::Owned &&
        value->getType().isMoveOnly(/*orWrapped=*/false)) {
      value = SGF.B.createMoveValue(PrologueLoc, value, IsLexical);
      return SGF.B.createMarkUnresolvedNonCopyableValueInst(
          PrologueLoc, value,
          MarkUnresolvedNonCopyableValueInst::CheckKind::
              ConsumableAndAssignable);
    }

    // If we have a no implicit copy lexical, emit the instruction stream so
    // that the move checker knows to check this variable.
    if (vd->isNoImplicitCopy()) {
      value = SGF.B.createMoveValue(PrologueLoc, value, IsLexical,
                                    DoesNotHavePointerEscape, IsFromVarDecl);
      value =
          SGF.B.createOwnedCopyableToMoveOnlyWrapperValue(PrologueLoc, value);
      return SGF.B.createMarkUnresolvedNonCopyableValueInst(
          PrologueLoc, value,
          MarkUnresolvedNonCopyableValueInst::CheckKind::
              ConsumableAndAssignable);
    }

    // Otherwise, if we do not have a no implicit copy variable, just follow
    // the "normal path".

    auto isLexical =
        IsLexical_t(SGF.F.getLifetime(vd, value->getType()).isLexical());

    if (value->getOwnershipKind() == OwnershipKind::Owned)
      return SGF.B.createMoveValue(PrologueLoc, value, isLexical,
                                   DoesNotHavePointerEscape, IsFromVarDecl);

    return SGF.B.createBeginBorrow(PrologueLoc, value, isLexical,
                                   DoesNotHavePointerEscape, IsFromVarDecl);
  }

  void bindValue(SILValue value, SILGenFunction &SGF, bool wasPlusOne,
                 SILLocation loc) {
    assert(!SGF.VarLocs.count(vd) && "Already emitted this vardecl?");
    // If we're binding an address to this let value, then we can use it as an
    // address later.  This happens when binding an address only parameter to
    // an argument, for example.
    if (value->getType().isAddress())
      address = value;

    if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule()))
      value = getValueForLexicalLifetimeBinding(SGF, loc, value, wasPlusOne);

    SGF.VarLocs[vd] = SILGenFunction::VarLoc::get(value);

    // Emit a debug_value[_addr] instruction to record the start of this value's
    // lifetime, if permitted to do so.
    if (!EmitDebugValueOnInit)
      return;

    // Use the scope from loc and diagnostic location from vd.
    RegularLocation PrologueLoc(vd);
    PrologueLoc.markAsPrologue();
    SILDebugVariable DbgVar(vd->getName().str(), vd->isLet(), /*ArgNo=*/0);
    SGF.B.emitDebugDescription(PrologueLoc, value, DbgVar);
  }

  void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
                           ManagedValue value, bool isInit) override {
    // If this let value has an address, we can handle it just like a single
    // buffer value.
    if (hasAddress()) {
      return SingleBufferInitialization::
        copyOrInitValueIntoSingleBuffer(SGF, loc, value, isInit, address);
    }

    // Otherwise, we bind the value.
    if (isInit) {
      // Disable the rvalue expression cleanup, since the let value
      // initialization has a cleanup that lives for the entire scope of the
      // let declaration.
      bool isPlusOne = value.isPlusOne(SGF);
      bindValue(value.forward(SGF), SGF, isPlusOne, loc);
    } else {
      // Disable the expression cleanup of the copy, since the let value
      // initialization has a cleanup that lives for the entire scope of the
      // let declaration.
      bindValue(value.copyUnmanaged(SGF, loc).forward(SGF), SGF, true, loc);
    }
  }

  void finishUninitialized(SILGenFunction &SGF) override {
    LetValueInitialization::finishInitialization(SGF);
  }

  void finishInitialization(SILGenFunction &SGF) override {
    assert(!DidFinish &&
           "called LetValueInit::finishInitialization twice!");
    assert(SGF.VarLocs.count(vd) && "Didn't bind a value to this let!");

    // Deactivate any cleanups we made when splitting the tuple.
    for (auto cleanup : SplitCleanups)
      SGF.Cleanups.forwardCleanup(cleanup);

    // Activate the destroy cleanup.
    if (DestroyCleanup != CleanupHandle::invalid()) {
      SGF.Cleanups.setCleanupState(DestroyCleanup, CleanupState::Active);
    }

    DidFinish = true;
  }
};
} // end anonymous namespace


namespace {
/// Initialize a variable of reference-storage type.
class ReferenceStorageInitialization : public Initialization {
  InitializationPtr VarInit;
public:
  ReferenceStorageInitialization(InitializationPtr &&subInit)
    : VarInit(std::move(subInit)) {
    assert(VarInit->canPerformInPlaceInitialization());
  }

  void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
                           ManagedValue value, bool isInit) override {
    auto address = VarInit->getAddressForInPlaceInitialization(SGF, loc);
    // If this is not an initialization, copy the value before we translateIt,
    // translation expects a +1 value.
    if (isInit)
      value.forwardInto(SGF, loc, address);
    else
      value.copyInto(SGF, loc, address);
  }

  void finishUninitialized(SILGenFunction &SGF) override {
    ReferenceStorageInitialization::finishInitialization(SGF);
  }
  
  void finishInitialization(SILGenFunction &SGF) override {
    VarInit->finishInitialization(SGF);
  }
};
} // end anonymous namespace

namespace {
/// Abstract base class for refutable pattern initializations.
class RefutablePatternInitialization : public Initialization {
  /// This is the label to jump to if the pattern fails to match.
  JumpDest failureDest;
public:
  RefutablePatternInitialization(JumpDest failureDest)
    : failureDest(failureDest) {
    assert(failureDest.isValid() &&
           "Refutable patterns can only exist in failable conditions");
  }

  JumpDest getFailureDest() const { return failureDest; }

  void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
                           ManagedValue value, bool isInit) override = 0;

  void bindVariable(SILLocation loc, VarDecl *var, ManagedValue value,
                    CanType formalValueType, SILGenFunction &SGF) {
    // Initialize the variable value.
    InitializationPtr init = SGF.emitInitializationForVarDecl(var, var->isLet());
    RValue(SGF, loc, formalValueType, value).forwardInto(SGF, loc, init.get());
  }

};
} // end anonymous namespace

namespace {
class ExprPatternInitialization : public RefutablePatternInitialization {
  ExprPattern *P;
public:
  ExprPatternInitialization(ExprPattern *P, JumpDest patternFailDest)
    : RefutablePatternInitialization(patternFailDest), P(P) {}

  void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
                           ManagedValue value, bool isInit) override;
};
} // end anonymous namespace

void ExprPatternInitialization::
copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
                    ManagedValue value, bool isInit) {
  assert(isInit && "Only initialization is supported for refutable patterns");

  FullExpr scope(SGF.Cleanups, CleanupLocation(P));
  bindVariable(P, P->getMatchVar(), value,
               P->getType()->getCanonicalType(), SGF);

  // Emit the match test.
  SILValue testBool;
  {
    FullExpr scope(SGF.Cleanups, CleanupLocation(P->getMatchExpr()));
    testBool = SGF.emitRValueAsSingleValue(P->getMatchExpr()).
       getUnmanagedValue();
  }

  assert(testBool->getType().getASTType()->isBool());
  auto i1Value = SGF.emitUnwrapIntegerResult(loc, testBool);

  SILBasicBlock *contBB = SGF.B.splitBlockForFallthrough();
  auto falseBB = SGF.Cleanups.emitBlockForCleanups(getFailureDest(), loc);
  SGF.B.createCondBranch(loc, i1Value, contBB, falseBB);

  SGF.B.setInsertionPoint(contBB);
}

namespace {
class EnumElementPatternInitialization : public RefutablePatternInitialization {
  EnumElementDecl *ElementDecl;
  InitializationPtr subInitialization;
public:
  EnumElementPatternInitialization(EnumElementDecl *ElementDecl,
                                   InitializationPtr &&subInitialization,
                                   JumpDest patternFailDest)
    : RefutablePatternInitialization(patternFailDest), ElementDecl(ElementDecl),
      subInitialization(std::move(subInitialization)) {}
    
  void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
                           ManagedValue value, bool isInit) override {
    assert(isInit && "Only initialization is supported for refutable patterns");
    emitEnumMatch(value, ElementDecl, subInitialization.get(), getFailureDest(),
                  loc, SGF);
  }

  static void emitEnumMatch(ManagedValue value, EnumElementDecl *ElementDecl,
                            Initialization *subInit, JumpDest FailureDest,
                            SILLocation loc, SILGenFunction &SGF);
  
  void finishInitialization(SILGenFunction &SGF) override {
    if (subInitialization.get())
      subInitialization->finishInitialization(SGF);
  }
};
} // end anonymous namespace

/// If \p elt belongs to an enum that has exactly two cases and that can be
/// exhaustively switched, return the other case. Otherwise, return nullptr.
static EnumElementDecl *getOppositeBinaryDecl(const SILGenFunction &SGF,
                                              const EnumElementDecl *elt) {
  const EnumDecl *enumDecl = elt->getParentEnum();
  if (!enumDecl->isEffectivelyExhaustive(SGF.SGM.SwiftModule,
                                         SGF.F.getResilienceExpansion())) {
    return nullptr;
  }

  EnumDecl::ElementRange range = enumDecl->getAllElements();
  auto iter = range.begin();
  if (iter == range.end())
    return nullptr;
  bool seenDecl = false;
  EnumElementDecl *result = nullptr;
  if (*iter == elt) {
    seenDecl = true;
  } else {
    result = *iter;
  }

  ++iter;
  if (iter == range.end())
    return nullptr;
  if (seenDecl) {
    assert(!result);
    result = *iter;
  } else {
    if (elt != *iter)
      return nullptr;
    seenDecl = true;
  }
  ++iter;

  // If we reach this point, we saw the decl we were looking for and one other
  // case. If we have any additional cases, then we do not have a binary enum.
  if (iter != range.end())
    return nullptr;

  // This is always true since we have already returned earlier nullptr if we
  // did not see the decl at all.
  assert(seenDecl);
  return result;
}

void EnumElementPatternInitialization::emitEnumMatch(
    ManagedValue value, EnumElementDecl *eltDecl, Initialization *subInit,
    JumpDest failureDest, SILLocation loc, SILGenFunction &SGF) {

  // Create all of the blocks early so we can maintain a consistent ordering
  // (and update less tests). Break this at your fingers parallel.
  //
  // *NOTE* This needs to be in reverse order to preserve the textual SIL.
  auto *contBlock = SGF.createBasicBlock();
  auto *someBlock = SGF.createBasicBlock();
  auto *defaultBlock = SGF.createBasicBlock();
  auto *originalBlock = SGF.B.getInsertionBB();

  SwitchEnumBuilder switchBuilder(SGF.B, loc, value);

  // Handle the none case.
  //
  // *NOTE*: Since we are performing an initialization here, it is *VERY*
  // important that we emit the negative case first. The reason why is that
  // currently the initialization has a dormant cleanup in a scope that may be
  // after the failureDest depth. Once we run the positive case, this
  // initialization will be enabled. Thus if we run the negative case /after/
  // the positive case, a cleanup will be emitted for the initialization on the
  // negative path... but the actual initialization happened on the positive
  // path, causing a use (the destroy on the negative path) to be created that
  // does not dominate its definition (in the positive path).
  auto handler = [&SGF, &loc, &failureDest](ManagedValue mv,
                                            SwitchCaseFullExpr &&expr) {
    expr.exit();
    SGF.Cleanups.emitBranchAndCleanups(failureDest, loc);
  };

  // If we have a binary enum, do not emit a true default case. This ensures
  // that we do not emit a destroy_value on a .None.
  bool inferredBinaryEnum = false;
  if (auto *otherDecl = getOppositeBinaryDecl(SGF, eltDecl)) {
    inferredBinaryEnum = true;
    switchBuilder.addCase(otherDecl, defaultBlock, nullptr, handler);
  } else {
    switchBuilder.addDefaultCase(
        defaultBlock, nullptr, handler,
        SwitchEnumBuilder::DefaultDispatchTime::BeforeNormalCases);
  }

  // Always insert the some case at the front of the list. In the default case,
  // this will not matter, but in the case where we have a binary enum, we want
  // to preserve the old ordering of .some/.none. to make it easier to update
  // tests.
  switchBuilder.addCase(
      eltDecl, someBlock, contBlock,
      [&SGF, &loc, &eltDecl, &subInit, &value](ManagedValue mv,
                                               SwitchCaseFullExpr &&expr) {
        // If the enum case has no bound value, we're done.
        if (!eltDecl->hasAssociatedValues()) {
          assert(
              subInit == nullptr &&
              "Cannot have a subinit when there is no value to match against");
          expr.exitAndBranch(loc);
          return;
        }

        if (subInit == nullptr) {
          // If there is no subinitialization, then we are done matching.  Don't
          // bother projecting out the any elements value only to ignore it.
          expr.exitAndBranch(loc);
          return;
        }

        // Otherwise, the bound value for the enum case is available.
        SILType eltTy = value.getType().getEnumElementType(
            eltDecl, SGF.SGM.M, SGF.getTypeExpansionContext());
        auto &eltTL = SGF.getTypeLowering(eltTy);

        if (mv.getType().isAddress()) {
          // If the enum is address-only, take from the enum we have and load it
          // if
          // the element value is loadable.
          assert((eltTL.isTrivial() || mv.hasCleanup()) &&
                 "must be able to consume value");
          mv = SGF.B.createUncheckedTakeEnumDataAddr(loc, mv, eltDecl, eltTy);
          // Load a loadable data value.
          if (eltTL.isLoadable())
            mv = SGF.B.createLoadTake(loc, mv);
        }

        // If the payload is indirect, project it out of the box.
        if (eltDecl->isIndirect() || eltDecl->getParentEnum()->isIndirect()) {
          ManagedValue boxedValue = SGF.B.createProjectBox(loc, mv, 0);
          auto &boxedTL = SGF.getTypeLowering(boxedValue.getType());

          // We must treat the boxed value as +0 since it may be shared. Copy it
          // if nontrivial.
          //
          // NOTE: The APIs that we are using here will ensure that if we have
          // a trivial value, the load_borrow will become a load [trivial] and
          // the copies will be "automagically" elided.
          if (boxedTL.isLoadable() || !SGF.silConv.useLoweredAddresses()) {
            UnenforcedAccess access;
            SILValue accessAddress = access.beginAccess(
                SGF, loc, boxedValue.getValue(), SILAccessKind::Read);
            auto mvAccessAddress =
                ManagedValue::forBorrowedAddressRValue(accessAddress);
            {
              Scope loadScope(SGF, loc);
              ManagedValue borrowedVal =
                  SGF.B.createLoadBorrow(loc, mvAccessAddress);
              mv = loadScope.popPreservingValue(
                  borrowedVal.copyUnmanaged(SGF, loc));
            }
            access.endAccess(SGF);
          } else {
            // If we do not have a loadable value, just do a copy of the
            // boxedValue.
            mv = boxedValue.copyUnmanaged(SGF, loc);
          }
        }

        // Reabstract to the substituted type, if needed.
        CanType substEltTy =
            value.getType()
                .getASTType()
                ->getTypeOfMember(SGF.SGM.M.getSwiftModule(), eltDecl,
                                  eltDecl->getArgumentInterfaceType())
                ->getCanonicalType();

        AbstractionPattern origEltTy =
            (eltDecl == SGF.getASTContext().getOptionalSomeDecl()
                 ? AbstractionPattern(substEltTy)
                 : SGF.SGM.M.Types.getAbstractionPattern(eltDecl));

        mv = SGF.emitOrigToSubstValue(loc, mv, origEltTy, substEltTy);

        // Pass the +1 value down into the sub initialization.
        subInit->copyOrInitValueInto(SGF, loc, mv, /*is an init*/ true);
        expr.exitAndBranch(loc);
      });

  std::move(switchBuilder).emit();

  // If we inferred a binary enum, put the asked for case first so we preserve
  // the current code structure. This just ensures that less test updates are
  // needed.
  if (inferredBinaryEnum) {
    if (auto *switchEnum =
            dyn_cast<SwitchEnumInst>(originalBlock->getTerminator())) {
      switchEnum->swapCase(0, 1);
    } else {
      auto *switchEnumAddr =
          cast<SwitchEnumAddrInst>(originalBlock->getTerminator());
      switchEnumAddr->swapCase(0, 1);
    }
  }

  // Reset the insertion point to the end of contBlock.
  SGF.B.setInsertionPoint(contBlock);
}

namespace {
class IsPatternInitialization : public RefutablePatternInitialization {
  IsPattern *pattern;
  InitializationPtr subInitialization;
public:
  IsPatternInitialization(IsPattern *pattern,
                          InitializationPtr &&subInitialization,
                          JumpDest patternFailDest)
  : RefutablePatternInitialization(patternFailDest), pattern(pattern),
    subInitialization(std::move(subInitialization)) {}
    
  void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
                           ManagedValue value, bool isInit) override;
  
  void finishInitialization(SILGenFunction &SGF) override {
    if (subInitialization.get())
      subInitialization->finishInitialization(SGF);
  }
};
} // end anonymous namespace

void IsPatternInitialization::
copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
                    ManagedValue value, bool isInit) {
  assert(isInit && "Only initialization is supported for refutable patterns");
  
  // Try to perform the cast to the destination type, producing an optional that
  // indicates whether we succeeded.
  auto destType = OptionalType::get(pattern->getCastType());

  value =
      emitConditionalCheckedCast(SGF, loc, value, pattern->getType(), destType,
                                 pattern->getCastKind(), SGFContext(),
                                 ProfileCounter(), ProfileCounter())
          .getAsSingleValue(SGF, loc);

  // Now that we have our result as an optional, we can use an enum projection
  // to do all the work.
  EnumElementPatternInitialization::
  emitEnumMatch(value, SGF.getASTContext().getOptionalSomeDecl(),
                subInitialization.get(), getFailureDest(), loc, SGF);
}

namespace {
class BoolPatternInitialization : public RefutablePatternInitialization {
  BoolPattern *pattern;
public:
  BoolPatternInitialization(BoolPattern *pattern,
                            JumpDest patternFailDest)
    : RefutablePatternInitialization(patternFailDest), pattern(pattern) {}

  void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
                           ManagedValue value, bool isInit) override;
};
} // end anonymous namespace

void BoolPatternInitialization::
copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
                    ManagedValue value, bool isInit) {
  assert(isInit && "Only initialization is supported for refutable patterns");

  // Extract the i1 from the Bool struct.
  auto i1Value = SGF.emitUnwrapIntegerResult(loc, value.forward(SGF));

  // Branch on the boolean based on whether we're testing for true or false.
  SILBasicBlock *trueBB = SGF.B.splitBlockForFallthrough();
  auto contBB = trueBB;
  auto falseBB = SGF.Cleanups.emitBlockForCleanups(getFailureDest(), loc);

  if (!pattern->getValue())
    std::swap(trueBB, falseBB);
  SGF.B.createCondBranch(loc, i1Value, trueBB, falseBB);
  SGF.B.setInsertionPoint(contBB);
}


namespace {

/// InitializationForPattern - A visitor for traversing a pattern, generating
/// SIL code to allocate the declared variables, and generating an
/// Initialization representing the needed initializations.
///
/// It is important that any Initialization created for a pattern that might
/// not have an immediate initializer implement finishUninitialized.  Note
/// that this only applies to irrefutable patterns.
struct InitializationForPattern
  : public PatternVisitor<InitializationForPattern, InitializationPtr>
{
  SILGenFunction &SGF;

  /// This is the place that should be jumped to if the pattern fails to match.
  /// This is invalid for irrefutable pattern initializations.
  JumpDest patternFailDest;

  bool generateDebugInfo = true;

  InitializationForPattern(SILGenFunction &SGF, JumpDest patternFailDest,
                           bool generateDebugInfo)
      : SGF(SGF), patternFailDest(patternFailDest),
        generateDebugInfo(generateDebugInfo) {}

  // Paren, Typed, and Var patterns are noops, just look through them.
  InitializationPtr visitParenPattern(ParenPattern *P) {
    return visit(P->getSubPattern());
  }
  InitializationPtr visitTypedPattern(TypedPattern *P) {
    return visit(P->getSubPattern());
  }
  InitializationPtr visitBindingPattern(BindingPattern *P) {
    return visit(P->getSubPattern());
  }

  // AnyPatterns (i.e, _) don't require any storage. Any value bound here will
  // just be dropped.
  InitializationPtr visitAnyPattern(AnyPattern *P) {
    return InitializationPtr(new BlackHoleInitialization());
  }

  // Bind to a named pattern by creating a memory location and initializing it
  // with the initial value.
  InitializationPtr visitNamedPattern(NamedPattern *P) {
    if (!P->getDecl()->hasName()) {
      // Unnamed parameters don't require any storage. Any value bound here will
      // just be dropped.
      return InitializationPtr(new BlackHoleInitialization());
    }

    return SGF.emitInitializationForVarDecl(P->getDecl(), P->getDecl()->isLet(),
                                            generateDebugInfo);
  }

  // Bind a tuple pattern by aggregating the component variables into a
  // TupleInitialization.
  InitializationPtr visitTuplePattern(TuplePattern *P) {
    TupleInitialization *init = new TupleInitialization(
      cast<TupleType>(P->getType()->getCanonicalType()));
    for (auto &elt : P->getElements())
      init->SubInitializations.push_back(visit(elt.getPattern()));
    return InitializationPtr(init);
  }

  InitializationPtr visitEnumElementPattern(EnumElementPattern *P) {
    InitializationPtr subInit;
    if (auto *subP = P->getSubPattern())
      subInit = visit(subP);
    auto *res = new EnumElementPatternInitialization(P->getElementDecl(),
                                                     std::move(subInit),
                                                     patternFailDest);
    return InitializationPtr(res);
  }
  InitializationPtr visitOptionalSomePattern(OptionalSomePattern *P) {
    InitializationPtr subInit = visit(P->getSubPattern());
    auto *res = new EnumElementPatternInitialization(P->getElementDecl(),
                                                     std::move(subInit),
                                                     patternFailDest);
    return InitializationPtr(res);
  }
  InitializationPtr visitIsPattern(IsPattern *P) {
    InitializationPtr subInit;
    if (auto *subP = P->getSubPattern())
      subInit = visit(subP);
    return InitializationPtr(new IsPatternInitialization(P, std::move(subInit),
                                                         patternFailDest));
  }
  InitializationPtr visitBoolPattern(BoolPattern *P) {
    return InitializationPtr(new BoolPatternInitialization(P, patternFailDest));
  }
  InitializationPtr visitExprPattern(ExprPattern *P) {
    return InitializationPtr(new ExprPatternInitialization(P, patternFailDest));
  }
};

} // end anonymous namespace

InitializationPtr
SILGenFunction::emitInitializationForVarDecl(VarDecl *vd, bool forceImmutable,
                                             bool generateDebugInfo) {
  // If this is a computed variable, we don't need to do anything here.
  // We'll generate the getter and setter when we see their FuncDecls.
  if (!vd->hasStorage())
    return InitializationPtr(new BlackHoleInitialization());

  if (vd->isDebuggerVar()) {
    DebuggerClient *DebugClient = SGM.SwiftModule->getDebugClient();
    assert(DebugClient && "Debugger variables with no debugger client");
    SILDebuggerClient *SILDebugClient = DebugClient->getAsSILDebuggerClient();
    assert(SILDebugClient && "Debugger client doesn't support SIL");
    SILValue SV = SILDebugClient->emitLValueForVariable(vd, B);

    VarLocs[vd] = SILGenFunction::VarLoc::get(SV);
    return InitializationPtr(new KnownAddressInitialization(SV));
  }

  CanType varType = vd->getTypeInContext()->getCanonicalType();

  assert(!isa<InOutType>(varType) && "local variables should never be inout");

  // If this is a 'let' initialization for a copyable non-global, set up a let
  // binding, which stores the initialization value into VarLocs directly.
  if (forceImmutable && vd->getDeclContext()->isLocalContext() &&
      !isa<ReferenceStorageType>(varType) && !varType->isNoncopyable())
    return InitializationPtr(new LetValueInitialization(vd, *this));

  // If the variable has no initial value, emit a mark_uninitialized instruction
  // so that DI tracks and enforces validity of it.
  bool isUninitialized =
    vd->getParentPatternBinding() && !vd->getParentExecutableInitializer();

  // If this is a global variable, initialize it without allocations or
  // cleanups.
  InitializationPtr Result;
  if (!vd->getDeclContext()->isLocalContext()) {
    auto *silG = SGM.getSILGlobalVariable(vd, NotForDefinition);
    RegularLocation loc(vd);
    loc.markAutoGenerated();
    B.createAllocGlobal(loc, silG);
    SILValue addr = B.createGlobalAddr(loc, silG, /*dependencyToken=*/ SILValue());
    if (isUninitialized)
      addr = B.createMarkUninitializedVar(loc, addr);

    VarLocs[vd] = SILGenFunction::VarLoc::get(addr);
    Result = InitializationPtr(new KnownAddressInitialization(addr));
  } else {
    std::optional<MarkUninitializedInst::Kind> uninitKind;
    if (isUninitialized) {
      uninitKind = MarkUninitializedInst::Kind::Var;
    }
    Result = emitLocalVariableWithCleanup(vd, uninitKind, /*argno*/ 0,
                                          generateDebugInfo);
  }

  // If we're initializing a weak or unowned variable, this requires a change in
  // type.
  if (isa<ReferenceStorageType>(varType))
    Result = InitializationPtr(new
                           ReferenceStorageInitialization(std::move(Result)));
  return Result;
}

void SILGenFunction::emitPatternBinding(PatternBindingDecl *PBD, unsigned idx,
                                        bool generateDebugInfo) {
  auto &C = PBD->getASTContext();

  // If this is an async let, create a child task to compute the initializer
  // value.
  if (PBD->isAsyncLet()) {
    // Look through the implicit await (if present), try (if present), and
    // call to reach the autoclosure that computes the value.
    auto *init = PBD->getExecutableInit(idx);
    if (auto awaitExpr = dyn_cast<AwaitExpr>(init))
      init = awaitExpr->getSubExpr();
    if (auto tryExpr = dyn_cast<TryExpr>(init))
      init = tryExpr->getSubExpr();
    init = cast<CallExpr>(init)->getFn();
    auto initClosure = cast<AutoClosureExpr>(init);
    bool isThrowing = init->getType()->castTo<AnyFunctionType>()->isThrowing();

    // Allocate space to receive the child task's result.
    auto initLoweredTy = getLoweredType(AbstractionPattern::getOpaque(),
                                        PBD->getPattern(idx)->getType());
    SILLocation loc(PBD);
    SILValue resultBuf = emitTemporaryAllocation(loc, initLoweredTy);
    SILValue resultBufPtr = B.createAddressToPointer(loc, resultBuf,
                          SILType::getPrimitiveObjectType(C.TheRawPointerType),
                          /*needsStackProtection=*/ false);
    
    // Emit the closure for the child task.
    // Prepare the opaque `AsyncLet` representation.
    SILValue alet;
    {

      // Currently we don't pass any task options here, so just grab a 'nil'.

      // If we can statically detect some option needs to be passed, e.g.
      // an executor preference, we'd construct the appropriate option here and
      // pass it to the async let start.
      auto options = B.createManagedOptionalNone(
          loc, SILType::getOptionalType(SILType::getRawPointerType(C)));

      alet = emitAsyncLetStart(
          loc,
          options.forward(*this), // options is B.createManagedOptionalNone
          initClosure,
          resultBufPtr
        ).forward(*this);
    }
    
    // Push a cleanup to destroy the AsyncLet along with the task and child record.
    enterAsyncLetCleanup(alet, resultBufPtr);

    // Save the child task so we can await it as needed.
    AsyncLetChildTasks[{PBD, idx}] = {alet, resultBufPtr, isThrowing};
    return;
  }

  auto initialization = emitPatternBindingInitialization(
      PBD->getPattern(idx), JumpDest::invalid(), generateDebugInfo);

  auto getWrappedValueExpr = [&](VarDecl *var) -> Expr * {
    if (auto *orig = var->getOriginalWrappedProperty()) {
      auto initInfo = orig->getPropertyWrapperInitializerInfo();
      if (auto *placeholder = initInfo.getWrappedValuePlaceholder()) {
        return placeholder->getOriginalWrappedValue();
      }
    }
    return nullptr;
  };

  auto emitInitializer = [&](Expr *initExpr, VarDecl *var, bool forLocalContext,
                             InitializationPtr &initialization) {
    // If an initial value expression was specified by the decl, emit it into
    // the initialization.
    FullExpr Scope(Cleanups, CleanupLocation(initExpr));

    if (forLocalContext) {
      if (auto *orig = var->getOriginalWrappedProperty()) {
        if (auto *initExpr = getWrappedValueExpr(var)) {
          auto value = emitRValue(initExpr);
          emitApplyOfPropertyWrapperBackingInitializer(
            PBD, orig, getForwardingSubstitutionMap(), std::move(value))
            .forwardInto(*this, SILLocation(PBD), initialization.get());
          return;
        }
      }
    }

    emitExprInto(initExpr, initialization.get());
  };

  auto *singleVar = PBD->getSingleVar();
  if (auto *Init = PBD->getExecutableInit(idx)) {
    // If an initial value expression was specified by the decl, emit it into
    // the initialization.
    bool isLocalVar =
        singleVar && singleVar->getDeclContext()->isLocalContext();
    emitInitializer(Init, singleVar, isLocalVar, initialization);
  } else {
    // Otherwise, mark it uninitialized for DI to resolve.
    initialization->finishUninitialized(*this);
  }
}

void SILGenFunction::visitPatternBindingDecl(PatternBindingDecl *PBD,
                                             bool generateDebugInfo) {

  // Allocate the variables and build up an Initialization over their
  // allocated storage.
  for (unsigned i : range(PBD->getNumPatternEntries())) {
    emitPatternBinding(PBD, i, generateDebugInfo);
  }
}

void SILGenFunction::visitVarDecl(VarDecl *D) {
  // We handle emitting the variable storage when we see the pattern binding.

  // Avoid request evaluator overhead in the common case where there's
  // no wrapper.
  if (D->getAttrs().hasAttribute<CustomAttr>()) {
    // Emit the property wrapper backing initializer if necessary.
    auto initInfo = D->getPropertyWrapperInitializerInfo();
    if (initInfo.hasInitFromWrappedValue())
      SGM.emitPropertyWrapperBackingInitializer(D);
  }

  // Emit lazy and property wrapper backing storage.
  D->visitAuxiliaryDecls([&](VarDecl *var) {
    if (auto *patternBinding = var->getParentPatternBinding())
      visitPatternBindingDecl(patternBinding);

    visit(var);
  });

  // Emit the variable's accessors.
  SGM.visitEmittedAccessors(D, [&](AccessorDecl *accessor) {
    SGM.emitFunction(accessor);
  });
}

void SILGenFunction::visitMacroExpansionDecl(MacroExpansionDecl *D) {
  D->forEachExpandedNode([&](ASTNode node) {
    if (auto *expr = node.dyn_cast<Expr *>())
      emitIgnoredExpr(expr);
    else if (auto *stmt = node.dyn_cast<Stmt *>())
      emitStmt(stmt);
    else
      visit(node.get<Decl *>());
  });
}

/// Emit literals for the major, minor, and subminor components of the version
/// and return a tuple of SILValues for them.
static std::tuple<SILValue, SILValue, SILValue>
emitVersionLiterals(SILLocation loc, SILGenBuilder &B, ASTContext &ctx,
                    llvm::VersionTuple Vers) {
  unsigned major = Vers.getMajor();
  unsigned minor =
      (Vers.getMinor().has_value() ? Vers.getMinor().value() : 0);
  unsigned subminor =
      (Vers.getSubminor().has_value() ? Vers.getSubminor().value() : 0);

  SILType wordType = SILType::getBuiltinWordType(ctx);

  SILValue majorValue = B.createIntegerLiteral(loc, wordType, major);
  SILValue minorValue = B.createIntegerLiteral(loc, wordType, minor);
  SILValue subminorValue = B.createIntegerLiteral(loc, wordType, subminor);

  return std::make_tuple(majorValue, minorValue, subminorValue);
}

/// Emit a check that returns 1 if the running OS version is in
/// the specified version range and 0 otherwise. The returned SILValue
/// (which has type Builtin.Int1) represents the result of this check.
SILValue SILGenFunction::emitOSVersionRangeCheck(SILLocation loc,
                                                 const VersionRange &range) {
  // Emit constants for the checked version range.
  SILValue majorValue;
  SILValue minorValue;
  SILValue subminorValue;
  std::tie(majorValue, minorValue, subminorValue) =
      emitVersionLiterals(loc, B, getASTContext(), range.getLowerEndpoint());

  // Emit call to _stdlib_isOSVersionAtLeast(major, minor, patch)
  FuncDecl *versionQueryDecl =
      getASTContext().getIsOSVersionAtLeastDecl();
  assert(versionQueryDecl);

  auto silDeclRef = SILDeclRef(versionQueryDecl);
  SILValue availabilityGTEFn = emitGlobalFunctionRef(
      loc, silDeclRef, getConstantInfo(getTypeExpansionContext(), silDeclRef));

  SILValue args[] = {majorValue, minorValue, subminorValue};
  return B.createApply(loc, availabilityGTEFn, SubstitutionMap(), args);
}


/// Emit the boolean test and/or pattern bindings indicated by the specified
/// stmt condition.  If the condition fails, control flow is transferred to the
/// specified JumpDest.  The insertion point is left in the block where the
/// condition has matched and any bound variables are in scope.
///
void SILGenFunction::emitStmtCondition(StmtCondition Cond, JumpDest FalseDest,
                                       SILLocation loc,
                                       ProfileCounter NumTrueTaken,
                                       ProfileCounter NumFalseTaken) {

  assert(B.hasValidInsertionPoint() &&
         "emitting condition at unreachable point");
  
  for (const auto &elt : Cond) {
    SILLocation booleanTestLoc = loc;
    SILValue booleanTestValue;

    switch (elt.getKind()) {
    case StmtConditionElement::CK_PatternBinding: {
          // Begin a new binding scope, which is popped when the next innermost debug
          // scope ends. The cleanup location loc isn't the perfect source location
          // but it's close enough.
          B.getSILGenFunction().enterDebugScope(loc, /*isBindingScope=*/true);
        InitializationPtr initialization =
          emitPatternBindingInitialization(elt.getPattern(), FalseDest);

      // Emit the initial value into the initialization.
      FullExpr Scope(Cleanups, CleanupLocation(elt.getInitializer()));
      emitExprInto(elt.getInitializer(), initialization.get(), loc);
      // Pattern bindings handle their own tests, we don't need a boolean test.
      continue;
    }

    case StmtConditionElement::CK_Boolean: { // Handle boolean conditions.
      auto *expr = elt.getBoolean();
      // Evaluate the condition as an i1 value (guaranteed by Sema).
      FullExpr Scope(Cleanups, CleanupLocation(expr));
      booleanTestValue = emitRValue(expr).forwardAsSingleValue(*this, expr);
      booleanTestValue = emitUnwrapIntegerResult(expr, booleanTestValue);
      booleanTestLoc = expr;
      break;
    }

    case StmtConditionElement::CK_Availability: {
      // Check the running OS version to determine whether it is in the range
      // specified by elt.
      PoundAvailableInfo *availability = elt.getAvailability();
      VersionRange OSVersion = availability->getAvailableRange();
      
      // The OS version might be left empty if availability checking was
      // disabled. Treat it as always-true in that case.
      assert(!OSVersion.isEmpty()
             || getASTContext().LangOpts.DisableAvailabilityChecking);
        
      if (OSVersion.isEmpty() || OSVersion.isAll()) {
        // If there's no check for the current platform, this condition is
        // trivially true  (or false, for unavailability).
        SILType i1 = SILType::getBuiltinIntegerType(1, getASTContext());
        bool value = !availability->isUnavailability();
        booleanTestValue = B.createIntegerLiteral(loc, i1, value);
      } else {
        booleanTestValue = emitOSVersionRangeCheck(loc, OSVersion);
        if (availability->isUnavailability()) {
          // If this is an unavailability check, invert the result
          // by emitting a call to Builtin.xor_Int1(lhs, -1).
          SILType i1 = SILType::getBuiltinIntegerType(1, getASTContext());
          SILValue minusOne = B.createIntegerLiteral(loc, i1, -1);
          booleanTestValue =
            B.createBuiltinBinaryFunction(loc, "xor", i1, i1,
                                          {booleanTestValue, minusOne});
        }
      }
      break;
    }

    case StmtConditionElement::CK_HasSymbol: {
      auto info = elt.getHasSymbolInfo();
      if (info->isInvalid()) {
        // This condition may have referenced a decl that isn't valid in some
        // way but for developer convenience wasn't treated as an error. Just
        // emit a 'true' condition value.
        SILType i1 = SILType::getBuiltinIntegerType(1, getASTContext());
        booleanTestValue = B.createIntegerLiteral(loc, i1, 1);
        break;
      }

      auto expr = info->getSymbolExpr();
      auto declRef = info->getReferencedDecl();
      assert(declRef);

      auto decl = declRef.getDecl();
      booleanTestValue = B.createHasSymbol(expr, decl);
      booleanTestValue = emitUnwrapIntegerResult(expr, booleanTestValue);
      booleanTestLoc = expr;

      // Ensure that function declarations for each function associated with
      // the decl are emitted so that they can be referenced during IRGen.
      enumerateFunctionsForHasSymbol(
          getModule(), decl, [this](SILDeclRef declRef) {
            (void)SGM.getFunction(declRef, NotForDefinition);
          });

      break;
    }
    }

    // Now that we have a boolean test as a Builtin.i1, emit the branch.
    assert(booleanTestValue->getType().
           castTo<BuiltinIntegerType>()->isFixedWidth(1) &&
           "Sema forces conditions to have Builtin.i1 type");
    
    // Just branch on the condition.  On failure, we unwind any active cleanups,
    // on success we fall through to a new block.
    auto FailBB = Cleanups.emitBlockForCleanups(FalseDest, loc);
    SILBasicBlock *ContBB = createBasicBlock();
    B.createCondBranch(booleanTestLoc, booleanTestValue, ContBB, FailBB,
                       NumTrueTaken, NumFalseTaken);

    // Finally, emit the continue block and keep emitting the rest of the
    // condition.
    B.emitBlock(ContBB);
  }
}

InitializationPtr SILGenFunction::emitPatternBindingInitialization(
    Pattern *P, JumpDest failureDest, bool generateDebugInfo) {
  auto init =
      InitializationForPattern(*this, failureDest, generateDebugInfo).visit(P);
  init->setEmitDebugValueOnInit(generateDebugInfo);
  return init;
}

/// Enter a cleanup to deallocate the given location.
CleanupHandle SILGenFunction::enterDeallocStackCleanup(SILValue temp) {
  assert(temp->getType().isAddress() &&  "dealloc must have an address type");
  Cleanups.pushCleanup<DeallocStackCleanup>(temp);
  return Cleanups.getTopCleanup();
}

CleanupHandle SILGenFunction::enterDestroyCleanup(SILValue valueOrAddr) {
  Cleanups.pushCleanup<ReleaseValueCleanup>(valueOrAddr);
  return Cleanups.getTopCleanup();
}

namespace {
class EndLifetimeCleanup : public Cleanup {
  SILValue v;
public:
  EndLifetimeCleanup(SILValue v) : v(v) {}

  void emit(SILGenFunction &SGF, CleanupLocation l,
            ForUnwind_t forUnwind) override {
    SGF.B.createEndLifetime(l, v);
  }

  void dump(SILGenFunction &) const override {
#ifndef NDEBUG
    llvm::errs() << "EndLifetimeCleanup\n"
                 << "State:" << getState() << "\n"
                 << "Value:" << v << "\n";
#endif
  }
};
} // end anonymous namespace

ManagedValue SILGenFunction::emitManagedRValueWithEndLifetimeCleanup(
    SILValue value) {
  Cleanups.pushCleanup<EndLifetimeCleanup>(value);
  return ManagedValue::forUnmanagedOwnedValue(value);
}

namespace {
  /// A cleanup that deinitializes an opaque existential container
  /// before a value has been stored into it, or after its value was taken.
  class DeinitExistentialCleanup: public Cleanup {
    SILValue existentialAddr;
    CanType concreteFormalType;
    ExistentialRepresentation repr;
  public:
    DeinitExistentialCleanup(SILValue existentialAddr,
                             CanType concreteFormalType,
                             ExistentialRepresentation repr)
      : existentialAddr(existentialAddr),
        concreteFormalType(concreteFormalType),
        repr(repr) {}
    
    void emit(SILGenFunction &SGF, CleanupLocation l,
              ForUnwind_t forUnwind) override {
      switch (repr) {
      case ExistentialRepresentation::None:
      case ExistentialRepresentation::Class:
      case ExistentialRepresentation::Metatype:
        llvm_unreachable("cannot cleanup existential");
      case ExistentialRepresentation::Opaque:
        if (SGF.silConv.useLoweredAddresses()) {
          SGF.B.createDeinitExistentialAddr(l, existentialAddr);
        } else {
          SGF.B.createDeinitExistentialValue(l, existentialAddr);
        }
        break;
      case ExistentialRepresentation::Boxed:
        auto box = SGF.B.createLoad(l, existentialAddr,
                                    LoadOwnershipQualifier::Take);
        SGF.B.createDeallocExistentialBox(l, concreteFormalType, box);
        break;
      }
    }

    void dump(SILGenFunction &) const override {
#ifndef NDEBUG
      llvm::errs() << "DeinitExistentialCleanup\n"
                   << "State:" << getState() << "\n"
                   << "Value:" << existentialAddr << "\n";
#endif
    }
  };
} // end anonymous namespace

/// Enter a cleanup to emit a DeinitExistentialAddr or DeinitExistentialBox
/// of the specified value.
CleanupHandle SILGenFunction::enterDeinitExistentialCleanup(
                                               CleanupState state,
                                               SILValue addr,
                                               CanType concreteFormalType,
                                               ExistentialRepresentation repr) {
  assert(addr->getType().isAddress());
  Cleanups.pushCleanupInState<DeinitExistentialCleanup>(state, addr,
                                                      concreteFormalType, repr);
  return Cleanups.getTopCleanup();
}

namespace {
  /// A cleanup that cancels an asynchronous task.
  class CancelAsyncTaskCleanup: public Cleanup {
    SILValue task;
  public:
    CancelAsyncTaskCleanup(SILValue task) : task(task) { }

    void emit(SILGenFunction &SGF, CleanupLocation l,
              ForUnwind_t forUnwind) override {
      SILValue borrowedTask = SGF.B.createBeginBorrow(l, task);
      SGF.emitCancelAsyncTask(l, borrowedTask);
      SGF.B.createEndBorrow(l, borrowedTask);
    }

    void dump(SILGenFunction &) const override {
#ifndef NDEBUG
      llvm::errs() << "CancelAsyncTaskCleanup\n"
                   << "Task:" << task << "\n";
#endif
    }
  };
} // end anonymous namespace

CleanupHandle SILGenFunction::enterCancelAsyncTaskCleanup(SILValue task) {
  Cleanups.pushCleanupInState<CancelAsyncTaskCleanup>(
      CleanupState::Active, task);
  return Cleanups.getTopCleanup();
}

namespace {
/// A cleanup that destroys the AsyncLet along with the child task and record.
class AsyncLetCleanup: public Cleanup {
  SILValue alet;
  SILValue resultBuf;
public:
  AsyncLetCleanup(SILValue alet, SILValue resultBuf)
    : alet(alet), resultBuf(resultBuf) { }

  void emit(SILGenFunction &SGF, CleanupLocation l,
            ForUnwind_t forUnwind) override {
    SGF.emitFinishAsyncLet(l, alet, resultBuf);
  }

  void dump(SILGenFunction &) const override {
#ifndef NDEBUG
    llvm::errs() << "AsyncLetCleanup\n"
                 << "AsyncLet:" << alet << "\n"
                 << "result buffer:" << resultBuf << "\n";
#endif
  }
};
} // end anonymous namespace

CleanupHandle SILGenFunction::enterAsyncLetCleanup(SILValue alet,
                                                   SILValue resultBuf) {
  Cleanups.pushCleanupInState<AsyncLetCleanup>(
      CleanupState::Active, alet, resultBuf);
  return Cleanups.getTopCleanup();
}

/// Create a LocalVariableInitialization for the uninitialized var.
InitializationPtr SILGenFunction::emitLocalVariableWithCleanup(
    VarDecl *vd, std::optional<MarkUninitializedInst::Kind> kind,
    unsigned ArgNo, bool generateDebugInfo) {
  return InitializationPtr(new LocalVariableInitialization(
      vd, kind, ArgNo, generateDebugInfo, *this));
}

/// Create an Initialization for an uninitialized temporary.
std::unique_ptr<TemporaryInitialization>
SILGenFunction::emitTemporary(SILLocation loc, const TypeLowering &tempTL) {
  SILValue addr = emitTemporaryAllocation(loc, tempTL.getLoweredType());
  if (addr->getType().isMoveOnly())
    addr = B.createMarkUnresolvedNonCopyableValueInst(
        loc, addr,
        MarkUnresolvedNonCopyableValueInst::CheckKind::ConsumableAndAssignable);
  return useBufferAsTemporary(addr, tempTL);
}

std::unique_ptr<TemporaryInitialization>
SILGenFunction::emitFormalAccessTemporary(SILLocation loc,
                                          const TypeLowering &tempTL) {
  SILValue addr = emitTemporaryAllocation(loc, tempTL.getLoweredType());
  if (addr->getType().isMoveOnly())
    addr = B.createMarkUnresolvedNonCopyableValueInst(
        loc, addr,
        MarkUnresolvedNonCopyableValueInst::CheckKind::ConsumableAndAssignable);
  CleanupHandle cleanup =
      enterDormantFormalAccessTemporaryCleanup(addr, loc, tempTL);
  return std::unique_ptr<TemporaryInitialization>(
      new TemporaryInitialization(addr, cleanup));
}

/// Create an Initialization for an uninitialized buffer.
std::unique_ptr<TemporaryInitialization>
SILGenFunction::useBufferAsTemporary(SILValue addr,
                                     const TypeLowering &tempTL) {
  CleanupHandle cleanup = enterDormantTemporaryCleanup(addr, tempTL);
  return std::unique_ptr<TemporaryInitialization>(
                                    new TemporaryInitialization(addr, cleanup));
}

CleanupHandle
SILGenFunction::enterDormantTemporaryCleanup(SILValue addr,
                                             const TypeLowering &tempTL) {
  if (tempTL.isTrivial())
    return CleanupHandle::invalid();

  Cleanups.pushCleanupInState<ReleaseValueCleanup>(CleanupState::Dormant, addr);
  return Cleanups.getCleanupsDepth();
}

namespace {

struct FormalAccessReleaseValueCleanup final : Cleanup {
  FormalEvaluationContext::stable_iterator Depth;

  FormalAccessReleaseValueCleanup() : Cleanup(), Depth() {
    setIsFormalAccess();
  }

  void setState(SILGenFunction &SGF, CleanupState newState) override {
    if (newState == CleanupState::Dead) {
      getEvaluation(SGF).setFinished();
    }

    Cleanup::setState(SGF, newState);
  }

  void emit(SILGenFunction &SGF, CleanupLocation l,
            ForUnwind_t forUnwind) override {
    getEvaluation(SGF).finish(SGF);
  }

  void dump(SILGenFunction &SGF) const override {
#ifndef NDEBUG
    llvm::errs() << "FormalAccessReleaseValueCleanup "
                 << "State:" << getState() << "\n"
                 << "Value:" << getValue(SGF) << "\n";
#endif
  }

  OwnedFormalAccess &getEvaluation(SILGenFunction &SGF) const {
    auto &evaluation = *SGF.FormalEvalContext.find(Depth);
    assert(evaluation.getKind() == FormalAccess::Owned);
    return static_cast<OwnedFormalAccess &>(evaluation);
  }

  SILValue getValue(SILGenFunction &SGF) const {
    return getEvaluation(SGF).getValue();
  }
};

} // end anonymous namespace

ManagedValue
SILGenFunction::emitFormalAccessManagedBufferWithCleanup(SILLocation loc,
                                                         SILValue addr) {
  assert(isInFormalEvaluationScope() && "Must be in formal evaluation scope");
  auto &lowering = getTypeLowering(addr->getType());
  if (lowering.isTrivial())
    return ManagedValue::forTrivialAddressRValue(addr);

  auto &cleanup = Cleanups.pushCleanup<FormalAccessReleaseValueCleanup>();
  CleanupHandle handle = Cleanups.getTopCleanup();
  FormalEvalContext.push<OwnedFormalAccess>(loc, handle, addr);
  cleanup.Depth = FormalEvalContext.stable_begin();
  return ManagedValue::forOwnedAddressRValue(addr, handle);
}

ManagedValue
SILGenFunction::emitFormalAccessManagedRValueWithCleanup(SILLocation loc,
                                                         SILValue value) {
  assert(isInFormalEvaluationScope() && "Must be in formal evaluation scope");
  auto &lowering = getTypeLowering(value->getType());
  if (lowering.isTrivial())
    return ManagedValue::forRValueWithoutOwnership(value);

  auto &cleanup = Cleanups.pushCleanup<FormalAccessReleaseValueCleanup>();
  CleanupHandle handle = Cleanups.getTopCleanup();
  FormalEvalContext.push<OwnedFormalAccess>(loc, handle, value);
  cleanup.Depth = FormalEvalContext.stable_begin();
  return ManagedValue::forOwnedRValue(value, handle);
}

CleanupHandle SILGenFunction::enterDormantFormalAccessTemporaryCleanup(
    SILValue addr, SILLocation loc, const TypeLowering &tempTL) {
  assert(isInFormalEvaluationScope() && "Must be in formal evaluation scope");
  if (tempTL.isTrivial())
    return CleanupHandle::invalid();

  auto &cleanup = Cleanups.pushCleanup<FormalAccessReleaseValueCleanup>();
  CleanupHandle handle = Cleanups.getTopCleanup();
  Cleanups.setCleanupState(handle, CleanupState::Dormant);
  FormalEvalContext.push<OwnedFormalAccess>(loc, handle, addr);
  cleanup.Depth = FormalEvalContext.stable_begin();
  return handle;
}

void SILGenFunction::destroyLocalVariable(SILLocation silLoc, VarDecl *vd) {
  assert(vd->getDeclContext()->isLocalContext() &&
         "can't emit a local var for a non-local var decl");
  assert(vd->hasStorage() && "can't emit storage for a computed variable");

  assert(VarLocs.count(vd) && "var decl wasn't emitted?!");

  auto loc = VarLocs[vd];

  // For a heap variable, the box is responsible for the value. We just need
  // to give up our retain count on it.
  if (loc.box) {
    if (!getASTContext().SILOpts.supportsLexicalLifetimes(getModule())) {
      B.emitDestroyValueOperation(silLoc, loc.box);
      return;
    }

    if (auto *bbi = dyn_cast<BeginBorrowInst>(loc.box)) {
      B.createEndBorrow(silLoc, bbi);
      B.emitDestroyValueOperation(silLoc, bbi->getOperand());
      return;
    }

    B.emitDestroyValueOperation(silLoc, loc.box);
    return;
  }

  // For 'let' bindings, we emit a release_value or destroy_addr, depending on
  // whether we have an address or not.
  SILValue Val = loc.value;

  if (Val->getType().isAddress()) {
    B.createDestroyAddr(silLoc, Val);
    return;
  }

  if (!getASTContext().SILOpts.supportsLexicalLifetimes(getModule())) {
    B.emitDestroyValueOperation(silLoc, Val);
    return;
  }

  if (Val->getOwnershipKind() == OwnershipKind::None) {
    return;
  }

  // This handles any case where we copy + begin_borrow or copyable_to_moveonly
  // + begin_borrow. In either case we just need to end the lifetime of the
  // begin_borrow's operand.
  if (auto *bbi = dyn_cast<BeginBorrowInst>(Val.getDefiningInstruction())) {
    B.createEndBorrow(silLoc, bbi);
    B.emitDestroyValueOperation(silLoc, bbi->getOperand());
    return;
  }

  if (auto *mvi = dyn_cast<MoveValueInst>(Val.getDefiningInstruction())) {
    B.emitDestroyValueOperation(silLoc, mvi);
    return;
  }

  if (auto *mvi = dyn_cast<MarkUnresolvedNonCopyableValueInst>(
          Val.getDefiningInstruction())) {
    if (mvi->hasMoveCheckerKind()) {
      if (auto *cvi = dyn_cast<CopyValueInst>(mvi->getOperand())) {
        if (auto *bbi = dyn_cast<BeginBorrowInst>(cvi->getOperand())) {
          if (bbi->isLexical()) {
            B.emitDestroyValueOperation(silLoc, mvi);
            B.createEndBorrow(silLoc, bbi);
            B.emitDestroyValueOperation(silLoc, bbi->getOperand());
            return;
          }
        }
      }

      if (auto *copyToMove = dyn_cast<CopyableToMoveOnlyWrapperValueInst>(
              mvi->getOperand())) {
        if (auto *move = dyn_cast<MoveValueInst>(copyToMove->getOperand())) {
          if (move->isLexical()) {
            B.emitDestroyValueOperation(silLoc, mvi);
            return;
          }
        }
      }

      if (auto *cvi = dyn_cast<ExplicitCopyValueInst>(mvi->getOperand())) {
        if (auto *bbi = dyn_cast<BeginBorrowInst>(cvi->getOperand())) {
          if (bbi->isLexical()) {
            B.emitDestroyValueOperation(silLoc, mvi);
            B.createEndBorrow(silLoc, bbi);
            B.emitDestroyValueOperation(silLoc, bbi->getOperand());
            return;
          }
        }
      }

      // Handle trivial arguments.
      if (auto *move = dyn_cast<MoveValueInst>(mvi->getOperand())) {
        if (move->isLexical()) {
          B.emitDestroyValueOperation(silLoc, mvi);
          return;
        }
      }
    }
  }

  llvm_unreachable("unhandled case");
}

void BlackHoleInitialization::performPackExpansionInitialization(
                                        SILGenFunction &SGF,
                                        SILLocation loc,
                                        SILValue indexWithinComponent,
                          llvm::function_ref<void(Initialization *into)> fn) {
  BlackHoleInitialization subInit;
  fn(&subInit);
}

void BlackHoleInitialization::copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
                                                  ManagedValue value, bool isInit) {
  // Normally we do not do anything if we have a black hole
  // initialization... but if we have a move only object, insert a move value.
  if (!value.getType().isMoveOnly())
    return;

  // If we have an address, then this will create a new temporary allocation
  // which will trigger the move checker. If we have an object though, we need
  // to insert an extra move_value to make sure the object checker behaves
  // correctly.
  value = value.ensurePlusOne(SGF, loc);
  if (value.getType().isAddress())
    return;

  value = SGF.B.createMoveValue(loc, value);
}