1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
|
//===--- SILGenExpr.cpp - Implements Lowering of ASTs -> SIL for Exprs ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ArgumentScope.h"
#include "ArgumentSource.h"
#include "Callee.h"
#include "Condition.h"
#include "Conversion.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "ResultPlan.h"
#include "SGFContext.h"
#include "SILGen.h"
#include "SILGenDynamicCast.h"
#include "SILGenFunctionBuilder.h"
#include "Scope.h"
#include "SwitchEnumBuilder.h"
#include "Varargs.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/CanTypeVisitor.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/Type.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/type_traits.h"
#include "swift/SIL/Consumption.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include "swift/AST/DiagnosticsSIL.h"
using namespace swift;
using namespace Lowering;
ManagedValue SILGenFunction::emitManagedCopy(SILLocation loc, SILValue v) {
auto &lowering = getTypeLowering(v->getType());
return emitManagedCopy(loc, v, lowering);
}
ManagedValue SILGenFunction::emitManagedCopy(SILLocation loc, SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType() == v->getType());
if (lowering.isTrivial())
return ManagedValue::forRValueWithoutOwnership(v);
if (v->getType().isObject() && v->getOwnershipKind() == OwnershipKind::None)
return ManagedValue::forObjectRValueWithoutOwnership(v);
assert((!lowering.isAddressOnly() || !silConv.useLoweredAddresses()) &&
"cannot retain an unloadable type");
v = lowering.emitCopyValue(B, loc, v);
return emitManagedRValueWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedFormalEvaluationCopy(SILLocation loc,
SILValue v) {
auto &lowering = getTypeLowering(v->getType());
return emitManagedFormalEvaluationCopy(loc, v, lowering);
}
ManagedValue
SILGenFunction::emitManagedFormalEvaluationCopy(SILLocation loc, SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType() == v->getType());
assert(isInFormalEvaluationScope() && "Must be in formal evaluation scope");
if (lowering.isTrivial())
return ManagedValue::forRValueWithoutOwnership(v);
if (v->getType().isObject() && v->getOwnershipKind() == OwnershipKind::None)
return ManagedValue::forObjectRValueWithoutOwnership(v);
assert((!lowering.isAddressOnly() || !silConv.useLoweredAddresses()) &&
"cannot retain an unloadable type");
v = lowering.emitCopyValue(B, loc, v);
return emitFormalAccessManagedRValueWithCleanup(loc, v);
}
ManagedValue SILGenFunction::emitManagedLoadCopy(SILLocation loc, SILValue v) {
auto &lowering = getTypeLowering(v->getType());
return emitManagedLoadCopy(loc, v, lowering);
}
ManagedValue SILGenFunction::emitManagedLoadCopy(SILLocation loc, SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getAddressType() == v->getType());
v = lowering.emitLoadOfCopy(B, loc, v, IsNotTake);
if (lowering.isTrivial())
return ManagedValue::forRValueWithoutOwnership(v);
if (v->getOwnershipKind() == OwnershipKind::None)
return ManagedValue::forObjectRValueWithoutOwnership(v);
assert((!lowering.isAddressOnly() || !silConv.useLoweredAddresses()) &&
"cannot retain an unloadable type");
return emitManagedRValueWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedLoadBorrow(SILLocation loc,
SILValue v) {
auto &lowering = getTypeLowering(v->getType());
return emitManagedLoadBorrow(loc, v, lowering);
}
ManagedValue
SILGenFunction::emitManagedLoadBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getAddressType() == v->getType());
if (lowering.isTrivial()) {
v = lowering.emitLoadOfCopy(B, loc, v, IsNotTake);
return ManagedValue::forObjectRValueWithoutOwnership(v);
}
assert((!lowering.isAddressOnly() || !silConv.useLoweredAddresses()) &&
"cannot retain an unloadable type");
auto *lbi = B.createLoadBorrow(loc, v);
return emitManagedBorrowedRValueWithCleanup(v, lbi, lowering);
}
ManagedValue SILGenFunction::emitManagedStoreBorrow(SILLocation loc, SILValue v,
SILValue addr) {
auto &lowering = getTypeLowering(v->getType());
return emitManagedStoreBorrow(loc, v, addr, lowering);
}
ManagedValue SILGenFunction::emitManagedStoreBorrow(
SILLocation loc, SILValue v, SILValue addr, const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() == v->getType());
if (lowering.isTrivial() || v->getOwnershipKind() == OwnershipKind::None) {
lowering.emitStore(B, loc, v, addr, StoreOwnershipQualifier::Trivial);
return ManagedValue::forTrivialAddressRValue(addr);
}
assert((!lowering.isAddressOnly() || !silConv.useLoweredAddresses()) &&
"cannot retain an unloadable type");
auto *sbi = B.createStoreBorrow(loc, v, addr);
Cleanups.pushCleanup<EndBorrowCleanup>(sbi);
return ManagedValue::forBorrowedAddressRValue(sbi);
}
ManagedValue SILGenFunction::emitManagedBeginBorrow(SILLocation loc,
SILValue v) {
auto &lowering = getTypeLowering(v->getType());
return emitManagedBeginBorrow(loc, v, lowering);
}
ManagedValue
SILGenFunction::emitManagedBeginBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() ==
v->getType().getObjectType());
if (lowering.isTrivial())
return ManagedValue::forRValueWithoutOwnership(v);
if (v->getType().isAddress())
return ManagedValue::forBorrowedAddressRValue(v);
if (v->getOwnershipKind() == OwnershipKind::None)
return ManagedValue::forRValueWithoutOwnership(v);
if (v->getOwnershipKind() == OwnershipKind::Guaranteed)
return ManagedValue::forBorrowedObjectRValue(v);
auto *bbi = B.createBeginBorrow(loc, v);
return emitManagedBorrowedRValueWithCleanup(v, bbi, lowering);
}
EndBorrowCleanup::EndBorrowCleanup(SILValue borrowedValue)
: borrowedValue(borrowedValue) {
assert(!SILArgument::isTerminatorResult(borrowedValue) &&
"Transforming terminators do not have end_borrow");
assert(!isa<SILFunctionArgument>(borrowedValue) &&
"SILFunctionArguments cannot have an end_borrow");
}
void EndBorrowCleanup::emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) {
SGF.B.createEndBorrow(l, borrowedValue);
}
void EndBorrowCleanup::dump(SILGenFunction &) const {
#ifndef NDEBUG
llvm::errs() << "EndBorrowCleanup "
<< "State:" << getState() << "\n"
<< "borrowed:" << borrowedValue << "\n";
#endif
}
namespace {
struct FormalEvaluationEndBorrowCleanup : Cleanup {
FormalEvaluationContext::stable_iterator Depth;
FormalEvaluationEndBorrowCleanup() : Depth() {}
void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind) override {
getEvaluation(SGF).finish(SGF);
}
void dump(SILGenFunction &SGF) const override {
#ifndef NDEBUG
llvm::errs() << "FormalEvaluationEndBorrowCleanup "
<< "State:" << getState() << "\n"
<< "original:" << getOriginalValue(SGF) << "\n"
<< "borrowed:" << getBorrowedValue(SGF) << "\n";
#endif
}
SharedBorrowFormalAccess &getEvaluation(SILGenFunction &SGF) const {
auto &evaluation = *SGF.FormalEvalContext.find(Depth);
assert(evaluation.getKind() == FormalAccess::Shared);
return static_cast<SharedBorrowFormalAccess &>(evaluation);
}
SILValue getOriginalValue(SILGenFunction &SGF) const {
return getEvaluation(SGF).getOriginalValue();
}
SILValue getBorrowedValue(SILGenFunction &SGF) const {
return getEvaluation(SGF).getBorrowedValue();
}
};
} // end anonymous namespace
ManagedValue
SILGenFunction::emitFormalEvaluationManagedBeginBorrow(SILLocation loc,
SILValue v) {
if (v->getOwnershipKind() == OwnershipKind::Guaranteed)
return ManagedValue::forBorrowedObjectRValue(v);
auto &lowering = getTypeLowering(v->getType());
return emitFormalEvaluationManagedBeginBorrow(loc, v, lowering);
}
ManagedValue SILGenFunction::emitFormalEvaluationManagedBeginBorrow(
SILLocation loc, SILValue v, const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() ==
v->getType().getObjectType());
if (lowering.isTrivial())
return ManagedValue::forRValueWithoutOwnership(v);
if (v->getOwnershipKind() == OwnershipKind::Guaranteed)
return ManagedValue::forBorrowedRValue(v);
auto *bbi = B.createBeginBorrow(loc, v);
return emitFormalEvaluationManagedBorrowedRValueWithCleanup(loc, v, bbi,
lowering);
}
ManagedValue SILGenFunction::emitFormalEvaluationManagedStoreBorrow(
SILLocation loc, SILValue v, SILValue addr) {
auto &lowering = getTypeLowering(v->getType());
if (lowering.isTrivial() || v->getOwnershipKind() == OwnershipKind::None) {
lowering.emitStore(B, loc, v, addr, StoreOwnershipQualifier::Trivial);
return ManagedValue::forTrivialAddressRValue(addr);
}
auto *sbi = B.createStoreBorrow(loc, v, addr);
return emitFormalEvaluationManagedBorrowedRValueWithCleanup(loc, v, sbi,
lowering);
}
ManagedValue
SILGenFunction::emitFormalEvaluationManagedBorrowedRValueWithCleanup(
SILLocation loc, SILValue original, SILValue borrowed) {
auto &lowering = getTypeLowering(original->getType());
return emitFormalEvaluationManagedBorrowedRValueWithCleanup(
loc, original, borrowed, lowering);
}
ManagedValue
SILGenFunction::emitFormalEvaluationManagedBorrowedRValueWithCleanup(
SILLocation loc, SILValue original, SILValue borrowed,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() ==
original->getType().getObjectType());
if (lowering.isTrivial())
return ManagedValue::forRValueWithoutOwnership(borrowed);
assert(isInFormalEvaluationScope() && "Must be in formal evaluation scope");
auto &cleanup = Cleanups.pushCleanup<FormalEvaluationEndBorrowCleanup>();
CleanupHandle handle = Cleanups.getTopCleanup();
FormalEvalContext.push<SharedBorrowFormalAccess>(loc, handle, original,
borrowed);
cleanup.Depth = FormalEvalContext.stable_begin();
return ManagedValue::forBorrowedRValue(borrowed);
}
ManagedValue
SILGenFunction::emitManagedBorrowedArgumentWithCleanup(SILPhiArgument *arg) {
if (arg->getOwnershipKind() == OwnershipKind::None ||
arg->getType().isTrivial(F)) {
return ManagedValue::forRValueWithoutOwnership(arg);
}
assert(arg->getOwnershipKind() == OwnershipKind::Guaranteed);
Cleanups.pushCleanup<EndBorrowCleanup>(arg);
return ManagedValue::forBorrowedObjectRValue(arg);
}
ManagedValue
SILGenFunction::emitManagedBorrowedRValueWithCleanup(SILValue original,
SILValue borrowed) {
assert(original->getType().getObjectType() ==
borrowed->getType().getObjectType());
auto &lowering = getTypeLowering(original->getType());
return emitManagedBorrowedRValueWithCleanup(original, borrowed, lowering);
}
ManagedValue
SILGenFunction::emitManagedBorrowedRValueWithCleanup(SILValue borrowed) {
auto &lowering = getTypeLowering(borrowed->getType());
return emitManagedBorrowedRValueWithCleanup(borrowed, lowering);
}
ManagedValue SILGenFunction::emitManagedBorrowedRValueWithCleanup(
SILValue borrowed, const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() ==
borrowed->getType().getObjectType());
if (lowering.isTrivial())
return ManagedValue::forRValueWithoutOwnership(borrowed);
if (borrowed->getType().isObject() &&
borrowed->getOwnershipKind() == OwnershipKind::None)
return ManagedValue::forObjectRValueWithoutOwnership(borrowed);
if (borrowed->getType().isObject()) {
Cleanups.pushCleanup<EndBorrowCleanup>(borrowed);
}
return ManagedValue::forBorrowedRValue(borrowed);
}
ManagedValue SILGenFunction::emitManagedBorrowedRValueWithCleanup(
SILValue original, SILValue borrowed, const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() ==
original->getType().getObjectType());
if (lowering.isTrivial())
return ManagedValue::forRValueWithoutOwnership(borrowed);
if (original->getType().isObject() &&
original->getOwnershipKind() == OwnershipKind::None)
return ManagedValue::forObjectRValueWithoutOwnership(borrowed);
Cleanups.pushCleanup<EndBorrowCleanup>(borrowed);
return ManagedValue::forBorrowedRValue(borrowed);
}
ManagedValue SILGenFunction::emitManagedRValueWithCleanup(SILValue v) {
auto &lowering = getTypeLowering(v->getType());
return emitManagedRValueWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedRValueWithCleanup(SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() ==
v->getType().getObjectType());
if (lowering.isTrivial())
return ManagedValue::forRValueWithoutOwnership(v);
if (v->getType().isObject() && v->getOwnershipKind() == OwnershipKind::None) {
return ManagedValue::forRValueWithoutOwnership(v);
}
return ManagedValue::forOwnedRValue(v, enterDestroyCleanup(v));
}
ManagedValue SILGenFunction::emitManagedBufferWithCleanup(SILValue v) {
auto &lowering = getTypeLowering(v->getType());
return emitManagedBufferWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedBufferWithCleanup(SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getAddressType() == v->getType() ||
!silConv.useLoweredAddresses());
if (lowering.isTrivial())
return ManagedValue::forTrivialAddressRValue(v);
return ManagedValue::forOwnedAddressRValue(v, enterDestroyCleanup(v));
}
void SILGenFunction::emitExprInto(Expr *E, Initialization *I,
std::optional<SILLocation> L) {
// Handle the special case of copying an lvalue.
if (auto load = dyn_cast<LoadExpr>(E)) {
FormalEvaluationScope writeback(*this);
auto lv = emitLValue(load->getSubExpr(),
SGFAccessKind::BorrowedAddressRead);
emitCopyLValueInto(L ? *L : E, std::move(lv), I);
return;
}
RValue result = emitRValue(E, SGFContext(I));
if (result.isInContext())
return;
std::move(result).ensurePlusOne(*this, E).forwardInto(*this, L ? *L : E, I);
}
namespace {
class RValueEmitter
: public Lowering::ExprVisitor<RValueEmitter, RValue, SGFContext>
{
typedef Lowering::ExprVisitor<RValueEmitter,RValue,SGFContext> super;
public:
SILGenFunction &SGF;
RValueEmitter(SILGenFunction &SGF) : SGF(SGF) {}
using super::visit;
RValue visit(Expr *E) {
assert(!E->getType()->is<LValueType>() &&
!E->getType()->is<InOutType>() &&
"RValueEmitter shouldn't be called on lvalues");
return visit(E, SGFContext());
}
// These always produce lvalues.
RValue visitInOutExpr(InOutExpr *E, SGFContext C) {
LValue lv = SGF.emitLValue(E->getSubExpr(), SGFAccessKind::ReadWrite);
return RValue(SGF, E, SGF.emitAddressOfLValue(E->getSubExpr(),
std::move(lv)));
}
RValue visitLazyInitializerExpr(LazyInitializerExpr *E, SGFContext C);
RValue visitApplyExpr(ApplyExpr *E, SGFContext C);
RValue visitDiscardAssignmentExpr(DiscardAssignmentExpr *E, SGFContext C) {
llvm_unreachable("cannot appear in rvalue");
}
RValue visitDeclRefExpr(DeclRefExpr *E, SGFContext C);
RValue visitTypeExpr(TypeExpr *E, SGFContext C);
RValue visitSuperRefExpr(SuperRefExpr *E, SGFContext C);
RValue visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *E,
SGFContext C);
RValue visitForceTryExpr(ForceTryExpr *E, SGFContext C);
RValue visitOptionalTryExpr(OptionalTryExpr *E, SGFContext C);
RValue visitNilLiteralExpr(NilLiteralExpr *E, SGFContext C);
RValue visitIntegerLiteralExpr(IntegerLiteralExpr *E, SGFContext C);
RValue visitFloatLiteralExpr(FloatLiteralExpr *E, SGFContext C);
RValue visitBooleanLiteralExpr(BooleanLiteralExpr *E, SGFContext C);
RValue visitStringLiteralExpr(StringLiteralExpr *E, SGFContext C);
RValue visitLoadExpr(LoadExpr *E, SGFContext C);
RValue visitDerivedToBaseExpr(DerivedToBaseExpr *E, SGFContext C);
RValue visitMetatypeConversionExpr(MetatypeConversionExpr *E,
SGFContext C);
RValue visitCollectionUpcastConversionExpr(
CollectionUpcastConversionExpr *E,
SGFContext C);
RValue visitBridgeToObjCExpr(BridgeToObjCExpr *E, SGFContext C);
RValue visitPackExpansionExpr(PackExpansionExpr *E, SGFContext C);
RValue visitPackElementExpr(PackElementExpr *E, SGFContext C);
RValue visitMaterializePackExpr(MaterializePackExpr *E, SGFContext C);
RValue visitBridgeFromObjCExpr(BridgeFromObjCExpr *E, SGFContext C);
RValue visitConditionalBridgeFromObjCExpr(ConditionalBridgeFromObjCExpr *E,
SGFContext C);
RValue visitArchetypeToSuperExpr(ArchetypeToSuperExpr *E, SGFContext C);
RValue visitUnresolvedTypeConversionExpr(UnresolvedTypeConversionExpr *E,
SGFContext C);
RValue visitABISafeConversionExpr(ABISafeConversionExpr *E, SGFContext C) {
llvm_unreachable("cannot appear in rvalue");
}
RValue visitFunctionConversionExpr(FunctionConversionExpr *E,
SGFContext C);
RValue visitActorIsolationErasureExpr(ActorIsolationErasureExpr *E,
SGFContext C);
RValue visitExtractFunctionIsolationExpr(ExtractFunctionIsolationExpr *E,
SGFContext C);
RValue visitCovariantFunctionConversionExpr(
CovariantFunctionConversionExpr *E,
SGFContext C);
RValue visitCovariantReturnConversionExpr(
CovariantReturnConversionExpr *E,
SGFContext C);
RValue visitErasureExpr(ErasureExpr *E, SGFContext C);
RValue visitAnyHashableErasureExpr(AnyHashableErasureExpr *E, SGFContext C);
RValue visitForcedCheckedCastExpr(ForcedCheckedCastExpr *E,
SGFContext C);
RValue visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *E,
SGFContext C);
RValue visitIsExpr(IsExpr *E, SGFContext C);
RValue visitCoerceExpr(CoerceExpr *E, SGFContext C);
RValue visitUnderlyingToOpaqueExpr(UnderlyingToOpaqueExpr *E, SGFContext C);
RValue visitUnreachableExpr(UnreachableExpr *E, SGFContext C);
RValue visitTupleExpr(TupleExpr *E, SGFContext C);
RValue visitMemberRefExpr(MemberRefExpr *E, SGFContext C);
RValue visitDynamicMemberRefExpr(DynamicMemberRefExpr *E, SGFContext C);
RValue visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E,
SGFContext C);
RValue visitTupleElementExpr(TupleElementExpr *E, SGFContext C);
RValue visitSubscriptExpr(SubscriptExpr *E, SGFContext C);
RValue visitKeyPathApplicationExpr(KeyPathApplicationExpr *E, SGFContext C);
RValue visitDynamicSubscriptExpr(DynamicSubscriptExpr *E,
SGFContext C);
RValue visitDestructureTupleExpr(DestructureTupleExpr *E, SGFContext C);
RValue visitDynamicTypeExpr(DynamicTypeExpr *E, SGFContext C);
RValue visitCaptureListExpr(CaptureListExpr *E, SGFContext C);
RValue visitAbstractClosureExpr(AbstractClosureExpr *E, SGFContext C);
ManagedValue tryEmitConvertedClosure(AbstractClosureExpr *e,
const Conversion &conv);
ManagedValue emitClosureReference(AbstractClosureExpr *e,
const FunctionTypeInfo &contextInfo);
RValue visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E,
SGFContext C);
RValue visitRegexLiteralExpr(RegexLiteralExpr *E, SGFContext C);
RValue visitObjectLiteralExpr(ObjectLiteralExpr *E, SGFContext C);
RValue visitEditorPlaceholderExpr(EditorPlaceholderExpr *E, SGFContext C);
RValue visitObjCSelectorExpr(ObjCSelectorExpr *E, SGFContext C);
RValue visitKeyPathExpr(KeyPathExpr *E, SGFContext C);
RValue visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *E,
SGFContext C);
RValue visitCollectionExpr(CollectionExpr *E, SGFContext C);
RValue visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *E,
SGFContext C);
RValue visitInjectIntoOptionalExpr(InjectIntoOptionalExpr *E, SGFContext C);
RValue visitClassMetatypeToObjectExpr(ClassMetatypeToObjectExpr *E,
SGFContext C);
RValue visitExistentialMetatypeToObjectExpr(ExistentialMetatypeToObjectExpr *E,
SGFContext C);
RValue visitProtocolMetatypeToObjectExpr(ProtocolMetatypeToObjectExpr *E,
SGFContext C);
RValue visitTernaryExpr(TernaryExpr *E, SGFContext C);
RValue visitAssignExpr(AssignExpr *E, SGFContext C);
RValue visitEnumIsCaseExpr(EnumIsCaseExpr *E, SGFContext C);
RValue visitSingleValueStmtExpr(SingleValueStmtExpr *E, SGFContext C);
RValue visitBindOptionalExpr(BindOptionalExpr *E, SGFContext C);
RValue visitOptionalEvaluationExpr(OptionalEvaluationExpr *E,
SGFContext C);
RValue visitForceValueExpr(ForceValueExpr *E, SGFContext C);
RValue emitForceValue(ForceValueExpr *loc, Expr *E,
unsigned numOptionalEvaluations,
SGFContext C);
RValue visitOpenExistentialExpr(OpenExistentialExpr *E, SGFContext C);
RValue visitMakeTemporarilyEscapableExpr(
MakeTemporarilyEscapableExpr *E, SGFContext C);
RValue visitOpaqueValueExpr(OpaqueValueExpr *E, SGFContext C);
RValue visitPropertyWrapperValuePlaceholderExpr(
PropertyWrapperValuePlaceholderExpr *E, SGFContext C);
RValue visitAppliedPropertyWrapperExpr(
AppliedPropertyWrapperExpr *E, SGFContext C);
RValue visitInOutToPointerExpr(InOutToPointerExpr *E, SGFContext C);
RValue visitArrayToPointerExpr(ArrayToPointerExpr *E, SGFContext C);
RValue visitStringToPointerExpr(StringToPointerExpr *E, SGFContext C);
RValue visitPointerToPointerExpr(PointerToPointerExpr *E, SGFContext C);
RValue visitForeignObjectConversionExpr(ForeignObjectConversionExpr *E,
SGFContext C);
RValue visitUnevaluatedInstanceExpr(UnevaluatedInstanceExpr *E,
SGFContext C);
RValue visitTapExpr(TapExpr *E, SGFContext C);
RValue visitDefaultArgumentExpr(DefaultArgumentExpr *E, SGFContext C);
RValue visitErrorExpr(ErrorExpr *E, SGFContext C);
RValue visitDifferentiableFunctionExpr(DifferentiableFunctionExpr *E,
SGFContext C);
RValue visitLinearFunctionExpr(LinearFunctionExpr *E, SGFContext C);
RValue visitDifferentiableFunctionExtractOriginalExpr(
DifferentiableFunctionExtractOriginalExpr *E, SGFContext C);
RValue visitLinearFunctionExtractOriginalExpr(
LinearFunctionExtractOriginalExpr *E, SGFContext C);
RValue visitLinearToDifferentiableFunctionExpr(
LinearToDifferentiableFunctionExpr *E, SGFContext C);
RValue visitConsumeExpr(ConsumeExpr *E, SGFContext C);
RValue visitCopyExpr(CopyExpr *E, SGFContext C);
RValue visitMacroExpansionExpr(MacroExpansionExpr *E, SGFContext C);
RValue visitCurrentContextIsolationExpr(CurrentContextIsolationExpr *E, SGFContext C);
};
} // end anonymous namespace
namespace {
struct BridgingConversion {
Expr *SubExpr;
std::optional<Conversion::KindTy> Kind;
unsigned MaxOptionalDepth;
BridgingConversion() : SubExpr(nullptr) {}
BridgingConversion(Expr *sub, std::optional<Conversion::KindTy> kind,
unsigned depth)
: SubExpr(sub), Kind(kind), MaxOptionalDepth(depth) {
assert(!kind || Conversion::isBridgingKind(*kind));
}
explicit operator bool() const { return SubExpr != nullptr; }
};
}
static BridgingConversion getBridgingConversion(Expr *E) {
E = E->getSemanticsProvidingExpr();
// Detect bridging conversions.
if (auto bridge = dyn_cast<BridgeToObjCExpr>(E)) {
return { bridge->getSubExpr(), Conversion::BridgeToObjC, 0 };
}
if (auto bridge = dyn_cast<BridgeFromObjCExpr>(E)) {
return { bridge->getSubExpr(), Conversion::BridgeFromObjC, 0 };
}
// We can handle optional injections.
if (auto inject = dyn_cast<InjectIntoOptionalExpr>(E)) {
return getBridgingConversion(inject->getSubExpr());
}
// Look through optional-to-optional conversions.
if (auto optEval = dyn_cast<OptionalEvaluationExpr>(E)) {
auto sub = optEval->getSubExpr()->getSemanticsProvidingExpr();
if (auto subResult = getBridgingConversion(sub)) {
sub = subResult.SubExpr->getSemanticsProvidingExpr();
if (auto bind = dyn_cast<BindOptionalExpr>(sub)) {
if (bind->getDepth() == subResult.MaxOptionalDepth) {
return { bind->getSubExpr(),
subResult.Kind,
subResult.MaxOptionalDepth + 1 };
}
}
}
}
// Open-existentials can be part of bridging conversions in very
// specific patterns.
auto open = dyn_cast<OpenExistentialExpr>(E);
if (open) E = open->getSubExpr();
// Existential erasure.
if (auto erasure = dyn_cast<ErasureExpr>(E)) {
Conversion::KindTy kind;
// Converting to Any is sometimes part of bridging and definitely
// needs special peepholing behavior.
if (erasure->getType()->isAny()) {
kind = Conversion::AnyErasure;
// Otherwise, nope.
} else {
return {};
}
// Tentatively look through the erasure.
E = erasure->getSubExpr();
// If we have an opening, we can only peephole if the value being
// used is exactly the original value.
if (open) {
if (E == open->getOpaqueValue()) {
return { open->getExistentialValue(), kind, 0 };
}
return {};
}
// Otherwise we can always peephole.
return { E, kind, 0 };
}
// If we peeked through an opening, and we didn't recognize a specific
// pattern above involving the opaque value, make sure we use the opening
// as the final expression instead of accidentally looking through it.
if (open)
return {open, std::nullopt, 0};
return {E, std::nullopt, 0};
}
/// If the given expression represents a bridging conversion, emit it with
/// the special reabstracting context.
static std::optional<ManagedValue>
tryEmitAsBridgingConversion(SILGenFunction &SGF, Expr *E, bool isExplicit,
SGFContext C) {
// Try to pattern-match a conversion. This can find bridging
// conversions, but it can also find simple optional conversions:
// injections and opt-to-opt conversions.
auto result = getBridgingConversion(E);
// If we didn't find a conversion at all, there's nothing special to do.
if (!result ||
result.SubExpr == E ||
result.SubExpr->getType()->isEqual(E->getType()))
return std::nullopt;
// Even if the conversion doesn't involve bridging, we might still
// expose more peephole opportunities by combining it with a contextual
// conversion.
if (!result.Kind) {
// Only do this if the conversion is implicit.
if (isExplicit)
return std::nullopt;
// Look for a contextual conversion.
auto conversion = C.getAsConversion();
if (!conversion)
return std::nullopt;
// Adjust the contextual conversion.
auto sub = result.SubExpr;
auto sourceType = sub->getType()->getCanonicalType();
if (auto adjusted = conversion->getConversion()
.adjustForInitialOptionalConversions(sourceType)) {
// Emit into the applied conversion.
return conversion->emitWithAdjustedConversion(SGF, E, *adjusted,
[sub](SILGenFunction &SGF, SILLocation loc, SGFContext C) {
return SGF.emitRValueAsSingleValue(sub, C);
});
}
// If that didn't work, there's nothing special to do.
return std::nullopt;
}
auto kind = *result.Kind;
auto subExpr = result.SubExpr;
CanType resultType = E->getType()->getCanonicalType();
Conversion conversion =
Conversion::getBridging(kind, subExpr->getType()->getCanonicalType(),
resultType, SGF.getLoweredType(resultType),
isExplicit);
// Only use this special pattern for AnyErasure conversions when we're
// emitting into a peephole.
if (kind == Conversion::AnyErasure) {
auto outerConversion = C.getAsConversion();
if (!outerConversion ||
!canPeepholeConversions(SGF, outerConversion->getConversion(),
conversion)) {
return std::nullopt;
}
}
return SGF.emitConvertedRValue(subExpr, conversion, C);
}
RValue RValueEmitter::visitLazyInitializerExpr(LazyInitializerExpr *E,
SGFContext C) {
// We need to emit a profiler count increment specifically for the lazy
// initialization, as we don't want to record an increment for every call to
// the getter.
SGF.emitProfilerIncrement(E);
return visit(E->getSubExpr(), C);
}
RValue RValueEmitter::visitApplyExpr(ApplyExpr *E, SGFContext C) {
return SGF.emitApplyExpr(E, C);
}
SILValue SILGenFunction::emitEmptyTuple(SILLocation loc) {
return B.createTuple(
loc, getLoweredType(TupleType::getEmpty(SGM.M.getASTContext())),
ArrayRef<SILValue>());
}
namespace {
/// This is a simple cleanup class that at the end of a lexical scope consumes
/// an owned value by writing it back to memory. The user can forward this
/// cleanup to take ownership of the value and thus prevent it form being
/// written back.
struct OwnedValueWritebackCleanup final : Cleanup {
using Flags = Cleanup::Flags;
/// We store our own loc so that we can ensure that DI ignores our writeback.
SILLocation loc;
SILValue lvalueAddress;
SILValue value;
OwnedValueWritebackCleanup(SILLocation loc, SILValue lvalueAddress,
SILValue value)
: loc(loc), lvalueAddress(lvalueAddress), value(value) {}
bool getWritebackBuffer(function_ref<void(SILValue)> func) override {
func(lvalueAddress);
return true;
}
void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind) override {
SILValue valueToStore = value;
SILType lvalueObjTy = lvalueAddress->getType().getObjectType();
// If we calling a super.init and thus upcasted self, when we store self
// back into the self slot, we need to perform a downcast from the upcasted
// store value to the derived type of our lvalueAddress.
if (valueToStore->getType() != lvalueObjTy) {
if (!valueToStore->getType().isExactSuperclassOf(lvalueObjTy)) {
llvm_unreachable("Invalid usage of delegate init self writeback");
}
valueToStore = SGF.B.createUncheckedRefCast(loc, valueToStore,
lvalueObjTy);
}
SGF.B.emitStoreValueOperation(loc, valueToStore, lvalueAddress,
StoreOwnershipQualifier::Init);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "OwnedValueWritebackCleanup "
<< "State:" << getState() << "\n"
<< "lvalueAddress:" << lvalueAddress << "value:" << value
<< "\n";
#endif
}
};
} // end anonymous namespace
CleanupHandle SILGenFunction::enterOwnedValueWritebackCleanup(
SILLocation loc, SILValue address, SILValue newValue) {
Cleanups.pushCleanup<OwnedValueWritebackCleanup>(loc, address, newValue);
return Cleanups.getTopCleanup();
}
RValue SILGenFunction::emitRValueForSelfInDelegationInit(SILLocation loc,
CanType refType,
SILValue addr,
SGFContext C) {
assert(SelfInitDelegationState != SILGenFunction::NormalSelf &&
"This should never be called unless we are in a delegation sequence");
assert(getTypeLowering(addr->getType()).isLoadable() &&
"Make sure that we are not dealing with semantic rvalues");
// If we are currently in the WillSharedBorrowSelf state, then we know that
// old self is not the self to our delegating initializer. Self in this case
// to the delegating initializer is a metatype. Thus, we perform a
// load_borrow. And move from WillSharedBorrowSelf -> DidSharedBorrowSelf.
if (SelfInitDelegationState == SILGenFunction::WillSharedBorrowSelf) {
assert(C.isGuaranteedPlusZeroOk() &&
"This should only be called if guaranteed plus zero is ok");
SelfInitDelegationState = SILGenFunction::DidSharedBorrowSelf;
ManagedValue result =
B.createLoadBorrow(loc, ManagedValue::forBorrowedAddressRValue(addr));
return RValue(*this, loc, refType, result);
}
// If we are already in the did shared borrow self state, just return the
// shared borrow value.
if (SelfInitDelegationState == SILGenFunction::DidSharedBorrowSelf) {
assert(C.isGuaranteedPlusZeroOk() &&
"This should only be called if guaranteed plus zero is ok");
ManagedValue result =
B.createLoadBorrow(loc, ManagedValue::forBorrowedAddressRValue(addr));
return RValue(*this, loc, refType, result);
}
// If we are in WillExclusiveBorrowSelf, then we need to perform an exclusive
// borrow (i.e. a load take) and then move to DidExclusiveBorrowSelf.
if (SelfInitDelegationState == SILGenFunction::WillExclusiveBorrowSelf) {
const auto &typeLowering = getTypeLowering(addr->getType());
SelfInitDelegationState = SILGenFunction::DidExclusiveBorrowSelf;
SILValue self =
emitLoad(loc, addr, typeLowering, C, IsTake, false).forward(*this);
// Forward our initial value for init delegation self and create a new
// cleanup that performs a writeback at the end of lexical scope if our
// value is not consumed.
InitDelegationSelf = ManagedValue::forExclusivelyBorrowedOwnedObjectRValue(
self, enterOwnedValueWritebackCleanup(*InitDelegationLoc, addr, self));
InitDelegationSelfBox = addr;
return RValue(*this, loc, refType, InitDelegationSelf);
}
// If we hit this point, we must have DidExclusiveBorrowSelf. We should have
// gone through the formal evaluation variant but did not. The only way that
// this can happen is if during argument evaluation, we are accessing self in
// a way that is illegal before we call super. Return a copy of self in this
// case so that DI will flag on this issue. We do not care where the destroy
// occurs, so we can use a normal scoped copy.
ManagedValue Result;
if (!SuperInitDelegationSelf) {
Result = InitDelegationSelf.copy(*this, loc);
} else {
Result =
B.createUncheckedRefCast(loc, SuperInitDelegationSelf.copy(*this, loc),
InitDelegationSelf.getType());
}
return RValue(*this, loc, refType, Result);
}
RValue SILGenFunction::emitFormalEvaluationRValueForSelfInDelegationInit(
SILLocation loc, CanType refType, SILValue addr, SGFContext C) {
assert(SelfInitDelegationState != SILGenFunction::NormalSelf &&
"This should never be called unless we are in a delegation sequence");
assert(getTypeLowering(addr->getType()).isLoadable() &&
"Make sure that we are not dealing with semantic rvalues");
// If we are currently in the WillSharedBorrowSelf state, then we know that
// old self is not the self to our delegating initializer. Self in this case
// to the delegating initializer is a metatype. Thus, we perform a
// load_borrow. And move from WillSharedBorrowSelf -> DidSharedBorrowSelf.
if (SelfInitDelegationState == SILGenFunction::WillSharedBorrowSelf) {
assert(C.isGuaranteedPlusZeroOk() &&
"This should only be called if guaranteed plus zero is ok");
SelfInitDelegationState = SILGenFunction::DidSharedBorrowSelf;
ManagedValue result = B.createFormalAccessLoadBorrow(
loc, ManagedValue::forBorrowedAddressRValue(addr));
return RValue(*this, loc, refType, result);
}
// If we are already in the did shared borrow self state, just return the
// shared borrow value.
if (SelfInitDelegationState == SILGenFunction::DidSharedBorrowSelf) {
assert(C.isGuaranteedPlusZeroOk() &&
"This should only be called if guaranteed plus zero is ok");
ManagedValue result = B.createFormalAccessLoadBorrow(
loc, ManagedValue::forBorrowedAddressRValue(addr));
return RValue(*this, loc, refType, result);
}
// If we hit this point, we must have DidExclusiveBorrowSelf. Thus borrow
// self.
//
// *NOTE* This routine should /never/ begin an exclusive borrow of self. It is
// only called when emitting self as a base in lvalue emission.
assert(SelfInitDelegationState == SILGenFunction::DidExclusiveBorrowSelf);
// If we do not have a super init delegation self, just perform a formal
// access borrow and return. This occurs with delegating initializers.
if (!SuperInitDelegationSelf) {
return RValue(*this, loc, refType,
InitDelegationSelf.formalAccessBorrow(*this, loc));
}
// Otherwise, we had an upcast of some sort due to a chaining
// initializer. This means that we need to perform a borrow from
// SuperInitDelegationSelf and then downcast that borrow.
ManagedValue borrowedUpcast =
SuperInitDelegationSelf.formalAccessBorrow(*this, loc);
ManagedValue castedBorrowedType = B.createUncheckedRefCast(
loc, borrowedUpcast, InitDelegationSelf.getType());
return RValue(*this, loc, refType, castedBorrowedType);
}
RValue SILGenFunction::
emitRValueForDecl(SILLocation loc, ConcreteDeclRef declRef, Type ncRefType,
AccessSemantics semantics, SGFContext C) {
assert(!ncRefType->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
// If this is a decl that we have an lvalue for, produce and return it.
ValueDecl *decl = declRef.getDecl();
CanType refType = ncRefType->getCanonicalType();
// If this is a reference to a module, produce an undef value. The
// module value should never actually be used.
if (isa<ModuleDecl>(decl)) {
return emitUndefRValue(loc, refType);
}
// If this is a reference to a var, emit it as an l-value and then load.
if (auto *var = dyn_cast<VarDecl>(decl))
return emitRValueForNonMemberVarDecl(loc, declRef, refType, semantics, C);
assert(!isa<TypeDecl>(decl));
// If the referenced decl isn't a VarDecl, it should be a constant of some
// sort.
SILDeclRef silDeclRef(decl);
assert(silDeclRef.getParameterListCount() == 1);
auto substType = cast<AnyFunctionType>(refType);
auto typeContext = getFunctionTypeInfo(substType);
ManagedValue result = emitClosureValue(loc, silDeclRef, typeContext,
declRef.getSubstitutions());
return RValue(*this, loc, refType, result);
}
RValue RValueEmitter::visitDeclRefExpr(DeclRefExpr *E, SGFContext C) {
return SGF.emitRValueForDecl(E, E->getDeclRef(), E->getType(),
E->getAccessSemantics(), C);
}
RValue RValueEmitter::visitTypeExpr(TypeExpr *E, SGFContext C) {
assert(E->getType()->is<AnyMetatypeType>() &&
"TypeExpr must have metatype type");
auto Val = SGF.B.createMetatype(E, SGF.getLoweredType(E->getType()));
return RValue(SGF, E, ManagedValue::forObjectRValueWithoutOwnership(Val));
}
RValue RValueEmitter::visitSuperRefExpr(SuperRefExpr *E, SGFContext C) {
assert(!E->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
// If we have a normal self call, then use the emitRValueForDecl call. This
// will emit self at +0 since it is guaranteed.
ManagedValue Self =
SGF.emitRValueForDecl(E, E->getSelf(), E->getSelf()->getTypeInContext(),
AccessSemantics::Ordinary)
.getScalarValue();
// Perform an upcast to convert self to the indicated super type.
auto result = SGF.B.createUpcast(E, Self, SGF.getLoweredType(E->getType()));
return RValue(SGF, E, result);
}
RValue RValueEmitter::
visitUnresolvedTypeConversionExpr(UnresolvedTypeConversionExpr *E,
SGFContext C) {
llvm_unreachable("invalid code made its way into SILGen");
}
RValue RValueEmitter::visitOtherConstructorDeclRefExpr(
OtherConstructorDeclRefExpr *E, SGFContext C) {
// This should always be a child of an ApplyExpr and so will be emitted by
// SILGenApply.
llvm_unreachable("unapplied reference to constructor?!");
}
RValue RValueEmitter::visitNilLiteralExpr(NilLiteralExpr *E, SGFContext C) {
// Peephole away the call to Optional<T>(nilLiteral: ()).
if (E->getType()->getOptionalObjectType()) {
auto *noneDecl = SGF.getASTContext().getOptionalNoneDecl();
auto enumTy = SGF.getLoweredType(E->getType());
ManagedValue noneValue;
if (enumTy.isLoadable(SGF.F) || !SGF.silConv.useLoweredAddresses()) {
auto *e = SGF.B.createEnum(E, SILValue(), noneDecl, enumTy);
noneValue = SGF.emitManagedRValueWithCleanup(e);
} else {
noneValue =
SGF.B.bufferForExpr(E, enumTy, SGF.getTypeLowering(enumTy), C,
[&](SILValue newAddr) {
SGF.B.createInjectEnumAddr(E, newAddr, noneDecl);
});
}
return RValue(SGF, E, noneValue);
}
return SGF.emitLiteral(E, C);
}
RValue RValueEmitter::visitIntegerLiteralExpr(IntegerLiteralExpr *E,
SGFContext C) {
if (E->getType()->is<AnyBuiltinIntegerType>())
return RValue(SGF, E,
ManagedValue::forObjectRValueWithoutOwnership(
SGF.B.createIntegerLiteral(E)));
return SGF.emitLiteral(E, C);
}
RValue RValueEmitter::visitFloatLiteralExpr(FloatLiteralExpr *E,
SGFContext C) {
if (E->getType()->is<BuiltinFloatType>())
return RValue(SGF, E,
ManagedValue::forObjectRValueWithoutOwnership(
SGF.B.createFloatLiteral(E)));
return SGF.emitLiteral(E, C);
}
RValue RValueEmitter::visitBooleanLiteralExpr(BooleanLiteralExpr *E,
SGFContext C) {
return SGF.emitLiteral(E, C);
}
RValue RValueEmitter::visitStringLiteralExpr(StringLiteralExpr *E,
SGFContext C) {
return SGF.emitLiteral(E, C);
}
RValue RValueEmitter::visitLoadExpr(LoadExpr *E, SGFContext C) {
// Any writebacks here are tightly scoped.
FormalEvaluationScope writeback(SGF);
LValue lv = SGF.emitLValue(E->getSubExpr(), SGFAccessKind::OwnedObjectRead);
// We can't load at immediate +0 from the lvalue without deeper analysis,
// since the access will be immediately ended and might invalidate the value
// we loaded.
return SGF.emitLoadOfLValue(E, std::move(lv), C.withFollowingSideEffects());
}
SILValue SILGenFunction::emitTemporaryAllocation(SILLocation loc, SILType ty,
HasDynamicLifetime_t dynamic,
IsLexical_t isLexical,
IsFromVarDecl_t isFromVarDecl,
bool generateDebugInfo) {
ty = ty.getObjectType();
std::optional<SILDebugVariable> DbgVar;
if (generateDebugInfo)
if (auto *VD = loc.getAsASTNode<VarDecl>())
DbgVar = SILDebugVariable(VD->isLet(), 0);
auto *alloc =
B.createAllocStack(loc, ty, DbgVar, dynamic, isLexical, isFromVarDecl,
DoesNotUseMoveableValueDebugInfo
#ifndef NDEBUG
,
!generateDebugInfo
#endif
);
enterDeallocStackCleanup(alloc);
return alloc;
}
SILValue
SILGenFunction::emitTemporaryPackAllocation(SILLocation loc, SILType ty) {
assert(ty.is<SILPackType>());
ty = ty.getObjectType();
auto *alloc = B.createAllocPack(loc, ty);
enterDeallocPackCleanup(alloc);
return alloc;
}
SILValue SILGenFunction::
getBufferForExprResult(SILLocation loc, SILType ty, SGFContext C) {
// If you change this, change manageBufferForExprResult below as well.
// If we have a single-buffer "emit into" initialization, use that for the
// result.
if (SILValue address = C.getAddressForInPlaceInitialization(*this, loc))
return address;
// If we couldn't emit into the Initialization, emit into a temporary
// allocation.
return emitTemporaryAllocation(loc, ty.getObjectType());
}
ManagedValue SILGenFunction::
manageBufferForExprResult(SILValue buffer, const TypeLowering &bufferTL,
SGFContext C) {
// If we have a single-buffer "emit into" initialization, use that for the
// result.
if (C.finishInPlaceInitialization(*this))
return ManagedValue::forInContext();
// Add a cleanup for the temporary we allocated.
if (bufferTL.isTrivial())
return ManagedValue::forTrivialAddressRValue(buffer);
return ManagedValue::forOwnedAddressRValue(buffer,
enterDestroyCleanup(buffer));
}
SILGenFunction::ForceTryEmission::ForceTryEmission(SILGenFunction &SGF,
ForceTryExpr *loc)
: SGF(SGF), Loc(loc), OldThrowDest(SGF.ThrowDest) {
assert(loc && "cannot pass a null location");
// Set up a "catch" block for when an error occurs.
SILBasicBlock *catchBB = SGF.createBasicBlock(FunctionSection::Postmatter);
SILValue indirectError;
auto &errorTL = SGF.getTypeLowering(loc->getThrownError());
if (!errorTL.isAddressOnly()) {
(void) catchBB->createPhiArgument(errorTL.getLoweredType(),
OwnershipKind::Owned);
} else {
indirectError = SGF.B.createAllocStack(loc, errorTL.getLoweredType());
SGF.enterDeallocStackCleanup(indirectError);
}
SGF.ThrowDest = JumpDest(catchBB, SGF.Cleanups.getCleanupsDepth(),
CleanupLocation(loc),
ThrownErrorInfo(indirectError, /*discard=*/true));
}
void SILGenFunction::ForceTryEmission::finish() {
assert(Loc && "emission already finished");
auto catchBB = SGF.ThrowDest.getBlock();
auto indirectError = SGF.ThrowDest.getThrownError().IndirectErrorResult;
SGF.ThrowDest = OldThrowDest;
// If there are no uses of the catch block, just drop it.
if (catchBB->pred_empty()) {
SGF.eraseBasicBlock(catchBB);
} else {
// Otherwise, we need to emit it.
SILGenSavedInsertionPoint scope(SGF, catchBB, FunctionSection::Postmatter);
ASTContext &ctx = SGF.getASTContext();
// Consume the thrown error.
ManagedValue error;
if (catchBB->getNumArguments() == 1) {
error = ManagedValue::forForwardedRValue(SGF, catchBB->getArgument(0));
} else {
error = ManagedValue::forForwardedRValue(SGF, indirectError);
}
// If we have 'any Error', use the older entrypoint that takes an
// existential error directly. Otherwise, use the newer generic entrypoint.
auto diagnoseError = error.getType().getASTType()->isErrorExistentialType()
? ctx.getDiagnoseUnexpectedError()
: ctx.getDiagnoseUnexpectedErrorTyped();
if (diagnoseError) {
SILValue tmpBuffer;
auto args = SGF.emitSourceLocationArgs(Loc->getExclaimLoc(), Loc);
SubstitutionMap subMap;
if (auto genericSig = diagnoseError->getGenericSignature()) {
// FIXME: The conformance of the thrown error type to the Error
// protocol should be provided to us by the type checker.
subMap = SubstitutionMap::get(
genericSig, [&](SubstitutableType *dependentType) {
return error.getType().getObjectType().getASTType();
}, LookUpConformanceInModule(SGF.getModule().getSwiftModule()));
// Generic errors are passed indirectly.
if (!error.getType().isAddress()) {
auto *tmp = SGF.B.createAllocStack(
Loc, error.getType().getObjectType(), std::nullopt);
error.forwardInto(SGF, Loc, tmp);
error = ManagedValue::forForwardedRValue(SGF, tmp);
tmpBuffer = tmp;
}
}
SGF.emitApplyOfLibraryIntrinsic(
Loc,
diagnoseError,
subMap,
{
error,
args.filenameStartPointer,
args.filenameLength,
args.filenameIsAscii,
args.line
},
SGFContext());
if (tmpBuffer)
SGF.B.createDeallocStack(Loc, tmpBuffer);
}
SGF.B.createUnreachable(Loc);
}
// Prevent double-finishing and make the destructor a no-op.
Loc = nullptr;
}
RValue RValueEmitter::visitForceTryExpr(ForceTryExpr *E, SGFContext C) {
SILGenFunction::ForceTryEmission emission(SGF, E);
// Visit the sub-expression.
return visit(E->getSubExpr(), C);
}
RValue RValueEmitter::visitOptionalTryExpr(OptionalTryExpr *E, SGFContext C) {
// FIXME: Much of this was copied from visitOptionalEvaluationExpr.
// Prior to Swift 5, an optional try's subexpression is always wrapped in an additional optional
bool shouldWrapInOptional = !(SGF.getASTContext().LangOpts.isSwiftVersionAtLeast(5));
auto &optTL = SGF.getTypeLowering(E->getType());
Initialization *optInit = C.getEmitInto();
bool usingProvidedContext =
optInit && optInit->canPerformInPlaceInitialization();
// Form the optional using address operations if the type is address-only or
// if we already have an address to use.
bool isByAddress = ((usingProvidedContext || optTL.isAddressOnly()) &&
SGF.silConv.useLoweredAddresses());
std::unique_ptr<TemporaryInitialization> optTemp;
if (!isByAddress) {
// If the caller produced a context for us, but we're not going
// to use it, make sure we don't.
optInit = nullptr;
} else if (!usingProvidedContext) {
// Allocate the temporary for the Optional<T> if we didn't get one from the
// context. This needs to happen outside of the cleanups scope we're about
// to push.
optTemp = SGF.emitTemporary(E, optTL);
optInit = optTemp.get();
}
assert(isByAddress == (optInit != nullptr));
// Acquire the address to emit into outside of the cleanups scope.
SILValue optAddr;
if (isByAddress)
optAddr = optInit->getAddressForInPlaceInitialization(SGF, E);
// Set up a "catch" block for when an error occurs.
SILBasicBlock *catchBB = SGF.createBasicBlock(FunctionSection::Postmatter);
// FIXME: opaque values
auto &errorTL = SGF.getTypeLowering(E->getThrownError());
if (!errorTL.isAddressOnly()) {
(void) catchBB->createPhiArgument(errorTL.getLoweredType(),
OwnershipKind::Owned);
}
FullExpr localCleanups(SGF.Cleanups, E);
llvm::SaveAndRestore<JumpDest> throwDest{
SGF.ThrowDest,
JumpDest(catchBB, SGF.Cleanups.getCleanupsDepth(), E,
ThrownErrorInfo::forDiscard())};
SILValue branchArg;
if (shouldWrapInOptional) {
if (isByAddress) {
assert(optAddr);
SGF.emitInjectOptionalValueInto(E, E->getSubExpr(), optAddr, optTL);
} else {
ManagedValue subExprValue = SGF.emitRValueAsSingleValue(E->getSubExpr());
ManagedValue wrapped = SGF.getOptionalSomeValue(E, subExprValue, optTL);
branchArg = wrapped.forward(SGF);
}
}
else {
if (isByAddress) {
assert(optAddr);
// We've already computed the address where we want the result.
KnownAddressInitialization normalInit(optAddr);
SGF.emitExprInto(E->getSubExpr(), &normalInit);
normalInit.finishInitialization(SGF);
} else {
ManagedValue subExprValue = SGF.emitRValueAsSingleValue(E->getSubExpr());
branchArg = subExprValue.forward(SGF);
}
}
localCleanups.pop();
// If it turns out there are no uses of the catch block, just drop it.
if (catchBB->pred_empty()) {
// Remove the dead failureBB.
SGF.eraseBasicBlock(catchBB);
// The value we provide is the one we've already got.
if (!isByAddress)
return RValue(SGF, E,
SGF.emitManagedRValueWithCleanup(branchArg, optTL));
optInit->finishInitialization(SGF);
// If we emitted into the provided context, we're done.
if (usingProvidedContext)
return RValue::forInContext();
return RValue(SGF, E, optTemp->getManagedAddress());
}
SILBasicBlock *contBB = SGF.createBasicBlock();
// Branch to the continuation block.
if (isByAddress)
SGF.B.createBranch(E, contBB);
else
SGF.B.createBranch(E, contBB, branchArg);
// If control branched to the failure block, inject .none into the
// result type.
SGF.B.emitBlock(catchBB);
FullExpr catchCleanups(SGF.Cleanups, E);
// Consume the thrown error.
if (!errorTL.isAddressOnly())
(void) SGF.emitManagedRValueWithCleanup(catchBB->getArgument(0));
catchCleanups.pop();
if (isByAddress) {
SGF.emitInjectOptionalNothingInto(E, optAddr, optTL);
SGF.B.createBranch(E, contBB);
} else {
auto branchArg = SGF.getOptionalNoneValue(E, optTL);
SGF.B.createBranch(E, contBB, branchArg);
}
// Emit the continuation block.
SGF.B.emitBlock(contBB);
// If this was done in SSA registers, then the value is provided as an
// argument to the block.
if (!isByAddress) {
auto arg =
contBB->createPhiArgument(optTL.getLoweredType(), OwnershipKind::Owned);
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(arg, optTL));
}
optInit->finishInitialization(SGF);
// If we emitted into the provided context, we're done.
if (usingProvidedContext)
return RValue::forInContext();
assert(optTemp);
return RValue(SGF, E, optTemp->getManagedAddress());
}
static bool inExclusiveBorrowSelfSection(
SILGenFunction::SelfInitDelegationStates delegationState) {
return delegationState == SILGenFunction::WillExclusiveBorrowSelf ||
delegationState == SILGenFunction::DidExclusiveBorrowSelf;
}
static RValue visitDerivedToBaseExprOfSelf(SILGenFunction &SGF,
DeclRefExpr *dre,
DerivedToBaseExpr *E, SGFContext C) {
SGFContext ctx;
auto *vd = cast<ParamDecl>(dre->getDecl());
SILType derivedType = SGF.getLoweredType(E->getType());
ManagedValue selfValue;
// If we have not exclusively borrowed self, we need to do so now.
if (SGF.SelfInitDelegationState == SILGenFunction::WillExclusiveBorrowSelf) {
// We need to use a full scope here to ensure that any underlying
// "normal cleanup" borrows are cleaned up.
Scope S(SGF, E);
selfValue = S.popPreservingValue(SGF.emitRValueAsSingleValue(dre));
} else {
// If we already exclusively borrowed self, then we need to emit self
// using formal evaluation primitives.
assert(SGF.SelfInitDelegationState ==
SILGenFunction::DidExclusiveBorrowSelf);
// This needs to be inlined since there is a Formal Evaluation Scope
// in emitRValueForDecl that causing any borrow for this LValue to be
// popped too soon.
selfValue =
SGF.emitAddressOfLocalVarDecl(dre, vd, dre->getType()->getCanonicalType(),
SGFAccessKind::OwnedObjectRead);
selfValue = SGF.emitFormalEvaluationRValueForSelfInDelegationInit(
E, dre->getType()->getCanonicalType(),
selfValue.getLValueAddress(), ctx)
.getAsSingleValue(SGF, E);
}
assert(selfValue);
// Check if we need to perform a conversion here.
if (derivedType && selfValue.getType() != derivedType)
selfValue = SGF.B.createUpcast(E, selfValue, derivedType);
return RValue(SGF, dre, selfValue);
}
RValue RValueEmitter::visitDerivedToBaseExpr(DerivedToBaseExpr *E,
SGFContext C) {
// If we are going through a decl ref expr and have self and we are in the
// exclusive borrow section of delegating init emission, use a special case.
if (inExclusiveBorrowSelfSection(SGF.SelfInitDelegationState)) {
if (auto *dre = dyn_cast<DeclRefExpr>(E->getSubExpr())) {
if (isa<ParamDecl>(dre->getDecl()) &&
dre->getDecl()->getName() == SGF.getASTContext().Id_self &&
dre->getDecl()->isImplicit()) {
return visitDerivedToBaseExprOfSelf(SGF, dre, E, C);
}
}
}
// We can pass down the SGFContext as a following projection. We have never
// actually implemented emit into here, so we are not changing behavior.
ManagedValue original =
SGF.emitRValueAsSingleValue(E->getSubExpr(), C.withFollowingProjection());
// Derived-to-base casts in the AST might not be reflected as such
// in the SIL type system, for example, a cast from DynamicSelf
// directly to its own Self type.
auto loweredResultTy = SGF.getLoweredType(E->getType());
if (original.getType() == loweredResultTy)
return RValue(SGF, E, original);
ManagedValue converted = SGF.B.createUpcast(E, original, loweredResultTy);
return RValue(SGF, E, converted);
}
RValue RValueEmitter::visitMetatypeConversionExpr(MetatypeConversionExpr *E,
SGFContext C) {
SILValue metaBase =
SGF.emitRValueAsSingleValue(E->getSubExpr()).getUnmanagedValue();
// Metatype conversion casts in the AST might not be reflected as
// such in the SIL type system, for example, a cast from DynamicSelf.Type
// directly to its own Self.Type.
auto loweredResultTy = SGF.getLoweredLoadableType(E->getType());
if (metaBase->getType() == loweredResultTy)
return RValue(SGF, E,
ManagedValue::forObjectRValueWithoutOwnership(metaBase));
auto upcast = SGF.B.createUpcast(E, metaBase, loweredResultTy);
return RValue(SGF, E, ManagedValue::forObjectRValueWithoutOwnership(upcast));
}
RValue SILGenFunction::emitCollectionConversion(SILLocation loc,
FuncDecl *fn,
CanType fromCollection,
CanType toCollection,
ManagedValue mv,
SGFContext C) {
auto *fromDecl = fromCollection->getAnyNominal();
auto *toDecl = toCollection->getAnyNominal();
auto fromSubMap = fromCollection->getContextSubstitutionMap(
SGM.SwiftModule, fromDecl);
auto toSubMap = toCollection->getContextSubstitutionMap(
SGM.SwiftModule, toDecl);
// Form type parameter substitutions.
auto genericSig = fn->getGenericSignature();
unsigned fromParamCount = fromDecl->getGenericSignature()
.getGenericParams().size();
auto subMap =
SubstitutionMap::combineSubstitutionMaps(fromSubMap,
toSubMap,
CombineSubstitutionMaps::AtIndex,
fromParamCount,
0,
genericSig);
return emitApplyOfLibraryIntrinsic(loc, fn, subMap, {mv}, C);
}
RValue RValueEmitter::
visitCollectionUpcastConversionExpr(CollectionUpcastConversionExpr *E,
SGFContext C) {
SILLocation loc = RegularLocation(E);
// Get the sub expression argument as a managed value
auto mv = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Compute substitutions for the intrinsic call.
auto fromCollection = E->getSubExpr()->getType()->getCanonicalType();
auto toCollection = E->getType()->getCanonicalType();
// Get the intrinsic function.
FuncDecl *fn = nullptr;
if (fromCollection->isArray()) {
fn = SGF.SGM.getArrayForceCast(loc);
} else if (fromCollection->isDictionary()) {
fn = SGF.SGM.getDictionaryUpCast(loc);
} else if (fromCollection->isSet()) {
fn = SGF.SGM.getSetUpCast(loc);
} else {
llvm_unreachable("unsupported collection upcast kind");
}
return SGF.emitCollectionConversion(loc, fn, fromCollection, toCollection,
mv, C);
}
RValue
RValueEmitter::visitConditionalBridgeFromObjCExpr(
ConditionalBridgeFromObjCExpr *E, SGFContext C) {
// Get the sub expression argument as a managed value
auto mv = SGF.emitRValueAsSingleValue(E->getSubExpr());
auto conversionRef = E->getConversion();
auto conversion = cast<FuncDecl>(conversionRef.getDecl());
auto subs = conversionRef.getSubstitutions();
auto nativeType = Type(GenericTypeParamType::get(/*isParameterPack*/ false,
/*depth*/ 0, /*index*/ 0,
SGF.getASTContext()))
.subst(subs);
auto metatypeType = SGF.getLoweredType(MetatypeType::get(nativeType));
auto metatype = ManagedValue::forObjectRValueWithoutOwnership(
SGF.B.createMetatype(E, metatypeType));
return SGF.emitApplyOfLibraryIntrinsic(E, conversion, subs,
{ mv, metatype }, C);
}
/// Given an implicit bridging conversion, check whether the context
/// can be peepholed.
static bool
tryPeepholeBridgingConversion(SILGenFunction &SGF, Conversion::KindTy kind,
ImplicitConversionExpr *E, SGFContext C) {
assert(isa<BridgeFromObjCExpr>(E) || isa<BridgeToObjCExpr>(E));
if (auto outerConversion = C.getAsConversion()) {
auto subExpr = E->getSubExpr();
CanType sourceType = subExpr->getType()->getCanonicalType();
CanType resultType = E->getType()->getCanonicalType();
SILType loweredResultTy = SGF.getLoweredType(resultType);
auto conversion = Conversion::getBridging(kind, sourceType, resultType,
loweredResultTy);
if (outerConversion->tryPeephole(SGF, E->getSubExpr(), conversion)) {
outerConversion->finishInitialization(SGF);
return true;
}
}
return false;
}
RValue
RValueEmitter::visitBridgeFromObjCExpr(BridgeFromObjCExpr *E, SGFContext C) {
if (tryPeepholeBridgingConversion(SGF, Conversion::BridgeFromObjC, E, C))
return RValue::forInContext();
// Emit the sub-expression.
auto mv = SGF.emitRValueAsSingleValue(E->getSubExpr());
CanType origType = E->getSubExpr()->getType()->getCanonicalType();
CanType resultType = E->getType()->getCanonicalType();
SILType loweredResultTy = SGF.getLoweredType(resultType);
auto result = SGF.emitBridgedToNativeValue(E, mv, origType, resultType,
loweredResultTy, C);
return RValue(SGF, E, result);
}
RValue
RValueEmitter::visitBridgeToObjCExpr(BridgeToObjCExpr *E, SGFContext C) {
if (tryPeepholeBridgingConversion(SGF, Conversion::BridgeToObjC, E, C))
return RValue::forInContext();
// Emit the sub-expression.
auto mv = SGF.emitRValueAsSingleValue(E->getSubExpr());
CanType origType = E->getSubExpr()->getType()->getCanonicalType();
CanType resultType = E->getType()->getCanonicalType();
SILType loweredResultTy = SGF.getLoweredType(resultType);
auto result = SGF.emitNativeToBridgedValue(E, mv, origType, resultType,
loweredResultTy, C);
return RValue(SGF, E, result);
}
RValue
RValueEmitter::visitPackExpansionExpr(PackExpansionExpr *E,
SGFContext C) {
// The contexts where PackExpansionExpr can occur are expected to
// set up for pack-expansion emission by either recognizing them
// and treating them specially or setting up an appropriate context
// to emit into.
auto init = C.getEmitInto();
assert(init && init->canPerformPackExpansionInitialization() &&
"cannot emit a PackExpansionExpr without an appropriate context");
auto type = E->getType()->getCanonicalType();
assert(isa<PackExpansionType>(type));
auto formalPackType = CanPackType::get(SGF.getASTContext(), {type});
SGF.emitDynamicPackLoop(E, formalPackType, /*component index*/ 0,
E->getGenericEnvironment(),
[&](SILValue indexWithinComponent,
SILValue packExpansionIndex,
SILValue packIndex) {
init->performPackExpansionInitialization(SGF, E, indexWithinComponent,
[&](Initialization *eltInit) {
SGF.emitExprInto(E->getPatternExpr(), eltInit);
});
});
init->finishInitialization(SGF);
return RValue::forInContext();
}
RValue
RValueEmitter::visitPackElementExpr(PackElementExpr *E, SGFContext C) {
// If this is a captured pack element reference, just emit the parameter value
// that was passed to the closure.
auto found = SGF.OpaqueValues.find(E);
if (found != SGF.OpaqueValues.end())
return RValue(SGF, E, SGF.manageOpaqueValue(found->second, E, C));
// Otherwise, we're going to project the address of an element from the pack
// itself.
FormalEvaluationScope scope(SGF);
LValue lv = SGF.emitLValue(E, SGFAccessKind::OwnedObjectRead);
// Otherwise, we can't load at +0 without further analysis, since the formal
// access into the lvalue will end immediately.
return SGF.emitLoadOfLValue(E, std::move(lv),
C.withFollowingSideEffects());
}
RValue
RValueEmitter::visitMaterializePackExpr(MaterializePackExpr *E, SGFContext C) {
// Always emitted through `visitPackElementExpr`.
llvm_unreachable("materialized pack outside of PackElementExpr");
}
RValue RValueEmitter::visitArchetypeToSuperExpr(ArchetypeToSuperExpr *E,
SGFContext C) {
ManagedValue archetype = SGF.emitRValueAsSingleValue(E->getSubExpr());
auto loweredTy = SGF.getLoweredLoadableType(E->getType());
if (loweredTy == archetype.getType())
return RValue(SGF, E, archetype);
// Replace the cleanup with a new one on the superclass value so we always use
// concrete retain/release operations.
auto base = SGF.B.createUpcast(E, archetype, loweredTy);
return RValue(SGF, E, base);
}
static bool isAnyClosureExpr(Expr *e) {
return isa<AbstractClosureExpr>(e) || isa<CaptureListExpr>(e);
}
static ManagedValue emitCaptureListExpr(SILGenFunction &SGF,
CaptureListExpr *e,
llvm::function_ref<ManagedValue(AbstractClosureExpr *closure)> fn);
static ManagedValue emitAnyClosureExpr(SILGenFunction &SGF, Expr *e,
llvm::function_ref<ManagedValue(AbstractClosureExpr *closure)> fn) {
if (auto closure = dyn_cast<AbstractClosureExpr>(e)) {
return fn(closure);
} else if (auto captures = dyn_cast<CaptureListExpr>(e)) {
return emitCaptureListExpr(SGF, captures, fn);
} else {
llvm_unreachable("not a closure expression!");
}
}
static ManagedValue convertCFunctionSignature(SILGenFunction &SGF,
FunctionConversionExpr *e,
SILType loweredResultTy,
llvm::function_ref<ManagedValue ()> fnEmitter) {
SILType loweredDestTy = SGF.getLoweredType(e->getType());
ManagedValue result;
// We're converting between C function pointer types. They better be
// ABI-compatible, since we can't emit a thunk.
switch (SGF.SGM.Types.checkForABIDifferences(SGF.SGM.M,
loweredResultTy, loweredDestTy)){
case TypeConverter::ABIDifference::CompatibleRepresentation:
case TypeConverter::ABIDifference::CompatibleCallingConvention:
result = fnEmitter();
assert(result.getType() == loweredResultTy);
if (loweredResultTy != loweredDestTy) {
assert(!result.hasCleanup());
result = SGF.B.createConvertFunction(e, result, loweredDestTy);
}
break;
case TypeConverter::ABIDifference::NeedsThunk:
// Note: in this case, we don't call the emitter at all -- doing so
// just runs the risk of tripping up asserts in SILGenBridging.cpp
SGF.SGM.diagnose(e, diag::unsupported_c_function_pointer_conversion,
e->getSubExpr()->getType(), e->getType());
result = SGF.emitUndef(loweredDestTy);
break;
case TypeConverter::ABIDifference::CompatibleCallingConvention_ThinToThick:
case TypeConverter::ABIDifference::CompatibleRepresentation_ThinToThick:
llvm_unreachable("Cannot have thin to thick conversion here");
}
return result;
}
static
ManagedValue emitCFunctionPointer(SILGenFunction &SGF,
FunctionConversionExpr *conversionExpr) {
auto expr = conversionExpr->getSubExpr();
// Look through base-ignored exprs to get to the function ref.
auto semanticExpr = expr->getSemanticsProvidingExpr();
while (auto ignoredBase = dyn_cast<DotSyntaxBaseIgnoredExpr>(semanticExpr)){
SGF.emitIgnoredExpr(ignoredBase->getLHS());
semanticExpr = ignoredBase->getRHS()->getSemanticsProvidingExpr();
}
// Recover the decl reference.
SILDeclRef::Loc loc;
auto setLocFromConcreteDeclRef = [&](ConcreteDeclRef declRef) {
// TODO: Handle generic instantiations, where we need to eagerly specialize
// on the given generic parameters, and static methods, where we need to drop
// in the metatype.
assert(!declRef.getDecl()->getDeclContext()->isTypeContext()
&& "c pointers to static methods not implemented");
loc = declRef.getDecl();
};
if (auto conv = dyn_cast<FunctionConversionExpr>(semanticExpr)) {
// There might be an intermediate conversion adding or removing @Sendable.
#ifndef NDEBUG
{
auto ty1 = conv->getType()->castTo<AnyFunctionType>();
auto ty2 = conv->getSubExpr()->getType()->castTo<AnyFunctionType>();
assert(ty1->withExtInfo(ty1->getExtInfo().withSendable(false))
->isEqual(ty2->withExtInfo(ty2->getExtInfo().withSendable(false))));
}
#endif
semanticExpr = conv->getSubExpr()->getSemanticsProvidingExpr();
}
if (auto declRef = dyn_cast<DeclRefExpr>(semanticExpr)) {
setLocFromConcreteDeclRef(declRef->getDeclRef());
} else if (auto memberRef = dyn_cast<MemberRefExpr>(semanticExpr)) {
setLocFromConcreteDeclRef(memberRef->getMember());
} else if (isAnyClosureExpr(semanticExpr)) {
(void) emitAnyClosureExpr(SGF, semanticExpr,
[&](AbstractClosureExpr *closure) {
// Emit the closure body.
SGF.SGM.emitClosure(closure, SGF.getClosureTypeInfo(closure));
loc = closure;
return ManagedValue();
});
} else {
llvm_unreachable("c function pointer converted from a non-concrete decl ref");
}
// Produce a reference to the C-compatible entry point for the function.
SILDeclRef constant(loc, /*foreign*/ true);
SILConstantInfo constantInfo =
SGF.getConstantInfo(SGF.getTypeExpansionContext(), constant);
// C function pointers cannot capture anything from their context.
auto captures = SGF.SGM.Types.getLoweredLocalCaptures(constant);
// Catch cases like:
// func g(_ : @convention(c) () -> ()) {}
// func q() { let z = 0; func r() { print(z) }; g(r); } // error
// (See also: [NOTE: diagnose-swift-to-c-convention-change])
if (!captures.getCaptures().empty() ||
captures.hasGenericParamCaptures() ||
captures.hasDynamicSelfCapture() ||
captures.hasOpaqueValueCapture()) {
unsigned kind = 0;
if (captures.hasGenericParamCaptures())
kind = 1;
else if (captures.hasDynamicSelfCapture())
kind = 2;
SGF.SGM.diagnose(expr->getLoc(),
diag::c_function_pointer_from_function_with_context,
/*closure*/ constant.hasClosureExpr(),
kind);
auto loweredTy = SGF.getLoweredType(conversionExpr->getType());
return SGF.emitUndef(loweredTy);
}
return convertCFunctionSignature(
SGF, conversionExpr,
constantInfo.getSILType(),
[&]() -> ManagedValue {
SILValue cRef = SGF.emitGlobalFunctionRef(expr, constant);
return ManagedValue::forObjectRValueWithoutOwnership(
cRef);
});
}
// Change the representation without changing the signature or
// abstraction level.
static ManagedValue convertFunctionRepresentation(SILGenFunction &SGF,
SILLocation loc,
ManagedValue source,
CanAnyFunctionType sourceFormalTy,
CanAnyFunctionType resultFormalTy) {
auto sourceTy = source.getType().castTo<SILFunctionType>();
CanSILFunctionType resultTy =
SGF.getLoweredType(resultFormalTy).castTo<SILFunctionType>();
// Note that conversions to and from block require a thunk
switch (resultFormalTy->getRepresentation()) {
// Convert thin, c, block => thick
case AnyFunctionType::Representation::Swift: {
switch (sourceTy->getRepresentation()) {
case SILFunctionType::Representation::Thin: {
auto v = SGF.B.createThinToThickFunction(
loc, source.getValue(),
SILType::getPrimitiveObjectType(
sourceTy->getWithRepresentation(
SILFunctionTypeRepresentation::Thick)));
// FIXME: what if other reabstraction is required?
return ManagedValue::forOwnedRValue(v, source.getCleanup());
}
case SILFunctionType::Representation::Thick:
llvm_unreachable("should not try thick-to-thick repr change");
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Block:
return SGF.emitBlockToFunc(loc, source, sourceFormalTy, resultFormalTy,
resultTy);
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::Closure:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::CXXMethod:
case SILFunctionType::Representation::KeyPathAccessorGetter:
case SILFunctionType::Representation::KeyPathAccessorSetter:
case SILFunctionType::Representation::KeyPathAccessorEquals:
case SILFunctionType::Representation::KeyPathAccessorHash:
llvm_unreachable("should not do function conversion from method rep");
}
llvm_unreachable("bad representation");
}
// Convert thin, thick, c => block
case AnyFunctionType::Representation::Block:
switch (sourceTy->getRepresentation()) {
case SILFunctionType::Representation::Thin: {
// Make thick first.
auto v = SGF.B.createThinToThickFunction(
loc, source.getValue(),
SILType::getPrimitiveObjectType(
sourceTy->getWithRepresentation(
SILFunctionTypeRepresentation::Thick)));
source = ManagedValue::forOwnedRValue(v, source.getCleanup());
LLVM_FALLTHROUGH;
}
case SILFunctionType::Representation::Thick:
case SILFunctionType::Representation::CFunctionPointer:
// Convert to a block.
return SGF.emitFuncToBlock(loc, source, sourceFormalTy, resultFormalTy,
resultTy);
case SILFunctionType::Representation::Block:
llvm_unreachable("should not try block-to-block repr change");
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::Closure:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::CXXMethod:
case SILFunctionType::Representation::KeyPathAccessorGetter:
case SILFunctionType::Representation::KeyPathAccessorSetter:
case SILFunctionType::Representation::KeyPathAccessorEquals:
case SILFunctionType::Representation::KeyPathAccessorHash:
llvm_unreachable("should not do function conversion from method rep");
}
llvm_unreachable("bad representation");
// Unsupported
case AnyFunctionType::Representation::Thin:
llvm_unreachable("should not do function conversion to thin");
case AnyFunctionType::Representation::CFunctionPointer:
llvm_unreachable("should not do C function pointer conversion here");
}
llvm_unreachable("bad representation");
}
RValue RValueEmitter::visitFunctionConversionExpr(FunctionConversionExpr *e,
SGFContext C)
{
CanAnyFunctionType srcType =
cast<FunctionType>(e->getSubExpr()->getType()->getCanonicalType());
CanAnyFunctionType destType =
cast<FunctionType>(e->getType()->getCanonicalType());
if (destType->getRepresentation() ==
FunctionTypeRepresentation::CFunctionPointer) {
ManagedValue result;
if (srcType->getRepresentation() !=
FunctionTypeRepresentation::CFunctionPointer) {
// A "conversion" of a DeclRef a C function pointer is done by referencing
// the thunk (or original C function) with the C calling convention.
result = emitCFunctionPointer(SGF, e);
} else {
// Ok, we're converting a C function pointer value to another C function
// pointer.
// Emit the C function pointer
result = SGF.emitRValueAsSingleValue(e->getSubExpr());
// Possibly bitcast the C function pointer to account for ABI-compatible
// parameter and result type conversions
result = convertCFunctionSignature(SGF, e, result.getType(),
[&]() -> ManagedValue {
return result;
});
}
return RValue(SGF, e, result);
}
// If the function being converted is a closure literal, then the only use
// of the closure should be as the destination type of the conversion. Rather
// than emit the closure as is and convert it, see if we can emit the closure
// directly as the desired type.
//
// TODO: Move this up when we can emit closures directly with C calling
// convention.
auto subExpr = e->getSubExpr()->getSemanticsProvidingExpr();
// Look through `as` type ascriptions that don't induce bridging too.
while (auto subCoerce = dyn_cast<CoerceExpr>(subExpr)) {
// Coercions that introduce bridging aren't simple type ascriptions.
// (Maybe we could still peephole through them eventually, though, by
// performing the bridging in the closure prolog/epilog and/or emitting
// the closure with the correct contextual block/closure/C function pointer
// representation.)
if (!subCoerce->getSubExpr()->getType()->isEqual(subCoerce->getType())) {
break;
}
subExpr = subCoerce->getSubExpr()->getSemanticsProvidingExpr();
}
assert(subExpr->getType()->getCanonicalType() == srcType &&
"looked through a type change?");
// If the subexpression is a closure, emit it in a converting context.
// The emission of the closure expression will decide whether we can
// actually apply the conversion directly when emitting the closure.
//
// We don't allow representation changes on this path, although we
// probably could.
if (isAnyClosureExpr(subExpr) &&
destType->getRepresentation() == srcType->getRepresentation()) {
auto loweredDestTy = SGF.getLoweredType(destType);
auto conversion = Conversion::getSubtype(srcType, destType, loweredDestTy);
auto closure = SGF.emitConvertedRValue(subExpr, conversion, C);
return RValue(SGF, e, closure);
}
// Handle a reference to a "thin" native Swift function that only changes
// representation and refers to an inherently thin function reference.
// FIXME: this definitely should not be completely replacing the ExtInfo.
if (destType->getRepresentation() == FunctionTypeRepresentation::Thin) {
if (srcType->getRepresentation() == FunctionTypeRepresentation::Swift
&& srcType->withExtInfo(destType->getExtInfo())->isEqual(destType)) {
auto value = SGF.emitRValueAsSingleValue(e->getSubExpr());
auto expectedTy = SGF.getLoweredType(destType);
if (auto thinToThick =
dyn_cast<ThinToThickFunctionInst>(value.getValue())) {
value = ManagedValue::forObjectRValueWithoutOwnership(
thinToThick->getOperand());
} else {
SGF.SGM.diagnose(e->getLoc(), diag::not_implemented,
"nontrivial thin function reference");
value = SGF.emitUndef(expectedTy);
}
if (value.getType() != expectedTy) {
SGF.SGM.diagnose(e->getLoc(), diag::not_implemented,
"nontrivial thin function reference");
value = SGF.emitUndef(expectedTy);
}
return RValue(SGF, e, value);
}
}
// Break the conversion into three stages:
// 1) changing the representation from foreign to native
// 2) changing the signature within the representation
// 3) changing the representation from native to foreign
//
// We only do one of 1) or 3), but we have to do them in the right order
// with respect to 2).
CanAnyFunctionType stage1Type = srcType;
CanAnyFunctionType stage2Type = destType;
switch(srcType->getRepresentation()) {
case AnyFunctionType::Representation::Swift:
case AnyFunctionType::Representation::Thin:
// Source is native, so we can convert signature first.
stage2Type = adjustFunctionType(destType, srcType->getRepresentation(),
srcType->getClangTypeInfo());
break;
case AnyFunctionType::Representation::Block:
case AnyFunctionType::Representation::CFunctionPointer:
// Source is foreign, so do the representation change first.
stage1Type = adjustFunctionType(srcType, destType->getRepresentation(),
destType->getClangTypeInfo());
}
auto result = SGF.emitRValueAsSingleValue(e->getSubExpr());
if (srcType != stage1Type)
result = convertFunctionRepresentation(SGF, e, result, srcType, stage1Type);
if (stage1Type != stage2Type) {
result = SGF.emitTransformedValue(e, result, stage1Type, stage2Type,
SGFContext());
}
if (stage2Type != destType)
result = convertFunctionRepresentation(SGF, e, result, stage2Type, destType);
return RValue(SGF, e, result);
}
RValue RValueEmitter::visitCovariantFunctionConversionExpr(
CovariantFunctionConversionExpr *e,
SGFContext C) {
ManagedValue original = SGF.emitRValueAsSingleValue(e->getSubExpr());
CanAnyFunctionType destTy
= cast<AnyFunctionType>(e->getType()->getCanonicalType());
SILType resultType = SGF.getLoweredType(destTy);
SILValue result =
SGF.B.createConvertFunction(e, original.forward(SGF), resultType,
/*Withoutactuallyescaping=*/false);
return RValue(SGF, e, SGF.emitManagedRValueWithCleanup(result));
}
RValue RValueEmitter::visitCovariantReturnConversionExpr(
CovariantReturnConversionExpr *e,
SGFContext C) {
ManagedValue original = SGF.emitRValueAsSingleValue(e->getSubExpr());
SILType resultType = SGF.getLoweredType(e->getType());
// DynamicSelfType lowers as its self type, so no SIL-level conversion
// is required in this case.
if (resultType == original.getType())
return RValue(SGF, e, original);
ManagedValue result = SGF.B.createUncheckedRefCast(e, original, resultType);
return RValue(SGF, e, result);
}
RValue RValueEmitter::visitActorIsolationErasureExpr(ActorIsolationErasureExpr *E,
SGFContext C) {
auto loc = SILLocation(E).asAutoGenerated();
auto funcRef = SGF.emitRValueAsSingleValue(E->getSubExpr());
auto isolatedType =
cast<AnyFunctionType>(E->getSubExpr()->getType()->getCanonicalType());
auto nonIsolatedType =
cast<AnyFunctionType>(E->getType()->getCanonicalType());
return RValue(SGF, E,
SGF.emitActorIsolationErasureThunk(loc, funcRef, isolatedType,
nonIsolatedType));
}
RValue RValueEmitter::visitExtractFunctionIsolationExpr(
ExtractFunctionIsolationExpr *E, SGFContext C) {
auto arg = SGF.emitRValue(E->getFunctionExpr());
auto result = SGF.emitExtractFunctionIsolation(
E, ArgumentSource(E, std::move(arg)), C);
return RValue(SGF, E, result);
}
RValue RValueEmitter::visitErasureExpr(ErasureExpr *E, SGFContext C) {
if (auto result = tryEmitAsBridgingConversion(SGF, E, false, C)) {
return RValue(SGF, E, *result);
}
auto &existentialTL = SGF.getTypeLowering(E->getType());
auto concreteFormalType = E->getSubExpr()->getType()->getCanonicalType();
auto archetype = OpenedArchetypeType::getAny(E->getType()->getCanonicalType(),
SGF.F.getGenericSignature());
AbstractionPattern abstractionPattern(archetype);
auto &concreteTL = SGF.getTypeLowering(abstractionPattern,
concreteFormalType);
ManagedValue mv = SGF.emitExistentialErasure(E, concreteFormalType,
concreteTL, existentialTL,
E->getConformances(), C,
[&](SGFContext C) -> ManagedValue {
return SGF.emitRValueAsOrig(E->getSubExpr(),
abstractionPattern,
concreteTL, C);
});
return RValue(SGF, E, mv);
}
RValue SILGenFunction::emitAnyHashableErasure(SILLocation loc,
ManagedValue value,
Type type,
ProtocolConformanceRef conformance,
SGFContext C) {
// Ensure that the intrinsic function exists.
auto convertFn = SGM.getConvertToAnyHashable(loc);
if (!convertFn)
return emitUndefRValue(loc, getASTContext().getAnyHashableType());
// Construct the substitution for T: Hashable.
auto subMap = SubstitutionMap::getProtocolSubstitutions(
conformance.getRequirement(), type, conformance);
return emitApplyOfLibraryIntrinsic(loc, convertFn, subMap, value, C);
}
RValue RValueEmitter::visitAnyHashableErasureExpr(AnyHashableErasureExpr *E,
SGFContext C) {
// Emit the source value into a temporary.
auto sourceOrigType = AbstractionPattern::getOpaque();
auto subExpr = E->getSubExpr();
auto &sourceOrigTL = SGF.getTypeLowering(sourceOrigType, subExpr->getType());
auto source = SGF.silConv.useLoweredAddresses()
? SGF.emitMaterializedRValueAsOrig(subExpr, sourceOrigType)
: SGF.emitRValueAsOrig(subExpr, sourceOrigType,
sourceOrigTL, SGFContext());
return SGF.emitAnyHashableErasure(E, source, subExpr->getType(),
E->getConformance(), C);
}
/// Treating this as a successful operation, turn a CMV into a +1 MV.
ManagedValue SILGenFunction::getManagedValue(SILLocation loc,
ConsumableManagedValue value) {
// If the consumption rules say that this is already +1 given a
// successful operation, just use the value.
if (value.isOwned())
return value.getFinalManagedValue();
SILType valueTy = value.getType();
auto &valueTL = getTypeLowering(valueTy);
// If the type is trivial, it's always +1.
if (valueTL.isTrivial())
return ManagedValue::forRValueWithoutOwnership(value.getValue());
// If it's an object...
if (valueTy.isObject()) {
// See if we have more accurate information from the ownership kind. This
// detects trivial cases of enums.
if (value.getOwnershipKind() == OwnershipKind::None)
return ManagedValue::forObjectRValueWithoutOwnership(value.getValue());
// Otherwise, copy the value and return.
return value.getFinalManagedValue().copy(*this, loc);
}
// Otherwise, produce a temporary and copy into that.
auto temporary = emitTemporary(loc, valueTL);
valueTL.emitCopyInto(B, loc, value.getValue(), temporary->getAddress(),
IsNotTake, IsInitialization);
temporary->finishInitialization(*this);
return temporary->getManagedAddress();
}
RValue RValueEmitter::visitForcedCheckedCastExpr(ForcedCheckedCastExpr *E,
SGFContext C) {
return emitUnconditionalCheckedCast(SGF, E, E->getSubExpr(), E->getType(),
E->getCastKind(), C);
}
RValue RValueEmitter::
visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *E,
SGFContext C) {
ProfileCounter trueCount = ProfileCounter();
ProfileCounter falseCount = ProfileCounter();
auto parent = SGF.getPGOParent(E);
if (parent) {
auto &Node = parent.value();
auto *NodeS = Node.get<Stmt *>();
if (auto *IS = dyn_cast<IfStmt>(NodeS)) {
trueCount = SGF.loadProfilerCount(IS->getThenStmt());
if (auto *ElseStmt = IS->getElseStmt()) {
falseCount = SGF.loadProfilerCount(ElseStmt);
}
}
}
ManagedValue operand = SGF.emitRValueAsSingleValue(E->getSubExpr());
return emitConditionalCheckedCast(SGF, E, operand, E->getSubExpr()->getType(),
E->getType(), E->getCastKind(), C,
trueCount, falseCount);
}
static RValue emitBoolLiteral(SILGenFunction &SGF, SILLocation loc,
SILValue builtinBool,
SGFContext C) {
// Call the Bool(_builtinBooleanLiteral:) initializer
ASTContext &ctx = SGF.getASTContext();
auto init = ctx.getBoolBuiltinInitDecl();
auto builtinArgType = CanType(BuiltinIntegerType::get(1, ctx));
RValue builtinArg(SGF,
ManagedValue::forObjectRValueWithoutOwnership(builtinBool),
builtinArgType);
PreparedArguments builtinArgs((AnyFunctionType::Param(builtinArgType)));
builtinArgs.add(loc, std::move(builtinArg));
auto result =
SGF.emitApplyAllocatingInitializer(loc, ConcreteDeclRef(init),
std::move(builtinArgs), Type(),
C);
return result;
}
RValue RValueEmitter::visitIsExpr(IsExpr *E, SGFContext C) {
SILValue isa = emitIsa(SGF, E, E->getSubExpr(),
E->getCastType(), E->getCastKind());
return emitBoolLiteral(SGF, E, isa, C);
}
RValue RValueEmitter::visitEnumIsCaseExpr(EnumIsCaseExpr *E,
SGFContext C) {
// Get the enum value.
auto subExpr = SGF.emitRValueAsSingleValue(E->getSubExpr(),
SGFContext(SGFContext::AllowImmediatePlusZero));
// Test its case.
auto i1Ty = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
auto t = SGF.B.createIntegerLiteral(E, i1Ty, 1);
auto f = SGF.B.createIntegerLiteral(E, i1Ty, 0);
SILValue selected;
if (subExpr.getType().isAddress()) {
selected = SGF.B.createSelectEnumAddr(E, subExpr.getValue(), i1Ty, f,
{{E->getEnumElement(), t}});
} else {
selected = SGF.B.createSelectEnum(E, subExpr.getValue(), i1Ty, f,
{{E->getEnumElement(), t}});
}
return emitBoolLiteral(SGF, E, selected, C);
}
RValue RValueEmitter::visitSingleValueStmtExpr(SingleValueStmtExpr *E,
SGFContext C) {
auto emitStmt = [&]() {
SGF.emitStmt(E->getStmt());
// A switch of an uninhabited value gets emitted as an unreachable. In that
// case we need to emit a block to emit the rest of the expression code
// into. This block will be unreachable, so will be eliminated by the
// SILOptimizer. This is easier than handling unreachability throughout
// expression emission, as eventually SingleValueStmtExprs ought to be able
// to appear in arbitrary expression position. The rest of the emission
// will reference the uninitialized temporary variable, but that's fine
// because it'll be eliminated.
if (!SGF.B.hasValidInsertionPoint())
SGF.B.emitBlock(SGF.createBasicBlock());
};
// A void SingleValueStmtExpr either only has Void expression branches, or
// we've decided that it should have purely statement semantics. In either
// case, we can just emit the statement as-is, and produce the void rvalue.
if (E->getType()->isVoid()) {
emitStmt();
return SGF.emitEmptyTupleRValue(E, C);
}
auto &lowering = SGF.getTypeLowering(E->getType());
auto resultAddr = SGF.emitTemporaryAllocation(E, lowering.getLoweredType());
// Collect the target exprs that will be used for initialization.
SmallVector<Expr *, 4> scratch;
SILGenFunction::SingleValueStmtInitialization initInfo(resultAddr);
for (auto *E : E->getResultExprs(scratch))
initInfo.Exprs.insert(E);
// Push the initialization for branches of the statement to initialize into.
SGF.SingleValueStmtInitStack.push_back(std::move(initInfo));
SWIFT_DEFER { SGF.SingleValueStmtInitStack.pop_back(); };
emitStmt();
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(resultAddr));
}
RValue RValueEmitter::visitCoerceExpr(CoerceExpr *E, SGFContext C) {
if (auto result = tryEmitAsBridgingConversion(SGF, E->getSubExpr(), true, C))
return RValue(SGF, E, *result);
return visit(E->getSubExpr(), C);
}
RValue RValueEmitter::visitUnderlyingToOpaqueExpr(UnderlyingToOpaqueExpr *E,
SGFContext C) {
// The opaque type has the layout of the underlying type, abstracted as
// a type parameter.
auto &opaqueTL = SGF.getTypeLowering(E->getType());
auto &underlyingTL = SGF.getTypeLowering(AbstractionPattern::getOpaque(),
E->getSubExpr()->getType());
auto &underlyingSubstTL = SGF.getTypeLowering(E->getSubExpr()->getType());
if (underlyingSubstTL.getLoweredType() == opaqueTL.getLoweredType()) {
return SGF.emitRValue(E->getSubExpr(), C);
}
// If the opaque type is address only, initialize in place.
if (opaqueTL.getLoweredType().isAddress()) {
auto opaqueAddr = SGF.getBufferForExprResult(
E, opaqueTL.getLoweredType(), C);
// Initialize the buffer as the underlying type.
auto underlyingAddr = SGF.B.createUncheckedAddrCast(E,
opaqueAddr,
underlyingTL.getLoweredType().getAddressType());
auto underlyingInit = SGF.useBufferAsTemporary(underlyingAddr, underlyingTL);
// Try to emit directly into the buffer if no reabstraction is necessary.
ManagedValue underlying;
if (underlyingSubstTL.getLoweredType() == underlyingTL.getLoweredType()) {
underlying = SGF.emitRValueAsSingleValue(E->getSubExpr(),
SGFContext(underlyingInit.get()));
} else {
// Otherwise, emit the underlying value then bring it to the right
// abstraction level.
underlying = SGF.emitRValueAsSingleValue(E->getSubExpr());
underlying = SGF.emitSubstToOrigValue(E, underlying,
AbstractionPattern::getOpaque(),
E->getSubExpr()->getType()->getCanonicalType());
}
if (!underlying.isInContext()) {
underlyingInit->copyOrInitValueInto(SGF, E, underlying, /*init*/ true);
underlyingInit->finishInitialization(SGF);
}
// Kill the cleanup on the underlying value, and hand off the opaque buffer
// as the result.
underlyingInit->getManagedAddress().forward(SGF);
auto opaque = SGF.manageBufferForExprResult(opaqueAddr, opaqueTL, C);
return RValue(SGF, E, opaque);
}
// If the opaque type is loadable, emit the subexpression and bitcast it.
auto value = SGF.emitRValueAsSingleValue(E->getSubExpr());
if (underlyingSubstTL.getLoweredType() != underlyingTL.getLoweredType()) {
value = SGF.emitSubstToOrigValue(E, value, AbstractionPattern::getOpaque(),
E->getSubExpr()->getType()->getCanonicalType());
}
if (value.getType() == opaqueTL.getLoweredType())
return RValue(SGF, E, value);
auto cast = SGF.B.createUncheckedBitCast(E, value,
opaqueTL.getLoweredType());
return RValue(SGF, E, cast);
}
RValue RValueEmitter::visitUnreachableExpr(UnreachableExpr *E, SGFContext C) {
// Emit the expression, followed by an unreachable. To produce a value of
// arbitrary type, we emit a temporary allocation, with the use of the
// allocation in the unreachable block. The SILOptimizer will eliminate both
// the unreachable block and unused allocation.
SGF.emitIgnoredExpr(E->getSubExpr());
auto &lowering = SGF.getTypeLowering(E->getType());
auto resultAddr = SGF.emitTemporaryAllocation(E, lowering.getLoweredType());
SGF.B.createUnreachable(E);
SGF.B.emitBlock(SGF.createBasicBlock());
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(resultAddr));
}
VarargsInfo Lowering::emitBeginVarargs(SILGenFunction &SGF, SILLocation loc,
CanType baseTy, CanType arrayTy,
unsigned numElements) {
// Reabstract the base type against the array element type.
auto baseAbstraction = AbstractionPattern::getOpaque();
auto &baseTL = SGF.getTypeLowering(baseAbstraction, baseTy);
// Allocate the array.
SILValue numEltsVal = SGF.B.createIntegerLiteral(loc,
SILType::getBuiltinWordType(SGF.getASTContext()),
numElements);
// The first result is the array value.
ManagedValue array;
// The second result is a RawPointer to the base address of the array.
SILValue basePtr;
std::tie(array, basePtr)
= SGF.emitUninitializedArrayAllocation(arrayTy, numEltsVal, loc);
// Temporarily deactivate the main array cleanup.
if (array.hasCleanup())
SGF.Cleanups.setCleanupState(array.getCleanup(), CleanupState::Dormant);
// Push a new cleanup to deallocate the array.
auto abortCleanup =
SGF.enterDeallocateUninitializedArrayCleanup(array.getValue());
// Turn the pointer into an address.
basePtr = SGF.B.createPointerToAddress(
loc, basePtr, baseTL.getLoweredType().getAddressType(),
/*isStrict*/ true,
/*isInvariant*/ false);
return VarargsInfo(array, abortCleanup, basePtr, baseTL, baseAbstraction);
}
ManagedValue Lowering::emitEndVarargs(SILGenFunction &SGF, SILLocation loc,
VarargsInfo &&varargs,
unsigned numElements) {
// Kill the abort cleanup.
SGF.Cleanups.setCleanupState(varargs.getAbortCleanup(), CleanupState::Dead);
// Reactivate the result cleanup.
auto array = varargs.getArray();
if (array.hasCleanup())
SGF.Cleanups.setCleanupState(array.getCleanup(), CleanupState::Active);
// Array literals only need to be finalized, if the array is really allocated.
// In case of zero elements, no allocation is done, but the empty-array
// singleton is used. "Finalization" means to emit an end_cow_mutation
// instruction on the array. As the empty-array singleton is a read-only and
// shared object, it's not legal to do a end_cow_mutation on it.
if (numElements == 0)
return array;
return SGF.emitUninitializedArrayFinalization(loc, std::move(array));
}
RValue RValueEmitter::visitTupleExpr(TupleExpr *E, SGFContext C) {
auto type = cast<TupleType>(E->getType()->getCanonicalType());
// If we have an Initialization, emit the tuple elements into its elements.
if (Initialization *I = C.getEmitInto()) {
bool implodeTuple = false;
if (I->canPerformInPlaceInitialization() &&
I->isInPlaceInitializationOfGlobal() &&
SGF.getLoweredType(type).isTrivial(SGF.F)) {
// Implode tuples in initialization of globals if they are
// of trivial types.
implodeTuple = true;
}
if (!implodeTuple && I->canSplitIntoTupleElements()) {
SmallVector<InitializationPtr, 4> subInitializationBuf;
auto subInitializations =
I->splitIntoTupleElements(SGF, RegularLocation(E), type,
subInitializationBuf);
assert(subInitializations.size() == E->getElements().size() &&
"initialization for tuple has wrong number of elements");
for (unsigned i = 0, size = subInitializations.size(); i < size; ++i)
SGF.emitExprInto(E->getElement(i), subInitializations[i].get());
I->finishInitialization(SGF);
return RValue::forInContext();
}
}
// If the tuple has a pack expansion in it, initialize an object in
// memory (and recurse; this pattern should reliably enter the above,
// though).
if (type.containsPackExpansionType()) {
auto &tupleTL = SGF.getTypeLowering(type);
auto initialization = SGF.emitTemporary(E, tupleTL);
{
RValue result = visitTupleExpr(E, SGFContext(initialization.get()));
assert(result.isInContext()); (void) result;
}
return RValue(SGF, E, type, initialization->getManagedAddress());
}
llvm::SmallVector<RValue, 8> tupleElts;
bool hasAtleastOnePlusOneValue = false;
for (Expr *elt : E->getElements()) {
RValue RV = SGF.emitRValue(elt);
hasAtleastOnePlusOneValue |= RV.isPlusOne(SGF);
tupleElts.emplace_back(std::move(RV));
}
// Once we have found if we have any plus one arguments, add each element of
// tuple elts into result, making sure each value is at plus 1.
RValue result(type);
if (hasAtleastOnePlusOneValue) {
for (unsigned i : indices(tupleElts)) {
result.addElement(std::move(tupleElts[i]).ensurePlusOne(SGF, E));
}
} else {
for (unsigned i : indices(tupleElts)) {
result.addElement(std::move(tupleElts[i]));
}
}
return result;
}
RValue RValueEmitter::visitMemberRefExpr(MemberRefExpr *e,
SGFContext resultCtx) {
assert(!e->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
assert(isa<VarDecl>(e->getMember().getDecl()));
// Everything else should use the l-value logic.
// Any writebacks for this access are tightly scoped.
FormalEvaluationScope scope(SGF);
LValue lv = SGF.emitLValue(e, SGFAccessKind::OwnedObjectRead);
// Otherwise, we can't load at +0 without further analysis, since the formal
// access into the lvalue will end immediately.
return SGF.emitLoadOfLValue(e, std::move(lv),
resultCtx.withFollowingSideEffects());
}
RValue RValueEmitter::visitDynamicMemberRefExpr(DynamicMemberRefExpr *E,
SGFContext C) {
assert(!E->isImplicitlyAsync() && "an actor-isolated @objc member?");
assert(!E->isImplicitlyThrows() && "an distributed-actor-isolated @objc member?");
// Emit the operand (the base).
SILValue Operand = SGF.emitRValueAsSingleValue(E->getBase()).getValue();
// Emit the member reference.
return SGF.emitDynamicMemberRef(E, Operand, E->getMember(),
E->getType()->getCanonicalType(), C);
}
RValue RValueEmitter::
visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E, SGFContext C) {
visit(E->getLHS());
return visit(E->getRHS());
}
RValue RValueEmitter::visitSubscriptExpr(SubscriptExpr *E, SGFContext C) {
// Any writebacks for this access are tightly scoped.
FormalEvaluationScope scope(SGF);
LValue lv = SGF.emitLValue(E, SGFAccessKind::OwnedObjectRead);
// We can't load at +0 without further analysis, since the formal access into
// the lvalue will end immediately.
return SGF.emitLoadOfLValue(E, std::move(lv), C.withFollowingSideEffects());
}
RValue RValueEmitter::visitDynamicSubscriptExpr(
DynamicSubscriptExpr *E, SGFContext C) {
assert(!E->isImplicitlyAsync() && "an actor-isolated @objc member?");
assert(!E->isImplicitlyThrows() && "an distributed-actor-isolated @objc member?");
// Emit the base operand.
SILValue Operand = SGF.emitRValueAsSingleValue(E->getBase()).getValue();
// Emit the indices.
//
// FIXME: This is apparently not true for Swift @objc subscripts.
// Objective-C subscripts only ever have a single parameter.
Expr *IndexExpr = E->getArgs()->getUnaryExpr();
assert(IndexExpr);
PreparedArguments IndexArgs(
FunctionType::Param(IndexExpr->getType()->getCanonicalType()));
IndexArgs.add(E, SGF.emitRValue(IndexExpr));
return SGF.emitDynamicSubscriptGetterApply(
E, Operand, E->getMember(), std::move(IndexArgs),
E->getType()->getCanonicalType(), C);
}
RValue RValueEmitter::visitTupleElementExpr(TupleElementExpr *E,
SGFContext C) {
assert(!E->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
// If our client is ok with a +0 result, then we can compute our base as +0
// and return its element that way. It would not be ok to reuse the Context's
// address buffer though, since our base value will a different type than the
// element.
SGFContext SubContext = C.withFollowingProjection();
return visit(E->getBase(), SubContext).extractElement(E->getFieldNumber());
}
RValue
SILGenFunction::emitApplyOfDefaultArgGenerator(SILLocation loc,
ConcreteDeclRef defaultArgsOwner,
unsigned destIndex,
CanType resultType,
bool implicitlyAsync,
SGFContext C) {
SILDeclRef generator
= SILDeclRef::getDefaultArgGenerator(defaultArgsOwner.getDecl(),
destIndex);
auto fnRef = ManagedValue::forObjectRValueWithoutOwnership(
emitGlobalFunctionRef(loc, generator));
auto fnType = fnRef.getType().castTo<SILFunctionType>();
SubstitutionMap subs;
if (fnType->isPolymorphic())
subs = defaultArgsOwner.getSubstitutions();
auto constantInfo = SGM.Types.getConstantInfo(
TypeExpansionContext::minimal(), generator);
AbstractionPattern origResultType =
constantInfo.FormalPattern.getFunctionResultType();
auto substFnType =
fnType->substGenericArgs(SGM.M, subs, getTypeExpansionContext());
CalleeTypeInfo calleeTypeInfo(substFnType, origResultType, resultType);
ResultPlanPtr resultPtr =
ResultPlanBuilder::computeResultPlan(*this, calleeTypeInfo, loc, C);
ArgumentScope argScope(*this, loc);
SmallVector<ManagedValue, 4> captures;
emitCaptures(loc, generator, CaptureEmission::ImmediateApplication,
captures);
return emitApply(std::move(resultPtr), std::move(argScope), loc, fnRef, subs,
captures, calleeTypeInfo, ApplyOptions(), C, std::nullopt);
}
RValue SILGenFunction::emitApplyOfStoredPropertyInitializer(
SILLocation loc,
VarDecl *var,
SubstitutionMap subs,
CanType resultType,
AbstractionPattern origResultType,
SGFContext C) {
SILDeclRef constant(var, SILDeclRef::Kind::StoredPropertyInitializer);
auto fnRef = ManagedValue::forObjectRValueWithoutOwnership(
emitGlobalFunctionRef(loc, constant));
auto fnType = fnRef.getType().castTo<SILFunctionType>();
auto substFnType =
fnType->substGenericArgs(SGM.M, subs, getTypeExpansionContext());
CalleeTypeInfo calleeTypeInfo(substFnType, origResultType, resultType);
ResultPlanPtr resultPlan =
ResultPlanBuilder::computeResultPlan(*this, calleeTypeInfo, loc, C);
ArgumentScope argScope(*this, loc);
return emitApply(std::move(resultPlan), std::move(argScope), loc, fnRef, subs,
{}, calleeTypeInfo, ApplyOptions(), C, std::nullopt);
}
RValue RValueEmitter::visitDestructureTupleExpr(DestructureTupleExpr *E,
SGFContext C) {
// Emit the sub-expression tuple and destructure it into elements.
SmallVector<RValue, 4> elements;
visit(E->getSubExpr()).extractElements(elements);
// Bind each element of the input tuple to its corresponding
// opaque value.
for (unsigned i = 0, e = E->getDestructuredElements().size();
i != e; ++i) {
auto *opaqueElt = E->getDestructuredElements()[i];
assert(!SGF.OpaqueValues.count(opaqueElt));
auto opaqueMV = std::move(elements[i]).getAsSingleValue(SGF, E);
SGF.OpaqueValues[opaqueElt] = opaqueMV;
}
// Emit the result expression written in terms of the above
// opaque values.
auto result = visit(E->getResultExpr(), C);
// Clean up.
for (unsigned i = 0, e = E->getDestructuredElements().size();
i != e; ++i) {
auto *opaqueElt = E->getDestructuredElements()[i];
SGF.OpaqueValues.erase(opaqueElt);
}
return result;
}
static SILValue emitMetatypeOfDelegatingInitExclusivelyBorrowedSelf(
SILGenFunction &SGF, SILLocation loc, DeclRefExpr *dre, SILType metaTy) {
SGFContext ctx;
auto *vd = cast<ParamDecl>(dre->getDecl());
ManagedValue selfValue;
Scope S(SGF, loc);
std::optional<FormalEvaluationScope> FES;
// If we have not exclusively borrowed self, we need to do so now.
if (SGF.SelfInitDelegationState == SILGenFunction::WillExclusiveBorrowSelf) {
// We need to use a full scope here to ensure that any underlying
// "normal cleanup" borrows are cleaned up.
selfValue = SGF.emitRValueAsSingleValue(dre);
} else {
// If we already exclusively borrowed self, then we need to emit self
// using formal evaluation primitives.
assert(SGF.SelfInitDelegationState ==
SILGenFunction::DidExclusiveBorrowSelf);
// This needs to be inlined since there is a Formal Evaluation Scope
// in emitRValueForDecl that causing any borrow for this LValue to be
// popped too soon.
FES.emplace(SGF);
CanType formalRValueType = dre->getType()->getCanonicalType();
selfValue = SGF.emitAddressOfLocalVarDecl(dre, vd, formalRValueType,
SGFAccessKind::OwnedObjectRead);
selfValue = SGF.emitFormalEvaluationRValueForSelfInDelegationInit(
loc, formalRValueType,
selfValue.getLValueAddress(), ctx)
.getAsSingleValue(SGF, loc);
}
return SGF.B.createValueMetatype(loc, metaTy, selfValue.getValue());
}
SILValue SILGenFunction::emitMetatypeOfValue(SILLocation loc, Expr *baseExpr) {
Type formalBaseType = baseExpr->getType()->getWithoutSpecifierType();
CanType baseTy = formalBaseType->getCanonicalType();
// For class, archetype, and protocol types, look up the dynamic metatype.
if (baseTy.isAnyExistentialType()) {
SILType metaTy = getLoweredLoadableType(
CanExistentialMetatypeType::get(baseTy));
auto base = emitRValueAsSingleValue(baseExpr,
SGFContext::AllowImmediatePlusZero).getValue();
return B.createExistentialMetatype(loc, metaTy, base);
}
SILType metaTy = getLoweredLoadableType(CanMetatypeType::get(baseTy));
// If the lowered metatype has a thick representation, we need to derive it
// dynamically from the instance.
if (metaTy.castTo<MetatypeType>()->getRepresentation()
!= MetatypeRepresentation::Thin) {
if (inExclusiveBorrowSelfSection(SelfInitDelegationState)) {
if (auto *dre = dyn_cast<DeclRefExpr>(baseExpr)) {
if (isa<ParamDecl>(dre->getDecl()) &&
dre->getDecl()->getName() == getASTContext().Id_self &&
dre->getDecl()->isImplicit()) {
return emitMetatypeOfDelegatingInitExclusivelyBorrowedSelf(
*this, loc, dre, metaTy);
}
}
}
Scope S(*this, loc);
auto base = emitRValueAsSingleValue(baseExpr, SGFContext::AllowImmediatePlusZero);
return S.popPreservingValue(B.createValueMetatype(loc, metaTy, base))
.getValue();
}
// Otherwise, ignore the base and return the static thin metatype.
emitIgnoredExpr(baseExpr);
return B.createMetatype(loc, metaTy);
}
RValue RValueEmitter::visitDynamicTypeExpr(DynamicTypeExpr *E, SGFContext C) {
auto metatype = SGF.emitMetatypeOfValue(E, E->getBase());
return RValue(SGF, E,
ManagedValue::forObjectRValueWithoutOwnership(metatype));
}
RValue RValueEmitter::visitCaptureListExpr(CaptureListExpr *E, SGFContext C) {
return RValue(SGF, E, emitCaptureListExpr(SGF, E, [&](AbstractClosureExpr *body) {
return visitAbstractClosureExpr(body, C).getScalarValue();
}));
}
static ManagedValue emitCaptureListExpr(SILGenFunction &SGF,
CaptureListExpr *E,
llvm::function_ref<ManagedValue(AbstractClosureExpr *)> operation) {
// Ensure that weak captures are in a separate scope.
DebugScope scope(SGF, CleanupLocation(E));
// CaptureListExprs evaluate their bound variables, but they don't introduce
// new ones that should be described in the debug info.
bool generateDebugInfo = false;
for (auto capture : E->getCaptureList())
SGF.visitPatternBindingDecl(capture.PBD, generateDebugInfo);
// Then they evaluate to their "body" (the underlying closure expression).
return operation(E->getClosureBody());
}
/// Returns the wrapped value placeholder that is meant to be substituted
/// in for the given autoclosure. This autoclosure placeholder is created
/// when \c init(wrappedValue:) takes an autoclosure for the \c wrappedValue
/// parameter.
static PropertyWrapperValuePlaceholderExpr *
wrappedValueAutoclosurePlaceholder(const AbstractClosureExpr *e) {
if (auto ace = dyn_cast<AutoClosureExpr>(e)) {
if (auto ce = dyn_cast<CallExpr>(ace->getSingleExpressionBody())) {
return dyn_cast<PropertyWrapperValuePlaceholderExpr>(ce->getFn());
}
}
return nullptr;
}
/// Try to turn a contextual conversion into type information for a
/// specialized closure function emission.
static std::optional<FunctionTypeInfo>
tryGetSpecializedClosureTypeFromContext(CanAnyFunctionType closureType,
const Conversion &conv) {
// Note that the kinds of conversion we work on here have to be kinds
// that we can call withSourceType on later.
if (conv.getKind() == Conversion::Reabstract ||
conv.getKind() == Conversion::Subtype) {
// We don't care about the input type here; we'll be emitting that
// based on the closure.
auto destType = cast<AnyFunctionType>(conv.getResultType());
auto origType =
conv.getKind() == Conversion::Reabstract
? conv.getReabstractionOutputOrigType()
: AbstractionPattern(destType);
auto expectedTy = conv.getLoweredResultType().castTo<SILFunctionType>();
return FunctionTypeInfo{origType, destType, expectedTy};
}
// No other kinds of conversion.
return std::nullopt;
}
/// Whether the given abstraction pattern as an opaque thrown error.
static bool hasOpaqueThrownError(const AbstractionPattern &pattern) {
if (auto thrownPattern = pattern.getFunctionThrownErrorType())
return thrownPattern->isTypeParameterOrOpaqueArchetype();
return false;
}
/// Given that a subtype conversion is possibly being applied to the
/// type of a closure, can we emit the closure function under this
/// conversion?
static bool canEmitClosureFunctionUnderConversion(
CanAnyFunctionType literalFnType, CanAnyFunctionType convertedFnType) {
// Is it an identity conversion?
if (literalFnType == convertedFnType) {
return true;
}
// Are the types equivalent aside from effects (throws) or coeffects
// (escaping)? Then we should emit the literal as having the destination type
// (co)effects, even if it doesn't exercise them.
//
// TODO: We could also in principle let `async` through here, but that
// interferes with the implementation of `reasync`.
auto literalWithoutEffects = literalFnType->getExtInfo().intoBuilder()
.withNoEscape(false)
.withSendable(false)
.withThrows(false, Type());
auto convertedWithoutEffects = convertedFnType->getExtInfo().intoBuilder()
.withNoEscape(false)
.withSendable(false)
.withThrows(false, Type());
// If the converted type has erased isolation, remove the isolation from
// both types.
if (convertedWithoutEffects.getIsolationKind() ==
FunctionTypeIsolation::Kind::Erased) {
auto nonIsolation = FunctionTypeIsolation::forNonIsolated();
literalWithoutEffects = literalWithoutEffects.withIsolation(nonIsolation);
convertedWithoutEffects = convertedWithoutEffects.withIsolation(nonIsolation);
}
if (literalFnType->withExtInfo(literalWithoutEffects.build())
->isEqual(convertedFnType->withExtInfo(convertedWithoutEffects.build()))) {
return true;
}
return false;
}
/// Can we emit a closure with the given specialized type info?
///
/// TODO: ideally, our prolog/epilog emission would be able to handle
/// all possible subtype and reabstraction conversions.
static bool canEmitSpecializedClosureFunction(CanAnyFunctionType closureType,
const FunctionTypeInfo &contextInfo) {
auto destType = contextInfo.FormalType;
// Require the closure's formal type to be closely related to the formal
// type we're trying to convert it to.
if (!canEmitClosureFunctionUnderConversion(closureType, destType))
return false;
// If the abstraction pattern has an abstract thrown error, we are
// currently unable to emit the literal with a difference in the thrown
// error type.
if (hasOpaqueThrownError(contextInfo.OrigType) &&
(closureType->isThrowing() != destType->isThrowing() ||
closureType.getThrownError() != destType.getThrownError()))
return false;
return true;
}
/// Try to emit the given closure under the given conversion.
/// Returns an invalid ManagedValue if this fails.
ManagedValue RValueEmitter::tryEmitConvertedClosure(AbstractClosureExpr *e,
const Conversion &conv) {
auto closureType = cast<AnyFunctionType>(e->getType()->getCanonicalType());
// Bail out if we don't have specialized type information from context.
auto info = tryGetSpecializedClosureTypeFromContext(closureType, conv);
if (!info) return ManagedValue();
// If we can emit the closure with all of the specialized type information,
// that's great.
if (canEmitSpecializedClosureFunction(closureType, *info)) {
return emitClosureReference(e, *info);
}
// If we're converting to an `@isolated(any)` type, at least force the
// closure to be emitted using the erased-isolation pattern so that
// we don't lose that information.
if (info->ExpectedLoweredType->hasErasedIsolation()) {
// This assertion is why this isn't an infinite recursion.
assert(!closureType->getIsolation().isErased() &&
"closure cannot directly have erased isolation");
// Construct a conversion that just erases isolation and doesn't make
// any other changes to the closure type.
auto erasedExtInfo = closureType->getExtInfo()
.withIsolation(FunctionTypeIsolation::forErased());
auto erasedClosureType = closureType.withExtInfo(erasedExtInfo);
auto erasureInfo = SGF.getFunctionTypeInfo(erasedClosureType);
// Emit the closure under that conversion. This should always succeed.
assert(canEmitSpecializedClosureFunction(closureType, erasureInfo));
auto erasedResult = emitClosureReference(e, erasureInfo);
// Narrow the original conversion to start from the erased closure type.
auto convAfterErasure = conv.withSourceType(SGF, erasedClosureType);
// Apply the narrowed conversion.
return convAfterErasure.emit(SGF, e, erasedResult, SGFContext());
}
// Otherwise, give up.
return ManagedValue();
}
RValue RValueEmitter::visitAbstractClosureExpr(AbstractClosureExpr *e,
SGFContext C) {
// Look through autoclosures that are just calls to a placeholder
// expression. TODO: this is just eta reduction; try to recognize
// more situations for it.
if (auto *placeholder = wrappedValueAutoclosurePlaceholder(e))
return visitPropertyWrapperValuePlaceholderExpr(placeholder, C);
// If we're emitting into a converting context, try to combine the
// conversion into the emission of the closure function.
if (auto *convertingInit = C.getAsConversion()) {
ManagedValue closure =
tryEmitConvertedClosure(e, convertingInit->getConversion());
if (closure.isValid()) {
convertingInit->initWithConvertedValue(SGF, e, closure);
convertingInit->finishInitialization(SGF);
return RValue::forInContext();
}
}
// Otherwise, emit the expression using the simple type of the expression.
auto info = SGF.getClosureTypeInfo(e);
auto closure = emitClosureReference(e, info);
return RValue(SGF, e, e->getType()->getCanonicalType(), closure);
}
ManagedValue
RValueEmitter::emitClosureReference(AbstractClosureExpr *e,
const FunctionTypeInfo &contextInfo) {
// Emit the closure body.
SGF.SGM.emitClosure(e, contextInfo);
// Generate the closure value (if any) for the closure expr's function
// reference.
SILLocation loc = e;
return SGF.emitClosureValue(loc, SILDeclRef(e), contextInfo,
SubstitutionMap());
}
RValue RValueEmitter::
visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E,
SGFContext C) {
RValue interpolation;
{
TapExpr *ETap = E->getAppendingExpr();
// Inlined from TapExpr:
// TODO: This is only necessary because constant evaluation requires that
// the box for the var gets defined before the initializer happens.
auto Var = ETap->getVar();
auto VarType = ETap->getType()->getCanonicalType();
Scope outerScope(SGF, CleanupLocation(ETap));
// Initialize the var with our SubExpr.
auto VarInit =
SGF.emitInitializationForVarDecl(Var, /*forceImmutable=*/false);
{
// Modified from TapExpr to evaluate the SubExpr directly rather than
// indirectly through the OpaqueValue system.
PreparedArguments builderInitArgs;
RValue literalCapacity = visit(E->getLiteralCapacityExpr(), SGFContext());
RValue interpolationCount =
visit(E->getInterpolationCountExpr(), SGFContext());
builderInitArgs.emplace(
{AnyFunctionType::Param(literalCapacity.getType()),
AnyFunctionType::Param(interpolationCount.getType())});
builderInitArgs.add(E, std::move(literalCapacity));
builderInitArgs.add(E, std::move(interpolationCount));
RValue subexpr_result = SGF.emitApplyAllocatingInitializer(
E, E->getBuilderInit(), std::move(builderInitArgs), Type(),
SGFContext(VarInit.get()));
if (!subexpr_result.isInContext()) {
ArgumentSource(
SILLocation(E),
std::move(subexpr_result).ensurePlusOne(SGF, SILLocation(E)))
.forwardInto(SGF, VarInit.get());
}
}
// Emit the body and let it mutate the var if it chooses.
SGF.emitStmt(ETap->getBody());
// Retrieve and return the var, making it +1 so it survives the scope.
auto result = SGF.emitRValueForDecl(SILLocation(ETap), Var, VarType,
AccessSemantics::Ordinary, SGFContext());
result = std::move(result).ensurePlusOne(SGF, SILLocation(ETap));
interpolation = outerScope.popPreservingValue(std::move(result));
}
PreparedArguments resultInitArgs;
resultInitArgs.emplace(AnyFunctionType::Param(interpolation.getType()));
resultInitArgs.add(E, std::move(interpolation));
return SGF.emitApplyAllocatingInitializer(
E, E->getInitializer(), std::move(resultInitArgs), Type(), C);
}
RValue RValueEmitter::visitRegexLiteralExpr(RegexLiteralExpr *E, SGFContext C) {
return SGF.emitLiteral(E, C);
}
RValue RValueEmitter::
visitObjectLiteralExpr(ObjectLiteralExpr *E, SGFContext C) {
ConcreteDeclRef init = E->getInitializer();
auto *decl = cast<ConstructorDecl>(init.getDecl());
AnyFunctionType *fnTy = decl->getMethodInterfaceType()
.subst(init.getSubstitutions())
->getAs<AnyFunctionType>();
PreparedArguments args(fnTy->getParams(), E->getArgs());
return SGF.emitApplyAllocatingInitializer(SILLocation(E), init,
std::move(args), E->getType(), C);
}
RValue RValueEmitter::
visitEditorPlaceholderExpr(EditorPlaceholderExpr *E, SGFContext C) {
return visit(E->getSemanticExpr(), C);
}
RValue RValueEmitter::visitObjCSelectorExpr(ObjCSelectorExpr *e, SGFContext C) {
SILType loweredSelectorTy = SGF.getLoweredType(e->getType());
// Dig out the declaration of the Selector type.
auto selectorDecl = e->getType()->getAs<StructType>()->getDecl();
// Dig out the type of its pointer.
Type selectorMemberTy;
for (auto member : selectorDecl->getMembers()) {
if (auto var = dyn_cast<VarDecl>(member)) {
if (!var->isStatic() && var->hasStorage()) {
selectorMemberTy = var->getInterfaceType();
break;
}
}
}
if (!selectorMemberTy) {
SGF.SGM.diagnose(e, diag::objc_selector_malformed);
return RValue(SGF, e, SGF.emitUndef(loweredSelectorTy));
}
// Form the selector string.
llvm::SmallString<64> selectorScratch;
auto selectorString =
e->getMethod()->getObjCSelector().getString(selectorScratch);
// Create an Objective-C selector string literal.
auto selectorLiteral =
SGF.B.createStringLiteral(e, selectorString,
StringLiteralInst::Encoding::ObjCSelector);
// Create the pointer struct from the raw pointer.
SILType loweredPtrTy = SGF.getLoweredType(selectorMemberTy);
auto ptrValue = SGF.B.createStruct(e, loweredPtrTy, { selectorLiteral });
// Wrap that up in a Selector and return it.
auto selectorValue = SGF.B.createStruct(e, loweredSelectorTy, { ptrValue });
return RValue(SGF, e,
ManagedValue::forObjectRValueWithoutOwnership(selectorValue));
}
static ManagedValue
emitKeyPathRValueBase(SILGenFunction &subSGF,
AbstractStorageDecl *storage,
SILLocation loc,
SILValue paramArg,
CanType &baseType,
SubstitutionMap subs) {
// If the storage is at global scope, then the base value () is a formality.
// There no real argument to pass to the underlying accessors.
if (!storage->getDeclContext()->isTypeContext())
return ManagedValue();
auto paramOrigValue = paramArg->getType().isTrivial(subSGF.F)
? ManagedValue::forRValueWithoutOwnership(paramArg)
: ManagedValue::forBorrowedRValue(paramArg);
paramOrigValue = paramOrigValue.copy(subSGF, loc);
auto paramSubstValue = subSGF.emitOrigToSubstValue(loc, paramOrigValue,
AbstractionPattern::getOpaque(),
baseType);
// Pop open an existential container base.
if (baseType->isAnyExistentialType()) {
// Use the opened archetype from the AST for a protocol member, or make a
// new one (which we'll upcast immediately below) for a class member.
ArchetypeType *opened;
if (storage->getDeclContext()->getSelfClassDecl()) {
opened = OpenedArchetypeType::get(baseType,
subSGF.F.getGenericSignature());
} else {
opened = subs.getReplacementTypes()[0]->castTo<ArchetypeType>();
}
assert(opened->isOpenedExistential());
FormalEvaluationScope scope(subSGF);
baseType = opened->getCanonicalType();
auto openedOpaqueValue = subSGF.emitOpenExistential(loc, paramSubstValue,
subSGF.getLoweredType(baseType),
AccessKind::Read);
// Maybe we could peephole this if we know the property load can borrow the
// base value…
paramSubstValue = openedOpaqueValue.ensurePlusOne(subSGF, loc);
}
// Upcast a class instance to the property's declared type if necessary.
if (auto propertyClass = storage->getDeclContext()->getSelfClassDecl()) {
if (baseType->getClassOrBoundGenericClass() != propertyClass) {
baseType = baseType->getSuperclassForDecl(propertyClass)
->getCanonicalType();
paramSubstValue = subSGF.B.createUpcast(loc, paramSubstValue,
SILType::getPrimitiveObjectType(baseType));
}
}
// …or pop open an existential container.
return paramSubstValue;
}
using IndexTypePair = std::pair<CanType, SILType>;
/// Helper function to load the captured indexes out of a key path component
/// in order to invoke the accessors on that key path. A component with captured
/// indexes passes down a pointer to those captures to the accessor thunks,
/// which we can copy out of to produce values we can pass to the real
/// accessor functions.
static PreparedArguments
loadIndexValuesForKeyPathComponent(SILGenFunction &SGF, SILLocation loc,
AbstractStorageDecl *storage,
ArrayRef<IndexTypePair> indexes,
SILValue pointer) {
// If not a subscript, do nothing.
if (!isa<SubscriptDecl>(storage))
return PreparedArguments();
SmallVector<AnyFunctionType::Param, 8> indexParams;
for (auto &elt : indexes) {
// FIXME: Varargs?
indexParams.emplace_back(SGF.F.mapTypeIntoContext(elt.first));
}
PreparedArguments indexValues(indexParams);
if (indexes.empty()) {
assert(indexValues.isValid());
return indexValues;
}
for (unsigned i : indices(indexes)) {
SILValue eltAddr = pointer;
if (indexes.size() > 1) {
eltAddr = SGF.B.createTupleElementAddr(loc, eltAddr, i);
}
auto ty = SGF.F.mapTypeIntoContext(indexes[i].second);
auto value = SGF.emitLoad(loc, eltAddr,
SGF.getTypeLowering(ty),
SGFContext(), IsNotTake);
auto substType =
SGF.F.mapTypeIntoContext(indexes[i].first)->getCanonicalType();
indexValues.add(loc, RValue(SGF, loc, substType, value));
}
assert(indexValues.isValid());
return indexValues;
}
static AccessorDecl *
getRepresentativeAccessorForKeyPath(AbstractStorageDecl *storage) {
if (storage->requiresOpaqueGetter())
return storage->getOpaqueAccessor(AccessorKind::Get);
assert(storage->requiresOpaqueReadCoroutine());
return storage->getOpaqueAccessor(AccessorKind::Read);
}
static CanType buildKeyPathIndicesTuple(ASTContext &C,
ArrayRef<KeyPathPatternComponent::Index> indexes) {
if (indexes.size() == 1) {
return indexes[0].FormalType;
}
SmallVector<TupleTypeElt, 8> indicesElements;
for (auto &elt : indexes) {
indicesElements.emplace_back(elt.FormalType);
}
return TupleType::get(indicesElements, C)->getCanonicalType();
}
static SILFunction *getOrCreateKeyPathGetter(SILGenModule &SGM,
AbstractStorageDecl *property,
SubstitutionMap subs,
GenericEnvironment *genericEnv,
ResilienceExpansion expansion,
ArrayRef<IndexTypePair> indexes,
CanType baseType,
CanType propertyType) {
// If the storage declaration is from a protocol, chase the override chain
// back to the declaration whose getter introduced the witness table
// entry.
if (isa<ProtocolDecl>(property->getDeclContext())) {
auto accessor = getRepresentativeAccessorForKeyPath(property);
if (!accessor->requiresNewWitnessTableEntry()) {
// Find the getter that does have a witness table entry.
auto wtableAccessor =
cast<AccessorDecl>(SILDeclRef::getOverriddenWitnessTableEntry(accessor));
// Substitute the 'Self' type of the base protocol.
subs = SILGenModule::mapSubstitutionsForWitnessOverride(
accessor, wtableAccessor, subs);
property = wtableAccessor->getStorage();
}
}
auto genericSig =
genericEnv ? genericEnv->getGenericSignature().getCanonicalSignature()
: nullptr;
if (genericSig && genericSig->areAllParamsConcrete()) {
genericSig = nullptr;
genericEnv = nullptr;
}
// Build the signature of the thunk as expected by the keypath runtime.
auto signature = [&]() {
CanType loweredBaseTy, loweredPropTy;
AbstractionPattern opaque = AbstractionPattern::getOpaque();
loweredBaseTy = SGM.Types.getLoweredRValueType(
TypeExpansionContext::minimal(), opaque, baseType);
loweredPropTy = SGM.Types.getLoweredRValueType(
TypeExpansionContext::minimal(), opaque, propertyType);
auto paramConvention = ParameterConvention::Indirect_In_Guaranteed;
SmallVector<SILParameterInfo, 2> params;
params.push_back({loweredBaseTy, paramConvention});
auto &C = SGM.getASTContext();
if (!indexes.empty()) {
if (indexes.size() > 1) {
SmallVector<TupleTypeElt, 8> indicesElements;
for (auto &elt : indexes) {
indicesElements.emplace_back(elt.first);
}
auto indicesTupleTy = TupleType::get(indicesElements, C)->getCanonicalType();
params.push_back({indicesTupleTy, paramConvention});
} else {
params.push_back({indexes[0].first, paramConvention});
}
}
SILResultInfo result(loweredPropTy, ResultConvention::Indirect);
return SILFunctionType::get(
genericSig,
SILFunctionType::ExtInfo().withRepresentation(
SILFunctionType::Representation::KeyPathAccessorGetter),
SILCoroutineKind::None, ParameterConvention::Direct_Unowned, params, {},
result, std::nullopt, SubstitutionMap(), SubstitutionMap(),
SGM.getASTContext());
}();
// Find the function and see if we already created it.
auto name = Mangle::ASTMangler()
.mangleKeyPathGetterThunkHelper(property, genericSig, baseType,
subs, expansion);
auto loc = RegularLocation::getAutoGeneratedLocation();
SILGenFunctionBuilder builder(SGM);
auto thunk = builder.getOrCreateSharedFunction(
loc, name, signature, IsBare, IsNotTransparent,
(expansion == ResilienceExpansion::Minimal
? IsSerialized
: IsNotSerialized),
ProfileCounter(), IsThunk, IsNotDynamic, IsNotDistributed,
IsNotRuntimeAccessible);
if (!thunk->empty())
return thunk;
// Emit the thunk, which accesses the underlying property normally with
// reabstraction where necessary.
if (genericEnv) {
baseType = genericEnv->mapTypeIntoContext(baseType)->getCanonicalType();
propertyType = genericEnv->mapTypeIntoContext(propertyType)
->getCanonicalType();
thunk->setGenericEnvironment(genericEnv);
}
SILGenFunction subSGF(SGM, *thunk, SGM.SwiftModule);
signature = subSGF.F.getLoweredFunctionTypeInContext(
subSGF.F.getTypeExpansionContext());
auto entry = thunk->begin();
auto resultArgTy =
subSGF.silConv.getSILType(signature->getSingleResult(), signature,
subSGF.F.getTypeExpansionContext());
auto baseArgTy =
subSGF.silConv.getSILType(signature->getParameters()[0], signature,
subSGF.F.getTypeExpansionContext());
if (genericEnv) {
resultArgTy = genericEnv->mapTypeIntoContext(SGM.M, resultArgTy);
baseArgTy = genericEnv->mapTypeIntoContext(SGM.M, baseArgTy);
}
SILFunctionArgument *resultArg = nullptr;
if (SGM.M.useLoweredAddresses()) {
resultArg = entry->createFunctionArgument(resultArgTy);
}
auto baseArg = entry->createFunctionArgument(baseArgTy);
SILValue indexPtrArg;
if (!indexes.empty()) {
auto indexArgTy =
subSGF.silConv.getSILType(signature->getParameters()[1], signature,
subSGF.F.getTypeExpansionContext());
if (genericEnv)
indexArgTy = genericEnv->mapTypeIntoContext(SGM.M, indexArgTy);
indexPtrArg = entry->createFunctionArgument(indexArgTy);
}
ArgumentScope scope(subSGF, loc);
auto baseSubstValue = emitKeyPathRValueBase(subSGF, property,
loc, baseArg,
baseType, subs);
auto subscriptIndices =
loadIndexValuesForKeyPathComponent(subSGF, loc, property,
indexes, indexPtrArg);
ManagedValue resultSubst;
{
RValue resultRValue;
// Emit a dynamic method branch if the storage decl is an @objc optional
// requirement, or just a load otherwise.
if (property->getAttrs().hasAttribute<OptionalAttr>()) {
const auto declRef = ConcreteDeclRef(property, subs);
if (isa<VarDecl>(property)) {
resultRValue =
subSGF.emitDynamicMemberRef(loc, baseSubstValue.getValue(), declRef,
propertyType, SGFContext());
} else {
assert(isa<SubscriptDecl>(property));
resultRValue = subSGF.emitDynamicSubscriptGetterApply(
loc, baseSubstValue.getValue(), declRef,
std::move(subscriptIndices), propertyType, SGFContext());
}
} else {
resultRValue = subSGF.emitRValueForStorageLoad(
loc, baseSubstValue, baseType, /*super*/ false, property,
std::move(subscriptIndices), subs, AccessSemantics::Ordinary,
propertyType, SGFContext());
}
resultSubst = std::move(resultRValue).getAsSingleValue(subSGF, loc);
}
if (resultSubst.getType().getAddressType() != resultArgTy)
resultSubst = subSGF.emitSubstToOrigValue(loc, resultSubst,
AbstractionPattern::getOpaque(),
propertyType);
if (SGM.M.useLoweredAddresses()) {
resultSubst.forwardInto(subSGF, loc, resultArg);
scope.pop();
subSGF.B.createReturn(loc, subSGF.emitEmptyTuple(loc));
} else {
auto result = resultSubst.forward(subSGF);
scope.pop();
subSGF.B.createReturn(loc, result);
}
SGM.emitLazyConformancesForFunction(thunk);
return thunk;
}
static SILFunction *getOrCreateKeyPathSetter(SILGenModule &SGM,
AbstractStorageDecl *property,
SubstitutionMap subs,
GenericEnvironment *genericEnv,
ResilienceExpansion expansion,
ArrayRef<IndexTypePair> indexes,
CanType baseType,
CanType propertyType) {
// If the storage declaration is from a protocol, chase the override chain
// back to the declaration whose setter introduced the witness table
// entry.
if (isa<ProtocolDecl>(property->getDeclContext())) {
auto setter = property->getOpaqueAccessor(AccessorKind::Set);
if (!setter->requiresNewWitnessTableEntry()) {
// Find the setter that does have a witness table entry.
auto wtableSetter =
cast<AccessorDecl>(SILDeclRef::getOverriddenWitnessTableEntry(setter));
// Substitute the 'Self' type of the base protocol.
subs = SILGenModule::mapSubstitutionsForWitnessOverride(
setter, wtableSetter, subs);
property = wtableSetter->getStorage();
}
}
auto genericSig =
genericEnv ? genericEnv->getGenericSignature().getCanonicalSignature()
: nullptr;
if (genericSig && genericSig->areAllParamsConcrete()) {
genericSig = nullptr;
genericEnv = nullptr;
}
// Build the signature of the thunk as expected by the keypath runtime.
auto signature = [&]() {
CanType loweredBaseTy, loweredPropTy;
{
AbstractionPattern opaque = AbstractionPattern::getOpaque();
loweredBaseTy = SGM.Types.getLoweredRValueType(
TypeExpansionContext::minimal(), opaque, baseType);
loweredPropTy = SGM.Types.getLoweredRValueType(
TypeExpansionContext::minimal(), opaque, propertyType);
}
auto &C = SGM.getASTContext();
auto paramConvention = ParameterConvention::Indirect_In_Guaranteed;
SmallVector<SILParameterInfo, 3> params;
// property value
params.push_back({loweredPropTy, paramConvention});
// base
params.push_back({loweredBaseTy,
property->isSetterMutating()
? ParameterConvention::Indirect_Inout
: paramConvention});
// indexes
if (!indexes.empty()) {
if (indexes.size() > 1) {
SmallVector<TupleTypeElt, 8> indicesElements;
for (auto &elt : indexes) {
indicesElements.emplace_back(elt.first);
}
auto indicesTupleTy = TupleType::get(indicesElements, C)->getCanonicalType();
params.push_back({indicesTupleTy, paramConvention});
} else {
params.push_back({indexes[0].first, paramConvention});
}
}
return SILFunctionType::get(
genericSig,
SILFunctionType::ExtInfo().withRepresentation(
SILFunctionType::Representation::KeyPathAccessorSetter),
SILCoroutineKind::None, ParameterConvention::Direct_Unowned, params, {},
{}, std::nullopt, SubstitutionMap(), SubstitutionMap(),
SGM.getASTContext());
}();
// Mangle the name of the thunk to see if we already created it.
auto name = Mangle::ASTMangler()
.mangleKeyPathSetterThunkHelper(property, genericSig, baseType,
subs, expansion);
auto loc = RegularLocation::getAutoGeneratedLocation();
SILGenFunctionBuilder builder(SGM);
auto thunk = builder.getOrCreateSharedFunction(
loc, name, signature, IsBare, IsNotTransparent,
(expansion == ResilienceExpansion::Minimal
? IsSerialized
: IsNotSerialized),
ProfileCounter(), IsThunk, IsNotDynamic, IsNotDistributed,
IsNotRuntimeAccessible);
if (!thunk->empty())
return thunk;
// Emit the thunk, which accesses the underlying property normally with
// reabstraction where necessary.
if (genericEnv) {
baseType = genericEnv->mapTypeIntoContext(baseType)->getCanonicalType();
propertyType = genericEnv->mapTypeIntoContext(propertyType)
->getCanonicalType();
thunk->setGenericEnvironment(genericEnv);
}
SILGenFunction subSGF(SGM, *thunk, SGM.SwiftModule);
signature = subSGF.F.getLoweredFunctionTypeInContext(
subSGF.F.getTypeExpansionContext());
auto entry = thunk->begin();
auto valueArgTy =
subSGF.silConv.getSILType(signature->getParameters()[0], signature,
subSGF.getTypeExpansionContext());
auto baseArgTy =
subSGF.silConv.getSILType(signature->getParameters()[1], signature,
subSGF.getTypeExpansionContext());
if (genericEnv) {
valueArgTy = genericEnv->mapTypeIntoContext(SGM.M, valueArgTy);
baseArgTy = genericEnv->mapTypeIntoContext(SGM.M, baseArgTy);
}
auto valueArg = entry->createFunctionArgument(valueArgTy);
auto baseArg = entry->createFunctionArgument(baseArgTy);
SILValue indicesTupleArg;
if (!indexes.empty()) {
auto indexArgTy =
subSGF.silConv.getSILType(signature->getParameters()[2], signature,
subSGF.getTypeExpansionContext());
if (genericEnv)
indexArgTy = genericEnv->mapTypeIntoContext(SGM.M, indexArgTy);
indicesTupleArg = entry->createFunctionArgument(indexArgTy);
}
Scope scope(subSGF, loc);
auto subscriptIndices =
loadIndexValuesForKeyPathComponent(subSGF, loc, property,
indexes, indicesTupleArg);
auto valueOrig = valueArgTy.isTrivial(subSGF.F)
? ManagedValue::forRValueWithoutOwnership(valueArg)
: ManagedValue::forBorrowedRValue(valueArg);
valueOrig = valueOrig.copy(subSGF, loc);
auto valueSubst = subSGF.emitOrigToSubstValue(loc, valueOrig,
AbstractionPattern::getOpaque(),
propertyType);
LValue lv;
if (!property->isSetterMutating()) {
auto baseSubst = emitKeyPathRValueBase(subSGF, property,
loc, baseArg,
baseType, subs);
lv = LValue::forValue(SGFAccessKind::BorrowedObjectRead,
baseSubst, baseType);
} else {
auto baseOrig = ManagedValue::forLValue(baseArg);
lv = LValue::forAddress(SGFAccessKind::ReadWrite, baseOrig, std::nullopt,
AbstractionPattern::getOpaque(), baseType);
// Open an existential lvalue, if necessary.
if (baseType->isAnyExistentialType()) {
auto opened = subs.getReplacementTypes()[0]->castTo<ArchetypeType>();
assert(opened->isOpenedExistential());
baseType = opened->getCanonicalType();
lv = subSGF.emitOpenExistentialLValue(loc, std::move(lv),
CanArchetypeType(opened),
baseType,
SGFAccessKind::ReadWrite);
}
}
auto semantics = AccessSemantics::Ordinary;
auto strategy = property->getAccessStrategy(semantics, AccessKind::Write,
SGM.M.getSwiftModule(),
expansion);
LValueOptions lvOptions;
lv.addMemberComponent(subSGF, loc, property, subs, lvOptions,
/*super*/ false, SGFAccessKind::Write,
strategy, propertyType,
std::move(subscriptIndices),
/*index for diags*/ nullptr);
// If the assigned value will need to be reabstracted, add a reabstraction
// component.
const auto loweredSubstType = subSGF.getLoweredType(lv.getSubstFormalType());
if (lv.getTypeOfRValue() != loweredSubstType.getObjectType()) {
// Logical components always re-abstract back to the substituted type.
assert(lv.isLastComponentPhysical());
lv.addOrigToSubstComponent(loweredSubstType);
}
subSGF.emitAssignToLValue(loc,
RValue(subSGF, loc, propertyType, valueSubst),
std::move(lv));
scope.pop();
subSGF.B.createReturn(loc, subSGF.emitEmptyTuple(loc));
SGM.emitLazyConformancesForFunction(thunk);
return thunk;
}
static void
getOrCreateKeyPathEqualsAndHash(SILGenModule &SGM,
SILLocation loc,
GenericEnvironment *genericEnv,
ResilienceExpansion expansion,
ArrayRef<KeyPathPatternComponent::Index> indexes,
SILFunction *&equals,
SILFunction *&hash) {
if (indexes.empty()) {
equals = nullptr;
hash = nullptr;
return;
}
auto genericSig =
genericEnv ? genericEnv->getGenericSignature().getCanonicalSignature()
: nullptr;
if (genericSig && genericSig->areAllParamsConcrete()) {
genericSig = nullptr;
genericEnv = nullptr;
}
auto &C = SGM.getASTContext();
auto boolTy = C.getBoolType()->getCanonicalType();
auto intTy = C.getIntType()->getCanonicalType();
auto indicesTupleTy = buildKeyPathIndicesTuple(C, indexes);
auto hashableProto = C.getProtocol(KnownProtocolKind::Hashable);
SmallVector<CanType, 4> indexTypes;
indexTypes.reserve(indexes.size());
for (auto &index : indexes)
indexTypes.push_back(index.FormalType);
CanType indexTupleTy;
if (indexes.size() == 1) {
indexTupleTy = GenericEnvironment::mapTypeIntoContext(
genericEnv, indexes[0].FormalType)->getCanonicalType();
} else {
SmallVector<TupleTypeElt, 2> indexElts;
for (auto &elt : indexes) {
indexElts.push_back(GenericEnvironment::mapTypeIntoContext(
genericEnv, elt.FormalType));
}
indexTupleTy = TupleType::get(indexElts, SGM.getASTContext())
->getCanonicalType();
}
RValue indexValue(indexTupleTy);
// Get or create the equals witness
[boolTy, indicesTupleTy, genericSig, &C, &indexTypes, &equals, loc, &SGM,
genericEnv, expansion, indexes] {
// (lhs: (X, Y, ...), rhs: (X, Y, ...)) -> Bool
SmallVector<SILParameterInfo, 2> params;
params.push_back(
{indicesTupleTy, ParameterConvention::Indirect_In_Guaranteed});
params.push_back(
{indicesTupleTy, ParameterConvention::Indirect_In_Guaranteed});
SmallVector<SILResultInfo, 1> results;
results.push_back({boolTy, ResultConvention::Unowned});
auto signature = SILFunctionType::get(
genericSig,
SILFunctionType::ExtInfo().withRepresentation(
SILFunctionType::Representation::KeyPathAccessorEquals),
SILCoroutineKind::None, ParameterConvention::Direct_Unowned, params,
/*yields*/ {}, results, std::nullopt, SubstitutionMap(),
SubstitutionMap(), C);
// Mangle the name of the thunk to see if we already created it.
auto name = Mangle::ASTMangler()
.mangleKeyPathEqualsHelper(indexTypes, genericSig, expansion);
SILGenFunctionBuilder builder(SGM);
equals = builder.getOrCreateSharedFunction(
loc, name, signature, IsBare, IsNotTransparent,
(expansion == ResilienceExpansion::Minimal
? IsSerialized
: IsNotSerialized),
ProfileCounter(), IsThunk, IsNotDynamic, IsNotDistributed,
IsNotRuntimeAccessible);
if (!equals->empty()) {
return;
}
SILGenFunction subSGF(SGM, *equals, SGM.SwiftModule);
equals->setGenericEnvironment(genericEnv);
auto entry = equals->begin();
auto lhsArgTy = subSGF.silConv.getSILType(
params[0], signature, subSGF.getTypeExpansionContext());
auto rhsArgTy = subSGF.silConv.getSILType(
params[1], signature, subSGF.getTypeExpansionContext());
if (genericEnv) {
lhsArgTy = genericEnv->mapTypeIntoContext(SGM.M, lhsArgTy);
rhsArgTy = genericEnv->mapTypeIntoContext(SGM.M, rhsArgTy);
}
auto lhsAddr = entry->createFunctionArgument(lhsArgTy);
auto rhsAddr = entry->createFunctionArgument(rhsArgTy);
Scope scope(subSGF, loc);
// Compare each pair of index values using the == witness from the
// conformance.
auto equatableProtocol = C.getProtocol(KnownProtocolKind::Equatable);
auto equalsMethod = equatableProtocol->getSingleRequirement(
C.Id_EqualsOperator);
auto equalsRef = SILDeclRef(equalsMethod);
auto equalsTy = subSGF.SGM.Types.getConstantType(
TypeExpansionContext(subSGF.F), equalsRef);
auto isFalseBB = subSGF.createBasicBlock();
auto i1Ty = SILType::getBuiltinIntegerType(1, C);
for (unsigned i : indices(indexes)) {
auto &index = indexes[i];
Type formalTy = index.FormalType;
ProtocolConformanceRef hashable = index.Hashable;
std::tie(formalTy, hashable)
= GenericEnvironment::mapConformanceRefIntoContext(genericEnv,
formalTy,
hashable);
auto formalCanTy = formalTy->getReducedType(genericSig);
// Get the Equatable conformance from the Hashable conformance.
auto equatable = hashable.getAssociatedConformance(
formalTy,
GenericTypeParamType::get(/*isParameterPack*/ false,
/*depth*/ 0, /*index*/ 0, C),
equatableProtocol);
assert(equatable.isAbstract() == hashable.isAbstract());
if (equatable.isConcrete())
assert(equatable.getConcrete()->getType()->isEqual(
hashable.getConcrete()->getType()));
auto equalsWitness = subSGF.B.createWitnessMethod(loc,
formalCanTy, equatable,
equalsRef, equalsTy);
auto equatableSub
= SubstitutionMap::getProtocolSubstitutions(equatableProtocol,
formalCanTy,
equatable);
auto equalsSubstTy = equalsTy.castTo<SILFunctionType>()->substGenericArgs(
SGM.M, equatableSub, TypeExpansionContext(subSGF.F));
auto equalsInfo =
CalleeTypeInfo(equalsSubstTy, AbstractionPattern(boolTy), boolTy,
std::nullopt, std::nullopt, ImportAsMemberStatus());
Scope branchScope(subSGF, loc);
SILValue lhsEltAddr = lhsAddr;
SILValue rhsEltAddr = rhsAddr;
if (indexes.size() > 1) {
lhsEltAddr = subSGF.B.createTupleElementAddr(loc, lhsAddr, i);
rhsEltAddr = subSGF.B.createTupleElementAddr(loc, rhsAddr, i);
}
auto lhsArg = subSGF.emitLoad(loc, lhsEltAddr,
subSGF.getTypeLowering(AbstractionPattern::getOpaque(), formalTy),
SGFContext(), IsNotTake);
auto rhsArg = subSGF.emitLoad(loc, rhsEltAddr,
subSGF.getTypeLowering(AbstractionPattern::getOpaque(), formalTy),
SGFContext(), IsNotTake);
if (!lhsArg.getType().isAddress()) {
auto lhsBuf = subSGF.emitTemporaryAllocation(loc, lhsArg.getType());
lhsArg.forwardInto(subSGF, loc, lhsBuf);
lhsArg = subSGF.emitManagedBufferWithCleanup(lhsBuf);
auto rhsBuf = subSGF.emitTemporaryAllocation(loc, rhsArg.getType());
rhsArg.forwardInto(subSGF, loc, rhsBuf);
rhsArg = subSGF.emitManagedBufferWithCleanup(rhsBuf);
}
auto metaty = CanMetatypeType::get(formalCanTy,
MetatypeRepresentation::Thick);
auto metatyValue =
ManagedValue::forObjectRValueWithoutOwnership(subSGF.B.createMetatype(
loc, SILType::getPrimitiveObjectType(metaty)));
SILValue isEqual;
{
auto equalsResultPlan = ResultPlanBuilder::computeResultPlan(subSGF,
equalsInfo, loc, SGFContext());
ArgumentScope argScope(subSGF, loc);
isEqual = subSGF
.emitApply(std::move(equalsResultPlan),
std::move(argScope), loc,
ManagedValue::forObjectRValueWithoutOwnership(
equalsWitness),
equatableSub, {lhsArg, rhsArg, metatyValue},
equalsInfo, ApplyOptions(), SGFContext(),
std::nullopt)
.getUnmanagedSingleValue(subSGF, loc);
}
branchScope.pop();
auto isEqualI1 = subSGF.B.createStructExtract(loc, isEqual,
C.getBoolDecl()->getStoredProperties()[0], i1Ty);
auto isTrueBB = subSGF.createBasicBlock();
// Each false condition needs its own block to avoid critical edges.
auto falseEdgeBB = subSGF.createBasicBlockAndBranch(loc, isFalseBB);
subSGF.B.createCondBranch(loc, isEqualI1, isTrueBB, falseEdgeBB);
subSGF.B.emitBlock(isTrueBB);
}
auto returnBB = subSGF.createBasicBlock(FunctionSection::Postmatter);
SILValue trueValue = subSGF.B.createIntegerLiteral(loc, i1Ty, 1);
subSGF.B.createBranch(loc, returnBB, trueValue);
subSGF.B.emitBlock(isFalseBB);
SILValue falseValue = subSGF.B.createIntegerLiteral(loc, i1Ty, 0);
subSGF.B.createBranch(loc, returnBB, falseValue);
subSGF.B.emitBlock(returnBB);
scope.pop();
SILValue returnVal = returnBB->createPhiArgument(i1Ty, OwnershipKind::None);
auto returnBoolVal = subSGF.B.createStruct(loc,
SILType::getPrimitiveObjectType(boolTy), returnVal);
subSGF.B.createReturn(loc, returnBoolVal);
SGM.emitLazyConformancesForFunction(equals);
}();
// Get or create the hash witness
[intTy, indicesTupleTy, genericSig, &C, indexTypes, &hash, &loc, &SGM,
genericEnv, expansion, hashableProto, indexes] {
// (indices: (X, Y, ...)) -> Int
SmallVector<SILParameterInfo, 1> params;
params.push_back({indicesTupleTy,
ParameterConvention::Indirect_In_Guaranteed});
SmallVector<SILResultInfo, 1> results;
results.push_back({intTy, ResultConvention::Unowned});
auto signature = SILFunctionType::get(
genericSig,
SILFunctionType::ExtInfo().withRepresentation(
SILFunctionType::Representation::KeyPathAccessorHash),
SILCoroutineKind::None, ParameterConvention::Direct_Unowned, params,
/*yields*/ {}, results, std::nullopt, SubstitutionMap(),
SubstitutionMap(), C);
// Mangle the name of the thunk to see if we already created it.
SmallString<64> nameBuf;
auto name = Mangle::ASTMangler()
.mangleKeyPathHashHelper(indexTypes, genericSig, expansion);
SILGenFunctionBuilder builder(SGM);
hash = builder.getOrCreateSharedFunction(
loc, name, signature, IsBare, IsNotTransparent,
(expansion == ResilienceExpansion::Minimal
? IsSerialized
: IsNotSerialized),
ProfileCounter(), IsThunk, IsNotDynamic, IsNotDistributed,
IsNotRuntimeAccessible);
if (!hash->empty()) {
return;
}
SILGenFunction subSGF(SGM, *hash, SGM.SwiftModule);
hash->setGenericEnvironment(genericEnv);
auto entry = hash->begin();
auto indexArgTy = subSGF.silConv.getSILType(
params[0], signature, subSGF.getTypeExpansionContext());
if (genericEnv)
indexArgTy = genericEnv->mapTypeIntoContext(SGM.M, indexArgTy);
auto indexPtr = entry->createFunctionArgument(indexArgTy);
SILValue hashCode;
// For now, just use the hash value of the first index.
// TODO: Combine hashes of the indexes using an inout Hasher
{
ArgumentScope scope(subSGF, loc);
auto &index = indexes[0];
// Extract the index value.
SILValue indexAddr = indexPtr;
if (indexes.size() > 1) {
indexAddr = subSGF.B.createTupleElementAddr(loc, indexPtr, 0);
}
VarDecl *hashValueVar =
cast<VarDecl>(hashableProto->getSingleRequirement(C.Id_hashValue));
auto formalTy = index.FormalType;
auto hashable = index.Hashable;
if (genericEnv) {
formalTy = genericEnv->mapTypeIntoContext(formalTy)->getCanonicalType();
hashable = hashable.subst(index.FormalType,
[&](Type t) -> Type { return genericEnv->mapTypeIntoContext(t); },
LookUpConformanceInSignature(genericSig.getPointer()));
}
// Set up a substitution of Self => IndexType.
auto hashGenericSig =
hashValueVar->getDeclContext()->getGenericSignatureOfContext();
assert(hashGenericSig);
SubstitutionMap hashableSubsMap = SubstitutionMap::get(
hashGenericSig,
[&](SubstitutableType *type) -> Type { return formalTy; },
[&](CanType dependentType, Type replacementType, ProtocolDecl *proto)
-> ProtocolConformanceRef { return hashable; });
// Read the storage.
ManagedValue base = ManagedValue::forBorrowedAddressRValue(indexAddr);
hashCode =
subSGF.emitRValueForStorageLoad(loc, base, formalTy, /*super*/ false,
hashValueVar, PreparedArguments(),
hashableSubsMap,
AccessSemantics::Ordinary,
intTy, SGFContext())
.getUnmanagedSingleValue(subSGF, loc);
scope.pop();
}
subSGF.B.createReturn(loc, hashCode);
SGM.emitLazyConformancesForFunction(hash);
}();
return;
}
static KeyPathPatternComponent::ComputedPropertyId
getIdForKeyPathComponentComputedProperty(SILGenModule &SGM,
AbstractStorageDecl *storage,
ResilienceExpansion expansion,
AccessStrategy strategy) {
switch (strategy.getKind()) {
case AccessStrategy::Storage:
// Identify reabstracted stored properties by the property itself.
return cast<VarDecl>(storage);
case AccessStrategy::MaterializeToTemporary:
// Use the read strategy. But try to avoid turning e.g. an
// observed property into a stored property.
strategy = strategy.getReadStrategy();
if (strategy.getKind() != AccessStrategy::Storage ||
!getRepresentativeAccessorForKeyPath(storage)) {
return getIdForKeyPathComponentComputedProperty(SGM, storage, expansion,
strategy);
}
LLVM_FALLTHROUGH;
case AccessStrategy::DirectToAccessor: {
// Identify the property using its (unthunked) getter. For a
// computed property, this should be stable ABI; for a resilient public
// property, this should also be stable ABI across modules.
auto representativeDecl = getRepresentativeAccessorForKeyPath(storage);
// If the property came from an import-as-member function defined in C,
// use the original C function as the key.
bool isForeign = representativeDecl->isImportAsMember();
auto getterRef = SILDeclRef(representativeDecl,
SILDeclRef::Kind::Func, isForeign);
// TODO: If the getter has shared linkage (say it's synthesized for a
// Clang-imported thing), we'll need some other sort of
// stable identifier.
return SGM.getFunction(getterRef, NotForDefinition);
}
case AccessStrategy::DispatchToAccessor: {
// Identify the property by its vtable or wtable slot.
return SGM.getAccessorDeclRef(getRepresentativeAccessorForKeyPath(storage),
expansion);
}
case AccessStrategy::DispatchToDistributedThunk: {
auto thunkRef = SILDeclRef(cast<VarDecl>(storage)->getDistributedThunk(),
SILDeclRef::Kind::Func,
/*isForeign=*/false,
/*isDistributed=*/true);
return SGM.getFunction(thunkRef, NotForDefinition);
}
}
llvm_unreachable("unhandled access strategy");
}
static void
lowerKeyPathSubscriptIndexTypes(
SILGenModule &SGM,
SmallVectorImpl<IndexTypePair> &indexPatterns,
SubscriptDecl *subscript,
SubstitutionMap subscriptSubs,
ResilienceExpansion expansion,
bool &needsGenericContext) {
// Capturing an index value dependent on the generic context means we
// need the generic context captured in the key path.
auto subscriptSubstTy = subscript->getInterfaceType();
SubstitutionMap subMap;
auto sig = subscript->getGenericSignature();
if (sig) {
subscriptSubstTy = subscriptSubstTy.subst(subscriptSubs);
}
needsGenericContext |= subscriptSubstTy->hasArchetype();
for (auto *index : *subscript->getIndices()) {
auto indexTy = index->getInterfaceType();
if (sig) {
indexTy = indexTy.subst(subscriptSubs);
}
auto indexLoweredTy = SGM.Types.getLoweredType(
AbstractionPattern::getOpaque(), indexTy,
TypeExpansionContext::noOpaqueTypeArchetypesSubstitution(expansion));
indexLoweredTy = indexLoweredTy.mapTypeOutOfContext();
indexPatterns.push_back({indexTy->mapTypeOutOfContext()
->getCanonicalType(),
indexLoweredTy});
}
}
static void
lowerKeyPathSubscriptIndexPatterns(
SmallVectorImpl<KeyPathPatternComponent::Index> &indexPatterns,
ArrayRef<IndexTypePair> indexTypes,
ArrayRef<ProtocolConformanceRef> indexHashables,
unsigned &baseOperand) {
for (unsigned i : indices(indexTypes)) {
CanType formalTy;
SILType loweredTy;
std::tie(formalTy, loweredTy) = indexTypes[i];
auto hashable = indexHashables[i].mapConformanceOutOfContext();
assert(hashable.isAbstract() ||
hashable.getConcrete()->getType()->isEqual(formalTy));
indexPatterns.push_back({baseOperand++, formalTy, loweredTy, hashable});
}
}
KeyPathPatternComponent
SILGenModule::emitKeyPathComponentForDecl(SILLocation loc,
GenericEnvironment *genericEnv,
ResilienceExpansion expansion,
unsigned &baseOperand,
bool &needsGenericContext,
SubstitutionMap subs,
AbstractStorageDecl *storage,
ArrayRef<ProtocolConformanceRef> indexHashables,
CanType baseTy,
DeclContext *useDC,
bool forPropertyDescriptor) {
auto baseDecl = storage;
// ABI-compatible overrides do not have property descriptors, so we need
// to reference the overridden declaration instead.
if (isa<ClassDecl>(baseDecl->getDeclContext())) {
while (!baseDecl->isValidKeyPathComponent())
baseDecl = baseDecl->getOverriddenDecl();
}
/// Returns true if a key path component for the given property or
/// subscript should be externally referenced.
auto shouldUseExternalKeyPathComponent = [&]() -> bool {
// The property descriptor has the canonical key path component information
// so doesn't have to refer to another external descriptor.
if (forPropertyDescriptor) {
return false;
}
// Don't need to use the external component if we're inside the resilience
// domain of its defining module.
if (baseDecl->getModuleContext() == SwiftModule
&& !baseDecl->isResilient(SwiftModule, expansion)) {
return false;
}
// Protocol requirements don't have nor need property descriptors.
if (isa<ProtocolDecl>(baseDecl->getDeclContext())) {
return false;
}
// Always-emit-into-client properties can't reliably refer to a property
// descriptor that may not exist in older versions of their home dylib.
// Their definition is also always entirely visible to clients so it isn't
// needed.
if (baseDecl->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>()) {
return false;
}
// Back deployed properties have the same restrictions as
// always-emit-into-client properties.
if (requiresBackDeploymentThunk(baseDecl, expansion)) {
return false;
}
// Properties that only dispatch via ObjC lookup do not have nor
// need property descriptors, since the selector identifies the
// storage.
// Properties that are not public don't need property descriptors
// either.
if (baseDecl->requiresOpaqueAccessors()) {
auto representative = getAccessorDeclRef(
getRepresentativeAccessorForKeyPath(baseDecl), expansion);
if (representative.isForeign)
return false;
switch (representative.getLinkage(ForDefinition)) {
case SILLinkage::Public:
case SILLinkage::PublicNonABI:
case SILLinkage::Package:
case SILLinkage::PackageNonABI:
break;
case SILLinkage::Hidden:
case SILLinkage::Shared:
case SILLinkage::Private:
case SILLinkage::PublicExternal:
case SILLinkage::PackageExternal:
case SILLinkage::HiddenExternal:
return false;
}
}
return true;
};
auto strategy = storage->getAccessStrategy(AccessSemantics::Ordinary,
storage->supportsMutation()
? AccessKind::ReadWrite
: AccessKind::Read,
M.getSwiftModule(),
expansion);
AbstractStorageDecl *externalDecl = nullptr;
SubstitutionMap externalSubs;
if (shouldUseExternalKeyPathComponent()) {
externalDecl = storage;
// Map the substitutions out of context.
if (!subs.empty()) {
externalSubs = subs;
// If any of the substitutions involve local archetypes, then the
// key path pattern needs to capture the generic context, and we need
// to map the pattern substitutions out of this context.
if (externalSubs.hasArchetypes()) {
needsGenericContext = true;
externalSubs = externalSubs.mapReplacementTypesOutOfContext();
}
}
// ABI-compatible overrides do not have property descriptors, so we need
// to reference the overridden declaration instead.
if (baseDecl != externalDecl) {
externalSubs = SubstitutionMap::getOverrideSubstitutions(baseDecl,
externalDecl)
.subst(externalSubs);
externalDecl = baseDecl;
}
}
auto isSettableInComponent = [&]() -> bool {
// For storage we reference by a property descriptor, the descriptor will
// supply the settability if needed. We only reference it here if the
// setter is public.
if (shouldUseExternalKeyPathComponent())
return storage->isSettableInSwift(useDC) &&
storage->isSetterAccessibleFrom(useDC);
return storage->isSettableInSwift(storage->getDeclContext());
};
if (auto var = dyn_cast<VarDecl>(storage)) {
CanType componentTy;
if (!var->getDeclContext()->isTypeContext()) {
componentTy = var->getInterfaceType()->getCanonicalType();
} else {
componentTy =
GenericEnvironment::mapTypeIntoContext(genericEnv, baseTy)
->getTypeOfMember(SwiftModule, var)
->getReferenceStorageReferent()
->mapTypeOutOfContext()
->getCanonicalType();
// The component type for an @objc optional requirement needs to be
// wrapped in an optional.
if (var->getAttrs().hasAttribute<OptionalAttr>()) {
componentTy = OptionalType::get(componentTy)->getCanonicalType();
}
}
if (canStorageUseStoredKeyPathComponent(var, expansion)) {
return KeyPathPatternComponent::forStoredProperty(var, componentTy);
}
// We need thunks to bring the getter and setter to the right signature
// expected by the key path runtime.
auto id = getIdForKeyPathComponentComputedProperty(*this, var, expansion,
strategy);
auto getter = getOrCreateKeyPathGetter(*this,
var, subs,
needsGenericContext ? genericEnv : nullptr,
expansion, {}, baseTy, componentTy);
if (isSettableInComponent()) {
auto setter = getOrCreateKeyPathSetter(*this,
var, subs,
needsGenericContext ? genericEnv : nullptr,
expansion, {}, baseTy, componentTy);
return KeyPathPatternComponent::forComputedSettableProperty(id,
getter, setter, {}, nullptr, nullptr,
externalDecl, externalSubs, componentTy);
} else {
return KeyPathPatternComponent::forComputedGettableProperty(id,
getter, {}, nullptr, nullptr,
externalDecl, externalSubs, componentTy);
}
}
if (auto decl = dyn_cast<SubscriptDecl>(storage)) {
auto baseSubscriptTy =
decl->getInterfaceType()->castTo<AnyFunctionType>();
if (auto genSubscriptTy = baseSubscriptTy->getAs<GenericFunctionType>())
baseSubscriptTy = genSubscriptTy->substGenericArgs(subs);
auto baseSubscriptInterfaceTy = cast<AnyFunctionType>(
baseSubscriptTy->mapTypeOutOfContext()->getCanonicalType());
auto componentTy = baseSubscriptInterfaceTy.getResult();
if (decl->getAttrs().hasAttribute<OptionalAttr>()) {
// The component type for an @objc optional requirement needs to be
// wrapped in an optional
componentTy = OptionalType::get(componentTy)->getCanonicalType();
}
SmallVector<IndexTypePair, 4> indexTypes;
lowerKeyPathSubscriptIndexTypes(*this, indexTypes,
decl, subs,
expansion,
needsGenericContext);
SmallVector<KeyPathPatternComponent::Index, 4> indexPatterns;
SILFunction *indexEquals = nullptr, *indexHash = nullptr;
// Property descriptors get their index information from the client.
if (!forPropertyDescriptor) {
lowerKeyPathSubscriptIndexPatterns(indexPatterns,
indexTypes, indexHashables,
baseOperand);
getOrCreateKeyPathEqualsAndHash(*this, loc,
needsGenericContext ? genericEnv : nullptr,
expansion,
indexPatterns,
indexEquals, indexHash);
}
auto id = getIdForKeyPathComponentComputedProperty(*this, decl, expansion,
strategy);
auto getter = getOrCreateKeyPathGetter(*this,
decl, subs,
needsGenericContext ? genericEnv : nullptr,
expansion,
indexTypes,
baseTy, componentTy);
auto indexPatternsCopy = getASTContext().AllocateCopy(indexPatterns);
if (isSettableInComponent()) {
auto setter = getOrCreateKeyPathSetter(*this,
decl, subs,
needsGenericContext ? genericEnv : nullptr,
expansion,
indexTypes,
baseTy, componentTy);
return KeyPathPatternComponent::forComputedSettableProperty(id,
getter, setter,
indexPatternsCopy,
indexEquals,
indexHash,
externalDecl,
externalSubs,
componentTy);
} else {
return KeyPathPatternComponent::forComputedGettableProperty(id,
getter,
indexPatternsCopy,
indexEquals,
indexHash,
externalDecl,
externalSubs,
componentTy);
}
}
llvm_unreachable("unknown kind of storage");
}
RValue RValueEmitter::visitKeyPathExpr(KeyPathExpr *E, SGFContext C) {
if (E->isObjC()) {
return visit(E->getObjCStringLiteralExpr(), C);
}
// Figure out the key path pattern, abstracting out generic arguments and
// subscript indexes.
SmallVector<KeyPathPatternComponent, 4> loweredComponents;
auto loweredTy = SGF.getLoweredType(E->getType());
CanType rootTy = E->getRootType()->getCanonicalType();
bool needsGenericContext = false;
if (rootTy->hasArchetype()) {
needsGenericContext = true;
rootTy = rootTy->mapTypeOutOfContext()->getCanonicalType();
}
auto baseTy = rootTy;
SmallVector<SILValue, 4> operands;
for (auto &component : E->getComponents()) {
switch (auto kind = component.getKind()) {
case KeyPathExpr::Component::Kind::Property:
case KeyPathExpr::Component::Kind::Subscript: {
auto decl = cast<AbstractStorageDecl>(component.getDeclRef().getDecl());
unsigned numOperands = operands.size();
loweredComponents.push_back(
SGF.SGM.emitKeyPathComponentForDecl(SILLocation(E),
SGF.F.getGenericEnvironment(),
SGF.F.getResilienceExpansion(),
numOperands,
needsGenericContext,
component.getDeclRef().getSubstitutions(),
decl,
component.getSubscriptIndexHashableConformances(),
baseTy,
SGF.FunctionDC,
/*for descriptor*/ false));
baseTy = loweredComponents.back().getComponentType();
if (kind == KeyPathExpr::Component::Kind::Property)
break;
auto subscript = cast<SubscriptDecl>(decl);
auto loweredArgs = SGF.emitKeyPathSubscriptOperands(
E, subscript,
component.getDeclRef().getSubstitutions(),
component.getSubscriptArgs());
for (auto &arg : loweredArgs) {
operands.push_back(arg.forward(SGF));
}
break;
}
case KeyPathExpr::Component::Kind::TupleElement: {
assert(baseTy->is<TupleType>() && "baseTy is expected to be a TupleType");
auto tupleIndex = component.getTupleIndex();
auto elementTy = baseTy->getAs<TupleType>()
->getElementType(tupleIndex)
->getCanonicalType();
loweredComponents.push_back(
KeyPathPatternComponent::forTupleElement(tupleIndex, elementTy));
baseTy = loweredComponents.back().getComponentType();
break;
}
case KeyPathExpr::Component::Kind::OptionalChain:
case KeyPathExpr::Component::Kind::OptionalForce:
case KeyPathExpr::Component::Kind::OptionalWrap: {
KeyPathPatternComponent::Kind loweredKind;
switch (kind) {
case KeyPathExpr::Component::Kind::OptionalChain:
loweredKind = KeyPathPatternComponent::Kind::OptionalChain;
baseTy = baseTy->getOptionalObjectType()->getCanonicalType();
break;
case KeyPathExpr::Component::Kind::OptionalForce:
loweredKind = KeyPathPatternComponent::Kind::OptionalForce;
baseTy = baseTy->getOptionalObjectType()->getCanonicalType();
break;
case KeyPathExpr::Component::Kind::OptionalWrap:
loweredKind = KeyPathPatternComponent::Kind::OptionalWrap;
baseTy = OptionalType::get(baseTy)->getCanonicalType();
break;
default:
llvm_unreachable("out of sync");
}
loweredComponents.push_back(
KeyPathPatternComponent::forOptional(loweredKind, baseTy));
break;
}
case KeyPathExpr::Component::Kind::Identity:
continue;
case KeyPathExpr::Component::Kind::Invalid:
case KeyPathExpr::Component::Kind::UnresolvedProperty:
case KeyPathExpr::Component::Kind::UnresolvedSubscript:
case KeyPathExpr::Component::Kind::CodeCompletion:
llvm_unreachable("not resolved");
break;
case KeyPathExpr::Component::Kind::DictionaryKey:
llvm_unreachable("DictionaryKey only valid in #keyPath");
break;
}
}
StringRef objcString;
if (auto objcExpr = dyn_cast_or_null<StringLiteralExpr>
(E->getObjCStringLiteralExpr()))
objcString = objcExpr->getValue();
auto pattern = KeyPathPattern::get(SGF.SGM.M,
needsGenericContext
? SGF.F.getLoweredFunctionType()
->getInvocationGenericSignature()
: nullptr,
rootTy, baseTy,
loweredComponents,
objcString);
auto keyPath = SGF.B.createKeyPath(SILLocation(E), pattern,
needsGenericContext
? SGF.F.getForwardingSubstitutionMap()
: SubstitutionMap(),
operands,
loweredTy);
auto value = SGF.emitManagedRValueWithCleanup(keyPath);
return RValue(SGF, E, value);
}
RValue RValueEmitter::
visitKeyPathApplicationExpr(KeyPathApplicationExpr *E, SGFContext C) {
FormalEvaluationScope scope(SGF);
auto lv = SGF.emitLValue(E, SGFAccessKind::OwnedObjectRead);
return SGF.emitLoadOfLValue(E, std::move(lv), C);
}
RValue RValueEmitter::
visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *E, SGFContext C) {
switch (E->getKind()) {
#define MAGIC_POINTER_IDENTIFIER(NAME, STRING, SYNTAX_KIND)
#define MAGIC_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case MagicIdentifierLiteralExpr::NAME:
#include "swift/AST/MagicIdentifierKinds.def"
return SGF.emitLiteral(E, C);
case MagicIdentifierLiteralExpr::DSOHandle: {
auto SILLoc = SILLocation(E);
auto UnsafeRawPointer = SGF.getASTContext().getUnsafeRawPointerDecl();
auto UnsafeRawPtrTy =
SGF.getLoweredType(UnsafeRawPointer->getDeclaredInterfaceType());
SILType BuiltinRawPtrTy = SILType::getRawPointerType(SGF.getASTContext());
SILModule &M = SGF.SGM.M;
SILBuilder &B = SGF.B;
GlobalAddrInst *ModuleBase = nullptr;
if (M.getASTContext().LangOpts.Target.isOSWindows()) {
auto ImageBase = M.lookUpGlobalVariable("__ImageBase");
if (!ImageBase)
ImageBase =
SILGlobalVariable::create(M, SILLinkage::DefaultForDeclaration,
IsNotSerialized, "__ImageBase",
BuiltinRawPtrTy);
ModuleBase = B.createGlobalAddr(SILLoc, ImageBase, /*dependencyToken=*/ SILValue());
} else {
auto DSOHandle = M.lookUpGlobalVariable("__dso_handle");
if (!DSOHandle)
DSOHandle = SILGlobalVariable::create(M, SILLinkage::PublicExternal,
IsNotSerialized, "__dso_handle",
BuiltinRawPtrTy);
ModuleBase = B.createGlobalAddr(SILLoc, DSOHandle, /*dependencyToken=*/ SILValue());
}
auto ModuleBasePointer =
B.createAddressToPointer(SILLoc, ModuleBase, BuiltinRawPtrTy,
/*needsStackProtection=*/ false);
StructInst *S =
B.createStruct(SILLoc, UnsafeRawPtrTy, { ModuleBasePointer });
return RValue(SGF, E, ManagedValue::forObjectRValueWithoutOwnership(S));
}
}
llvm_unreachable("Unhandled MagicIdentifierLiteralExpr in switch.");
}
RValue RValueEmitter::visitCollectionExpr(CollectionExpr *E, SGFContext C) {
auto loc = SILLocation(E);
ArgumentScope scope(SGF, loc);
// CSApply builds ArrayExprs without an initializer for the trivial case
// of emitting varargs.
CanType arrayType, elementType;
if (E->getInitializer()) {
if (auto *arrayExpr = dyn_cast<ArrayExpr>(E)) {
elementType = arrayExpr->getElementType()->getCanonicalType();
} else {
auto *dictionaryExpr = cast<DictionaryExpr>(E);
elementType = dictionaryExpr->getElementType()->getCanonicalType();
}
arrayType = ArraySliceType::get(elementType)->getCanonicalType();
} else {
arrayType = E->getType()->getCanonicalType();
auto genericType = cast<BoundGenericStructType>(arrayType);
assert(genericType->isArray());
elementType = genericType.getGenericArgs()[0];
}
VarargsInfo varargsInfo =
emitBeginVarargs(SGF, loc, elementType, arrayType,
E->getNumElements());
// Cleanups for any elements that have been initialized so far.
SmallVector<CleanupHandle, 8> cleanups;
for (unsigned index : range(E->getNumElements())) {
auto destAddr = varargsInfo.getBaseAddress();
if (index != 0) {
SILValue indexValue = SGF.B.createIntegerLiteral(
loc, SILType::getBuiltinWordType(SGF.getASTContext()), index);
destAddr = SGF.B.createIndexAddr(loc, destAddr, indexValue,
/*needsStackProtection=*/ false);
}
auto &destTL = varargsInfo.getBaseTypeLowering();
// Create a dormant cleanup for the value in case we exit before the
// full array has been constructed.
CleanupHandle destCleanup = CleanupHandle::invalid();
if (!destTL.isTrivial()) {
destCleanup = SGF.enterDestroyCleanup(destAddr);
SGF.Cleanups.setCleanupState(destCleanup, CleanupState::Dormant);
cleanups.push_back(destCleanup);
}
TemporaryInitialization init(destAddr, destCleanup);
ArgumentSource(E->getElements()[index])
.forwardInto(SGF, varargsInfo.getBaseAbstractionPattern(), &init,
destTL);
}
// Kill the per-element cleanups. The array will take ownership of them.
for (auto destCleanup : cleanups)
SGF.Cleanups.setCleanupState(destCleanup, CleanupState::Dead);
RValue array(SGF, loc, arrayType,
emitEndVarargs(SGF, loc, std::move(varargsInfo), E->getNumElements()));
array = scope.popPreservingValue(std::move(array));
// If we're building an array, we don't have to call the initializer;
// we've already built one.
if (arrayType->isEqual(E->getType()))
return array;
// Call the builtin initializer.
PreparedArguments args(AnyFunctionType::Param(E->getType()));
args.add(E, std::move(array));
return SGF.emitApplyAllocatingInitializer(
loc, E->getInitializer(), std::move(args), E->getType(), C);
}
/// Flattens one level of optional from a nested optional value.
static ManagedValue flattenOptional(SILGenFunction &SGF, SILLocation loc,
ManagedValue optVal) {
// This code assumes that we have a +1 value.
assert(optVal.isPlusOne(SGF));
// FIXME: Largely copied from SILGenFunction::emitOptionalToOptional.
auto contBB = SGF.createBasicBlock();
auto isNotPresentBB = SGF.createBasicBlock();
auto isPresentBB = SGF.createBasicBlock();
SILType resultTy = optVal.getType().getOptionalObjectType();
auto &resultTL = SGF.getTypeLowering(resultTy);
assert(resultTy.getASTType().getOptionalObjectType() &&
"input was not a nested optional value");
SILValue contBBArg;
TemporaryInitializationPtr addrOnlyResultBuf;
if (resultTL.isAddressOnly()) {
addrOnlyResultBuf = SGF.emitTemporary(loc, resultTL);
} else {
contBBArg = contBB->createPhiArgument(resultTy, OwnershipKind::Owned);
}
SwitchEnumBuilder SEB(SGF.B, loc, optVal);
SEB.addOptionalSomeCase(
isPresentBB, contBB, [&](ManagedValue input, SwitchCaseFullExpr &&scope) {
if (resultTL.isAddressOnly()) {
SILValue addr =
addrOnlyResultBuf->getAddressForInPlaceInitialization(SGF, loc);
auto *someDecl = SGF.getASTContext().getOptionalSomeDecl();
input = SGF.B.createUncheckedTakeEnumDataAddr(
loc, input, someDecl, input.getType().getOptionalObjectType());
SGF.B.createCopyAddr(loc, input.getValue(), addr, IsNotTake,
IsInitialization);
scope.exitAndBranch(loc);
return;
}
scope.exitAndBranch(loc, input.forward(SGF));
});
SEB.addOptionalNoneCase(
isNotPresentBB, contBB,
[&](ManagedValue input, SwitchCaseFullExpr &&scope) {
if (resultTL.isAddressOnly()) {
SILValue addr =
addrOnlyResultBuf->getAddressForInPlaceInitialization(SGF, loc);
SGF.emitInjectOptionalNothingInto(loc, addr, resultTL);
scope.exitAndBranch(loc);
return;
}
auto mv = SGF.B.createManagedOptionalNone(loc, resultTy).forward(SGF);
scope.exitAndBranch(loc, mv);
});
std::move(SEB).emit();
// Continue.
SGF.B.emitBlock(contBB);
if (resultTL.isAddressOnly()) {
addrOnlyResultBuf->finishInitialization(SGF);
return addrOnlyResultBuf->getManagedAddress();
}
return SGF.emitManagedRValueWithCleanup(contBBArg, resultTL);
}
static ManagedValue
computeNewSelfForRebindSelfInConstructorExpr(SILGenFunction &SGF,
RebindSelfInConstructorExpr *E) {
// Get newSelf, forward the cleanup for newSelf and clean everything else
// up.
FormalEvaluationScope Scope(SGF);
ManagedValue newSelfWithCleanup =
SGF.emitRValueAsSingleValue(E->getSubExpr());
SGF.InitDelegationSelf = ManagedValue();
SGF.SuperInitDelegationSelf = ManagedValue();
SGF.InitDelegationLoc.reset();
return newSelfWithCleanup;
}
RValue RValueEmitter::visitRebindSelfInConstructorExpr(
RebindSelfInConstructorExpr *E, SGFContext C) {
auto selfDecl = E->getSelf();
auto ctorDecl = cast<ConstructorDecl>(selfDecl->getDeclContext());
auto selfIfaceTy = ctorDecl->getDeclContext()->getSelfInterfaceType();
auto selfTy = ctorDecl->mapTypeIntoContext(selfIfaceTy);
bool isChaining; // Ignored
auto *otherCtor = E->getCalledConstructor(isChaining)->getDecl();
assert(otherCtor);
// The optionality depth of the 'new self' value. This can be '2' if the ctor
// we are delegating/chaining to is both throwing and failable, or more if
// 'self' is optional.
auto srcOptionalityDepth = E->getSubExpr()->getType()->getOptionalityDepth();
// The optionality depth of the result type of the enclosing initializer in
// this context.
const auto destOptionalityDepth =
ctorDecl->mapTypeIntoContext(ctorDecl->getResultInterfaceType())
->getOptionalityDepth();
// The subexpression consumes the current 'self' binding.
assert(SGF.SelfInitDelegationState == SILGenFunction::NormalSelf
&& "already doing something funky with self?!");
SGF.SelfInitDelegationState = SILGenFunction::WillSharedBorrowSelf;
SGF.InitDelegationLoc.emplace(E);
// Emit the subexpression, computing new self. New self is always returned at
// +1.
ManagedValue newSelf = computeNewSelfForRebindSelfInConstructorExpr(SGF, E);
// We know that self is a box, so get its address.
SILValue selfAddr =
SGF.emitAddressOfLocalVarDecl(E, selfDecl, selfTy->getCanonicalType(),
SGFAccessKind::Write).getLValueAddress();
// Flatten a nested optional if 'new self' is a deeper optional than we
// can return.
if (srcOptionalityDepth > destOptionalityDepth) {
assert(destOptionalityDepth > 0);
assert(otherCtor->isFailable() && otherCtor->hasThrows());
--srcOptionalityDepth;
newSelf = flattenOptional(SGF, E, newSelf);
assert(srcOptionalityDepth == destOptionalityDepth &&
"Flattening a single level was not enough?");
}
// If the enclosing ctor is failable and the optionality depths match, switch
// on 'new self' to either return 'nil' or continue with the projected value.
if (srcOptionalityDepth == destOptionalityDepth && ctorDecl->isFailable()) {
assert(destOptionalityDepth > 0);
assert(otherCtor->isFailable() || otherCtor->hasThrows());
SILBasicBlock *someBB = SGF.createBasicBlock();
auto hasValue = SGF.emitDoesOptionalHaveValue(E, newSelf.getValue());
assert(SGF.FailDest.isValid() && "too big to fail");
auto noneBB = SGF.Cleanups.emitBlockForCleanups(SGF.FailDest, E);
SGF.B.createCondBranch(E, hasValue, someBB, noneBB);
// Otherwise, project out the value and carry on.
SGF.B.emitBlock(someBB);
// If the current constructor is not failable, force out the value.
newSelf = SGF.emitUncheckedGetOptionalValueFrom(E, newSelf,
SGF.getTypeLowering(newSelf.getType()),
SGFContext());
}
// If we called a constructor that requires a downcast, perform the downcast.
auto destTy = SGF.getLoweredType(selfTy);
if (newSelf.getType() != destTy) {
assert(newSelf.getType().isObject() && destTy.isObject());
// Assume that the returned 'self' is the appropriate subclass
// type (or a derived class thereof). Only Objective-C classes can
// violate this assumption.
newSelf = SGF.B.createUncheckedRefCast(E, newSelf, destTy);
}
// Forward or assign into the box depending on whether we actually consumed
// 'self'.
switch (SGF.SelfInitDelegationState) {
case SILGenFunction::NormalSelf:
llvm_unreachable("self isn't normal in a constructor delegation");
case SILGenFunction::WillSharedBorrowSelf:
// We did not perform any borrow of self, exclusive or shared. This means
// that old self is still located in the relevant box. This will ensure that
// old self is destroyed.
newSelf.assignInto(SGF, E, selfAddr);
break;
case SILGenFunction::DidSharedBorrowSelf:
// We performed a shared borrow of self. This means that old self is still
// located in the self box. Perform an assign to destroy old self.
newSelf.assignInto(SGF, E, selfAddr);
break;
case SILGenFunction::WillExclusiveBorrowSelf:
llvm_unreachable("Should never have newSelf without finishing an exclusive "
"borrow scope");
case SILGenFunction::DidExclusiveBorrowSelf:
// We performed an exclusive borrow of self and have a new value to
// writeback. Writeback the self value into the now empty box.
newSelf.forwardInto(SGF, E, selfAddr);
break;
}
SGF.SelfInitDelegationState = SILGenFunction::NormalSelf;
SGF.InitDelegationSelf = ManagedValue();
return SGF.emitEmptyTupleRValue(E, C);
}
static bool isVerbatimNullableTypeInC(SILModule &M, Type ty) {
ty = ty->getWithoutSpecifierType()->getReferenceStorageReferent();
// Class instances, and @objc existentials are all nullable.
if (ty->hasReferenceSemantics()) {
// So are blocks, but we usually bridge them to Swift closures before we get
// a chance to check for optional promotion, so we're already screwed if
// an API lies about nullability.
if (auto fnTy = ty->getAs<AnyFunctionType>()) {
switch (fnTy->getRepresentation()) {
// Carried verbatim from C.
case FunctionTypeRepresentation::Block:
case FunctionTypeRepresentation::CFunctionPointer:
return true;
// Was already bridged.
case FunctionTypeRepresentation::Swift:
case FunctionTypeRepresentation::Thin:
return false;
}
}
return true;
}
// Other types like UnsafePointer can also be nullable.
const DeclContext *DC = M.getAssociatedContext();
ty = OptionalType::get(ty);
return ty->isTriviallyRepresentableIn(ForeignLanguage::C, DC);
}
/// Determine whether the given declaration returns a non-optional object that
/// might actually be nil.
///
/// This is an awful hack that makes it possible to work around several kinds
/// of problems:
/// - initializers currently cannot fail, so they always return non-optional.
/// - an Objective-C method might have been annotated to state (incorrectly)
/// that it returns a non-optional object
/// - an Objective-C property might be annotated to state (incorrectly) that
/// it is non-optional
static bool mayLieAboutNonOptionalReturn(SILModule &M,
ValueDecl *decl) {
// Any Objective-C initializer, because failure propagates from any
// initializer written in Objective-C (and there's no way to tell).
if (auto constructor = dyn_cast<ConstructorDecl>(decl)) {
return constructor->isObjC();
}
// Functions that return non-optional reference type and were imported from
// Objective-C.
if (auto func = dyn_cast<FuncDecl>(decl)) {
assert((func->getResultInterfaceType()->hasTypeParameter()
|| isVerbatimNullableTypeInC(M, func->getResultInterfaceType()))
&& "func's result type is not nullable?!");
return func->hasClangNode();
}
// Computed properties of non-optional reference type that were imported from
// Objective-C.
if (auto var = dyn_cast<VarDecl>(decl)) {
#ifndef NDEBUG
auto type = var->getInterfaceType();
assert((type->hasTypeParameter()
|| isVerbatimNullableTypeInC(M, type->getReferenceStorageReferent()))
&& "property's result type is not nullable?!");
#endif
return var->hasClangNode();
}
// Subscripts of non-optional reference type that were imported from
// Objective-C.
if (auto subscript = dyn_cast<SubscriptDecl>(decl)) {
assert((subscript->getElementInterfaceType()->hasTypeParameter()
|| isVerbatimNullableTypeInC(M, subscript->getElementInterfaceType()))
&& "subscript's result type is not nullable?!");
return subscript->hasClangNode();
}
return false;
}
/// Determine whether the given expression returns a non-optional object that
/// might actually be nil.
///
/// This is an awful hack that makes it possible to work around several kinds
/// of problems:
/// - an Objective-C method might have been annotated to state (incorrectly)
/// that it returns a non-optional object
/// - an Objective-C property might be annotated to state (incorrectly) that
/// it is non-optional
static bool mayLieAboutNonOptionalReturn(SILModule &M, Expr *expr) {
expr = expr->getSemanticsProvidingExpr();
// An application that produces a reference type, which we look through to
// get the function we're calling.
if (auto apply = dyn_cast<ApplyExpr>(expr)) {
// The result has to be a nullable type.
if (!isVerbatimNullableTypeInC(M, apply->getType()))
return false;
auto getFuncDeclFromDynamicMemberLookup = [&](Expr *expr) -> FuncDecl * {
if (auto open = dyn_cast<OpenExistentialExpr>(expr))
expr = open->getSubExpr();
if (auto memberRef = dyn_cast<DynamicMemberRefExpr>(expr))
return dyn_cast<FuncDecl>(memberRef->getMember().getDecl());
return nullptr;
};
// The function should come from C, being either an ObjC function or method
// or having a C-derived convention.
ValueDecl *method = nullptr;
if (auto selfApply = dyn_cast<ApplyExpr>(apply->getFn())) {
if (auto methodRef = dyn_cast<DeclRefExpr>(selfApply->getFn())) {
method = methodRef->getDecl();
}
} else if (auto force = dyn_cast<ForceValueExpr>(apply->getFn())) {
method = getFuncDeclFromDynamicMemberLookup(force->getSubExpr());
} else if (auto bind = dyn_cast<BindOptionalExpr>(apply->getFn())) {
method = getFuncDeclFromDynamicMemberLookup(bind->getSubExpr());
} else if (auto fnRef = dyn_cast<DeclRefExpr>(apply->getFn())) {
// Only consider a full application of a method. Partial applications
// never lie.
if (auto func = dyn_cast<AbstractFunctionDecl>(fnRef->getDecl()))
if (!func->hasImplicitSelfDecl())
method = fnRef->getDecl();
}
if (method && mayLieAboutNonOptionalReturn(M, method))
return true;
auto convention = apply->getFn()->getType()->castTo<AnyFunctionType>()
->getRepresentation();
switch (convention) {
case FunctionTypeRepresentation::Block:
case FunctionTypeRepresentation::CFunctionPointer:
return true;
case FunctionTypeRepresentation::Swift:
case FunctionTypeRepresentation::Thin:
return false;
}
}
// A load.
if (auto load = dyn_cast<LoadExpr>(expr)) {
return mayLieAboutNonOptionalReturn(M, load->getSubExpr());
}
// A reference to a potentially dynamic member/subscript property.
if (auto member = dyn_cast<LookupExpr>(expr)) {
return isVerbatimNullableTypeInC(M, member->getType()) &&
mayLieAboutNonOptionalReturn(M, member->getMember().getDecl());
}
return false;
}
RValue RValueEmitter::visitInjectIntoOptionalExpr(InjectIntoOptionalExpr *E,
SGFContext C) {
// This is an awful hack. When the source expression might produce a
// non-optional reference that could legitimated be nil, such as with an
// initializer, allow this workaround to capture that nil:
//
// let x: NSFoo? = NSFoo(potentiallyFailingInit: x)
//
// However, our optimizer is smart enough now to recognize that an initializer
// can "never" produce nil, and will optimize away any attempts to check the
// resulting optional for nil. As a special case, when we're injecting the
// result of an ObjC constructor into an optional, do it using an unchecked
// bitcast, which is opaque to the optimizer.
if (mayLieAboutNonOptionalReturn(SGF.SGM.M, E->getSubExpr())) {
auto result = SGF.emitRValueAsSingleValue(E->getSubExpr());
auto optType = SGF.getLoweredLoadableType(E->getType());
ManagedValue bitcast = SGF.B.createUncheckedBitCast(E, result, optType);
return RValue(SGF, E, bitcast);
}
// Try the bridging peephole.
if (auto result = tryEmitAsBridgingConversion(SGF, E, false, C)) {
return RValue(SGF, E, *result);
}
auto helper = [E](SILGenFunction &SGF, SILLocation loc, SGFContext C) {
return SGF.emitRValueAsSingleValue(E->getSubExpr(), C);
};
auto result =
SGF.emitOptionalSome(E, SGF.getLoweredType(E->getType()), helper, C);
return RValue(SGF, E, result);
}
RValue RValueEmitter::visitClassMetatypeToObjectExpr(
ClassMetatypeToObjectExpr *E,
SGFContext C) {
ManagedValue v = SGF.emitRValueAsSingleValue(E->getSubExpr());
SILType resultTy = SGF.getLoweredLoadableType(E->getType());
return RValue(SGF, E, SGF.emitClassMetatypeToObject(E, v, resultTy));
}
RValue RValueEmitter::visitExistentialMetatypeToObjectExpr(
ExistentialMetatypeToObjectExpr *E,
SGFContext C) {
ManagedValue v = SGF.emitRValueAsSingleValue(E->getSubExpr());
SILType resultTy = SGF.getLoweredLoadableType(E->getType());
return RValue(SGF, E, SGF.emitExistentialMetatypeToObject(E, v, resultTy));
}
RValue RValueEmitter::visitProtocolMetatypeToObjectExpr(
ProtocolMetatypeToObjectExpr *E,
SGFContext C) {
SGF.emitIgnoredExpr(E->getSubExpr());
CanType inputTy = E->getSubExpr()->getType()->getCanonicalType();
SILType resultTy = SGF.getLoweredLoadableType(E->getType());
ManagedValue v = SGF.emitProtocolMetatypeToObject(E, inputTy, resultTy);
return RValue(SGF, E, v);
}
RValue RValueEmitter::visitTernaryExpr(TernaryExpr *E, SGFContext C) {
auto &lowering = SGF.getTypeLowering(E->getType());
auto NumTrueTaken = SGF.loadProfilerCount(E->getThenExpr());
auto NumFalseTaken = SGF.loadProfilerCount(E->getElseExpr());
if (lowering.isLoadable() || !SGF.silConv.useLoweredAddresses()) {
// If the result is loadable, emit each branch and forward its result
// into the destination block argument.
// FIXME: We could avoid imploding and reexploding tuples here.
Condition cond = SGF.emitCondition(E->getCondExpr(),
/*invertCondition*/ false,
SGF.getLoweredType(E->getType()),
NumTrueTaken, NumFalseTaken);
cond.enterTrue(SGF);
SGF.emitProfilerIncrement(E->getThenExpr());
SILValue trueValue;
{
auto TE = E->getThenExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(TE));
trueValue = visit(TE).forwardAsSingleValue(SGF, TE);
}
cond.exitTrue(SGF, trueValue);
cond.enterFalse(SGF);
SILValue falseValue;
{
auto EE = E->getElseExpr();
FullExpr falseScope(SGF.Cleanups, CleanupLocation(EE));
falseValue = visit(EE).forwardAsSingleValue(SGF, EE);
}
cond.exitFalse(SGF, falseValue);
SILBasicBlock *cont = cond.complete(SGF);
assert(cont && "no continuation block for if expr?!");
SILValue result = cont->args_begin()[0];
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(result));
} else {
// If the result is address-only, emit the result into a common stack buffer
// that dominates both branches.
SILValue resultAddr = SGF.getBufferForExprResult(
E, lowering.getLoweredType(), C);
Condition cond = SGF.emitCondition(E->getCondExpr(),
/*invertCondition*/ false,
/*contArgs*/ {},
NumTrueTaken, NumFalseTaken);
cond.enterTrue(SGF);
SGF.emitProfilerIncrement(E->getThenExpr());
{
auto TE = E->getThenExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(TE));
KnownAddressInitialization init(resultAddr);
SGF.emitExprInto(TE, &init);
}
cond.exitTrue(SGF);
cond.enterFalse(SGF);
{
auto EE = E->getElseExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(EE));
KnownAddressInitialization init(resultAddr);
SGF.emitExprInto(EE, &init);
}
cond.exitFalse(SGF);
cond.complete(SGF);
return RValue(SGF, E,
SGF.manageBufferForExprResult(resultAddr, lowering, C));
}
}
RValue SILGenFunction::emitEmptyTupleRValue(SILLocation loc,
SGFContext C) {
return RValue(CanType(TupleType::getEmpty(F.getASTContext())));
}
namespace {
/// A visitor for creating a flattened list of LValues from a
/// tuple-of-lvalues expression.
///
/// Note that we can have tuples down to arbitrary depths in the
/// type, but every branch should lead to an l-value otherwise.
class TupleLValueEmitter
: public Lowering::ExprVisitor<TupleLValueEmitter> {
SILGenFunction &SGF;
SGFAccessKind TheAccessKind;
/// A flattened list of l-values.
SmallVectorImpl<std::optional<LValue>> &Results;
public:
TupleLValueEmitter(SILGenFunction &SGF, SGFAccessKind accessKind,
SmallVectorImpl<std::optional<LValue>> &results)
: SGF(SGF), TheAccessKind(accessKind), Results(results) {}
// If the destination is a tuple, recursively destructure.
void visitTupleExpr(TupleExpr *E) {
for (auto &elt : E->getElements()) {
visit(elt);
}
}
// If the destination is '_', queue up a discard.
void visitDiscardAssignmentExpr(DiscardAssignmentExpr *E) {
Results.push_back(std::nullopt);
}
// Otherwise, queue up a scalar assignment to an lvalue.
void visitExpr(Expr *E) {
assert(E->getType()->is<LValueType>());
Results.push_back(SGF.emitLValue(E, TheAccessKind));
}
};
/// A visitor for consuming tuples of l-values.
class TupleLValueAssigner
: public CanTypeVisitor<TupleLValueAssigner, void, RValue &&> {
SILGenFunction &SGF;
SILLocation AssignLoc;
MutableArrayRef<std::optional<LValue>> DestLVQueue;
std::optional<LValue> &&getNextDest() {
assert(!DestLVQueue.empty());
std::optional<LValue> &next = DestLVQueue.front();
DestLVQueue = DestLVQueue.slice(1);
return std::move(next);
}
public:
TupleLValueAssigner(SILGenFunction &SGF, SILLocation assignLoc,
SmallVectorImpl<std::optional<LValue>> &destLVs)
: SGF(SGF), AssignLoc(assignLoc), DestLVQueue(destLVs) {}
/// Top-level entrypoint.
void emit(CanType destType, RValue &&src) {
visit(destType, std::move(src));
assert(DestLVQueue.empty() && "didn't consume all l-values!");
}
// If the destination is a tuple, recursively destructure.
void visitTupleType(CanTupleType destTupleType, RValue &&srcTuple) {
// Break up the source r-value.
SmallVector<RValue, 4> srcElts;
std::move(srcTuple).extractElements(srcElts);
// Consume source elements off the queue.
unsigned eltIndex = 0;
for (CanType destEltType : destTupleType.getElementTypes()) {
visit(destEltType, std::move(srcElts[eltIndex++]));
}
}
// Okay, otherwise we pull one destination off the queue.
void visitType(CanType destType, RValue &&src) {
assert(isa<LValueType>(destType));
std::optional<LValue> &&next = getNextDest();
// If the destination is a discard, do nothing.
if (!next.has_value())
return;
// Otherwise, emit the scalar assignment.
SGF.emitAssignToLValue(AssignLoc, std::move(src),
std::move(next.value()));
}
};
} // end anonymous namespace
/// Emit a simple assignment, i.e.
///
/// dest = src
///
/// The destination operand can be an arbitrarily-structured tuple of
/// l-values.
static void emitSimpleAssignment(SILGenFunction &SGF, SILLocation loc,
Expr *dest, Expr *src) {
// Handle lvalue-to-lvalue assignments with a high-level copy_addr
// instruction if possible.
if (auto *srcLoad = dyn_cast<LoadExpr>(src)) {
// Check that the two l-value expressions have the same type.
// Compound l-values like (a,b) have tuple type, so this check
// also prevents us from getting into that case.
if (dest->getType()->isEqual(srcLoad->getSubExpr()->getType())) {
assert(!dest->getType()->is<TupleType>());
dest = dest->getSemanticsProvidingExpr();
if (isa<DiscardAssignmentExpr>(dest)) {
// The logical thing to do here would be emitIgnoredExpr, but that
// changed some test results in a way I wanted to avoid, so instead
// we're doing this.
FormalEvaluationScope writeback(SGF);
auto srcLV = SGF.emitLValue(srcLoad->getSubExpr(),
SGFAccessKind::IgnoredRead);
RValue rv = SGF.emitLoadOfLValue(loc, std::move(srcLV), SGFContext());
// If we have a move only type, we need to implode and perform a move to
// ensure we consume our argument as part of the assignment. Otherwise,
// we don't do anything.
if (rv.getLoweredType(SGF).isMoveOnly()) {
ManagedValue value = std::move(rv).getAsSingleValue(SGF, loc);
// If we have an address, then ensure plus one will create a temporary
// copy which will act as a consume of the address value. If we have
// an object, we need to insert our own move though.
value = value.ensurePlusOne(SGF, loc);
if (value.getType().isObject())
value = SGF.B.createMoveValue(loc, value);
}
return;
}
FormalEvaluationScope writeback(SGF);
auto destLV = SGF.emitLValue(dest, SGFAccessKind::Write);
auto srcLV = SGF.emitLValue(srcLoad->getSubExpr(),
SGFAccessKind::BorrowedAddressRead);
SGF.emitAssignLValueToLValue(loc, std::move(srcLV), std::move(destLV));
return;
}
}
// Handle tuple destinations by destructuring them if present.
CanType destType = dest->getType()->getCanonicalType();
// But avoid this in the common case.
if (!isa<TupleType>(destType)) {
// If we're assigning to a discard, just emit the operand as ignored.
dest = dest->getSemanticsProvidingExpr();
if (isa<DiscardAssignmentExpr>(dest)) {
SGF.emitIgnoredExpr(src);
return;
}
FormalEvaluationScope writeback(SGF);
LValue destLV = SGF.emitLValue(dest, SGFAccessKind::Write);
SGF.emitAssignToLValue(loc, src, std::move(destLV));
return;
}
FormalEvaluationScope writeback(SGF);
// Produce a flattened queue of LValues.
SmallVector<std::optional<LValue>, 4> destLVs;
TupleLValueEmitter(SGF, SGFAccessKind::Write, destLVs).visit(dest);
// Emit the r-value.
RValue srcRV = SGF.emitRValue(src);
// Recurse on the type of the destination, pulling LValues as
// needed from the queue we built up before.
TupleLValueAssigner(SGF, loc, destLVs).emit(destType, std::move(srcRV));
}
RValue RValueEmitter::visitAssignExpr(AssignExpr *E, SGFContext C) {
FullExpr scope(SGF.Cleanups, CleanupLocation(E));
emitSimpleAssignment(SGF, E, E->getDest(), E->getSrc());
return SGF.emitEmptyTupleRValue(E, C);
}
namespace {
/// A visitor for creating a flattened list of LValues from a
/// pattern.
class PatternLValueEmitter
: public PatternVisitor<PatternLValueEmitter, Type> {
SILGenFunction &SGF;
SGFAccessKind TheAccessKind;
/// A flattened list of l-values.
SmallVectorImpl<std::optional<LValue>> &Results;
public:
PatternLValueEmitter(SILGenFunction &SGF, SGFAccessKind accessKind,
SmallVectorImpl<std::optional<LValue>> &results)
: SGF(SGF), TheAccessKind(accessKind), Results(results) {}
#define USE_SUBPATTERN(Kind) \
Type visit##Kind##Pattern(Kind##Pattern *pattern) { \
return visit(pattern->getSubPattern()); \
}
USE_SUBPATTERN(Paren)
USE_SUBPATTERN(Typed)
USE_SUBPATTERN(Binding)
#undef USE_SUBPATTERN
#define PATTERN(Kind, Parent)
#define REFUTABLE_PATTERN(Kind, Parent) \
Type visit##Kind##Pattern(Kind##Pattern *pattern) { \
llvm_unreachable("No refutable patterns here"); \
}
#include "swift/AST/PatternNodes.def"
Type visitTuplePattern(TuplePattern *pattern) {
SmallVector<TupleTypeElt, 4> tupleElts;
for (auto &element : pattern->getElements()) {
Type elementType = visit(element.getPattern());
tupleElts.push_back(
TupleTypeElt(elementType, element.getLabel()));
}
return TupleType::get(tupleElts, SGF.getASTContext());
}
Type visitNamedPattern(NamedPattern *pattern) {
Type type = LValueType::get(pattern->getDecl()->getTypeInContext());
auto declRef = new (SGF.getASTContext()) DeclRefExpr(
pattern->getDecl(), DeclNameLoc(), /*Implicit=*/true,
AccessSemantics::Ordinary, type);
Results.push_back(SGF.emitLValue(declRef, TheAccessKind));
return type;
}
Type visitAnyPattern(AnyPattern *pattern) {
// Discard the value at this position.
Results.push_back(std::nullopt);
return LValueType::get(pattern->getType());
}
};
}
void SILGenFunction::emitAssignToPatternVars(
SILLocation loc, Pattern *destPattern, RValue &&src) {
FormalEvaluationScope writeback(*this);
// Produce a flattened queue of LValues.
SmallVector<std::optional<LValue>, 4> destLVs;
CanType destType = PatternLValueEmitter(
*this, SGFAccessKind::Write, destLVs).visit(destPattern)
->getCanonicalType();
// Recurse on the type of the destination, pulling LValues as
// needed from the queue we built up before.
TupleLValueAssigner(*this, loc, destLVs).emit(destType, std::move(src));
}
ManagedValue SILGenFunction::emitBindOptional(SILLocation loc,
ManagedValue optValue,
unsigned depth) {
assert(optValue.isPlusOne(*this) && "Can only bind plus one values");
assert(depth < BindOptionalFailureDests.size());
auto failureDest = BindOptionalFailureDests[BindOptionalFailureDests.size()
- depth - 1];
SILBasicBlock *hasValueBB = createBasicBlock();
SILBasicBlock *hasNoValueBB = createBasicBlock();
// For move checking purposes, binding always consumes the value whole.
if (optValue.getType().isMoveOnly() && optValue.getType().isAddress()) {
optValue = B.createOpaqueConsumeBeginAccess(loc, optValue);
}
SILType optValueTy = optValue.getType();
SwitchEnumBuilder SEB(B, loc, optValue);
SEB.addOptionalSomeCase(hasValueBB, nullptr,
[&](ManagedValue mv, SwitchCaseFullExpr &&expr) {
// If mv is not an address, forward it. We will
// recreate the cleanup outside when we return the
// argument.
if (mv.getType().isObject()) {
mv.forward(*this);
}
expr.exit();
});
// If not, thread out through a bunch of cleanups.
SEB.addOptionalNoneCase(hasNoValueBB, failureDest,
[&](ManagedValue mv, SwitchCaseFullExpr &&expr) {
expr.exitAndBranch(loc);
});
std::move(SEB).emit();
// Reset the insertion point at the end of hasValueBB so we can
// continue to emit code there.
B.setInsertionPoint(hasValueBB);
// If optValue was loadable, we emitted a switch_enum. In such a case, return
// the argument from hasValueBB.
if (optValue.getType().isLoadable(F) || !silConv.useLoweredAddresses()) {
return emitManagedRValueWithCleanup(hasValueBB->getArgument(0));
}
// Otherwise, if we had an address only value, we emitted the value at +0. In
// such a case, since we want to model this as a consuming operation. Use
// ensure_plus_one and extract out the value from there.
auto *someDecl = getASTContext().getOptionalSomeDecl();
auto eltTy =
optValueTy.getObjectType().getOptionalObjectType().getAddressType();
assert(eltTy);
SILValue address = optValue.forward(*this);
return emitManagedBufferWithCleanup(
B.createUncheckedTakeEnumDataAddr(loc, address, someDecl, eltTy));
}
RValue RValueEmitter::visitBindOptionalExpr(BindOptionalExpr *E, SGFContext C) {
// Create a temporary of type std::optional<T> if it is address-only.
auto &optTL = SGF.getTypeLowering(E->getSubExpr()->getType());
ManagedValue optValue;
if (!SGF.silConv.useLoweredAddresses() || optTL.isLoadable()
|| E->getType()->hasOpenedExistential()) {
optValue = SGF.emitRValueAsSingleValue(E->getSubExpr());
} else {
auto temp = SGF.emitTemporary(E, optTL);
// Emit the operand into the temporary.
SGF.emitExprInto(E->getSubExpr(), temp.get());
// And then grab the managed address.
optValue = temp->getManagedAddress();
}
// Check to see whether the optional is present, if not, jump to the current
// nil handler block. Otherwise, return the value as the result of the
// expression.
optValue = SGF.emitBindOptional(E, optValue, E->getDepth());
return RValue(SGF, E, optValue);
}
namespace {
/// A RAII object to save and restore BindOptionalFailureDest.
class RestoreOptionalFailureDest {
SILGenFunction &SGF;
#ifndef NDEBUG
unsigned Depth;
#endif
public:
RestoreOptionalFailureDest(SILGenFunction &SGF, JumpDest &&dest)
: SGF(SGF)
#ifndef NDEBUG
, Depth(SGF.BindOptionalFailureDests.size())
#endif
{
SGF.BindOptionalFailureDests.push_back(std::move(dest));
}
~RestoreOptionalFailureDest() {
assert(SGF.BindOptionalFailureDests.size() == Depth + 1);
SGF.BindOptionalFailureDests.pop_back();
}
};
} // end anonymous namespace
/// emitOptimizedOptionalEvaluation - Look for cases where we can short-circuit
/// evaluation of an OptionalEvaluationExpr by pattern matching the AST.
///
static bool emitOptimizedOptionalEvaluation(SILGenFunction &SGF,
OptionalEvaluationExpr *E,
ManagedValue &result,
SGFContext ctx) {
// It is a common occurrence to get conversions back and forth from T! to T?.
// Peephole these by looking for a subexpression that is a BindOptionalExpr.
// If we see one, we can produce a single instruction, which doesn't require
// a CFG diamond.
//
// Check for:
// (optional_evaluation_expr type='T?'
// (inject_into_optional type='T?'
// (bind_optional_expr type='T'
// (whatever type='T?' ...)
auto *IIO = dyn_cast<InjectIntoOptionalExpr>(E->getSubExpr()
->getSemanticsProvidingExpr());
if (!IIO) return false;
// Make sure the bind is to the OptionalEvaluationExpr we're emitting.
auto *BO = dyn_cast<BindOptionalExpr>(IIO->getSubExpr()
->getSemanticsProvidingExpr());
if (!BO || BO->getDepth() != 0) return false;
// SIL defines away abstraction differences between T? and T!,
// so we can just emit the sub-initialization normally.
result = SGF.emitRValueAsSingleValue(BO->getSubExpr(), ctx);
return true;
}
RValue RValueEmitter::visitOptionalEvaluationExpr(OptionalEvaluationExpr *E,
SGFContext C) {
if (auto result = tryEmitAsBridgingConversion(SGF, E, false, C)) {
return RValue(SGF, E, *result);
}
SmallVector<ManagedValue, 1> results;
SGF.emitOptionalEvaluation(E, E->getType(), results, C,
[&](SmallVectorImpl<ManagedValue> &results, SGFContext primaryC) {
ManagedValue result;
if (!emitOptimizedOptionalEvaluation(SGF, E, result, primaryC)) {
result = SGF.emitRValueAsSingleValue(E->getSubExpr(), primaryC);
}
assert(results.empty());
results.push_back(result);
});
assert(results.size() == 1);
if (results[0].isInContext()) {
return RValue::forInContext();
} else {
return RValue(SGF, E, results[0]);
}
}
void SILGenFunction::emitOptionalEvaluation(SILLocation loc, Type optType,
SmallVectorImpl<ManagedValue> &results,
SGFContext C,
llvm::function_ref<void(SmallVectorImpl<ManagedValue> &,
SGFContext primaryC)>
generateNormalResults) {
assert(results.empty());
auto &optTL = getTypeLowering(optType);
Initialization *optInit = C.getEmitInto();
bool usingProvidedContext =
optInit && optInit->canPerformInPlaceInitialization();
// Form the optional using address operations if the type is address-only or
// if we already have an address to use.
bool isByAddress = ((usingProvidedContext || optTL.isAddressOnly()) &&
silConv.useLoweredAddresses());
std::unique_ptr<TemporaryInitialization> optTemp;
if (!isByAddress) {
// If the caller produced a context for us, but we're not going
// to use it, make sure we don't.
optInit = nullptr;
} else if (!usingProvidedContext) {
// Allocate the temporary for the Optional<T> if we didn't get one from the
// context. This needs to happen outside of the cleanups scope we're about
// to push.
optTemp = emitTemporary(loc, optTL);
optInit = optTemp.get();
}
assert(isByAddress == (optInit != nullptr));
// Acquire the address to emit into outside of the cleanups scope.
SILValue optAddr;
if (isByAddress)
optAddr = optInit->getAddressForInPlaceInitialization(*this, loc);
// Enter a cleanups scope.
FullExpr scope(Cleanups, CleanupLocation(loc));
// Inside of the cleanups scope, create a new initialization to
// emit into optAddr.
std::unique_ptr<TemporaryInitialization> normalInit;
if (isByAddress) {
normalInit = useBufferAsTemporary(optAddr, optTL);
}
// Install a new optional-failure destination just outside of the
// cleanups scope.
SILBasicBlock *failureBB = createBasicBlock();
RestoreOptionalFailureDest
restoreFailureDest(*this, JumpDest(failureBB, Cleanups.getCleanupsDepth(),
CleanupLocation(loc)));
generateNormalResults(results, SGFContext(normalInit.get()));
assert(results.size() >= 1 && "didn't include a normal result");
assert(results[0].isInContext() ||
results[0].getType().getObjectType()
== optTL.getLoweredType().getObjectType());
// If we're emitting into the context, make sure the normal value is there.
if (normalInit && !results[0].isInContext()) {
normalInit->copyOrInitValueInto(*this, loc, results[0], /*init*/ true);
normalInit->finishInitialization(*this);
results[0] = ManagedValue::forInContext();
}
// We fell out of the normal result, which generated a T? as either
// a scalar in normalArgument or directly into normalInit.
// If we're using by-address initialization, we must've emitted into
// normalInit. Forward its cleanup before popping the scope.
if (isByAddress) {
normalInit->getManagedAddress().forward(*this);
normalInit.reset(); // Make sure we don't use this anymore.
} else {
assert(!results[0].isInContext());
results[0].forward(*this);
}
// For all the secondary results, forward their cleanups and make sure
// they're of optional type so that we can inject nil into them in
// the failure path.
// (Should this be controllable by the client?)
for (auto &result : MutableArrayRef<ManagedValue>(results).slice(1)) {
assert(!result.isInContext() && "secondary result was in context");
auto resultTy = result.getType();
assert(resultTy.isObject() && "secondary result wasn't an object");
// Forward the cleanup.
SILValue value = result.forward(*this);
// If it's not already an optional type, make it optional.
if (!resultTy.getOptionalObjectType()) {
resultTy = SILType::getOptionalType(resultTy);
value = B.createOptionalSome(loc, value, resultTy);
// This is really unprincipled.
result = ManagedValue::forUnmanagedOwnedValue(value);
}
}
// This concludes the conditional scope.
scope.pop();
// In the usual case, the code will have emitted one or more branches to the
// failure block. However, if the body is simple enough, we can end up with
// no branches to the failureBB. Detect this and simplify the generated code
// if so.
if (failureBB->pred_empty()) {
// Remove the dead failureBB.
failureBB->eraseFromParent();
// Just re-manage all the secondary results.
for (auto &result : MutableArrayRef<ManagedValue>(results).slice(1)) {
result = emitManagedRValueWithCleanup(result.getValue());
}
// Just re-manage the main result if we're not using address-based IRGen.
if (!isByAddress) {
results[0] = emitManagedRValueWithCleanup(results[0].getValue(), optTL);
return;
}
// Otherwise, we must have emitted into normalInit, which means that,
// now that we're out of the cleanups scope, we need to finish optInit.
assert(results[0].isInContext());
optInit->finishInitialization(*this);
// If optInit came from the SGFContext, then we've successfully emitted
// into that.
if (usingProvidedContext) return;
// Otherwise, we must have emitted into optTemp.
assert(optTemp);
results[0] = optTemp->getManagedAddress();
return;
}
// Okay, we do have uses of the failure block, so we'll need to merge
// control paths.
SILBasicBlock *contBB = createBasicBlock();
// Branch to the continuation block.
SmallVector<SILValue, 4> bbArgs;
if (!isByAddress)
bbArgs.push_back(results[0].getValue());
for (const auto &result : llvm::ArrayRef(results).slice(1))
bbArgs.push_back(result.getValue());
// Branch to the continuation block.
B.createBranch(loc, contBB, bbArgs);
// In the failure block, inject nil into the result.
B.emitBlock(failureBB);
// Note that none of the code here introduces any cleanups.
// If it did, we'd need to push a scope.
bbArgs.clear();
if (isByAddress) {
emitInjectOptionalNothingInto(loc, optAddr, optTL);
} else {
bbArgs.push_back(getOptionalNoneValue(loc, optTL));
}
for (const auto &result : llvm::ArrayRef(results).slice(1)) {
auto resultTy = result.getType();
bbArgs.push_back(getOptionalNoneValue(loc, getTypeLowering(resultTy)));
}
B.createBranch(loc, contBB, bbArgs);
// Emit the continuation block.
B.emitBlock(contBB);
// Create a PHI for the optional result if desired.
if (isByAddress) {
assert(results[0].isInContext());
} else {
auto arg =
contBB->createPhiArgument(optTL.getLoweredType(), OwnershipKind::Owned);
results[0] = emitManagedRValueWithCleanup(arg, optTL);
}
// Create PHIs for all the secondary results and manage them.
for (auto &result : MutableArrayRef<ManagedValue>(results).slice(1)) {
auto arg =
contBB->createPhiArgument(result.getType(), OwnershipKind::Owned);
result = emitManagedRValueWithCleanup(arg);
}
// We may need to manage the value in optInit.
if (!isByAddress) return;
assert(results[0].isInContext());
optInit->finishInitialization(*this);
// If we didn't emit into the provided context, the primary result
// is really a temporary.
if (usingProvidedContext) return;
assert(optTemp);
results[0] = optTemp->getManagedAddress();
}
RValue RValueEmitter::visitForceValueExpr(ForceValueExpr *E, SGFContext C) {
return emitForceValue(E, E->getSubExpr(), 0, C);
}
/// Emit an expression in a forced context.
///
/// \param loc - the location that is causing the force
/// \param E - the forced expression
/// \param numOptionalEvaluations - the number of enclosing
/// OptionalEvaluationExprs that we've opened.
RValue RValueEmitter::emitForceValue(ForceValueExpr *loc, Expr *E,
unsigned numOptionalEvaluations,
SGFContext C) {
auto valueType = E->getType()->getOptionalObjectType();
assert(valueType);
E = E->getSemanticsProvidingExpr();
// If the subexpression is a conditional checked cast, emit an unconditional
// cast, which drastically simplifies the generated SIL for something like:
//
// (x as? Foo)!
if (auto checkedCast = dyn_cast<ConditionalCheckedCastExpr>(E)) {
return emitUnconditionalCheckedCast(SGF, loc, checkedCast->getSubExpr(),
valueType, checkedCast->getCastKind(),
C);
}
// If the subexpression is a monadic optional operation, peephole
// the emission of the operation.
if (auto eval = dyn_cast<OptionalEvaluationExpr>(E)) {
CleanupLocation cleanupLoc = CleanupLocation(loc);
SILBasicBlock *failureBB;
JumpDest failureDest(cleanupLoc);
// Set up an optional-failure scope (which cannot actually return).
// We can just borrow the enclosing one if we're in a nested context.
if (numOptionalEvaluations) {
failureBB = nullptr; // remember that we did this
failureDest = SGF.BindOptionalFailureDests.back();
} else {
failureBB = SGF.createBasicBlock(FunctionSection::Postmatter);
failureDest = JumpDest(failureBB, SGF.Cleanups.getCleanupsDepth(),
cleanupLoc);
}
RestoreOptionalFailureDest restoreFailureDest(SGF, std::move(failureDest));
RValue result = emitForceValue(loc, eval->getSubExpr(),
numOptionalEvaluations + 1, C);
// Emit the failure destination, but only if actually used.
if (failureBB) {
if (failureBB->pred_empty()) {
SGF.eraseBasicBlock(failureBB);
} else {
SILGenBuilder failureBuilder(SGF, failureBB);
failureBuilder.setTrackingList(SGF.getBuilder().getTrackingList());
auto boolTy = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
auto trueV = failureBuilder.createIntegerLiteral(loc, boolTy, 1);
failureBuilder.createCondFail(loc, trueV, "force unwrapped a nil value");
failureBuilder.createUnreachable(loc);
}
}
return result;
}
// Handle injections.
if (auto injection = dyn_cast<InjectIntoOptionalExpr>(E)) {
auto subexpr = injection->getSubExpr()->getSemanticsProvidingExpr();
// An injection of a bind is the idiom for a conversion between
// optional types (e.g. ImplicitlyUnwrappedOptional<T> -> Optional<T>).
// Handle it specially to avoid unnecessary control flow.
if (auto bindOptional = dyn_cast<BindOptionalExpr>(subexpr)) {
if (bindOptional->getDepth() < numOptionalEvaluations) {
return emitForceValue(loc, bindOptional->getSubExpr(),
numOptionalEvaluations, C);
}
}
// Otherwise, just emit the injected value directly into the result.
return SGF.emitRValue(injection->getSubExpr(), C);
}
// If this is an implicit force of an ImplicitlyUnwrappedOptional,
// and we're emitting into an unbridging conversion, try adjusting the
// context.
bool isImplicitUnwrap = loc->isImplicit() &&
loc->isForceOfImplicitlyUnwrappedOptional();
if (isImplicitUnwrap) {
if (auto conv = C.getAsConversion()) {
if (auto adjusted = conv->getConversion().adjustForInitialForceValue()) {
auto value =
conv->emitWithAdjustedConversion(SGF, loc, *adjusted,
[E](SILGenFunction &SGF, SILLocation loc, SGFContext C) {
return SGF.emitRValueAsSingleValue(E, C);
});
return RValue(SGF, loc, value);
}
}
}
// Otherwise, emit the optional and force its value out.
const TypeLowering &optTL = SGF.getTypeLowering(E->getType());
ManagedValue opt = SGF.emitRValueAsSingleValue(E);
ManagedValue V =
SGF.emitCheckedGetOptionalValueFrom(loc, opt, isImplicitUnwrap, optTL, C);
return RValue(SGF, loc, valueType->getCanonicalType(), V);
}
void SILGenFunction::emitOpenExistentialExprImpl(
OpenExistentialExpr *E,
llvm::function_ref<void(Expr *)> emitSubExpr) {
assert(isInFormalEvaluationScope());
// Emit the existential value.
if (E->getExistentialValue()->getType()->is<LValueType>()) {
bool inserted = OpaqueValueExprs.insert({E->getOpaqueValue(), E}).second;
(void)inserted;
assert(inserted && "already have this opened existential?");
emitSubExpr(E->getSubExpr());
return;
}
auto existentialValue = emitRValueAsSingleValue(
E->getExistentialValue(),
SGFContext::AllowGuaranteedPlusZero);
Type opaqueValueType = E->getOpaqueValue()->getType()->getRValueType();
auto payload = emitOpenExistential(
E, existentialValue,
getLoweredType(opaqueValueType),
AccessKind::Read);
// Register the opaque value for the projected existential.
SILGenFunction::OpaqueValueRAII opaqueValueRAII(
*this, E->getOpaqueValue(), payload);
emitSubExpr(E->getSubExpr());
}
RValue RValueEmitter::visitOpenExistentialExpr(OpenExistentialExpr *E,
SGFContext C) {
if (auto result = tryEmitAsBridgingConversion(SGF, E, false, C)) {
return RValue(SGF, E, *result);
}
FormalEvaluationScope writebackScope(SGF);
return SGF.emitOpenExistentialExpr<RValue>(E,
[&](Expr *subExpr) -> RValue {
return visit(subExpr, C);
});
}
RValue RValueEmitter::visitMakeTemporarilyEscapableExpr(
MakeTemporarilyEscapableExpr *E, SGFContext C) {
// Emit the non-escaping function value.
auto functionValue =
visit(E->getNonescapingClosureValue()).getAsSingleValue(SGF, E);
auto escapingFnTy = SGF.getLoweredType(E->getOpaqueValue()->getType());
auto silFnTy = escapingFnTy.castTo<SILFunctionType>();
auto visitSubExpr = [&](ManagedValue escapingClosure,
bool isClosureConsumable) -> RValue {
// Bind the opaque value to the escaping function.
assert(isClosureConsumable == escapingClosure.hasCleanup());
SILGenFunction::OpaqueValueRAII pushOpaqueValue(SGF, E->getOpaqueValue(),
escapingClosure);
// Emit the guarded expression.
return visit(E->getSubExpr(), C);
};
// Handle @convention(block) an @convention(c). No withoutActuallyEscaping
// verification yet.
auto closureRepresentation = silFnTy->getExtInfo().getRepresentation();
if (closureRepresentation != SILFunctionTypeRepresentation::Thick) {
auto escapingClosure =
SGF.B.createConvertFunction(E, functionValue, escapingFnTy,
/*WithoutActuallyEscaping=*/true);
bool isBlockConvention =
closureRepresentation == SILFunctionTypeRepresentation::Block;
return visitSubExpr(escapingClosure,
isBlockConvention /*isClosureConsumable*/);
}
// Convert it to an escaping function value.
auto escapingClosure =
SGF.createWithoutActuallyEscapingClosure(E, functionValue, escapingFnTy);
auto loc = SILLocation(E);
auto borrowedClosure = escapingClosure.borrow(SGF, loc);
RValue rvalue = visitSubExpr(borrowedClosure, false /* isClosureConsumable */);
// Now create the verification of the withoutActuallyEscaping operand.
// Either we fail the uniqueness check (which means the closure has escaped)
// and abort or we continue and destroy the ultimate reference.
auto isEscaping = SGF.B.createIsEscapingClosure(
loc, borrowedClosure.getValue(),
IsEscapingClosureInst::WithoutActuallyEscaping);
SGF.B.createCondFail(loc, isEscaping, "non-escaping closure has escaped");
return rvalue;
}
RValue RValueEmitter::visitOpaqueValueExpr(OpaqueValueExpr *E, SGFContext C) {
auto found = SGF.OpaqueValues.find(E);
assert(found != SGF.OpaqueValues.end());
return RValue(SGF, E, SGF.manageOpaqueValue(found->second, E, C));
}
RValue RValueEmitter::visitPropertyWrapperValuePlaceholderExpr(
PropertyWrapperValuePlaceholderExpr *E, SGFContext C) {
return visitOpaqueValueExpr(E->getOpaqueValuePlaceholder(), C);
}
RValue RValueEmitter::visitAppliedPropertyWrapperExpr(
AppliedPropertyWrapperExpr *E, SGFContext C) {
auto *param = const_cast<ParamDecl *>(E->getParamDecl());
auto argument = visit(E->getValue());
SILDeclRef::Kind initKind;
switch (E->getValueKind()) {
case swift::AppliedPropertyWrapperExpr::ValueKind::WrappedValue:
initKind = SILDeclRef::Kind::PropertyWrapperBackingInitializer;
break;
case swift::AppliedPropertyWrapperExpr::ValueKind::ProjectedValue:
initKind = SILDeclRef::Kind::PropertyWrapperInitFromProjectedValue;
break;
}
// The property wrapper generator function needs the same substitutions as the
// enclosing function or closure. If the parameter is declared in a function, take
// the substitutions from the concrete callee. Otherwise, forward the archetypes
// from the closure.
SubstitutionMap subs;
if (param->getDeclContext()->getAsDecl()) {
subs = E->getCallee().getSubstitutions();
} else {
subs = SGF.getForwardingSubstitutionMap();
}
return SGF.emitApplyOfPropertyWrapperBackingInitializer(
SILLocation(E), param, subs, std::move(argument), initKind);
}
ProtocolDecl *SILGenFunction::getPointerProtocol() {
if (SGM.PointerProtocol)
return *SGM.PointerProtocol;
SmallVector<ValueDecl*, 1> lookup;
getASTContext().lookupInSwiftModule("_Pointer", lookup);
// FIXME: Should check for protocol in Sema
assert(lookup.size() == 1 && "no _Pointer protocol");
assert(isa<ProtocolDecl>(lookup[0]) && "_Pointer is not a protocol");
SGM.PointerProtocol = cast<ProtocolDecl>(lookup[0]);
return cast<ProtocolDecl>(lookup[0]);
}
namespace {
class AutoreleasingWritebackComponent : public LogicalPathComponent {
public:
AutoreleasingWritebackComponent(LValueTypeData typeData)
: LogicalPathComponent(typeData, AutoreleasingWritebackKind)
{}
std::unique_ptr<LogicalPathComponent>
clone(SILGenFunction &SGF, SILLocation l) const override {
return std::unique_ptr<LogicalPathComponent>(
new AutoreleasingWritebackComponent(getTypeData()));
}
virtual bool isLoadingPure() const override { return true; }
void set(SILGenFunction &SGF, SILLocation loc,
ArgumentSource &&value, ManagedValue base) && override {
// Convert the value back to a +1 strong reference.
auto unowned = std::move(value).getAsSingleValue(SGF).getUnmanagedValue();
auto strongType = SILType::getPrimitiveObjectType(
unowned->getType().castTo<UnmanagedStorageType>().getReferentType());
auto owned = SGF.B.createUnmanagedToRef(loc, unowned, strongType);
auto ownedMV = SGF.emitManagedCopy(loc, owned);
// Then create a mark dependence in between the base and the ownedMV. This
// is important to ensure that the destroy of the assign is not hoisted
// above the retain. We are doing unmanaged things here so we need to be
// extra careful.
ownedMV = SGF.B.createMarkDependence(loc, ownedMV, base,
MarkDependenceKind::Escaping);
// Then reassign the mark dependence into the +1 storage.
ownedMV.assignInto(SGF, loc, base.getUnmanagedValue());
}
RValue get(SILGenFunction &SGF, SILLocation loc,
ManagedValue base, SGFContext c) && override {
FullExpr TightBorrowScope(SGF.Cleanups, CleanupLocation(loc));
// Load the value at +0.
ManagedValue loadedBase = SGF.B.createLoadBorrow(loc, base);
// Convert it to unowned.
auto refType = loadedBase.getType().getASTType();
auto unownedType = SILType::getPrimitiveObjectType(
CanUnmanagedStorageType::get(refType));
SILValue unowned = SGF.B.createRefToUnmanaged(
loc, loadedBase.getUnmanagedValue(), unownedType);
// A reference type should never be exploded.
return RValue(SGF, ManagedValue::forUnownedObjectValue(unowned), refType);
}
std::optional<AccessStorage> getAccessStorage() const override {
return std::nullopt;
}
void dump(raw_ostream &OS, unsigned indent) const override {
OS.indent(indent) << "AutoreleasingWritebackComponent()\n";
}
};
} // end anonymous namespace
SILGenFunction::PointerAccessInfo
SILGenFunction::getPointerAccessInfo(Type type) {
PointerTypeKind pointerKind;
Type elt = type->getAnyPointerElementType(pointerKind);
assert(elt && "not a pointer");
(void)elt;
SGFAccessKind accessKind =
((pointerKind == PTK_UnsafePointer || pointerKind == PTK_UnsafeRawPointer)
? SGFAccessKind::BorrowedAddressRead : SGFAccessKind::ReadWrite);
return { type->getCanonicalType(), pointerKind, accessKind };
}
RValue RValueEmitter::visitInOutToPointerExpr(InOutToPointerExpr *E,
SGFContext C) {
// If we're converting on the behalf of an
// AutoreleasingUnsafeMutablePointer, convert the lvalue to
// unowned(unsafe), so we can point at +0 storage.
auto accessInfo = SGF.getPointerAccessInfo(E->getType());
// Get the original lvalue.
LValue lv = SGF.emitLValue(E->getSubExpr(), accessInfo.AccessKind);
auto ptr = SGF.emitLValueToPointer(E, std::move(lv), accessInfo);
return RValue(SGF, E, ptr);
}
/// Implicit conversion from a nontrivial inout type to a raw pointer are
/// dangerous. For example:
///
/// func bar(_ p: UnsafeRawPointer) { ... }
/// func foo(object: inout AnyObject) {
/// bar(&object)
/// }
///
/// These conversions should be done explicitly.
///
static void diagnoseImplicitRawConversion(Type sourceTy, Type pointerTy,
SILLocation loc,
SILGenFunction &SGF) {
// Array conversion does not always go down the ArrayConverter
// path. Recognize the Array source type here both for ArrayToPointer and
// InoutToPointer cases and diagnose on the element type.
Type eltTy = sourceTy->isArrayType();
if (!eltTy)
eltTy = sourceTy;
if (SGF.getLoweredType(eltTy).isTrivial(SGF.F))
return;
auto *SM = SGF.getModule().getSwiftModule();
if (auto *bitwiseCopyableDecl = SM->getASTContext().getProtocol(
KnownProtocolKind::BitwiseCopyable)) {
if (SM->checkConformance(eltTy, bitwiseCopyableDecl))
return;
}
if (auto *fixedWidthIntegerDecl = SM->getASTContext().getProtocol(
KnownProtocolKind::FixedWidthInteger)) {
if (SM->checkConformance(eltTy, fixedWidthIntegerDecl))
return;
}
PointerTypeKind kindOfPtr;
auto pointerElt = pointerTy->getAnyPointerElementType(kindOfPtr);
assert(!pointerElt.isNull() && "expected an unsafe pointer type");
// The element type may contain a reference. Disallow conversion to a "raw"
// pointer type. Consider Int8/UInt8 to be raw pointers. Trivial element types
// are filtered out above, so Int8/UInt8 pointers can't match the source
// type. But the type checker may have allowed these for direct C calls, in
// which Int8/UInt8 are equivalent to raw pointers..
if (!(pointerElt->isVoid() || pointerElt->isInt8() || pointerElt->isUInt8()))
return;
if (sourceTy->isString()) {
SGF.SGM.diagnose(loc, diag::nontrivial_string_to_rawpointer_conversion,
pointerTy);
} else {
SGF.SGM.diagnose(loc, diag::nontrivial_to_rawpointer_conversion, sourceTy,
pointerTy, eltTy);
}
}
namespace {
/// Cleanup to insert fix_lifetime on an LValue address.
class FixLifetimeLValueCleanup : public Cleanup {
friend LValueToPointerFormalAccess;
FormalEvaluationContext::stable_iterator depth;
public:
FixLifetimeLValueCleanup() : depth() {}
LValueToPointerFormalAccess &getFormalAccess(SILGenFunction &SGF) const {
auto &access = *SGF.FormalEvalContext.find(depth);
return static_cast<LValueToPointerFormalAccess &>(access);
}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
getFormalAccess(SGF).finish(SGF);
}
SILValue getAddress(SILGenFunction &SGF) const {
return getFormalAccess(SGF).address;
}
void dump(SILGenFunction &SGF) const override {
#ifndef NDEBUG
llvm::errs() << "FixLifetimeLValueCleanup "
<< "State:" << getState() << " "
<< "Address: " << getAddress(SGF) << "\n";
#endif
}
};
} // end anonymous namespace
SILValue LValueToPointerFormalAccess::enter(SILGenFunction &SGF,
SILLocation loc,
SILValue address) {
auto &lowering = SGF.getTypeLowering(address->getType().getObjectType());
SILValue pointer = SGF.B.createAddressToPointer(
loc, address, SILType::getRawPointerType(SGF.getASTContext()),
/*needsStackProtection=*/ true);
if (!lowering.isTrivial()) {
assert(SGF.isInFormalEvaluationScope() &&
"Must be in formal evaluation scope");
auto &cleanup = SGF.Cleanups.pushCleanup<FixLifetimeLValueCleanup>();
CleanupHandle handle = SGF.Cleanups.getTopCleanup();
SGF.FormalEvalContext.push<LValueToPointerFormalAccess>(loc, address,
handle);
cleanup.depth = SGF.FormalEvalContext.stable_begin();
}
return pointer;
}
// Address-to-pointer conversion always requires either a fix_lifetime or
// mark_dependence. Emitting a fix_lifetime immediately after the call as
// opposed to a mark_dependence allows the lvalue's lifetime to be optimized
// outside of this narrow scope.
void LValueToPointerFormalAccess::finishImpl(SILGenFunction &SGF) {
SGF.B.emitFixLifetime(loc, address);
}
/// Convert an l-value to a pointer type: unsafe, unsafe-mutable, or
/// autoreleasing-unsafe-mutable.
ManagedValue SILGenFunction::emitLValueToPointer(SILLocation loc, LValue &&lv,
PointerAccessInfo pointerInfo) {
assert(pointerInfo.AccessKind == lv.getAccessKind());
diagnoseImplicitRawConversion(lv.getSubstFormalType(),
pointerInfo.PointerType, loc, *this);
// The incoming lvalue should be at the abstraction level of T in
// Unsafe*Pointer<T>. Reabstract it if necessary.
auto opaqueTy = AbstractionPattern::getOpaque();
auto loweredTy = getLoweredType(opaqueTy, lv.getSubstFormalType());
if (lv.getTypeOfRValue().getASTType() != loweredTy.getASTType()) {
lv.addSubstToOrigComponent(opaqueTy, loweredTy);
}
switch (pointerInfo.PointerKind) {
case PTK_UnsafeMutablePointer:
case PTK_UnsafePointer:
case PTK_UnsafeMutableRawPointer:
case PTK_UnsafeRawPointer:
// +1 is fine.
break;
case PTK_AutoreleasingUnsafeMutablePointer: {
// Set up a writeback through a +0 buffer.
LValueTypeData typeData = lv.getTypeData();
auto rvalueType = CanUnmanagedStorageType::get(typeData.TypeOfRValue);
LValueTypeData unownedTypeData(
lv.getAccessKind(),
AbstractionPattern(
typeData.OrigFormalType.getGenericSignature(),
CanUnmanagedStorageType::get(typeData.OrigFormalType.getType())),
CanUnmanagedStorageType::get(typeData.SubstFormalType),
rvalueType);
lv.add<AutoreleasingWritebackComponent>(unownedTypeData);
break;
}
}
// Get the lvalue address as a raw pointer.
SILValue address =
emitAddressOfLValue(loc, std::move(lv)).getUnmanagedValue();
SILValue pointer = LValueToPointerFormalAccess::enter(*this, loc, address);
// Disable nested writeback scopes for any calls evaluated during the
// conversion intrinsic.
InOutConversionScope scope(*this);
// Invoke the conversion intrinsic.
FuncDecl *converter =
getASTContext().getConvertInOutToPointerArgument();
auto pointerType = pointerInfo.PointerType;
auto subMap = pointerType->getContextSubstitutionMap(SGM.M.getSwiftModule(),
getPointerProtocol());
return emitApplyOfLibraryIntrinsic(
loc, converter, subMap,
ManagedValue::forObjectRValueWithoutOwnership(pointer),
SGFContext())
.getAsSingleValue(*this, loc);
}
RValue RValueEmitter::visitArrayToPointerExpr(ArrayToPointerExpr *E,
SGFContext C) {
FormalEvaluationScope writeback(SGF);
auto subExpr = E->getSubExpr();
auto accessInfo = SGF.getArrayAccessInfo(E->getType(),
subExpr->getType()->getInOutObjectType());
// Convert the array mutably if it's being passed inout.
ManagedValue array;
if (accessInfo.AccessKind == SGFAccessKind::ReadWrite) {
array = SGF.emitAddressOfLValue(subExpr,
SGF.emitLValue(subExpr, SGFAccessKind::ReadWrite));
} else {
assert(isReadAccess(accessInfo.AccessKind));
array = SGF.emitRValueAsSingleValue(subExpr);
}
auto pointer = SGF.emitArrayToPointer(E, array, accessInfo).first;
return RValue(SGF, E, pointer);
}
SILGenFunction::ArrayAccessInfo
SILGenFunction::getArrayAccessInfo(Type pointerType, Type arrayType) {
auto pointerAccessInfo = getPointerAccessInfo(pointerType);
return { pointerType, arrayType, pointerAccessInfo.AccessKind };
}
std::pair<ManagedValue, ManagedValue>
SILGenFunction::emitArrayToPointer(SILLocation loc, LValue &&lv,
ArrayAccessInfo accessInfo) {
auto array = emitAddressOfLValue(loc, std::move(lv));
return emitArrayToPointer(loc, array, accessInfo);
}
std::pair<ManagedValue, ManagedValue>
SILGenFunction::emitArrayToPointer(SILLocation loc, ManagedValue array,
ArrayAccessInfo accessInfo) {
auto &ctx = getASTContext();
FuncDecl *converter;
if (accessInfo.AccessKind != SGFAccessKind::ReadWrite) {
assert(isReadAccess(accessInfo.AccessKind));
converter = ctx.getConvertConstArrayToPointerArgument();
if (array.isLValue())
array = B.createLoadCopy(loc, array);
} else {
converter = ctx.getConvertMutableArrayToPointerArgument();
assert(array.isLValue());
}
// Invoke the conversion intrinsic, which will produce an owner-pointer pair.
auto *M = SGM.M.getSwiftModule();
auto firstSubMap =
accessInfo.ArrayType->getContextSubstitutionMap(M, ctx.getArrayDecl());
auto secondSubMap = accessInfo.PointerType->getContextSubstitutionMap(
M, getPointerProtocol());
auto genericSig = converter->getGenericSignature();
auto subMap = SubstitutionMap::combineSubstitutionMaps(
firstSubMap, secondSubMap, CombineSubstitutionMaps::AtIndex, 1, 0,
genericSig);
diagnoseImplicitRawConversion(accessInfo.ArrayType, accessInfo.PointerType,
loc, *this);
SmallVector<ManagedValue, 2> resultScalars;
emitApplyOfLibraryIntrinsic(loc, converter, subMap, array, SGFContext())
.getAll(resultScalars);
assert(resultScalars.size() == 2);
// Mark the dependence of the pointer on the owner value.
auto owner = resultScalars[0];
auto pointer = resultScalars[1].forward(*this);
pointer = B.createMarkDependence(loc, pointer, owner.getValue(),
MarkDependenceKind::Escaping);
// The owner's already in its own cleanup. Return the pointer.
return {ManagedValue::forObjectRValueWithoutOwnership(pointer), owner};
}
RValue RValueEmitter::visitStringToPointerExpr(StringToPointerExpr *E,
SGFContext C) {
// Get the original value.
ManagedValue orig = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Perform the conversion.
auto results = SGF.emitStringToPointer(E, orig, E->getType());
// Implicitly leave the owner managed and return the pointer.
return RValue(SGF, E, results.first);
}
std::pair<ManagedValue, ManagedValue>
SILGenFunction::emitStringToPointer(SILLocation loc, ManagedValue stringValue,
Type pointerType) {
auto &Ctx = getASTContext();
FuncDecl *converter = Ctx.getConvertConstStringToUTF8PointerArgument();
// Invoke the conversion intrinsic, which will produce an owner-pointer pair.
auto subMap = pointerType->getContextSubstitutionMap(SGM.M.getSwiftModule(),
getPointerProtocol());
SmallVector<ManagedValue, 2> results;
emitApplyOfLibraryIntrinsic(loc, converter, subMap, stringValue, SGFContext())
.getAll(results);
assert(results.size() == 2);
// Mark the dependence of the pointer on the owner value.
auto owner = results[0];
auto pointer = results[1].forward(*this);
pointer = B.createMarkDependence(loc, pointer, owner.getValue(),
MarkDependenceKind::Escaping);
return {ManagedValue::forObjectRValueWithoutOwnership(pointer), owner};
}
RValue RValueEmitter::visitPointerToPointerExpr(PointerToPointerExpr *E,
SGFContext C) {
auto &Ctx = SGF.getASTContext();
auto converter = Ctx.getConvertPointerToPointerArgument();
// Get the original pointer value, abstracted to the converter function's
// expected level.
AbstractionPattern origTy(converter->getInterfaceType());
origTy = origTy.getFunctionParamType(0);
CanType inputTy = E->getSubExpr()->getType()->getCanonicalType();
auto &origTL = SGF.getTypeLowering(origTy, inputTy);
ManagedValue orig = SGF.emitRValueAsOrig(E->getSubExpr(), origTy, origTL);
CanType outputTy = E->getType()->getCanonicalType();
return SGF.emitPointerToPointer(E, orig, inputTy, outputTy, C);
}
RValue RValueEmitter::visitForeignObjectConversionExpr(
ForeignObjectConversionExpr *E,
SGFContext C) {
// Get the original value.
ManagedValue orig = SGF.emitRValueAsSingleValue(E->getSubExpr());
ManagedValue result = SGF.B.createUncheckedRefCast(
E, orig, SGF.getLoweredType(E->getType()));
return RValue(SGF, E, E->getType()->getCanonicalType(), result);
}
RValue RValueEmitter::visitUnevaluatedInstanceExpr(UnevaluatedInstanceExpr *E,
SGFContext C) {
llvm_unreachable("unevaluated_instance expression can never be evaluated");
}
RValue RValueEmitter::visitDifferentiableFunctionExpr(
DifferentiableFunctionExpr *E, SGFContext C) {
auto origFunc = SGF.emitRValueAsSingleValue(E->getSubExpr());
auto destTy = SGF.getLoweredType(E->getType()).castTo<SILFunctionType>();
auto *diffFunc = SGF.B.createDifferentiableFunction(
E, destTy->getDifferentiabilityParameterIndices(),
destTy->getDifferentiabilityResultIndices(), origFunc.forward(SGF));
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(diffFunc));
}
RValue RValueEmitter::visitLinearFunctionExpr(
LinearFunctionExpr *E, SGFContext C) {
auto origFunc = SGF.emitRValueAsSingleValue(E->getSubExpr());
auto destTy = SGF.getLoweredType(E->getType()).castTo<SILFunctionType>();
auto *diffFunc = SGF.B.createLinearFunction(
E, destTy->getDifferentiabilityParameterIndices(), origFunc.forward(SGF));
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(diffFunc));
}
RValue RValueEmitter::visitDifferentiableFunctionExtractOriginalExpr(
DifferentiableFunctionExtractOriginalExpr *E, SGFContext C) {
auto diffFunc = SGF.emitRValueAsSingleValue(E->getSubExpr());
auto borrowedDiffFunc = diffFunc.borrow(SGF, E);
auto *borrowedOrigFunc = SGF.B.createDifferentiableFunctionExtractOriginal(
E, borrowedDiffFunc.getValue());
auto ownedOrigFunc = SGF.B.emitCopyValueOperation(E, borrowedOrigFunc);
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(ownedOrigFunc));
}
RValue RValueEmitter::visitLinearFunctionExtractOriginalExpr(
LinearFunctionExtractOriginalExpr *E, SGFContext C) {
auto diffFunc = SGF.emitRValueAsSingleValue(E->getSubExpr());
auto borrowedDiffFunc = diffFunc.borrow(SGF, E);
auto *borrowedOrigFunc = SGF.B.createLinearFunctionExtract(
E, LinearDifferentiableFunctionTypeComponent::Original,
borrowedDiffFunc.getValue());
auto ownedOrigFunc = SGF.B.emitCopyValueOperation(E, borrowedOrigFunc);
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(ownedOrigFunc));
}
RValue RValueEmitter::visitLinearToDifferentiableFunctionExpr(
LinearToDifferentiableFunctionExpr *E, SGFContext C) {
// TODO: Implement this.
llvm_unreachable("Unsupported!");
}
RValue RValueEmitter::visitTapExpr(TapExpr *E, SGFContext C) {
// This implementation is not very robust; if TapExpr were to ever become
// user-accessible (as some sort of "with" statement), it should probably
// permit a full pattern binding, saving the unused parts and "re-structuring"
// them to return the modified value.
auto Var = E->getVar();
auto VarType = E->getType()->getCanonicalType();
Scope outerScope(SGF, CleanupLocation(E));
// Initialize the var with our SubExpr.
auto VarInit =
SGF.emitInitializationForVarDecl(Var, /*forceImmutable=*/false);
SGF.emitExprInto(E->getSubExpr(), VarInit.get(), SILLocation(E));
// Emit the body and let it mutate the var if it chooses.
SGF.emitStmt(E->getBody());
// Retrieve and return the var, making it +1 so it survives the scope.
auto result = SGF.emitRValueForDecl(SILLocation(E), Var,
VarType, AccessSemantics::Ordinary, C);
result = std::move(result).ensurePlusOne(SGF, SILLocation(E));
return outerScope.popPreservingValue(std::move(result));
}
RValue RValueEmitter::visitDefaultArgumentExpr(DefaultArgumentExpr *E,
SGFContext C) {
// We should only be emitting this as an rvalue for caller-side default
// arguments such as magic literals. Other default arguments get handled
// specially.
return SGF.emitRValue(E->getCallerSideDefaultExpr());
}
RValue RValueEmitter::visitErrorExpr(ErrorExpr *E, SGFContext C) {
// Running into an ErrorExpr here means we've failed to lazily typecheck
// something. Just emit an undef of the appropriate type and carry on.
if (SGF.getASTContext().Diags.hadAnyError())
return SGF.emitUndefRValue(E, E->getType());
// Use report_fatal_error to ensure we trap in release builds instead of
// miscompiling.
llvm::report_fatal_error("Found an ErrorExpr but didn't emit an error?");
}
RValue RValueEmitter::visitConsumeExpr(ConsumeExpr *E, SGFContext C) {
auto *subExpr = E->getSubExpr();
auto subASTType = subExpr->getType()->getCanonicalType();
auto subType = SGF.getLoweredType(subASTType);
if (auto *li = dyn_cast<LoadExpr>(subExpr)) {
FormalEvaluationScope writeback(SGF);
LValue lv =
SGF.emitLValue(li->getSubExpr(), SGFAccessKind::ReadWrite);
auto address = SGF.emitAddressOfLValue(subExpr, std::move(lv));
auto optTemp = SGF.emitTemporary(E, SGF.getTypeLowering(subType));
SILValue toAddr = optTemp->getAddressForInPlaceInitialization(SGF, E);
SILValue fromAddr = address.getLValueAddress();
bool isMoveOnly = fromAddr->getType().isMoveOnly() ||
isa<MoveOnlyWrapperToCopyableAddrInst>(fromAddr);
if (toAddr->getType().isMoveOnlyWrapped())
toAddr = SGF.B.createMoveOnlyWrapperToCopyableAddr(subExpr, toAddr);
if (isMoveOnly) {
if (fromAddr->getType().isMoveOnlyWrapped())
fromAddr = SGF.B.createMoveOnlyWrapperToCopyableAddr(subExpr, fromAddr);
SGF.B.createCopyAddr(subExpr, fromAddr, toAddr, IsNotTake,
IsInitialization);
} else {
SGF.B.createMarkUnresolvedMoveAddr(subExpr, fromAddr, toAddr);
}
optTemp->finishInitialization(SGF);
if (subType.isLoadable(SGF.F) || !SGF.useLoweredAddresses()) {
ManagedValue value = SGF.B.createLoadTake(E, optTemp->getManagedAddress());
if (value.getType().isTrivial(SGF.F))
return RValue(SGF, {value}, subType.getASTType());
return RValue(SGF, {value}, subType.getASTType());
}
return RValue(SGF, {optTemp->getManagedAddress()}, subType.getASTType());
}
if (subType.isLoadable(SGF.F) || !SGF.useLoweredAddresses()) {
ManagedValue mv = SGF.emitRValue(subExpr).getAsSingleValue(SGF, subExpr);
if (mv.getType().isTrivial(SGF.F))
return RValue(SGF, {mv}, subType.getASTType());
mv = SGF.B.createMoveValue(E, mv);
// Set the flag so we check this.
cast<MoveValueInst>(mv.getValue())->setAllowsDiagnostics(true);
if (subType.isMoveOnly()) {
// We need to move-only-check the moved value.
mv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
E, mv,
MarkUnresolvedNonCopyableValueInst::CheckKind::
ConsumableAndAssignable);
}
return RValue(SGF, {mv}, subType.getASTType());
}
// If we aren't loadable, then create a temporary initialization and
// explicit_copy_addr into that.
std::unique_ptr<TemporaryInitialization> optTemp;
optTemp = SGF.emitTemporary(E, SGF.getTypeLowering(subType));
SILValue toAddr = optTemp->getAddressForInPlaceInitialization(SGF, E);
assert(!isa<LValueType>(E->getType()->getCanonicalType()) &&
"Shouldn't see an lvalue type here");
ManagedValue mv =
SGF.emitRValue(subExpr, SGFContext(SGFContext::AllowImmediatePlusZero))
.getAsSingleValue(SGF, subExpr);
assert(mv.getType().isAddress());
bool isMoveOnly = mv.getType().isMoveOnly() ||
isa<MoveOnlyWrapperToCopyableAddrInst>(mv.getValue());
SILValue fromAddr = mv.getValue();
if (toAddr->getType().isMoveOnlyWrapped())
toAddr = SGF.B.createMoveOnlyWrapperToCopyableAddr(subExpr, toAddr);
if (isMoveOnly) {
if (fromAddr->getType().isMoveOnlyWrapped())
fromAddr = SGF.B.createMoveOnlyWrapperToCopyableAddr(subExpr, fromAddr);
SGF.B.createCopyAddr(subExpr, fromAddr, toAddr, IsNotTake,
IsInitialization);
} else {
SGF.B.createMarkUnresolvedMoveAddr(subExpr, mv.getValue(), toAddr);
}
optTemp->finishInitialization(SGF);
return RValue(SGF, {optTemp->getManagedAddress()}, subType.getASTType());
}
RValue RValueEmitter::visitCopyExpr(CopyExpr *E, SGFContext C) {
auto *subExpr = E->getSubExpr();
auto subASTType = subExpr->getType()->getCanonicalType();
auto subType = SGF.getLoweredType(subASTType);
if (auto *li = dyn_cast<LoadExpr>(subExpr)) {
FormalEvaluationScope writeback(SGF);
LValue lv =
SGF.emitLValue(li->getSubExpr(), SGFAccessKind::BorrowedAddressRead);
auto address = SGF.emitAddressOfLValue(subExpr, std::move(lv));
if (subType.isLoadable(SGF.F)) {
// Use a formal access load borrow so this closes in the writeback scope
// above.
ManagedValue value = SGF.B.createFormalAccessLoadBorrow(E, address);
if (value.getType().isMoveOnlyWrapped()) {
value = SGF.B.createGuaranteedMoveOnlyWrapperToCopyableValue(E, value);
// If we have a trivial value after unwrapping, just return that.
if (value.getType().isTrivial(SGF.F))
return RValue(SGF, {value}, subType.getASTType());
}
// We purposely, use a lexical cleanup here so that the cleanup lasts
// through the formal evaluation scope.
ManagedValue copy = SGF.B.createExplicitCopyValue(E, value);
return RValue(SGF, {copy}, subType.getASTType());
}
auto optTemp = SGF.emitTemporary(E, SGF.getTypeLowering(subType));
SILValue toAddr = optTemp->getAddressForInPlaceInitialization(SGF, E);
if (toAddr->getType().isMoveOnlyWrapped())
toAddr = SGF.B.createMoveOnlyWrapperToCopyableAddr(E, toAddr);
SILValue fromAddr = address.getLValueAddress();
if (fromAddr->getType().isMoveOnlyWrapped())
fromAddr = SGF.B.createMoveOnlyWrapperToCopyableAddr(E, fromAddr);
SGF.B.createExplicitCopyAddr(subExpr, fromAddr, toAddr, IsNotTake,
IsInitialization);
optTemp->finishInitialization(SGF);
return RValue(SGF, {optTemp->getManagedAddress()}, subType.getASTType());
}
if (subType.isLoadable(SGF.F)) {
ManagedValue mv = SGF.emitRValue(subExpr).getAsSingleValue(SGF, subExpr);
if (mv.getType().isTrivial(SGF.F))
return RValue(SGF, {mv}, subType.getASTType());
{
// We use a formal evaluation scope so we tightly scope the formal access
// borrow below.
FormalEvaluationScope scope(SGF);
if (mv.getType().isMoveOnlyWrapped()) {
if (mv.getOwnershipKind() != OwnershipKind::Guaranteed)
mv = mv.formalAccessBorrow(SGF, E);
mv = SGF.B.createGuaranteedMoveOnlyWrapperToCopyableValue(E, mv);
}
// Only perform the actual explicit_copy_value if we do not have a trivial
// type.
//
// DISCUSSION: We can only get a trivial type if we have a moveonlywrapped
// type of a trivial type.
if (!mv.getType().isTrivial(SGF.F))
mv = SGF.B.createExplicitCopyValue(E, mv);
}
return RValue(SGF, {mv}, subType.getASTType());
}
// If we aren't loadable, then create a temporary initialization and
// explicit_copy_addr into that.
std::unique_ptr<TemporaryInitialization> optTemp;
optTemp = SGF.emitTemporary(E, SGF.getTypeLowering(subType));
SILValue toAddr = optTemp->getAddressForInPlaceInitialization(SGF, E);
assert(!isa<LValueType>(E->getType()->getCanonicalType()) &&
"Shouldn't see an lvalue type here");
ManagedValue mv =
SGF.emitRValue(subExpr, SGFContext(SGFContext::AllowImmediatePlusZero))
.getAsSingleValue(SGF, subExpr);
assert(mv.getType().isAddress());
if (toAddr->getType().isMoveOnlyWrapped())
toAddr = SGF.B.createMoveOnlyWrapperToCopyableAddr(E, toAddr);
SILValue fromAddr = mv.getValue();
if (fromAddr->getType().isMoveOnlyWrapped())
fromAddr = SGF.B.createMoveOnlyWrapperToCopyableAddr(E, fromAddr);
SGF.B.createExplicitCopyAddr(subExpr, fromAddr, toAddr, IsNotTake,
IsInitialization);
optTemp->finishInitialization(SGF);
return RValue(SGF, {optTemp->getManagedAddress()}, subType.getASTType());
}
RValue RValueEmitter::visitMacroExpansionExpr(MacroExpansionExpr *E,
SGFContext C) {
if (auto *rewritten = E->getRewritten()) {
return visit(rewritten, C);
}
else if (auto *MED = E->getSubstituteDecl()) {
Mangle::ASTMangler mangler;
MED->forEachExpandedNode([&](ASTNode node) {
if (auto *expr = node.dyn_cast<Expr *>())
visit(expr, C);
else if (auto *stmt = node.dyn_cast<Stmt *>())
SGF.emitStmt(stmt);
else
SGF.visit(node.get<Decl *>());
});
return RValue();
}
return RValue();
}
RValue RValueEmitter::visitCurrentContextIsolationExpr(
CurrentContextIsolationExpr *E, SGFContext C) {
// If we are in an actor initializer that is isolated to, the current context
// isolation flow-sensitive: before 'self' has been initialized, it will be
// nil. After 'self' has been initialized, it will be 'self'. Introduce a
// custom builtin that Definite Initialization will rewrite appropriately.
if (auto ctor = dyn_cast_or_null<ConstructorDecl>(
SGF.F.getDeclRef().getDecl())) {
auto isolation = getActorIsolation(ctor);
if (ctor->isDesignatedInit() &&
isolation == ActorIsolation::ActorInstance &&
isolation.getActorInstance() == ctor->getImplicitSelfDecl()) {
ASTContext &ctx = SGF.getASTContext();
auto builtinName = ctx.getIdentifier(
isolation.isDistributedActor()
? getBuiltinName(BuiltinValueKind::FlowSensitiveDistributedSelfIsolation)
: getBuiltinName(BuiltinValueKind::FlowSensitiveSelfIsolation));
SILType resultTy = SGF.getLoweredType(E->getType());
auto injection = cast<InjectIntoOptionalExpr>(E->getActor());
ProtocolConformanceRef conformance;
Expr *origActorExpr;
if (isolation.isDistributedActor()) {
// Create a reference to the asLocalActor getter.
auto asLocalActorDecl = getDistributedActorAsLocalActorComputedProperty(
SGF.F.getDeclContext()->getParentModule());
auto asLocalActorGetter = asLocalActorDecl->getAccessor(AccessorKind::Get);
SILDeclRef asLocalActorRef = SILDeclRef(
asLocalActorGetter, SILDeclRef::Kind::Func);
SGF.emitGlobalFunctionRef(E, asLocalActorRef);
// Extract the base ('self') and the DistributedActor conformance.
auto memberRef = cast<MemberRefExpr>(injection->getSubExpr());
conformance = memberRef->getDecl().getSubstitutions()
.getConformances()[0];
origActorExpr = memberRef->getBase();
} else {
auto erasure = cast<ErasureExpr>(injection->getSubExpr());
conformance = erasure->getConformances()[0];
origActorExpr = erasure->getSubExpr();
}
SGF.SGM.useConformance(conformance);
SubstitutionMap subs = SubstitutionMap::getProtocolSubstitutions(
conformance.getRequirement(), origActorExpr->getType(), conformance);
auto origActor = SGF.maybeEmitValueOfLocalVarDecl(
ctor->getImplicitSelfDecl(), AccessKind::Read).getValue();
auto call = SGF.B.createBuiltin(E, builtinName, resultTy, subs, origActor);
return RValue(SGF, E, ManagedValue::forForwardedRValue(SGF, call));
}
}
return visit(E->getActor(), C);
}
ManagedValue
SILGenFunction::emitExtractFunctionIsolation(SILLocation loc,
ArgumentSource &&fnSource,
SGFContext C) {
std::optional<Scope> scope;
// Emit the function value in its own scope unless we're going
// to return it at +0.
if (!C.isGuaranteedPlusZeroOk())
scope.emplace(Cleanups, CleanupLocation(loc));
// Emit a borrow of the function value. Isolation extraction is a kind
// of projection, so we can emit the function with the same context as
// we got.
auto fnLoc = fnSource.getLocation();
auto fn = std::move(fnSource).getAsSingleValue(*this,
C.withFollowingProjection());
fn = fn.borrow(*this, fnLoc);
// Extract the isolation value.
SILValue isolation = B.createFunctionExtractIsolation(loc, fn.getValue());
// If we can return the isolation at +0, do so.
if (C.isGuaranteedPlusZeroOk())
return ManagedValue::forBorrowedObjectRValue(isolation);
// Otherwise, copy it.
isolation = B.createCopyValue(loc, isolation);
// Manage the copy and exit the scope we entered earlier.
auto isolationMV = emitManagedRValueWithCleanup(isolation);
isolationMV = scope->popPreservingValue(isolationMV);
return isolationMV;
}
RValue SILGenFunction::emitRValue(Expr *E, SGFContext C) {
assert(!E->getType()->hasLValueType() &&
"l-values must be emitted with emitLValue");
return RValueEmitter(*this).visit(E, C);
}
RValue SILGenFunction::emitPlusOneRValue(Expr *E, SGFContext C) {
Scope S(*this, SILLocation(E));
assert(!E->getType()->hasLValueType() &&
"l-values must be emitted with emitLValue");
return S.popPreservingValue(
RValueEmitter(*this).visit(E, C.withSubExprSideEffects()));
}
RValue SILGenFunction::emitPlusZeroRValue(Expr *E) {
// Check if E is a case that we know how to emit at plus zero. If so, handle
// it here.
//
// TODO: Fill this in.
// Otherwise, we go through the +1 path and borrow the result.
return emitPlusOneRValue(E).borrow(*this, SILLocation(E));
}
static void emitIgnoredPackExpansion(SILGenFunction &SGF,
PackExpansionExpr *E) {
auto expansionType =
cast<PackExpansionType>(E->getType()->getCanonicalType());
auto formalPackType = CanPackType::get(SGF.getASTContext(), expansionType);
auto openedElementEnv = E->getGenericEnvironment();
SGF.emitDynamicPackLoop(E, formalPackType, /*component index*/ 0,
openedElementEnv,
[&](SILValue indexWithinComponent,
SILValue packExpansionIndex,
SILValue packIndex) {
SGF.emitIgnoredExpr(E->getPatternExpr());
});
}
// Evaluate the expression as an lvalue or rvalue, discarding the result.
void SILGenFunction::emitIgnoredExpr(Expr *E) {
// If this is a tuple expression, recursively ignore its elements.
// This may let us recursively avoid work.
if (auto *TE = dyn_cast<TupleExpr>(E)) {
for (auto *elt : TE->getElements())
emitIgnoredExpr(elt);
return;
}
// Pack expansions can come up in tuples, and potentially elsewhere
// if we ever emit e.g. ignored call arguments with a builtin.
if (auto *expansion = dyn_cast<PackExpansionExpr>(E)) {
return emitIgnoredPackExpansion(*this, expansion);
}
// TODO: Could look through arbitrary implicit conversions that don't have
// side effects, or through tuple shuffles, by emitting ignored default
// arguments.
FullExpr scope(Cleanups, CleanupLocation(E));
if (E->getType()->hasLValueType()) {
// Emit the l-value, but don't perform an access.
FormalEvaluationScope scope(*this);
emitLValue(E, SGFAccessKind::IgnoredRead);
return;
}
// If this is a load expression, we try hard not to actually do the load
// (which could materialize a potentially expensive value with cleanups).
if (auto *LE = dyn_cast<LoadExpr>(E)) {
FormalEvaluationScope scope(*this);
LValue lv = emitLValue(LE->getSubExpr(), SGFAccessKind::IgnoredRead);
// If loading from the lvalue is guaranteed to have no side effects, we
// don't need to drill into it.
if (lv.isLoadingPure())
return;
// If the last component is physical, then we just need to drill through
// side effects in the lvalue, but don't need to perform the final load.
if (lv.isLastComponentPhysical()) {
emitAddressOfLValue(E, std::move(lv));
return;
}
// Otherwise, we must call the ultimate getter to get its potential side
// effect.
emitLoadOfLValue(E, std::move(lv), SGFContext::AllowImmediatePlusZero);
return;
}
auto findLoadThroughForceValueExprs = [](Expr *E,
SmallVectorImpl<ForceValueExpr *>
&forceValueExprs) -> LoadExpr * {
while (auto FVE = dyn_cast<ForceValueExpr>(E)) {
forceValueExprs.push_back(FVE);
E = FVE->getSubExpr();
}
return dyn_cast<LoadExpr>(E);
};
// Look through force unwrap(s) of an lvalue. If possible, we want to just to
// emit the precondition(s) without having to load the value.
SmallVector<ForceValueExpr *, 4> forceValueExprs;
if (auto *LE = findLoadThroughForceValueExprs(E, forceValueExprs)) {
FormalEvaluationScope scope(*this);
LValue lv = emitLValue(LE->getSubExpr(), SGFAccessKind::IgnoredRead);
ManagedValue value;
if (lv.isLastComponentPhysical()) {
value = emitAddressOfLValue(LE, std::move(lv));
} else {
value = emitLoadOfLValue(LE, std::move(lv),
SGFContext::AllowImmediatePlusZero).getAsSingleValue(*this, LE);
}
for (auto &FVE : llvm::reverse(forceValueExprs)) {
const TypeLowering &optTL = getTypeLowering(FVE->getSubExpr()->getType());
bool isImplicitUnwrap = FVE->isImplicit() &&
FVE->isForceOfImplicitlyUnwrappedOptional();
value = emitCheckedGetOptionalValueFrom(
FVE, value, isImplicitUnwrap, optTL, SGFContext::AllowImmediatePlusZero);
}
return;
}
// Otherwise, emit the result (to get any side effects), but produce it at +0
// if that allows simplification.
emitRValue(E, SGFContext::AllowImmediatePlusZero);
}
/// Emit the given expression as an r-value, then (if it is a tuple), combine
/// it together into a single ManagedValue.
ManagedValue SILGenFunction::emitRValueAsSingleValue(Expr *E, SGFContext C) {
return emitRValue(E, C).getAsSingleValue(*this, E);
}
RValue SILGenFunction::emitUndefRValue(SILLocation loc, Type type) {
return RValue(*this, loc, type->getCanonicalType(),
emitUndef(getLoweredType(type)));
}
ManagedValue SILGenFunction::emitUndef(Type type) {
return emitUndef(getLoweredType(type));
}
ManagedValue SILGenFunction::emitUndef(SILType type) {
SILValue undef = SILUndef::get(F, type);
return ManagedValue::forRValueWithoutOwnership(undef);
}
|