1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
|
//===--- SILGenFunction.h - Function Specific AST lower context -*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SILGEN_SILGENFUNCTION_H
#define SWIFT_SILGEN_SILGENFUNCTION_H
#include "FormalEvaluation.h"
#include "Initialization.h"
#include "InitializeDistActorIdentity.h"
#include "JumpDest.h"
#include "RValue.h"
#include "SGFContext.h"
#include "SILGen.h"
#include "SILGenBuilder.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/Basic/NoDiscard.h"
#include "swift/Basic/ProfileCounter.h"
#include "swift/Basic/Statistic.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILType.h"
#include "llvm/ADT/PointerIntPair.h"
namespace swift {
class ParameterList;
class ProfileCounterRef;
namespace Lowering {
class ArgumentSource;
class Condition;
class Conversion;
class ConsumableManagedValue;
class LogicalPathComponent;
class LValue;
class ManagedValue;
class PreparedArguments;
class RValue;
class CalleeTypeInfo;
class ResultPlan;
using ResultPlanPtr = std::unique_ptr<ResultPlan>;
class ArgumentScope;
class Scope;
class ExecutorBreadcrumb;
struct LValueOptions {
bool IsNonAccessing = false;
/// Derive options for accessing the base of an l-value, given that
/// applying the derived component might touch the memory.
LValueOptions forComputedBaseLValue() const {
auto copy = *this;
// Assume we're going to access the base.
copy.IsNonAccessing = false;
return copy;
}
/// Derive options for accessing the base of an l-value, given that
/// applying the derived component will not touch the memory.
LValueOptions forProjectedBaseLValue() const {
auto copy = *this;
return copy;
}
};
class PatternMatchContext;
/// A formal section of the function. This is a SILGen-only concept,
/// meant to improve locality. It's only reflected in the generated
/// SIL implicitly.
enum class FunctionSection : bool {
/// The section of the function dedicated to ordinary control flow.
Ordinary,
/// The section of the function dedicated to error-handling and
/// similar things.
Postmatter,
};
/// Parameter to \c SILGenFunction::emitCaptures that indicates what the
/// capture parameters are being emitted for.
enum class CaptureEmission {
/// Captures are being emitted for immediate application to a local function.
ImmediateApplication,
/// Captures are being emitted for partial application to form a closure
/// value.
PartialApplication,
/// Captures are being emitted for partial application of a local property
/// wrapper setter for assign_by_wrapper. Captures are guaranteed to not
/// escape, because assign_by_wrapper will not use the setter if the captured
/// variable is not initialized.
AssignByWrapper,
};
/// Different ways in which an l-value can be emitted.
enum class SGFAccessKind : uint8_t {
/// The access is a read whose result will be ignored.
IgnoredRead,
/// The access is a read that would prefer the address of a borrowed value.
/// This should only be used when it is semantically acceptable to borrow
/// the value, not just because the caller would benefit from a borrowed
/// value. See shouldEmitSelfAsRValue in SILGenLValue.cpp.
///
/// The caller will be calling emitAddressOfLValue or emitLoadOfLValue
/// on the l-value. The latter may be less efficient than an access
/// would be if the l-value had been emitted with an owned-read kind.
BorrowedAddressRead,
/// The access is a read that would prefer a loaded borrowed value.
/// This should only be used when it is semantically acceptable to borrow
/// the value, not just because the caller would benefit from a borrowed
/// value. See shouldEmitSelfAsRValue in SILGenLValue.cpp.
///
/// There isn't yet a way to emit the access that takes advantage of this.
BorrowedObjectRead,
/// The access is a read that would prefer the address of an owned value.
///
/// The caller will be calling emitAddressOfLValue or emitLoadOfLValue
/// on the l-value.
OwnedAddressRead,
/// The access is a read that would prefer a loaded owned value.
///
/// The caller will be calling emitLoadOfLValue on the l-value.
OwnedObjectRead,
/// The access is an assignment (or maybe an initialization).
///
/// The caller will be calling emitAssignToLValue on the l-value.
Write,
/// The access is a read-modify-write.
///
/// The caller will be calling emitAddressOfLValue on the l-value.
ReadWrite,
/// The access is a consuming operation that would prefer a loaded address
/// value. The lvalue will subsequently be left in an uninitialized state.
///
/// The caller will be calling emitAddressOfLValue and then load from the
/// l-value.
OwnedAddressConsume,
/// The access is a consuming operation that would prefer a loaded owned
/// value. The lvalue will subsequently be left in an uninitialized state.
///
/// The caller will be calling emitAddressOfLValue and then load from the
/// l-value.
OwnedObjectConsume,
};
static inline bool isBorrowAccess(SGFAccessKind kind) {
switch (kind) {
case SGFAccessKind::IgnoredRead:
case SGFAccessKind::BorrowedAddressRead:
case SGFAccessKind::BorrowedObjectRead:
return true;
case SGFAccessKind::OwnedAddressRead:
case SGFAccessKind::OwnedObjectRead:
case SGFAccessKind::Write:
case SGFAccessKind::ReadWrite:
case SGFAccessKind::OwnedAddressConsume:
case SGFAccessKind::OwnedObjectConsume:
return false;
}
}
static inline bool isReadAccess(SGFAccessKind kind) {
return uint8_t(kind) <= uint8_t(SGFAccessKind::OwnedObjectRead);
}
static inline bool isConsumeAccess(SGFAccessKind kind) {
switch (kind) {
case SGFAccessKind::IgnoredRead:
case SGFAccessKind::BorrowedAddressRead:
case SGFAccessKind::BorrowedObjectRead:
case SGFAccessKind::OwnedAddressRead:
case SGFAccessKind::OwnedObjectRead:
case SGFAccessKind::Write:
case SGFAccessKind::ReadWrite:
return false;
case SGFAccessKind::OwnedAddressConsume:
case SGFAccessKind::OwnedObjectConsume:
return true;
}
}
/// Given a read access kind, does it require an owned result?
static inline bool isReadAccessResultOwned(SGFAccessKind kind) {
assert(isReadAccess(kind));
return uint8_t(kind) >= uint8_t(SGFAccessKind::OwnedAddressRead);
}
/// Given a read access kind, does it require an address result?
static inline bool isReadAccessResultAddress(SGFAccessKind kind) {
assert(isReadAccess(kind));
return kind == SGFAccessKind::BorrowedAddressRead ||
kind == SGFAccessKind::OwnedAddressRead;
}
/// Return an address-preferring version of the given access kind.
static inline SGFAccessKind getAddressAccessKind(SGFAccessKind kind) {
switch (kind) {
case SGFAccessKind::BorrowedObjectRead:
return SGFAccessKind::BorrowedAddressRead;
case SGFAccessKind::OwnedObjectRead:
return SGFAccessKind::OwnedAddressRead;
case SGFAccessKind::OwnedObjectConsume:
return SGFAccessKind::OwnedAddressConsume;
case SGFAccessKind::IgnoredRead:
case SGFAccessKind::BorrowedAddressRead:
case SGFAccessKind::OwnedAddressRead:
case SGFAccessKind::OwnedAddressConsume:
case SGFAccessKind::Write:
case SGFAccessKind::ReadWrite:
return kind;
}
llvm_unreachable("bad kind");
}
static inline AccessKind getFormalAccessKind(SGFAccessKind kind) {
switch (kind) {
case SGFAccessKind::IgnoredRead:
case SGFAccessKind::BorrowedAddressRead:
case SGFAccessKind::BorrowedObjectRead:
case SGFAccessKind::OwnedAddressRead:
case SGFAccessKind::OwnedObjectRead:
return AccessKind::Read;
case SGFAccessKind::Write:
return AccessKind::Write;
// TODO: Do we need our own AccessKind here?
case SGFAccessKind::OwnedAddressConsume:
case SGFAccessKind::OwnedObjectConsume:
case SGFAccessKind::ReadWrite:
return AccessKind::ReadWrite;
}
llvm_unreachable("bad kind");
}
/// Parameter to \c SILGenFunction::emitAddressOfLValue that indicates
/// what kind of instrumentation should be emitted when compiling under
/// Thread Sanitizer.
enum class TSanKind : bool {
None = 0,
/// Instrument the LValue access as an inout access.
InoutAccess
};
/// Represents an LValue opened for mutating access.
///
/// This is used by LogicalPathComponent::projectAsBase().
struct MaterializedLValue {
ManagedValue temporary;
// Only set if a callback is required
CanType origSelfType;
CanGenericSignature genericSig;
SILValue callback;
SILValue callbackStorage;
MaterializedLValue() {}
explicit MaterializedLValue(ManagedValue temporary)
: temporary(temporary) {}
MaterializedLValue(ManagedValue temporary,
CanType origSelfType,
CanGenericSignature genericSig,
SILValue callback,
SILValue callbackStorage)
: temporary(temporary),
origSelfType(origSelfType),
genericSig(genericSig),
callback(callback),
callbackStorage(callbackStorage) {}
};
/// The kind of operation under which we are querying a storage reference.
enum class StorageReferenceOperationKind {
Borrow,
Consume
};
/// SILGenFunction - an ASTVisitor for producing SIL from function bodies.
class LLVM_LIBRARY_VISIBILITY SILGenFunction
: public ASTVisitor<SILGenFunction>
{ // style violation because Xcode <rdar://problem/13065676>
public:
/// The SILGenModule this function belongs to.
SILGenModule &SGM;
/// The SILFunction being constructed.
SILFunction &F;
/// The SILModuleConventions for this SIL module.
SILModuleConventions silConv;
bool useLoweredAddresses() const { return silConv.useLoweredAddresses(); }
/// The DeclContext corresponding to the function currently being emitted.
DeclContext * const FunctionDC;
/// The name of the function currently being emitted, as presented to user
/// code by #function.
DeclName MagicFunctionName;
std::string MagicFunctionString;
/// The specialized type context in which the function is being emitted.
/// Only applies to closures.
std::optional<FunctionTypeInfo> TypeContext;
ASTContext &getASTContext() const { return SGM.M.getASTContext(); }
/// The first block in the postmatter section of the function, if
/// anything has been built there.
///
/// (This field must precede B because B's initializer calls
/// createBasicBlock().)
SILFunction::iterator StartOfPostmatter;
/// The current section of the function that we're emitting code in.
///
/// The postmatter section is a part of the function intended for
/// things like error-handling that don't need to be mixed into the
/// normal code sequence.
///
/// If the current function section is Ordinary, and
/// StartOfPostmatter does not point to the function end, the current
/// insertion block should be ordered before that.
///
/// If the current function section is Postmatter, StartOfPostmatter
/// does not point to the function end and the current insertion block is
/// ordered after that (inclusive).
///
/// (This field must precede B because B's initializer calls
/// createBasicBlock().)
FunctionSection CurFunctionSection = FunctionSection::Ordinary;
/// Does this function require a non-void direct return?
bool NeedsReturn = false;
/// Is emission currently within a formal modification?
bool isInFormalEvaluationScope() const {
return FormalEvalContext.isInFormalEvaluationScope();
}
/// Is emission currently within an inout conversion?
bool InInOutConversionScope = false;
/// The SILGenBuilder used to construct the SILFunction. It is what maintains
/// the notion of the current block being emitted into.
SILGenBuilder B;
struct BreakContinueDest {
LabeledStmt *Target;
JumpDest BreakDest;
JumpDest ContinueDest;
};
std::vector<BreakContinueDest> BreakContinueDestStack;
std::vector<PatternMatchContext*> SwitchStack;
/// Information for a parent SingleValueStmtExpr initialization.
struct SingleValueStmtInitialization {
/// The target expressions to be used for initialization.
SmallPtrSet<Expr *, 4> Exprs;
SILValue InitializationBuffer;
SingleValueStmtInitialization(SILValue buffer)
: InitializationBuffer(buffer) {}
};
/// A stack of active SingleValueStmtExpr initializations that may be
/// initialized by the branches of a statement.
std::vector<SingleValueStmtInitialization> SingleValueStmtInitStack;
SourceFile *SF;
SourceLoc LastSourceLoc;
using ASTScopeTy = ast_scope::ASTScopeImpl;
const ASTScopeTy *FnASTScope = nullptr;
using VarDeclScopeMapTy =
llvm::SmallDenseMap<ValueDecl *, const ASTScopeTy *, 8>;
/// The ASTScope each variable declaration belongs to.
VarDeclScopeMapTy VarDeclScopeMap;
/// Caches one SILDebugScope for each ASTScope.
llvm::SmallDenseMap<std::pair<const ASTScopeTy *, const SILDebugScope *>,
const SILDebugScope *, 16>
ScopeMap;
/// Caches one toplevel inline SILDebugScope for each macro BufferID.
llvm::SmallDenseMap<unsigned, const SILDebugScope *, 16> InlinedScopeMap;
/// The cleanup depth and BB for when the operand of a
/// BindOptionalExpr is a missing value.
SmallVector<JumpDest, 2> BindOptionalFailureDests;
/// The cleanup depth and epilog BB for "return" statements.
JumpDest ReturnDest = JumpDest::invalid();
/// The cleanup depth and epilog BB for "fail" statements.
JumpDest FailDest = JumpDest::invalid();
/// The destination for throws. The block will always be in the
/// postmatter. For a direct error return, it takes a BB argument
/// of the exception type.
JumpDest ThrowDest = JumpDest::invalid();
/// Support for typed throws.
SILArgument *IndirectErrorResult = nullptr;
/// The destination for coroutine unwinds. The block will always
/// be in the postmatter.
JumpDest CoroutineUnwindDest = JumpDest::invalid();
/// This records information about the currently active cleanups.
CleanupManager Cleanups;
/// The current context where formal evaluation cleanups are managed.
FormalEvaluationContext FormalEvalContext;
/// VarLoc - representation of an emitted local variable or constant. There
/// are four scenarios here:
///
/// 1) This could be a simple copyable "var" or "let" emitted into an
/// alloc_box. In this case, 'value' contains a pointer (it is always an
/// address) to the value, and 'box' contains a pointer to the retain
/// count for the box.
/// 2) This could be a simple non-address-only "let" represented directly. In
/// this case, 'value' is the value of the let and is never of address
/// type. 'box' is always nil.
/// 3) This could be an address-only "let" emitted into an alloc_stack, or
/// passed in from somewhere else that has guaranteed lifetime (e.g. an
/// incoming argument of 'in_guaranteed' convention). In this case,
/// 'value' is a pointer to the memory (and thus, its type is always an
/// address) and the 'box' is nil.
/// 4) This could be a noncopyable "var" or "let" emitted into an
/// alloc_box. In this case, 'value' is nil and the 'box' contains the box
/// itself. The user must always reproject from the box and insert an
/// access marker/must_must_check as appropriate.
///
/// Generally, code shouldn't be written to enumerate these four cases, it
/// should just handle the case of "box or not" or "address or not", depending
/// on what the code cares about.
struct VarLoc {
/// value - the value of the variable, or the address the variable is
/// stored at (if "value.getType().isAddress()" is true).
///
/// It may be invalid if we are supposed to lazily project out an address
/// from a box.
SILValue value;
/// box - This is the retainable box for something emitted to an alloc_box.
/// It may be invalid if no box was made for the value (e.g., because it was
/// an inout value, or constant emitted to an alloc_stack).
SILValue box;
static VarLoc get(SILValue value, SILValue box = SILValue()) {
VarLoc Result;
Result.value = value;
Result.box = box;
return Result;
}
};
/// VarLocs - Entries in this map are generated when a PatternBindingDecl is
/// emitted. The map is queried to produce the lvalue for a DeclRefExpr to
/// a local variable.
llvm::DenseMap<ValueDecl*, VarLoc> VarLocs;
/// The local auxiliary declarations for the parameters of this function that
/// need to be emitted inside the next brace statement.
llvm::SmallVector<VarDecl *, 2> LocalAuxiliaryDecls;
/// The mappings between instance properties referenced by this init
/// accessor (via initializes/accesses attributes) and and argument
/// declarations synthesized to access them in the body.
llvm::DenseMap<VarDecl *, ParamDecl *> InitAccessorArgumentMappings;
// Context information for tracking an `async let` child task.
struct AsyncLetChildTask {
SILValue asyncLet; // RawPointer to the async let state
SILValue resultBuf; // RawPointer to the result buffer
bool isThrowing; // true if task can throw
};
/// Mapping from each async let clause to the AsyncLet repr that contains the
/// AsyncTask that will produce the initializer value for that clause and a
/// Boolean value indicating whether the task can throw.
llvm::SmallDenseMap<std::pair<PatternBindingDecl *, unsigned>,
AsyncLetChildTask>
AsyncLetChildTasks;
/// Indicates whether this function is a distributed actor's designated
/// initializer, providing the needed clean-up to emit an identity
/// assignment after initializing the actorSystem property.
std::optional<InitializeDistActorIdentity> DistActorCtorContext;
/// When rebinding 'self' during an initializer delegation, we have to be
/// careful to preserve the object at 1 retain count during the delegation
/// because of assumptions in framework code. This enum tracks the state of
/// 'self' during the delegation.
enum SelfInitDelegationStates {
// 'self' is a normal variable.
NormalSelf,
/// 'self' needs to be shared borrowed next time self is used.
///
/// At this point we do not know if:
///
/// 1. 'self' is used at all. In such a case, the borrow scope for self will
/// end before the delegating init call and we will overwrite the value
/// in
/// the self box.
///
/// 2. If there is a consuming self use, will self be borrowed in an
/// exclusive manner or a shared manner. If we need to perform an
/// exclusive borrow, we will transition to WillExclusiveBorrowSelf in
/// SILGenApply.
WillSharedBorrowSelf,
/// 'self' needs to be exclusively borrowed next time self is used.
///
/// We only advance to this state in SILGenApply when we know that we are
/// going to be passing self to a delegating initializer that will consume
/// it. We will always evaluate self before any other uses of self in the
/// self.init call, so we know that we will never move from
/// WillExclusiveBorrowSelf to WillSharedBorrowSelf.
///
/// Once we are in this point, all other uses of self must be borrows until
/// we use self in the delegating init call. All of the borrow scopes /must/
/// end before the delegating init call.
WillExclusiveBorrowSelf,
/// 'self' was shared borrowed to compute the self argument of the
/// delegating init call.
///
/// This means that the delegating init uses a metatype or the like as its
/// self argument instead of 'self'. Thus we are able to perform a shared
/// borrow of self to compute that value and end the shared borrow scope
/// before the delegating initializer apply.
DidSharedBorrowSelf,
// 'self' was exclusively borrowed for the delegating init call. All further
// uses of self until the actual delegating init must be done via shared
// borrows that end strictly before the delegating init call.
DidExclusiveBorrowSelf,
};
SelfInitDelegationStates SelfInitDelegationState = NormalSelf;
ManagedValue InitDelegationSelf;
SILValue InitDelegationSelfBox;
std::optional<SILLocation> InitDelegationLoc;
ManagedValue SuperInitDelegationSelf;
RValue emitRValueForSelfInDelegationInit(SILLocation loc, CanType refType,
SILValue result, SGFContext C);
/// A version of emitRValueForSelfInDelegationInit that uses formal evaluation
/// operations instead of normal scoped operations.
RValue emitFormalEvaluationRValueForSelfInDelegationInit(SILLocation loc,
CanType refType,
SILValue addr,
SGFContext C);
/// The metatype argument to an allocating constructor, if we're emitting one.
SILValue AllocatorMetatype;
/// If set, the current function is an async function which is formally
/// isolated to the given executor, and hop_to_executor instructions must
/// be inserted at the begin of the function and after all suspension
/// points.
SILValue ExpectedExecutor;
struct ActivePackExpansion {
GenericEnvironment *OpenedElementEnv;
SILValue ExpansionIndex;
/// Mapping from temporary pack expressions to their values. These
/// are evaluated once, with their elements projected in a dynamic
/// pack loop.
llvm::SmallDenseMap<MaterializePackExpr *, SILValue>
MaterializedPacks;
ActivePackExpansion(GenericEnvironment *OpenedElementEnv)
: OpenedElementEnv(OpenedElementEnv) {}
};
/// The innermost active pack expansion.
ActivePackExpansion *InnermostPackExpansion = nullptr;
ActivePackExpansion *getInnermostPackExpansion() const {
assert(InnermostPackExpansion && "not inside a pack expansion!");
return InnermostPackExpansion;
}
/// True if 'return' without an operand or falling off the end of the current
/// function is valid.
bool allowsVoidReturn() const { return ReturnDest.getBlock()->args_empty(); }
/// Emit code to increment a counter for profiling.
void emitProfilerIncrement(ASTNode Node);
/// Emit code to increment a counter for profiling.
void emitProfilerIncrement(ProfileCounterRef Ref);
/// Load the profiled execution count corresponding to \p Node, if one is
/// available.
ProfileCounter loadProfilerCount(ASTNode Node) const;
/// Get the PGO node's parent.
std::optional<ASTNode> getPGOParent(ASTNode Node) const;
/// Tracer object for counting SIL (and other events) caused by this instance.
FrontendStatsTracer StatsTracer;
SILGenFunction(SILGenModule &SGM, SILFunction &F, DeclContext *DC,
bool IsEmittingTopLevelCode = false);
~SILGenFunction();
/// Return a stable reference to the current cleanup.
CleanupsDepth getCleanupsDepth() const {
return Cleanups.getCleanupsDepth();
}
CleanupHandle getTopCleanup() const {
return Cleanups.getTopCleanup();
}
SILFunction &getFunction() { return F; }
const SILFunction &getFunction() const { return F; }
SILModule &getModule() { return F.getModule(); }
SILGenBuilder &getBuilder() { return B; }
const SILOptions &getOptions() { return getModule().getOptions(); }
// Returns the type expansion context for types in this function.
TypeExpansionContext getTypeExpansionContext() const {
return TypeExpansionContext(getFunction());
}
const TypeLowering &getTypeLowering(AbstractionPattern orig, Type subst) {
return F.getTypeLowering(orig, subst);
}
const TypeLowering &getTypeLowering(Type t) {
return F.getTypeLowering(t);
}
CanSILFunctionType getSILFunctionType(TypeExpansionContext context,
AbstractionPattern orig,
CanFunctionType substFnType) {
return SGM.Types.getSILFunctionType(context, orig, substFnType);
}
SILType getLoweredType(AbstractionPattern orig,
Type subst) {
return F.getLoweredType(orig, subst);
}
SILType getLoweredType(Type t) {
return F.getLoweredType(t);
}
SILType getLoweredType(AbstractionPattern orig, Type subst,
SILValueCategory category) {
return SILType::getPrimitiveType(F.getLoweredRValueType(orig, subst),
category);
}
SILType getLoweredType(Type t, SILValueCategory category) {
return SILType::getPrimitiveType(F.getLoweredRValueType(t), category);
}
CanType getLoweredRValueType(AbstractionPattern orig,
Type subst) {
return F.getLoweredRValueType(orig, subst);
}
CanType getLoweredRValueType(Type t) {
return F.getLoweredRValueType(t);
}
SILType getLoweredTypeForFunctionArgument(Type t) {
auto typeForConv =
SGM.Types.getLoweredType(t, TypeExpansionContext::minimal());
return getLoweredType(t).getCategoryType(typeForConv.getCategory());
}
SILType getLoweredLoadableType(Type t) {
return F.getLoweredLoadableType(t);
}
const TypeLowering &getTypeLowering(SILType type) {
return F.getTypeLowering(type);
}
SILType getSILInterfaceType(SILParameterInfo param) const {
return silConv.getSILType(param, CanSILFunctionType(),
getTypeExpansionContext());
}
SILType getSILInterfaceType(SILResultInfo result) const {
return silConv.getSILType(result, CanSILFunctionType(),
getTypeExpansionContext());
}
SILType getSILType(SILParameterInfo param, CanSILFunctionType fnTy) const {
return silConv.getSILType(param, fnTy, getTypeExpansionContext());
}
SILType getSILType(SILResultInfo result, CanSILFunctionType fnTy) const {
return silConv.getSILType(result, fnTy, getTypeExpansionContext());
}
SILType getSILTypeInContext(SILResultInfo result, CanSILFunctionType fnTy) {
auto t = F.mapTypeIntoContext(getSILType(result, fnTy));
return getTypeLowering(t).getLoweredType().getCategoryType(t.getCategory());
}
SILType getSILTypeInContext(SILParameterInfo param, CanSILFunctionType fnTy) {
auto t = F.mapTypeIntoContext(getSILType(param, fnTy));
return getTypeLowering(t).getLoweredType().getCategoryType(t.getCategory());
}
const SILConstantInfo &getConstantInfo(TypeExpansionContext context,
SILDeclRef constant) {
return SGM.Types.getConstantInfo(context, constant);
}
/// Return the normal local type-lowering information for the given
/// formal function type without any special abstraction pattern applied.
/// This matches the type that `emitRValue` etc. are expected to produce
/// without any contextual overrides.
FunctionTypeInfo getFunctionTypeInfo(CanAnyFunctionType fnType);
/// A helper method that calls getFunctionTypeInfo that also marks global
/// actor isolated async closures that are not sendable as sendable.
FunctionTypeInfo getClosureTypeInfo(AbstractClosureExpr *expr);
bool isEmittingTopLevelCode() { return IsEmittingTopLevelCode; }
void stopEmittingTopLevelCode() { IsEmittingTopLevelCode = false; }
std::optional<SILAccessEnforcement>
getStaticEnforcement(VarDecl *var = nullptr);
std::optional<SILAccessEnforcement>
getDynamicEnforcement(VarDecl *var = nullptr);
std::optional<SILAccessEnforcement>
getUnknownEnforcement(VarDecl *var = nullptr);
SourceManager &getSourceManager() { return SGM.M.getASTContext().SourceMgr; }
std::string getMagicFileIDString(SourceLoc loc);
StringRef getMagicFilePathString(SourceLoc loc);
StringRef getMagicFunctionString();
SILDebugLocation
getSILDebugLocation(SILBuilder &B, SILLocation Loc,
std::optional<SILLocation> CurDebugLocOverride,
bool ForMetaInstruction);
const SILDebugScope *getScopeOrNull(SILLocation Loc,
bool ForMetaInstruction = false);
private:
bool IsEmittingTopLevelCode;
const SILDebugScope *getOrCreateScope(SourceLoc SLoc);
const SILDebugScope *getMacroScope(SourceLoc SLoc);
const SILDebugScope *
getOrCreateScope(const ast_scope::ASTScopeImpl *ASTScope,
const SILDebugScope *FnScope,
const SILDebugScope *InlinedAt = nullptr);
public:
/// Enter the debug scope for \p Loc, creating it if necessary.
///
/// \param isBindingScope If true, this is a scope for the bindings introduced
/// by a let expression. This scope ends when the next innermost BraceStmt
/// ends.
void enterDebugScope(SILLocation Loc, bool isBindingScope = false);
/// Return to the previous debug scope.
void leaveDebugScope();
std::unique_ptr<Initialization>
prepareIndirectResultInit(SILLocation loc,
AbstractionPattern origResultType,
CanType formalResultType,
SmallVectorImpl<SILValue> &directResultsBuffer,
SmallVectorImpl<CleanupHandle> &cleanups);
/// Check to see if an initalization for a SingleValueStmtExpr is active, and
/// if the provided expression is for one of its branches. If so, returns the
/// initialization to use for the expression. Otherwise returns \c nullptr.
std::unique_ptr<Initialization> getSingleValueStmtInit(Expr *E);
//===--------------------------------------------------------------------===//
// Entry points for codegen
//===--------------------------------------------------------------------===//
/// Generates code for a FuncDecl.
void emitFunction(FuncDecl *fd);
/// Emits code for a ClosureExpr.
void emitClosure(AbstractClosureExpr *ce);
/// Generates code for a class destroying destructor. This
/// emits the body code from the DestructorDecl, calls the base class
/// destructor, then implicitly releases the elements of the class.
void emitDestroyingDestructor(DestructorDecl *dd);
/// Generates code for an artificial top-level function that starts an
/// application based on a main type and optionally a main type.
void emitArtificialTopLevel(Decl *mainDecl);
/// Generate code for calling the given main function.
void emitCallToMain(FuncDecl *mainDecl);
/// Generate code into @main for starting the async main on the main thread.
void emitAsyncMainThreadStart(SILDeclRef entryPoint);
/// Generates code for class/move only deallocating destructor. This calls the
/// destroying destructor and then deallocates 'self'.
void emitDeallocatingDestructor(DestructorDecl *dd);
/// Generates code for a class deallocating destructor. This
/// calls the destroying destructor and then deallocates 'self'.
void emitDeallocatingClassDestructor(DestructorDecl *dd);
/// Generates code for the deinit of the move only type and destroys all of
/// the fields.
void emitDeallocatingMoveOnlyDestructor(DestructorDecl *dd);
/// Generates code for a struct constructor.
/// This allocates the new 'self' value, emits the
/// body code, then returns the final initialized 'self'.
void emitValueConstructor(ConstructorDecl *ctor);
/// Generates code for an enum case constructor.
/// This allocates the new 'self' value, injects the enum case,
/// then returns the final initialized 'self'.
void emitEnumConstructor(EnumElementDecl *element);
/// Generates code for a class constructor's
/// allocating entry point. This allocates the new 'self' value, passes it to
/// the initializer entry point, then returns the initialized 'self'.
void emitClassConstructorAllocator(ConstructorDecl *ctor);
/// Generates code for a class constructor's
/// initializing entry point. This takes 'self' and the constructor arguments
/// as parameters and executes the constructor body to initialize 'self'.
void emitClassConstructorInitializer(ConstructorDecl *ctor);
/// Generates code to initialize instance variables from their
/// initializers.
///
/// \param dc The DeclContext containing the current function.
/// \param selfDecl The 'self' declaration within the current function.
/// \param nominal The type whose members are being initialized.
void emitMemberInitializers(DeclContext *dc, VarDecl *selfDecl,
NominalTypeDecl *nominal);
/// Generates code to initialize stored property from its
/// initializer.
///
/// \param dc The DeclContext containing the current function.
/// \param selfDecl The 'self' declaration within the current function.
/// \param field The stored property that has to be initialized.
/// \param substitutions The substitutions to apply to initializer and setter.
void emitMemberInitializer(DeclContext *dc, VarDecl *selfDecl,
PatternBindingDecl *field,
SubstitutionMap substitutions);
void emitMemberInitializationViaInitAccessor(DeclContext *dc,
VarDecl *selfDecl,
PatternBindingDecl *member,
SubstitutionMap subs);
/// Emit a method that initializes the ivars of a class.
void emitIVarInitializer(SILDeclRef ivarInitializer);
/// Emit a method that destroys the ivars of a class.
void emitIVarDestroyer(SILDeclRef ivarDestroyer);
/// Generates code for the given init accessor represented by AccessorDecl.
/// This emits the body code and replaces all `self.<property>` references
/// with either argument (if property appears in `acesses` list`) or result
/// value assignment.
void emitInitAccessor(AccessorDecl *accessor);
/// Generates code to emit the given setter reference to the given base value.
SILValue emitApplyOfSetterToBase(SILLocation loc, SILDeclRef setter,
ManagedValue base,
SubstitutionMap substitutions);
/// Emit `assign_or_init` instruction that is going to either initialize
/// or assign the given value to the given field.
///
/// \param loc The location to use for the instruction.
/// \param selfValue The 'self' value.
/// \param field The field to assign or initialize.
/// \param newValue the value to assign/initialize the field with.
/// \param substitutions The substitutions to apply to initializer and setter.
void emitAssignOrInit(SILLocation loc, ManagedValue selfValue, VarDecl *field,
ManagedValue newValue, SubstitutionMap substitutions);
/// Generates code to destroy the instance variables of a class.
///
/// \param selfValue The 'self' value.
/// \param cd The class declaration whose members are being destroyed.
/// \param finishBB If set, used as the basic block after members have been
/// destroyed, and we're ready to perform final cleanups
/// before returning.
void emitClassMemberDestruction(ManagedValue selfValue, ClassDecl *cd,
CleanupLocation cleanupLoc,
SILBasicBlock* finishBB);
/// Generates code to destroy the instance variables of a move only non-class
/// nominal type.
///
/// \param selfValue The 'self' value.
/// \param nd The nominal declaration whose members are being destroyed.
void emitMoveOnlyMemberDestruction(SILValue selfValue, NominalTypeDecl *nd,
CleanupLocation cleanupLoc);
/// Generates code to destroy linearly recursive data structures, without
/// building up the call stack.
///
/// E.x.: In the following we want to deinit next without recursing into next.
///
/// class Node<A> {
/// let value: A
/// let next: Node<A>?
/// }
///
/// \param selfValue The 'self' value.
/// \param cd The class declaration whose members are being destroyed.
/// \param recursiveLink The property that forms the recursive structure.
void emitRecursiveChainDestruction(ManagedValue selfValue,
ClassDecl *cd,
VarDecl* recursiveLink,
CleanupLocation cleanupLoc);
/// Generates a thunk from a foreign function to the native Swift convention.
void emitForeignToNativeThunk(SILDeclRef thunk);
/// Generates a thunk from a native function to foreign conventions.
void emitNativeToForeignThunk(SILDeclRef thunk);
/// Generates a stub that launches a detached task for running the NativeToForeignThunk of an
/// async native method.
///
/// Returns the SILFunction created for the closure implementation function that is enqueued on the
/// new task.
SILFunction *emitNativeAsyncToForeignThunk(SILDeclRef thunk);
/// Generates a thunk that contains a runtime precondition that
/// the given function is called on the expected executor.
ManagedValue emitActorIsolationErasureThunk(SILLocation loc,
ManagedValue func,
CanAnyFunctionType isolatedType,
CanAnyFunctionType nonIsolatedType);
ManagedValue emitExtractFunctionIsolation(SILLocation loc,
ArgumentSource &&fnSource,
SGFContext C);
ManagedValue emitDistributedActorAsAnyActor(SILLocation loc,
SubstitutionMap distributedActorSubs,
ManagedValue actor);
/// Generate a nullary function that returns the given value.
/// If \p emitProfilerIncrement is set, emit a profiler increment for
/// \p value.
void emitGeneratorFunction(SILDeclRef function, Expr *value,
bool emitProfilerIncrement = false);
/// Generate a nullary function that returns the value of the given variable's
/// expression initializer.
void emitGeneratorFunction(SILDeclRef function, VarDecl *var);
/// Generate a nullary function that has the given result interface type and
/// body.
void emitGeneratorFunction(
SILDeclRef function, Type resultInterfaceType, BraceStmt *body);
/// Generate an ObjC-compatible destructor (-dealloc).
void emitObjCDestructor(SILDeclRef dtor);
/// Generate code to obtain the address of the given global variable.
ManagedValue emitGlobalVariableRef(SILLocation loc, VarDecl *var,
std::optional<ActorIsolation> actorIso);
void emitMarkFunctionEscapeForTopLevelCodeGlobals(SILLocation Loc,
CaptureInfo CaptureInfo);
/// Generate a lazy global initializer.
void emitLazyGlobalInitializer(PatternBindingDecl *binding,
unsigned pbdEntry);
/// Generate a global accessor, using the given initializer token and
/// function
void emitGlobalAccessor(VarDecl *global,
SILGlobalVariable *onceToken,
SILFunction *onceFunc);
/// Generate a protocol witness entry point, invoking 'witness' at the
/// abstraction level of 'requirement'.
///
/// This is used for both concrete witness thunks and default witness
/// thunks.
///
/// \param isPreconcurrency If the conformance is marked as `@preconcurrency`
/// instead of a hop (when entering isolation) emit a dynamic check to make
/// sure that witness has been unsed in the expected context.
void emitProtocolWitness(AbstractionPattern reqtOrigTy,
CanAnyFunctionType reqtSubstTy,
SILDeclRef requirement, SubstitutionMap reqtSubs,
SILDeclRef witness, SubstitutionMap witnessSubs,
IsFreeFunctionWitness_t isFree,
bool isSelfConformance, bool isPreconcurrency,
std::optional<ActorIsolation> enterIsolation);
/// Generates subscript arguments for keypath. This function handles lowering
/// of all index expressions including default arguments.
///
/// \returns Lowered index arguments.
/// \param subscript - The subscript decl who's arguments are being lowered.
/// \param subs - Used to get subscript function type and to substitute generic args.
/// \param argList - The argument list of the subscript.
SmallVector<ManagedValue, 4>
emitKeyPathSubscriptOperands(SILLocation loc,
SubscriptDecl *subscript,
SubstitutionMap subs,
ArgumentList *argList);
/// Convert a block to a native function with a thunk.
ManagedValue emitBlockToFunc(SILLocation loc,
ManagedValue block,
CanAnyFunctionType blockTy,
CanAnyFunctionType funcTy,
CanSILFunctionType loweredFuncTy);
/// Convert a native function to a block with a thunk.
ManagedValue emitFuncToBlock(SILLocation loc,
ManagedValue block,
CanAnyFunctionType funcTy,
CanAnyFunctionType blockTy,
CanSILFunctionType loweredBlockTy);
/// Thunk with the signature of a base class method calling a derived class
/// method.
///
/// \param inputOrigType Abstraction pattern of base class method
/// \param inputSubstType Formal AST type of base class method
/// \param outputSubstType Formal AST type of derived class method
/// \param baseLessVisibleThanDerived If true, the thunk does a
/// double dispatch to the derived method's vtable entry, so that if
/// the derived method has an override that cannot access the base,
/// calls to the base dispatch to the correct method.
void emitVTableThunk(SILDeclRef base,
SILDeclRef derived,
SILFunction *implFn,
AbstractionPattern inputOrigType,
CanAnyFunctionType inputSubstType,
CanAnyFunctionType outputSubstType,
bool baseLessVisibleThanDerived);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// emitCondition - Emit a boolean expression as a control-flow condition.
///
/// \param E - The expression to be evaluated as a condition.
/// \param invertValue - true if this routine should invert the value before
/// testing true/false.
/// \param contArgs - the types of the arguments to the continuation BB.
/// Matching argument values must be passed to exitTrue and exitFalse
/// of the resulting Condition object.
/// \param NumTrueTaken - The number of times the condition evaluates to true.
/// \param NumFalseTaken - The number of times the condition evaluates to
/// false.
///
/// If `contArgs` is nonempty, then both Condition::exitTrue() and
/// Condition::exitFalse() must be called.
Condition emitCondition(Expr *E, bool invertValue = false,
ArrayRef<SILType> contArgs = {},
ProfileCounter NumTrueTaken = ProfileCounter(),
ProfileCounter NumFalseTaken = ProfileCounter());
Condition emitCondition(SILValue V, SILLocation Loc, bool invertValue = false,
ArrayRef<SILType> contArgs = {},
ProfileCounter NumTrueTaken = ProfileCounter(),
ProfileCounter NumFalseTaken = ProfileCounter());
/// Create a new basic block.
///
/// The block can be explicitly placed after a particular block.
/// Otherwise, if the current insertion point is valid, it will be
/// placed immediately after it. Otherwise, it will be placed at the
/// end of the current function section.
///
/// Because basic blocks are generally constructed with an insertion
/// point active, users should be aware that this behavior leads to
/// an emergent LIFO ordering: if code generation requires multiple
/// blocks, the second block created will be positioned before the
/// first block. (This is clearly desirable behavior when blocks
/// are created by different emissions; it's just a little
/// counter-intuitive within a single emission.)
SILBasicBlock *createBasicBlock();
SILBasicBlock *createBasicBlock(llvm::StringRef debugName);
SILBasicBlock *createBasicBlockAfter(SILBasicBlock *afterBB);
SILBasicBlock *createBasicBlockBefore(SILBasicBlock *beforeBB);
/// Create a new basic block at the end of the given function
/// section.
SILBasicBlock *createBasicBlock(FunctionSection section);
SILBasicBlock *createBasicBlockAndBranch(SILLocation loc,
SILBasicBlock *destBB);
/// Erase a basic block that was speculatively created and turned
/// out to be unneeded.
///
/// This should be called instead of eraseFromParent() in order to
/// keep SILGen's internal bookkeeping consistent.
///
/// The block should be empty and have no predecessors.
void eraseBasicBlock(SILBasicBlock *block);
void mergeCleanupBlocks();
//===--------------------------------------------------------------------===//
// Concurrency
//===--------------------------------------------------------------------===//
/// Generates code to obtain the executor for the given actor isolation,
/// as-needed, and emits a \c hop_to_executor to that executor.
///
/// \returns an \c ExecutorBreadcrumb that saves the information necessary to hop
/// back to what was previously the current executor after the actor-isolated
/// region ends. Invoke \c emit on the breadcrumb to
/// restore the previously-active executor.
ExecutorBreadcrumb
emitHopToTargetActor(SILLocation loc, std::optional<ActorIsolation> actorIso,
std::optional<ManagedValue> actorSelf);
/// Emit a hop to the target executor, returning a breadcrumb with enough
/// enough information to hop back.
///
/// This hop instruction may take into account current tasks' executor
/// preference.
ExecutorBreadcrumb emitHopToTargetExecutor(SILLocation loc,
SILValue executor);
/// Generate a hop directly to a dynamic actor instance. This can only be done
/// inside an async actor-independent function. No hop-back is expected.
void emitHopToActorValue(SILLocation loc, ManagedValue actor);
/// Return true if the function being emitted is an async function
/// that unsafely inherits its executor.
bool unsafelyInheritsExecutor();
/// A version of `emitHopToTargetActor` that is specialized to the needs
/// of various types of ConstructorDecls, like class or value initializers,
/// because their prolog emission is not the same as for regular functions.
///
/// This function emits the appropriate hop_to_executor for a constructor's
/// prologue.
///
/// NOTE: this does not support actor initializers!
void emitConstructorPrologActorHop(SILLocation loc,
std::optional<ActorIsolation> actorIso);
/// Set the given global actor as the isolation for this function
/// (generally a thunk) and hop to it.
void emitPrologGlobalActorHop(SILLocation loc, Type globalActor);
/// Emit the executor for the given actor isolation.
std::optional<SILValue> emitExecutor(SILLocation loc,
ActorIsolation isolation,
std::optional<ManagedValue> maybeSelf);
/// Emit a precondition check to ensure that the function is executing in
/// the expected isolation context.
void
emitPreconditionCheckExpectedExecutor(SILLocation loc,
ActorIsolation isolation,
std::optional<ManagedValue> actorSelf);
/// Emit a precondition check to ensure that the function is executing in
/// the expected isolation context.
void emitPreconditionCheckExpectedExecutor(
SILLocation loc, SILValue executor);
/// Gets a reference to the current executor for the task.
/// \returns a value of type Builtin.Executor
SILValue emitGetCurrentExecutor(SILLocation loc);
/// Emit a "hoppable" reference to the executor value for the generic
/// (concurrent) executor.
SILValue emitGenericExecutor(SILLocation loc);
/// Emit the opaque isolation value for a non-isolated context
/// (`Optional<any Actor>.none`).
ManagedValue emitNonIsolatedIsolation(SILLocation loc);
/// Emit a "hoppable" reference to an actor's executor given a
/// reference to the actor.
SILValue emitLoadActorExecutor(SILLocation loc, ManagedValue actor);
/// Transform an actor reference into an opaque isolation value.
/// This supports optional actor references.
/// The actor reference must be +1.
ManagedValue emitActorInstanceIsolation(SILLocation loc,
ManagedValue actor,
CanType actorType);
/// Emit a "hoppable" reference to the executor value for the MainActor
/// global executor.
SILValue emitMainExecutor(SILLocation loc);
/// Emits a "hoppable" reference to the executor for the shared instance
/// of \p globalActor based on the type.
SILValue emitLoadGlobalActorExecutor(Type globalActor);
/// Call `.shared` on the given global actor type.
///
/// Returns the value of the property and the formal instance type.
std::pair<ManagedValue, CanType>
emitLoadOfGlobalActorShared(SILLocation loc, CanType globalActorType);
/// Emit a reference to the given global actor as an opaque isolation.
ManagedValue emitGlobalActorIsolation(SILLocation loc,
CanType globalActorType);
/// Emit a "hoppable" reference to an executor for the opaque isolation
/// stored in an @isolated(any) function value.
SILValue emitLoadErasedExecutor(SILLocation loc, ManagedValue fn);
/// Load the opaque isolation value from an @isolated(any) function
/// value.
ManagedValue emitLoadErasedIsolation(SILLocation loc, ManagedValue fn);
/// Emit the opaque isolation value for a function value with the given
/// formal type isolation.
ManagedValue emitFunctionTypeIsolation(SILLocation loc,
FunctionTypeIsolation isolation,
ManagedValue fn);
/// Emit the opaque isolation value for a concrete closure,
/// given its captures.
ManagedValue emitClosureIsolation(SILLocation loc, SILDeclRef constant,
ArrayRef<ManagedValue> captures);
//===--------------------------------------------------------------------===//
// Memory management
//===--------------------------------------------------------------------===//
/// Emit debug info for the artificial error inout argument.
void emitErrorArgument(SILLocation Loc, unsigned ArgNo);
/// emitProlog - Generates prolog code to allocate and clean up mutable
/// storage for closure captures and local arguments.
void
emitProlog(DeclContext *DC, CaptureInfo captureInfo, ParameterList *paramList,
ParamDecl *selfParam, Type resultType,
std::optional<Type> errorType, SourceLoc throwsLoc);
/// A simpler version of emitProlog
/// \returns the number of variables in paramPatterns.
uint16_t emitBasicProlog(
DeclContext *DC, ParameterList *paramList, ParamDecl *selfParam,
Type resultType, std::optional<Type> errorType, SourceLoc throwsLoc,
unsigned numIgnoredTrailingParameters);
/// Set up the ExpectedExecutor field for the current function and emit
/// whatever hops or assertions are locally expected.
void emitExpectedExecutor();
/// Create SILArguments in the entry block that bind a single value
/// of the given parameter suitably for being forwarded.
void bindParameterForForwarding(ParamDecl *param,
SmallVectorImpl<SILValue> ¶meters);
/// Create SILArguments in the entry block that bind all the values
/// of the given parameter list suitably for being forwarded.
void bindParametersForForwarding(const ParameterList *params,
SmallVectorImpl<SILValue> ¶meters);
/// Create (but do not emit) the epilog branch, and save the
/// current cleanups depth as the destination for return statement branches.
///
/// \param dc The declaration context whose generic signature to use for
/// interpreting interface types.
/// \param directResultType If given a value, the epilog block will be
/// created with arguments for each direct result of this
/// function, corresponding to the formal return type.
/// \param errorType If not None, create an error epilog block with the given
/// thrown error type.
/// \param L The SILLocation which should be associated with
/// cleanup instructions.
void prepareEpilog(
DeclContext *dc, std::optional<Type> directResultType,
std::optional<Type> errorType, CleanupLocation L);
void prepareRethrowEpilog(DeclContext *dc,
AbstractionPattern origErrorType,
Type errorType, CleanupLocation l);
void prepareCoroutineUnwindEpilog(CleanupLocation l);
/// Branch to and emit the epilog basic block. This will fuse
/// the epilog to the current basic block if the epilog bb has no predecessor.
/// The insertion point will be moved into the epilog block if it is
/// reachable.
///
/// \param TopLevelLoc The location of the top level AST node for which we are
/// constructing the epilog, such as a AbstractClosureExpr.
/// \returns None if the epilog block is unreachable. Otherwise, returns
/// the epilog block's return value argument, or a null SILValue if
/// the epilog doesn't take a return value. Also returns the location
/// of the return instruction if the epilog block is supposed to host
/// the ReturnLocation (This happens in case the predecessor block is
/// merged with the epilog block.)
std::pair<std::optional<SILValue>, SILLocation>
emitEpilogBB(SILLocation TopLevelLoc);
/// Emits a standard epilog which runs top-level cleanups then returns
/// the function return value, if any. This can be customized by clients, who
/// set UsesCustomEpilog to true, and optionally inject their own code into
/// the epilog block before calling this. If they do this, their code is run
/// before the top-level cleanups, and the epilog block to continue is
/// returned as the insertion point of this function. They must provide the
/// final exit sequence for the block as well.
///
/// \param TopLevelLoc The location of the top-level expression during whose
/// evaluation the epilog is being produced, for example, the
/// AbstractClosureExpr.
/// \param UsesCustomEpilog True if the client wants to manage its own epilog
/// logic.
SILLocation emitEpilog(SILLocation TopLevelLoc,bool UsesCustomEpilog = false);
/// Emits the standard rethrow epilog using a Swift error result.
void emitRethrowEpilog(SILLocation topLevelLoc);
/// Emits the coroutine-unwind epilog.
void emitCoroutineUnwindEpilog(SILLocation topLevelLoc);
/// emitSelfDecl - Emit a SILArgument for 'self', register it in varlocs, set
/// up debug info, etc. This returns the 'self' value.
///
/// This is intended to only be used for destructors.
SILValue emitSelfDeclForDestructor(VarDecl *selfDecl);
/// Emits a temporary allocation that will be deallocated automatically at the
/// end of the current scope. Returns the address of the allocation.
///
/// \p isLexical if set to true, this is a temporary that we are using for a
/// local let that we need to mark with the lexical flag.
SILValue emitTemporaryAllocation(
SILLocation loc, SILType ty,
HasDynamicLifetime_t hasDynamicLifetime = DoesNotHaveDynamicLifetime,
IsLexical_t isLexical = IsNotLexical,
IsFromVarDecl_t isFromVarDecl = IsNotFromVarDecl,
bool generateDebugInfo = true);
/// Emits a temporary allocation for a pack that will be deallocated
/// automatically at the end of the current scope. Returns the address
/// of the allocation.
SILValue emitTemporaryPackAllocation(SILLocation loc, SILType packTy);
/// Prepares a buffer to receive the result of an expression, either using the
/// 'emit into' initialization buffer if available, or allocating a temporary
/// allocation if not.
///
/// The caller should call manageBufferForExprResult at the instant
/// that the buffer has been initialized.
SILValue getBufferForExprResult(SILLocation loc, SILType ty, SGFContext C);
/// Flag that the buffer for an expression result has been properly
/// initialized.
///
/// Returns an empty value if the buffer was taken from the context.
ManagedValue manageBufferForExprResult(SILValue buffer,
const TypeLowering &bufferTL,
SGFContext C);
//===--------------------------------------------------------------------===//
// Type conversions for expr emission and thunks
//===--------------------------------------------------------------------===//
ManagedValue emitInjectEnum(SILLocation loc,
MutableArrayRef<ArgumentSource> payload,
SILType enumTy,
EnumElementDecl *element,
SGFContext C);
ManagedValue emitInjectOptional(SILLocation loc,
const TypeLowering &expectedTL,
SGFContext ctxt,
llvm::function_ref<ManagedValue(SGFContext)> generator);
/// Initialize a memory location with an optional value.
///
/// \param loc The location to use for the resulting optional.
/// \param value The value to inject into an optional.
/// \param dest The uninitialized memory in which to store the result value.
/// \param optTL Type lowering information for the optional to create.
void emitInjectOptionalValueInto(SILLocation loc,
ArgumentSource &&value,
SILValue dest,
const TypeLowering &optTL);
/// Initialize a memory location with an optional "nothing"
/// value.
///
/// \param loc The location to use for the resulting optional.
/// \param dest The uninitialized memory in which to store the result value.
/// \param optTL Type lowering information for the optional to create.
void emitInjectOptionalNothingInto(SILLocation loc,
SILValue dest,
const TypeLowering &optTL);
/// Return a value for an optional ".None" of the specified type. This only
/// works for loadable enum types.
SILValue getOptionalNoneValue(SILLocation loc, const TypeLowering &optTL);
/// Return a value for an optional ".Some(x)" of the specified type. This only
/// works for loadable enum types.
ManagedValue getOptionalSomeValue(SILLocation loc, ManagedValue value,
const TypeLowering &optTL);
struct SourceLocArgs {
ManagedValue filenameStartPointer,
filenameLength,
filenameIsAscii,
line,
column;
};
/// Emit raw lowered arguments for a runtime diagnostic to report the given
/// source location:
/// - The first three arguments are the components necessary to construct
/// a StaticString for the filename: start pointer, length, and
/// "is ascii" bit.
/// - The fourth argument is the line number.
SourceLocArgs
emitSourceLocationArgs(SourceLoc loc, SILLocation emitLoc);
/// Emit a 'String' literal for the passed 'text'.
///
/// See also: 'emitLiteral' which works with various types of literals,
/// however requires an expression to base the creation on.
ManagedValue
emitStringLiteral(SILLocation loc,
StringRef text,
StringLiteralExpr::Encoding encoding = StringLiteralExpr::Encoding::UTF8,
SGFContext ctx = SGFContext());
/// Emit a call to the library intrinsic _doesOptionalHaveValue.
///
/// The result is a Builtin.Int1.
SILValue emitDoesOptionalHaveValue(SILLocation loc, SILValue addrOrValue);
/// Emit a switch_enum to call the library intrinsic
/// _diagnoseUnexpectedNilOptional if the optional has no value. Return the
/// MangedValue resulting from the success case.
ManagedValue emitPreconditionOptionalHasValue(SILLocation loc,
ManagedValue optional,
bool isImplicitUnwrap);
/// Emit a call to the library intrinsic _getOptionalValue
/// given the address of the optional, which checks that an optional contains
/// some value and either returns the value or traps if there is none.
ManagedValue emitCheckedGetOptionalValueFrom(SILLocation loc,
ManagedValue addr,
bool isImplicitUnwrap,
const TypeLowering &optTL,
SGFContext C);
/// Extract the value from an optional, which must be known to contain
/// a value.
ManagedValue emitUncheckedGetOptionalValueFrom(SILLocation loc,
ManagedValue addrOrValue,
const TypeLowering &optTL,
SGFContext C = SGFContext());
typedef llvm::function_ref<ManagedValue(SILGenFunction &SGF,
SILLocation loc,
ManagedValue input,
SILType loweredResultTy,
SGFContext context)> ValueTransformRef;
/// Emit a transformation on the value of an optional type.
ManagedValue emitOptionalToOptional(SILLocation loc,
ManagedValue input,
SILType loweredResultTy,
ValueTransformRef transform,
SGFContext C = SGFContext());
ManagedValue emitOptionalSome(SILLocation loc, SILType optionalTy,
ValueProducerRef injector,
SGFContext C = SGFContext());
/// Emit a reinterpret-cast from one pointer type to another, using a library
/// intrinsic.
RValue emitPointerToPointer(SILLocation loc,
ManagedValue input,
CanType inputTy,
CanType outputTy,
SGFContext C = SGFContext());
ManagedValue emitClassMetatypeToObject(SILLocation loc,
ManagedValue v,
SILType resultTy);
ManagedValue emitExistentialMetatypeToObject(SILLocation loc,
ManagedValue v,
SILType resultTy);
ManagedValue emitProtocolMetatypeToObject(SILLocation loc,
CanType inputTy,
SILType resultTy);
ManagedValue manageOpaqueValue(ManagedValue value,
SILLocation loc,
SGFContext C);
/// Open up the given existential value and project its payload.
///
/// \param existentialValue The existential value.
/// \param loweredOpenedType The lowered type of the projection, which in
/// practice will be the openedArchetype, possibly wrapped in a metatype.
ManagedValue emitOpenExistential(SILLocation loc,
ManagedValue existentialValue,
SILType loweredOpenedType,
AccessKind accessKind);
/// Wrap the given value in an existential container.
///
/// \param concreteFormalType AST type of value.
/// \param concreteTL Type lowering of value.
/// \param existentialTL Type lowering of existential type.
/// \param F Function reference to emit the existential contents with the
/// given context.
ManagedValue emitExistentialErasure(
SILLocation loc,
CanType concreteFormalType,
const TypeLowering &concreteTL,
const TypeLowering &existentialTL,
ArrayRef<ProtocolConformanceRef> conformances,
SGFContext C,
llvm::function_ref<ManagedValue (SGFContext)> F,
bool allowEmbeddedNSError = true);
/// Transform a value of concrete or existential type into an
/// existential type. The input and existential types must be
/// different.
ManagedValue emitTransformExistential(
SILLocation loc,
ManagedValue input,
CanType inputType,
CanType existentialType,
SGFContext C = SGFContext());
RValue emitCollectionConversion(SILLocation loc,
FuncDecl *fn,
CanType fromCollection,
CanType toCollection,
ManagedValue mv,
SGFContext C);
//===--------------------------------------------------------------------===//
// Recursive entry points
//===--------------------------------------------------------------------===//
using ASTVisitorType::visit;
//===--------------------------------------------------------------------===//
// Statements
//===--------------------------------------------------------------------===//
void visit(Stmt *S) = delete;
void emitStmt(Stmt *S);
void emitBreakOutOf(SILLocation loc, Stmt *S);
void emitCatchDispatch(DoCatchStmt *S, ManagedValue exn,
ArrayRef<CaseStmt *> clauses,
JumpDest catchFallthroughDest);
/// Emit code for the throw expr. If \p emitWillThrow is set then emit a
/// call to swift_willThrow, that will allow the debugger to place a
/// breakpoint on throw sites.
void emitThrow(SILLocation loc, ManagedValue exn, bool emitWillThrow = false);
//===--------------------------------------------------------------------===//
// Patterns
//===--------------------------------------------------------------------===//
SILValue emitOSVersionRangeCheck(SILLocation loc, const VersionRange &range);
void emitStmtCondition(StmtCondition Cond, JumpDest FalseDest, SILLocation loc,
ProfileCounter NumTrueTaken = ProfileCounter(),
ProfileCounter NumFalseTaken = ProfileCounter());
void emitConditionalPBD(PatternBindingDecl *PBD, SILBasicBlock *FailBB);
void usingImplicitVariablesForPattern(Pattern *pattern, CaseStmt *stmt,
const llvm::function_ref<void(void)> &f);
void emitSwitchStmt(SwitchStmt *S);
void emitSwitchFallthrough(FallthroughStmt *S);
//===--------------------------------------------------------------------===//
// Expressions
//===--------------------------------------------------------------------===//
RValue visit(Expr *E) = delete;
/// Generate SIL for the given expression, storing the final result into the
/// specified Initialization buffer(s). This avoids an allocation and copy if
/// the result would be allocated into temporary memory normally.
/// The location defaults to \c E.
void emitExprInto(Expr *E, Initialization *I,
std::optional<SILLocation> L = std::nullopt);
/// Emit the given expression as an r-value.
RValue emitRValue(Expr *E, SGFContext C = SGFContext());
/// Given an expression, find the subexpression that can be emitted as a borrow formal access, if
/// any.
Expr *findStorageReferenceExprForMoveOnly(Expr *argExpr,
StorageReferenceOperationKind kind);
Expr *findStorageReferenceExprForBorrowExpr(Expr *argExpr);
/// Emit the given expression as a +1 r-value.
///
/// *NOTE* This creates the +1 r-value and then pushes that +1 r-value through
/// a scope. So all temporaries resulting will be cleaned up.
///
/// *NOTE* +0 vs +1 is ignored by this function. The only reason to use the
/// SGFContext argument is to pass in an initialization.
RValue emitPlusOneRValue(Expr *E, SGFContext C = SGFContext());
/// Emit the given expression as a +0 r-value.
///
/// *NOTE* This does not scope the creation of the +0 r-value. The reason why
/// this is done is that +0 r-values can not be pushed through scopes.
RValue emitPlusZeroRValue(Expr *E);
/// Emit the given expression as an r-value with the given conversion
/// context. This may be more efficient --- and, in some cases,
/// semantically different --- than emitting the expression and then
/// converting the result.
///
/// \param C a context into which to emit the converted result
ManagedValue emitConvertedRValue(Expr *E, const Conversion &conversion,
SGFContext C = SGFContext());
ManagedValue emitConvertedRValue(SILLocation loc,
const Conversion &conversion,
SGFContext C,
ValueProducerRef produceValue);
/// Call the produceValue function and convert the result to the given
/// original abstraction pattern.
///
/// The SGFContext provided to the produceValue function includes the
/// conversion, if it's non-trivial, and thus permits it to be peepholed
/// and combined with other conversions. This can result in substantially
/// more efficient code than just emitting the value and reabstracting
/// it afterwards.
///
/// If the provided SGFContext includes an initialization, the result
/// will always be ManagedValue::forInContext().
ManagedValue emitAsOrig(SILLocation loc, AbstractionPattern origType,
CanType substType, SILType expectedTy,
SGFContext C,
ValueProducerRef produceValue);
/// Emit the given expression as an r-value that follows the
/// abstraction patterns of the original type.
ManagedValue emitRValueAsOrig(Expr *E, AbstractionPattern origPattern,
const TypeLowering &origTL,
SGFContext C = SGFContext());
/// Emit an r-value into temporary memory and return the managed address.
ManagedValue
emitMaterializedRValueAsOrig(Expr *E, AbstractionPattern origPattern);
/// Emit the given expression, ignoring its result.
void emitIgnoredExpr(Expr *E);
/// Emit the given expression as an r-value, then (if it is a tuple), combine
/// it together into a single ManagedValue.
ManagedValue emitRValueAsSingleValue(Expr *E, SGFContext C = SGFContext());
/// Emit 'undef' in a particular formal type.
ManagedValue emitUndef(Type type);
ManagedValue emitUndef(SILType type);
RValue emitUndefRValue(SILLocation loc, Type type);
std::pair<ManagedValue, SILValue>
emitUninitializedArrayAllocation(Type ArrayTy,
SILValue Length,
SILLocation Loc);
CleanupHandle enterDeallocateUninitializedArrayCleanup(SILValue array);
void emitUninitializedArrayDeallocation(SILLocation loc, SILValue array);
ManagedValue emitUninitializedArrayFinalization(SILLocation loc,
ManagedValue array);
/// Emit a cleanup for an owned value that should be written back at end of
/// scope if the value is not forwarded.
CleanupHandle enterOwnedValueWritebackCleanup(SILLocation loc,
SILValue address,
SILValue newValue);
SILValue emitConversionToSemanticRValue(SILLocation loc, SILValue value,
const TypeLowering &valueTL);
ManagedValue emitConversionToSemanticRValue(SILLocation loc,
ManagedValue value,
const TypeLowering &valueTL);
/// Emit the empty tuple value by emitting
SILValue emitEmptyTuple(SILLocation loc);
/// "Emit" an RValue representing an empty tuple.
RValue emitEmptyTupleRValue(SILLocation loc, SGFContext C);
/// Returns a reference to a constant in global context. For local func decls
/// this returns the function constant with unapplied closure context.
SILValue emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant) {
return emitGlobalFunctionRef(
loc, constant, getConstantInfo(getTypeExpansionContext(), constant));
}
SILValue
emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant,
SILConstantInfo constantInfo,
bool callPreviousDynamicReplaceableImpl = false);
/// Returns a reference to a function value that dynamically dispatches
/// the function in a runtime-modifiable way.
ManagedValue emitDynamicMethodRef(SILLocation loc, SILDeclRef constant,
CanSILFunctionType constantTy);
/// Returns a reference to a vtable-dispatched method.
SILValue emitClassMethodRef(SILLocation loc, SILValue selfPtr,
SILDeclRef constant,
CanSILFunctionType constantTy);
/// Given that a variable is a local stored variable, return its address.
ManagedValue emitAddressOfLocalVarDecl(SILLocation loc, VarDecl *var,
CanType formalRValueType,
SGFAccessKind accessKind);
// FIXME: demote this to private state.
ManagedValue maybeEmitValueOfLocalVarDecl(
VarDecl *var, AccessKind accessKind);
/// Produce an RValue for a reference to the specified declaration,
/// with the given type and in response to the specified expression. Try to
/// emit into the specified SGFContext to avoid copies (when provided).
RValue emitRValueForDecl(SILLocation loc, ConcreteDeclRef decl, Type ty,
AccessSemantics semantics,
SGFContext C = SGFContext());
/// Produce a singular RValue for a load from the specified property.
///
/// This is designed to work with RValue ManagedValue bases that are either +0
/// or +1.
///
/// \arg isBaseGuaranteed This should /only/ be set to true if we know that
/// the base value will stay alive as long as the returned RValue implying
/// that it is safe to load/use values as +0.
RValue emitRValueForStorageLoad(SILLocation loc,
ManagedValue base,
CanType baseFormalType,
bool isSuper, AbstractStorageDecl *storage,
PreparedArguments &&indices,
SubstitutionMap substitutions,
AccessSemantics semantics, Type propTy,
SGFContext C,
bool isBaseGuaranteed = false);
void emitCaptures(SILLocation loc,
SILDeclRef closure,
CaptureEmission purpose,
SmallVectorImpl<ManagedValue> &captures);
/// Produce a reference to a function, which may be a local function
/// with captures. If the function is generic, substitutions must be
/// given. The result is re-abstracted to the given expected type.
ManagedValue emitClosureValue(SILLocation loc,
SILDeclRef function,
const FunctionTypeInfo &typeContext,
SubstitutionMap subs);
PreparedArguments prepareSubscriptIndices(SILLocation loc,
SubscriptDecl *subscript,
SubstitutionMap subs,
AccessStrategy strategy,
ArgumentList *argList);
ArgumentSource prepareAccessorBaseArg(SILLocation loc, ManagedValue base,
CanType baseFormalType,
SILDeclRef accessor);
RValue emitGetAccessor(
SILLocation loc, SILDeclRef getter, SubstitutionMap substitutions,
ArgumentSource &&optionalSelfValue, bool isSuper,
bool isDirectAccessorUse, PreparedArguments &&optionalSubscripts,
SGFContext C, bool isOnSelfParameter,
std::optional<ActorIsolation> implicitActorHopTarget = std::nullopt);
void emitSetAccessor(SILLocation loc, SILDeclRef setter,
SubstitutionMap substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
PreparedArguments &&optionalSubscripts,
ArgumentSource &&value,
bool isOnSelfParameter);
ManagedValue emitAsyncLetStart(SILLocation loc,
SILValue taskOptions,
AbstractClosureExpr *asyncLetEntryPoint,
SILValue resultBuf);
void emitFinishAsyncLet(SILLocation loc, SILValue asyncLet, SILValue resultBuf);
ManagedValue emitReadAsyncLetBinding(SILLocation loc, VarDecl *var);
ManagedValue emitCancelAsyncTask(SILLocation loc, SILValue task);
ManagedValue emitCreateAsyncMainTask(SILLocation loc, SubstitutionMap subs,
ManagedValue flags,
ManagedValue mainFunctionRef);
bool maybeEmitMaterializeForSetThunk(ProtocolConformanceRef conformance,
SILLinkage linkage,
Type selfInterfaceType, Type selfType,
GenericEnvironment *genericEnv,
AccessorDecl *requirement,
AccessorDecl *witness,
SubstitutionMap witnessSubs);
ManagedValue emitAddressorAccessor(
SILLocation loc, SILDeclRef addressor, SubstitutionMap substitutions,
ArgumentSource &&optionalSelfValue, bool isSuper,
bool isDirectAccessorUse,
PreparedArguments &&optionalSubscripts,
SILType addressType, bool isOnSelfParameter);
CleanupHandle emitCoroutineAccessor(SILLocation loc, SILDeclRef accessor,
SubstitutionMap substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
PreparedArguments &&optionalSubscripts,
SmallVectorImpl<ManagedValue> &yields,
bool isOnSelfParameter);
RValue emitApplyConversionFunction(SILLocation loc,
Expr *funcExpr,
Type resultType,
RValue &&operand);
ManagedValue emitManagedCopy(SILLocation loc, SILValue v);
ManagedValue emitManagedCopy(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedFormalEvaluationCopy(SILLocation loc, SILValue v);
ManagedValue emitManagedFormalEvaluationCopy(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedLoadCopy(SILLocation loc, SILValue v);
ManagedValue emitManagedLoadCopy(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedStoreBorrow(SILLocation loc, SILValue v,
SILValue addr);
ManagedValue emitManagedStoreBorrow(SILLocation loc, SILValue v,
SILValue addr,
const TypeLowering &lowering);
ManagedValue emitManagedLoadBorrow(SILLocation loc, SILValue v);
ManagedValue emitManagedLoadBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedBeginBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedBeginBorrow(SILLocation loc, SILValue v);
ManagedValue
emitManagedBorrowedRValueWithCleanup(SILValue borrowedValue,
const TypeLowering &lowering);
ManagedValue emitManagedBorrowedRValueWithCleanup(SILValue borrowedValue);
ManagedValue emitManagedBorrowedRValueWithCleanup(SILValue original,
SILValue borrowedValue);
ManagedValue emitManagedBorrowedRValueWithCleanup(
SILValue original, SILValue borrowedValue, const TypeLowering &lowering);
ManagedValue emitManagedBorrowedArgumentWithCleanup(SILPhiArgument *arg);
ManagedValue emitFormalEvaluationManagedBorrowedRValueWithCleanup(
SILLocation loc, SILValue original, SILValue borrowedValue);
ManagedValue emitFormalEvaluationManagedBorrowedRValueWithCleanup(
SILLocation loc, SILValue original, SILValue borrowedValue,
const TypeLowering &lowering);
ManagedValue emitFormalEvaluationManagedBeginBorrow(SILLocation loc,
SILValue v);
ManagedValue
emitFormalEvaluationManagedBeginBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitFormalEvaluationManagedStoreBorrow(SILLocation loc,
SILValue v,
SILValue addr);
ManagedValue emitManagedRValueWithCleanup(SILValue v);
ManagedValue emitManagedRValueWithCleanup(SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedBufferWithCleanup(SILValue addr);
ManagedValue emitManagedBufferWithCleanup(SILValue addr,
const TypeLowering &lowering);
ManagedValue emitManagedPackWithCleanup(SILValue addr,
CanPackType formalPackType
= CanPackType());
ManagedValue emitFormalAccessManagedRValueWithCleanup(SILLocation loc,
SILValue value);
ManagedValue emitFormalAccessManagedBufferWithCleanup(SILLocation loc,
SILValue addr);
void emitSemanticLoadInto(SILLocation loc, SILValue src,
const TypeLowering &srcLowering,
SILValue dest,
const TypeLowering &destLowering,
IsTake_t isTake, IsInitialization_t isInit);
SILValue emitSemanticLoad(SILLocation loc, SILValue src,
const TypeLowering &srcLowering,
const TypeLowering &rvalueLowering,
IsTake_t isTake);
void emitSemanticStore(SILLocation loc, SILValue value,
SILValue dest, const TypeLowering &destTL,
IsInitialization_t isInit);
SILValue emitConversionFromSemanticValue(SILLocation loc,
SILValue semanticValue,
SILType storageType);
SILValue emitUnwrapIntegerResult(SILLocation loc, SILValue value);
SILValue emitWrapIntegerLiteral(SILLocation loc, SILType ty,
unsigned value);
/// Load an r-value out of the given address. This does not handle
/// reabstraction or bridging. If that is needed, use the other emit load
/// entry point.
///
/// \param rvalueTL - the type lowering for the type-of-rvalue
/// of the address
/// \param isAddrGuaranteed - true if the value in this address
/// is guaranteed to be valid for the duration of the current
/// evaluation (see SGFContext::AllowGuaranteedPlusZero)
ManagedValue emitLoad(SILLocation loc, SILValue addr,
const TypeLowering &rvalueTL,
SGFContext C, IsTake_t isTake,
bool isAddrGuaranteed = false);
/// Load an r-value out of the given address handling re-abstraction and
/// bridging if required.
///
/// \param rvalueTL - the type lowering for the type-of-rvalue
/// of the address
/// \param isAddrGuaranteed - true if the value in this address
/// is guaranteed to be valid for the duration of the current
/// evaluation (see SGFContext::AllowGuaranteedPlusZero)
ManagedValue emitLoad(SILLocation loc, SILValue addr,
AbstractionPattern origFormalType,
CanType substFormalType,
const TypeLowering &rvalueTL,
SGFContext C, IsTake_t isTake,
bool isAddrGuaranteed = false);
ManagedValue emitFormalAccessLoad(SILLocation loc, SILValue addr,
const TypeLowering &rvalueTL, SGFContext C,
IsTake_t isTake,
bool isAddrGuaranteed = false);
void emitAssignToLValue(SILLocation loc, ArgumentSource &&src, LValue &&dest);
void emitAssignToLValue(SILLocation loc, RValue &&src, LValue &&dest);
void emitAssignLValueToLValue(SILLocation loc,
LValue &&src, LValue &&dest);
void emitCopyLValueInto(SILLocation loc, LValue &&src,
Initialization *dest);
/// Emit an assignment to the variables in the destination pattern, given
/// an rvalue source that has the same type as the pattern.
void emitAssignToPatternVars(
SILLocation loc, Pattern *destPattern, RValue &&src);
ManagedValue emitAddressOfLValue(SILLocation loc, LValue &&src,
TSanKind tsanKind = TSanKind::None);
ManagedValue emitBorrowedLValue(SILLocation loc, LValue &&src,
TSanKind tsanKind = TSanKind::None);
ManagedValue emitConsumedLValue(SILLocation loc, LValue &&src,
TSanKind tsanKind = TSanKind::None);
LValue emitOpenExistentialLValue(SILLocation loc,
LValue &&existentialLV,
CanArchetypeType openedArchetype,
CanType formalRValueType,
SGFAccessKind accessKind);
RValue emitLoadOfLValue(SILLocation loc, LValue &&src, SGFContext C,
bool isBaseLValueGuaranteed = false);
/// Emit a reference to a method from within another method of the type.
std::tuple<ManagedValue, SILType>
emitSiblingMethodRef(SILLocation loc,
SILValue selfValue,
SILDeclRef methodConstant,
SubstitutionMap subMap);
SILValue emitMetatypeOfValue(SILLocation loc, Expr *baseExpr);
void emitReturnExpr(SILLocation loc, Expr *ret);
void emitYield(SILLocation loc, MutableArrayRef<ArgumentSource> yieldValues,
ArrayRef<AbstractionPattern> origTypes,
JumpDest unwindDest);
void emitRawYield(SILLocation loc, ArrayRef<ManagedValue> yieldArgs,
JumpDest unwindDest, bool isUniqueYield);
RValue emitAnyHashableErasure(SILLocation loc,
ManagedValue value,
Type type,
ProtocolConformanceRef conformance,
SGFContext C);
/// Turn a consumable managed value into a +1 managed value.
ManagedValue getManagedValue(SILLocation loc,
ConsumableManagedValue value);
/// Do the initial work common to all emissions of a pack
/// expansion expression. This is a placeholder meant to mark
/// places that will need to support any sort of future feature
/// where e.g. certain `each` operands need to be evaluated once
/// for the entire expansion.
void prepareToEmitPackExpansionExpr(PackExpansionExpr *E);
//
// Helpers for emitting ApplyExpr chains.
//
RValue emitApplyExpr(ApplyExpr *e, SGFContext c);
/// Emit a function application, assuming that the arguments have been
/// lowered appropriately for the abstraction level but that the
/// result does need to be turned back into something matching a
/// formal type.
RValue emitApply(ResultPlanPtr &&resultPlan, ArgumentScope &&argScope,
SILLocation loc, ManagedValue fn, SubstitutionMap subs,
ArrayRef<ManagedValue> args,
const CalleeTypeInfo &calleeTypeInfo, ApplyOptions options,
SGFContext evalContext,
std::optional<ActorIsolation> implicitActorHopTarget);
RValue emitApplyOfDefaultArgGenerator(SILLocation loc,
ConcreteDeclRef defaultArgsOwner,
unsigned destIndex,
CanType resultType,
bool implicitlyAsync,
SGFContext C = SGFContext());
RValue emitApplyOfStoredPropertyInitializer(
SILLocation loc,
VarDecl *anchoringVar,
SubstitutionMap subs,
CanType resultType,
AbstractionPattern origResultType,
SGFContext C);
RValue emitApplyOfPropertyWrapperBackingInitializer(
SILLocation loc,
VarDecl *var,
SubstitutionMap subs,
RValue &&originalValue,
SILDeclRef::Kind initKind = SILDeclRef::Kind::PropertyWrapperBackingInitializer,
SGFContext C = SGFContext());
/// A convenience method for emitApply that just handles monomorphic
/// applications.
RValue emitMonomorphicApply(
SILLocation loc, ManagedValue fn, ArrayRef<ManagedValue> args,
CanType foreignResultType, CanType nativeResultType, ApplyOptions options,
std::optional<SILFunctionTypeRepresentation> overrideRep,
const std::optional<ForeignErrorConvention> &foreignError,
SGFContext ctx = SGFContext());
RValue emitApplyOfLibraryIntrinsic(SILLocation loc,
FuncDecl *fn,
SubstitutionMap subMap,
ArrayRef<ManagedValue> args,
SGFContext ctx);
RValue emitApplyOfLibraryIntrinsic(SILLocation loc, SILDeclRef declRef,
SubstitutionMap subMap,
ArrayRef<ManagedValue> args,
SGFContext ctx);
/// Emits a call to the `_diagnoseUnavailableCodeReached()` function in the
/// standard library.
void emitApplyOfUnavailableCodeReached();
RValue emitApplyAllocatingInitializer(SILLocation loc, ConcreteDeclRef init,
PreparedArguments &&args, Type overriddenSelfType,
SGFContext ctx);
CleanupHandle emitBeginApply(SILLocation loc, ManagedValue fn,
SubstitutionMap subs, ArrayRef<ManagedValue> args,
CanSILFunctionType substFnType,
ApplyOptions options,
SmallVectorImpl<ManagedValue> &yields);
SILValue emitApplyWithRethrow(SILLocation loc, SILValue fn,
SILType substFnType,
SubstitutionMap subs,
ArrayRef<SILValue> args);
std::pair<MultipleValueInstructionResult *, CleanupHandle>
emitBeginApplyWithRethrow(SILLocation loc, SILValue fn, SILType substFnType,
SubstitutionMap subs, ArrayRef<SILValue> args,
SmallVectorImpl<SILValue> &yields);
void emitEndApplyWithRethrow(SILLocation loc,
MultipleValueInstructionResult *token);
ManagedValue emitExtractFunctionIsolation(SILLocation loc,
ArgumentSource &&fnValue);
/// Emit a literal that applies the various initializers.
RValue emitLiteral(LiteralExpr *literal, SGFContext C);
SILBasicBlock *getTryApplyErrorDest(SILLocation loc,
CanSILFunctionType fnTy,
ExecutorBreadcrumb prevExecutor,
SILResultInfo errorResult,
SILValue indirectErrorAddr,
bool isSuppressed);
/// Emit a dynamic member reference.
RValue emitDynamicMemberRef(SILLocation loc, SILValue operand,
ConcreteDeclRef memberRef, CanType refTy,
SGFContext C);
/// Emit a dynamic subscript getter application.
RValue emitDynamicSubscriptGetterApply(SILLocation loc, SILValue operand,
ConcreteDeclRef subscriptRef,
PreparedArguments &&indexArgs,
CanType resultTy, SGFContext C);
/// Open up the given existential expression and emit its
/// subexpression in a caller-specified manner.
///
/// \param e The expression.
///
/// \param emitSubExpr A function to call to emit the subexpression
/// (which will be passed in).
void emitOpenExistentialExprImpl(OpenExistentialExpr *e,
llvm::function_ref<void(Expr *)> emitSubExpr);
/// Open up the given existential expression and emit its
/// subexpression in a caller-specified manner.
///
/// \param e The expression.
///
/// \param emitSubExpr A function to call to emit the subexpression
/// (which will be passed in).
template<typename R, typename F>
R emitOpenExistentialExpr(OpenExistentialExpr *e, F emitSubExpr) {
std::optional<R> result;
emitOpenExistentialExprImpl(e,
[&](Expr *subExpr) {
result.emplace(emitSubExpr(subExpr));
});
return std::move(*result);
}
/// Open up the given existential expression and emit its
/// subexpression in a caller-specified manner.
///
/// \param e The expression.
///
/// \param emitSubExpr A function to call to emit the subexpression
/// (which will be passed in).
template<typename F>
void emitOpenExistentialExpr(OpenExistentialExpr *e, F emitSubExpr) {
emitOpenExistentialExprImpl(e, emitSubExpr);
}
/// Mapping from OpaqueValueExpr/PackElementExpr to their values.
llvm::SmallDenseMap<Expr *, ManagedValue> OpaqueValues;
/// A mapping from opaque value expressions to the open-existential
/// expression that determines them, used while lowering lvalues.
llvm::SmallDenseMap<OpaqueValueExpr *, OpenExistentialExpr *>
OpaqueValueExprs;
/// RAII object that introduces a temporary binding for an opaque value.
///
/// Each time the opaque value expression is referenced, it will be
/// retained/released separately. When this RAII object goes out of
/// scope, the value will be destroyed if requested.
class OpaqueValueRAII {
SILGenFunction &Self;
OpaqueValueExpr *OpaqueValue;
OpaqueValueRAII(const OpaqueValueRAII &) = delete;
OpaqueValueRAII &operator=(const OpaqueValueRAII &) = delete;
public:
OpaqueValueRAII(SILGenFunction &self, OpaqueValueExpr *opaqueValue,
ManagedValue value)
: Self(self), OpaqueValue(opaqueValue) {
assert(Self.OpaqueValues.count(OpaqueValue) == 0 &&
"Opaque value already has a binding");
Self.OpaqueValues[OpaqueValue] = value;
}
~OpaqueValueRAII();
};
/// Emit a conditional checked cast branch. Does not
/// re-abstract the argument to the success branch. Terminates the
/// current BB.
///
/// \param loc The AST location associated with the operation.
/// \param src The abstract value to cast.
/// \param sourceType The formal source type.
/// \param targetType The formal target type.
/// \param C Information about the result of the cast.
/// \param handleTrue A callback to invoke with the result of the cast
/// in the success path. The current BB should be
/// terminated.
/// \param handleFalse A callback to invoke in the failure path. The
/// current BB should be terminated.
void emitCheckedCastBranch(
SILLocation loc, ConsumableManagedValue src, Type sourceType,
CanType targetType, SGFContext C,
llvm::function_ref<void(ManagedValue)> handleTrue,
llvm::function_ref<void(std::optional<ManagedValue>)> handleFalse,
ProfileCounter TrueCount = ProfileCounter(),
ProfileCounter FalseCount = ProfileCounter());
/// Emit a conditional checked cast branch, starting from an
/// expression. Terminates the current BB.
///
/// \param loc The AST location associated with the operation.
/// \param src An expression which will generate the value to cast.
/// \param targetType The formal target type.
/// \param C Information about the result of the cast.
/// \param handleTrue A callback to invoke with the result of the cast
/// in the success path. The current BB should be
/// terminated.
/// \param handleFalse A callback to invoke in the failure path. The
/// current BB should be terminated.
void emitCheckedCastBranch(
SILLocation loc, Expr *src, Type targetType, SGFContext C,
llvm::function_ref<void(ManagedValue)> handleTrue,
llvm::function_ref<void(std::optional<ManagedValue>)> handleFalse,
ProfileCounter TrueCount = ProfileCounter(),
ProfileCounter FalseCount = ProfileCounter());
/// Emit the control flow for an optional 'bind' operation, branching to the
/// active failure destination if the optional value addressed by optionalAddr
/// is nil, and leaving the insertion point on the success branch.
///
/// NOTE: This operation does consume the managed value.
ManagedValue emitBindOptional(SILLocation loc,
ManagedValue optionalAddrOrValue,
unsigned depth);
void emitOptionalEvaluation(SILLocation loc, Type optionalType,
SmallVectorImpl<ManagedValue> &results,
SGFContext C,
llvm::function_ref<void(SmallVectorImpl<ManagedValue> &,
SGFContext primaryC)>
generateNormalResults);
//===--------------------------------------------------------------------===//
// Bridging thunks
//===--------------------------------------------------------------------===//
/// Convert a native Swift value to a value that can be passed as an argument
/// to or returned as the result of a function with the given calling
/// convention.
ManagedValue emitNativeToBridgedValue(SILLocation loc, ManagedValue v,
CanType nativeType,
CanType bridgedType,
SILType loweredBridgedType,
SGFContext C = SGFContext());
/// Convert a value received as the result or argument of a function with
/// the given calling convention to a native Swift value of the given type.
ManagedValue emitBridgedToNativeValue(SILLocation loc, ManagedValue v,
CanType bridgedType,
CanType nativeType,
SILType loweredNativeType,
SGFContext C = SGFContext(),
bool isCallResult = false);
/// Convert a bridged error type to the native Swift Error
/// representation. The value may be optional.
ManagedValue emitBridgedToNativeError(SILLocation loc, ManagedValue v);
/// Convert a value in the native Swift Error representation to
/// a bridged error type representation.
ManagedValue emitNativeToBridgedError(SILLocation loc, ManagedValue v,
CanType nativeType,
CanType bridgedType);
SILValue emitBridgeErrorForForeignError(SILLocation loc,
SILValue nativeError,
SILType bridgedResultType,
SILValue foreignErrorSlot,
const ForeignErrorConvention &foreignError);
SILValue
emitBridgeReturnValueForForeignError(SILLocation loc,
SILValue result,
CanType formalNativeType,
CanType formalBridgedType,
SILType bridgedType,
SILValue foreignErrorSlot,
const ForeignErrorConvention &foreignError);
SILValue
emitForeignErrorBlock(SILLocation loc, SILBasicBlock *errorBB,
std::optional<ManagedValue> errorSlot,
std::optional<ForeignAsyncConvention> foreignAsync);
SILValue
emitForeignErrorCheck(SILLocation loc,
SmallVectorImpl<ManagedValue> &directResults,
ManagedValue errorSlot, bool suppressErrorCheck,
const ForeignErrorConvention &foreignError,
std::optional<ForeignAsyncConvention> foreignAsync);
//===--------------------------------------------------------------------===//
// Re-abstraction thunks
//===--------------------------------------------------------------------===//
/// Convert a value with the abstraction patterns of the original type
/// to a value with the abstraction patterns of the substituted type.
ManagedValue emitOrigToSubstValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
ManagedValue emitOrigToSubstValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
RValue emitOrigToSubstValue(SILLocation loc, RValue &&input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
RValue emitOrigToSubstValue(SILLocation loc, RValue &&input,
AbstractionPattern origType,
CanType substType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
/// Convert a value with the abstraction patterns of the substituted
/// type to a value with the abstraction patterns of the original type.
ManagedValue emitSubstToOrigValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
RValue emitSubstToOrigValue(SILLocation loc, RValue &&input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
ManagedValue emitSubstToOrigValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
RValue emitSubstToOrigValue(SILLocation loc, RValue &&input,
AbstractionPattern origType,
CanType substType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
/// Transform the AST-level types in the function signature without an
/// abstraction or representation change.
ManagedValue emitTransformedValue(SILLocation loc, ManagedValue input,
CanType inputType,
CanType outputType,
SGFContext ctx = SGFContext());
/// Most general form of the above.
ManagedValue emitTransformedValue(SILLocation loc, ManagedValue input,
AbstractionPattern inputOrigType,
CanType inputSubstType,
AbstractionPattern outputOrigType,
CanType outputSubstType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
RValue emitTransformedValue(SILLocation loc, RValue &&input,
AbstractionPattern inputOrigType,
CanType inputSubstType,
AbstractionPattern outputOrigType,
CanType outputSubstType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
/// Used for emitting SILArguments of bare functions, such as thunks.
void collectThunkParams(
SILLocation loc, SmallVectorImpl<ManagedValue> ¶ms,
SmallVectorImpl<ManagedValue> *indirectResultParams = nullptr,
SmallVectorImpl<ManagedValue> *indirectErrorParams = nullptr);
/// Build the type of a function transformation thunk.
CanSILFunctionType buildThunkType(CanSILFunctionType &sourceType,
CanSILFunctionType &expectedType,
CanType &inputSubstType,
CanType &outputSubstType,
GenericEnvironment *&genericEnv,
SubstitutionMap &interfaceSubs,
CanType &dynamicSelfType,
bool withoutActuallyEscaping=false);
//===--------------------------------------------------------------------===//
// NoEscaping to Escaping closure thunk
//===--------------------------------------------------------------------===//
ManagedValue
createWithoutActuallyEscapingClosure(SILLocation loc,
ManagedValue noEscapingFunctionValue,
SILType escapingFnTy);
//===--------------------------------------------------------------------===//
// Differentiation thunks
//===--------------------------------------------------------------------===//
/// Get or create a thunk for reabstracting and self-reordering
/// differentials/pullbacks returned by user-defined JVP/VJP functions, and
/// apply it to the given differential/pullback.
///
/// If `reorderSelf` is true, reorder self so that it appears as:
/// - The last parameter, for differentials.
/// - The last result, for pullbacks.
ManagedValue getThunkedAutoDiffLinearMap(ManagedValue linearMap,
AutoDiffLinearMapKind linearMapKind,
CanSILFunctionType fromType,
CanSILFunctionType toType,
bool reorderSelf);
//===--------------------------------------------------------------------===//
// Back Deployment thunks
//===--------------------------------------------------------------------===//
/// Invokes an original function if it is available at runtime. Otherwise,
/// invokes a fallback copy of the function emitted into the client.
void emitBackDeploymentThunk(SILDeclRef thunk);
//===---------------------------------------------------------------------===//
// Distributed Actors
//===---------------------------------------------------------------------===//
/// Initializes the implicit stored properties of a distributed actor that correspond to
/// its transport and identity.
void emitDistributedActorImplicitPropertyInits(
ConstructorDecl *ctor, ManagedValue selfArg);
/// Initializes just the implicit identity property of a distributed actor.
/// \param selfVal a value corresponding to the actor's self
/// \param actorSystemVal a value corresponding to the actorSystem, to be used
/// to invoke its \p assignIdentity method.
void emitDistActorIdentityInit(ConstructorDecl *ctor,
SILLocation loc,
SILValue selfVal,
SILValue actorSystemVal);
/// Given a function representing a distributed actor factory, emits the
/// corresponding SIL function for it.
void emitDistributedActorFactory(FuncDecl *fd); // TODO(distributed): this is the "resolve"
void emitDistributedIfRemoteBranch(SILLocation Loc,
ManagedValue selfValue, Type selfTy,
SILBasicBlock *isRemoteBB,
SILBasicBlock *isLocalBB);
/// Notify transport that actor has initialized successfully,
/// and is ready to receive messages.
void emitDistributedActorReady(
SILLocation loc, ConstructorDecl *ctor, ManagedValue actorSelf);
/// For a distributed actor, emits code to invoke the system's
/// resignID function.
///
/// Specifically, this code emits SIL that performs the call
///
/// \verbatim
/// self.actorSystem.resignID(self.id)
/// \endverbatim
///
/// using the current builder's state as the injection point.
///
/// \param actorDecl the declaration corresponding to the actor
/// \param actorSelf the SIL value representing the distributed actor instance
void emitDistributedActorSystemResignIDCall(SILLocation loc,
ClassDecl *actorDecl, ManagedValue actorSelf);
/// Emit code that tests whether the distributed actor is local, and if so,
/// resigns the distributed actor's identity.
/// \param continueBB the target block where execution will continue after
/// the conditional call, whether actor is local or remote.
void emitConditionalResignIdentityCall(SILLocation loc,
ClassDecl *actorDecl,
ManagedValue actorSelf,
SILBasicBlock *continueBB,
SILBasicBlock *finishBB);
void emitDistributedActorClassMemberDestruction(
SILLocation cleanupLoc, ManagedValue selfValue, ClassDecl *cd,
SILBasicBlock *normalMemberDestroyBB,
SILBasicBlock *remoteMemberDestroyBB,
SILBasicBlock *finishBB);
//===--------------------------------------------------------------------===//
// Declarations
//===--------------------------------------------------------------------===//
void visitDecl(Decl *D) {
llvm_unreachable("Not yet implemented");
}
// Emitted as part of its storage.
void visitAccessorDecl(AccessorDecl *D) {}
void visitFuncDecl(FuncDecl *D);
/// \param generateDebugInfo Pattern bindings inside of capture list
/// expressions should not introduce new variables into the debug info.
void visitPatternBindingDecl(PatternBindingDecl *D,
bool generateDebugInfo = true);
void emitPatternBinding(PatternBindingDecl *D, unsigned entry,
bool generateDebugInfo);
std::unique_ptr<Initialization>
emitPatternBindingInitialization(Pattern *P, JumpDest failureDest,
bool generateDebugInfo = true);
void visitNominalTypeDecl(NominalTypeDecl *D) {
// No lowering support needed.
}
void visitTypeAliasDecl(TypeAliasDecl *D) {
// No lowering support needed.
}
void visitGenericTypeParamDecl(GenericTypeParamDecl *D) {
// No lowering support needed.
}
void visitAssociatedTypeDecl(AssociatedTypeDecl *D) {
// No lowering support needed.
}
void visitPoundDiagnosticDecl(PoundDiagnosticDecl *D) {
// No lowering support needed.
}
void visitVarDecl(VarDecl *D);
void visitMacroExpansionDecl(MacroExpansionDecl *D);
/// Emit an Initialization for a 'var' or 'let' decl in a pattern.
std::unique_ptr<Initialization>
emitInitializationForVarDecl(VarDecl *vd, bool immutable,
bool generateDebugInfo = true);
/// Emit the allocation for a local variable, provides an Initialization
/// that can be used to initialize it, and registers cleanups in the active
/// scope.
/// \param ArgNo optionally describes this function argument's
/// position for debug info.
std::unique_ptr<Initialization> emitLocalVariableWithCleanup(
VarDecl *D, std::optional<MarkUninitializedInst::Kind> kind,
unsigned ArgNo = 0, bool generateDebugInfo = true);
/// Emit the allocation for a local temporary, provides an
/// Initialization that can be used to initialize it, and registers
/// cleanups in the active scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
emitTemporary(SILLocation loc, const TypeLowering &tempTL);
/// Emit the allocation for a local temporary, provides an
/// Initialization that can be used to initialize it, and registers
/// cleanups in the current active formal evaluation scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
emitFormalAccessTemporary(SILLocation loc, const TypeLowering &tempTL);
/// Provides an Initialization that can be used to initialize an already-
/// allocated temporary, and registers cleanups in the active scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
useBufferAsTemporary(SILValue addr, const TypeLowering &tempTL);
/// Enter a currently-dormant cleanup to destroy the value in the
/// given address.
CleanupHandle enterDormantTemporaryCleanup(SILValue temp,
const TypeLowering &tempTL);
CleanupHandle enterDeallocBoxCleanup(SILValue box);
/// Enter a currently-dormant cleanup to destroy the value in the
/// given address.
CleanupHandle
enterDormantFormalAccessTemporaryCleanup(SILValue temp, SILLocation loc,
const TypeLowering &tempTL);
/// Destroy and deallocate an initialized local variable.
void destroyLocalVariable(SILLocation L, VarDecl *D);
/// Destroy the class member.
void destroyClassMember(SILLocation L, ManagedValue selfValue, VarDecl *D);
/// Enter a cleanup to deallocate a stack variable.
CleanupHandle enterDeallocStackCleanup(SILValue address);
/// Enter a cleanup to deallocate a pack.
CleanupHandle enterDeallocPackCleanup(SILValue address);
/// Enter a cleanup to emit a ReleaseValue/DestroyAddr of the specified value.
CleanupHandle enterDestroyCleanup(SILValue valueOrAddr);
/// Enter a cleanup to destroy all of the values in the given pack.
CleanupHandle enterDestroyPackCleanup(SILValue addr,
CanPackType formalPackType);
/// Enter a cleanup to destroy the preceding values in a pack-expansion
/// component of a pack.
///
/// \param limitWithinComponent - if non-null, the number of elements
/// to destroy in the pack expansion component; defaults to the
/// dynamic length of the expansion component
CleanupHandle enterPartialDestroyPackCleanup(SILValue addr,
CanPackType formalPackType,
unsigned componentIndex,
SILValue limitWithinComponent);
/// Enter a cleanup to destroy the following values in a
/// pack-expansion component of a pack. Note that this only destroys
/// the values *in that specific component*, not all the other values
/// in the pack.
///
/// \param currentIndexWithinComponent - the current index in the
/// pack expansion component; any elements in the component that
/// *follow* this component will be destroyed. If nil, all the
/// elements in the component will be destroyed
CleanupHandle
enterPartialDestroyRemainingPackCleanup(SILValue addr,
CanPackType formalPackType,
unsigned componentIndex,
SILValue currentIndexWithinComponent);
/// Enter a cleanup to destroy all of the components in a pack starting
/// at a particular component index.
CleanupHandle
enterDestroyRemainingPackComponentsCleanup(SILValue addr,
CanPackType formalPackType,
unsigned componentIndex);
/// Enter a cleanup to destroy the preceding components of a pack,
/// leading up to (but not including) a particular component index.
CleanupHandle
enterDestroyPrecedingPackComponentsCleanup(SILValue addr,
CanPackType formalPackType,
unsigned componentIndex);
/// Enter a cleanup to destroy the preceding values in a pack-expansion
/// component of a tuple.
///
/// \param limitWithinComponent - if non-null, the number of elements
/// to destroy in the pack expansion component; defaults to the
/// dynamic length of the expansion component
CleanupHandle enterPartialDestroyTupleCleanup(SILValue addr,
CanPackType inducedPackType,
unsigned componentIndex,
SILValue limitWithinComponent);
/// Enter a cleanup to destroy the following values in a
/// pack-expansion component of a tuple. Note that this only destroys
/// the values *in that specific component*, not all the other values
/// in the tuple.
///
/// \param currentIndexWithinComponent - the current index in the
/// pack expansion component; any elements in the component that
/// *follow* this component will be destroyed. If nil, all the
/// elements in the component will be destroyed
CleanupHandle
enterPartialDestroyRemainingTupleCleanup(SILValue addr,
CanPackType inducedPackType,
unsigned componentIndex,
SILValue currentIndexWithinComponent);
/// Enter a cleanup to destroy all of the components in a tuple starting
/// at a particular component index.
CleanupHandle
enterDestroyRemainingTupleElementsCleanup(SILValue addr,
CanPackType inducedPackType,
unsigned componentIndex);
/// Copy the elements of a pack, which must consist of a single pack expansion,
/// into a tuple value having the same pack expansion and its sole element type.
void copyPackElementsToTuple(SILLocation loc, SILValue tupleAddr, SILValue pack,
CanPackType formalPackType);
/// Initialize a pack with the addresses of the elements of a tuple, which must
/// consist of a single pack expansion.
void projectTupleElementsToPack(SILLocation loc, SILValue tupleAddr, SILValue pack,
CanPackType formalPackType);
/// Return an owned managed value for \p value that is cleaned up using an end_lifetime instruction.
///
/// The end_lifetime cleanup is not placed into the ManagedValue itself and
/// thus can not be forwarded. This means that the ManagedValue is treated
/// as a +0 value. This means that the owned value will be copied by SILGen
/// if it is ever needed as a +1 value (meaning any time that the value
/// escapes).
///
/// DISCUSSION: end_lifetime ends the lifetime of an owned value in OSSA
/// without resulting in a destroy being emitted. This cleanup should only
/// be used for owned values that do not need to be destroyed if they do not
/// escape the current call frame but need to be copied if they escape.
ManagedValue emitManagedRValueWithEndLifetimeCleanup(SILValue value);
/// Enter a cleanup to emit a DeinitExistentialAddr or DeinitExistentialBox
/// of the specified value.
CleanupHandle enterDeinitExistentialCleanup(CleanupState state,
SILValue addr,
CanType concreteFormalType,
ExistentialRepresentation repr);
/// Enter a cleanup to cancel the given task.
CleanupHandle enterCancelAsyncTaskCleanup(SILValue task);
// Enter a cleanup to cancel and destroy an AsyncLet as it leaves the scope.
CleanupHandle enterAsyncLetCleanup(SILValue alet, SILValue resultBuf);
/// Evaluate an Expr as an lvalue.
LValue emitLValue(Expr *E, SGFAccessKind accessKind,
LValueOptions options = LValueOptions());
RValue emitRValueForNonMemberVarDecl(SILLocation loc,
ConcreteDeclRef declRef,
CanType formalRValueType,
AccessSemantics semantics,
SGFContext C);
/// Emit an lvalue that directly refers to the given instance variable
/// (without going through getters or setters).
LValue emitPropertyLValue(SILLocation loc, ManagedValue base,
CanType baseFormalType, VarDecl *var,
LValueOptions options,
SGFAccessKind accessKind,
AccessSemantics semantics);
struct PointerAccessInfo {
CanType PointerType;
PointerTypeKind PointerKind;
SGFAccessKind AccessKind;
};
PointerAccessInfo getPointerAccessInfo(Type pointerType);
ManagedValue emitLValueToPointer(SILLocation loc, LValue &&lvalue,
PointerAccessInfo accessInfo);
struct ArrayAccessInfo {
Type PointerType;
Type ArrayType;
SGFAccessKind AccessKind;
};
ArrayAccessInfo getArrayAccessInfo(Type pointerType, Type arrayType);
std::pair<ManagedValue,ManagedValue>
emitArrayToPointer(SILLocation loc, LValue &&lvalue,
ArrayAccessInfo accessInfo);
std::pair<ManagedValue,ManagedValue>
emitArrayToPointer(SILLocation loc, ManagedValue arrayValue,
ArrayAccessInfo accessInfo);
std::pair<ManagedValue,ManagedValue>
emitStringToPointer(SILLocation loc, ManagedValue stringValue,
Type pointerType);
class ForceTryEmission {
SILGenFunction &SGF;
ForceTryExpr *Loc;
JumpDest OldThrowDest;
public:
ForceTryEmission(SILGenFunction &SGF, ForceTryExpr *loc);
ForceTryEmission(const ForceTryEmission &) = delete;
ForceTryEmission &operator=(const ForceTryEmission &) = delete;
void finish();
~ForceTryEmission() {
if (Loc) finish();
}
};
/// Return forwarding substitutions for the archetypes in the current
/// function.
SubstitutionMap getForwardingSubstitutionMap();
/// Get the _Pointer protocol used for pointer argument operations.
ProtocolDecl *getPointerProtocol();
/// Returns the SILDeclRef to use for references to the given accessor.
SILDeclRef getAccessorDeclRef(AccessorDecl *accessor) {
return SGM.getAccessorDeclRef(accessor, F.getResilienceExpansion());
}
/// Given a lowered pack expansion type, produce a generic environment
/// sufficient for doing value operations on it and map the type into
/// the environment.
std::pair<GenericEnvironment*, SILType>
createOpenedElementValueEnvironment(SILType packExpansionTy);
GenericEnvironment *
createOpenedElementValueEnvironment(ArrayRef<SILType> packExpansionTys,
ArrayRef<SILType*> eltTys);
GenericEnvironment *
createOpenedElementValueEnvironment(ArrayRef<SILType> packExpansionTys,
ArrayRef<SILType*> eltTys,
ArrayRef<CanType> formalPackExpansionTys,
ArrayRef<CanType*> formalEltTys);
/// Emit a dynamic loop over a single pack-expansion component of a pack.
///
/// \param formalPackType - a pack type with the right shape for the
/// overall pack being iterated over
/// \param componentIndex - the index of the pack expansion component
/// within the formal pack type
/// \param startingAfterIndexWithinComponent - the index prior to the
/// first index within the component to dynamically visit; if null,
/// visitation will start at 0
/// \param limitWithinComponent - the number of elements in a prefix of
/// the expansion component to dynamically visit; if null, all elements
/// will be visited
/// \param openedElementEnv - a set of opened element archetypes to bind
/// within the loop; can be null to bind no elements
/// \param reverse - if true, iterate the elements in reverse order,
/// starting at index limitWithinComponent - 1
/// \param emitBody - a function that will be called to emit the body of
/// the loop. It's okay if this has paths that exit the body of the loop,
/// but it should leave the insertion point set at the end.
///
/// The first parameter is the current index within the expansion
/// component, a value of type Builtin.Word. The second parameter is
/// that index as a pack indexing instruction that indexes into packs
/// with the shape of the pack expasion. The third parameter is the
/// current pack index within the overall pack, a pack indexing instruction
/// that indexes into packs with the shape of formalPackType.
///
/// This function will be called within a cleanups scope and with
/// InnermostPackExpansion set up properly for the context.
void emitDynamicPackLoop(
SILLocation loc, CanPackType formalPackType, unsigned componentIndex,
SILValue startingAfterIndexWithinComponent, SILValue limitWithinComponent,
GenericEnvironment *openedElementEnv, bool reverse,
llvm::function_ref<void(SILValue indexWithinComponent,
SILValue packExpansionIndex, SILValue packIndex)>
emitBody,
SILBasicBlock *loopLatch = nullptr);
/// A convenience version of dynamic pack loop that visits an entire
/// pack expansion component in forward order.
void emitDynamicPackLoop(
SILLocation loc, CanPackType formalPackType, unsigned componentIndex,
GenericEnvironment *openedElementEnv,
llvm::function_ref<void(SILValue indexWithinComponent,
SILValue packExpansionIndex, SILValue packIndex)>
emitBody,
SILBasicBlock *loopLatch = nullptr);
/// Emit a transform on each element of a pack-expansion component
/// of a pack, write the result into a pack-expansion component of
/// another pack.
///
/// \param inputPackAddr - the address of the input pack; the cleanup
/// on this pack should be a cleanup for just the pack component,
/// not for the entire pack
ManagedValue emitPackTransform(SILLocation loc,
ManagedValue inputPackAddr,
CanPackType inputFormalPackType,
unsigned inputComponentIndex,
SILValue outputPackAddr,
CanPackType outputFormalPackType,
unsigned outputComponentIndex,
bool isSimpleProjection,
bool outputIsPlusOne,
llvm::function_ref<ManagedValue(ManagedValue input,
SILType outputTy,
SGFContext context)> emitBody);
/// Emit a loop which destroys a prefix of a pack expansion component
/// of a pack value.
///
/// \param packAddr - the address of the overall pack value
/// \param formalPackType - a pack type with the same shape as the
/// overall pack value
/// \param componentIndex - the index of the pack expansion component
/// within the formal pack type
/// \param limitWithinComponent - the number of elements in a prefix of
/// the expansion component to destroy; if null, all elements in the
/// component will be destroyed
void emitPartialDestroyPack(SILLocation loc,
SILValue packAddr,
CanPackType formalPackType,
unsigned componentIndex,
SILValue limitWithinComponent);
/// Emit a loop which destroys all the elements of a pack value.
///
/// \param packAddr - the address of the overall pack value
/// \param formalPackType - a pack type with the same shape as the
/// overall pack value
void emitDestroyPack(SILLocation loc,
SILValue packAddr,
CanPackType formalPackType,
unsigned beginIndex,
unsigned endIndex);
/// Emit instructions to destroy a suffix of a tuple value.
///
/// \param tupleAddr - the address of the overall tuple value
/// \param inducedPackType - a pack type with the same shape as the
/// element types of the overall tuple value; can be null if the
/// tuple type doesn't contain pack expansions
/// \param componentIndex - the index of the first component to
/// destroy in the tuple
void emitDestroyRemainingTupleElements(SILLocation loc,
SILValue tupleAddr,
CanPackType inducedPackType,
unsigned componentIndex);
/// Emit a loop which destroys a prefix of a pack expansion component
/// of a tuple value.
///
/// \param tupleAddr - the address of the overall tuple value
/// \param inducedPackType - a pack type with the same shape as the
/// element types of the overall tuple value
/// \param componentIndex - the index of the pack expansion component
/// within the tuple
/// \param limitWithinComponent - the number of elements in a prefix of
/// the expansion component to destroy; if null, all elements in the
/// component will be destroyed
void emitPartialDestroyTuple(SILLocation loc,
SILValue tupleAddr,
CanPackType inducedPackType,
unsigned componentIndex,
SILValue limitWithinComponent);
/// Emit a loop which destroys a suffix of a pack expansion component
/// of a tuple value.
///
/// \param tupleAddr - the address of the overall tuple value
/// \param inducedPackType - a pack type with the same shape as the
/// element types of the overall tuple value
/// \param componentIndex - the index of the pack expansion component
/// within the tuple
/// \param currentIndexWithinComponent - the current index in the
/// pack expansion component; all elements *following* this index will
/// be destroyed
void emitPartialDestroyRemainingTuple(SILLocation loc,
SILValue tupleAddr,
CanPackType inducedPackType,
unsigned componentIndex,
SILValue currentIndexWithinComponent);
/// Emit a loop which destroys a suffix of a pack expansion component
/// of a pack value.
///
/// \param packAddr - the address of the overall pack value
/// \param formalPackType - a pack type with the same shape as the
/// component types of the overall pack value
/// \param componentIndex - the index of the pack expansion component
/// within the pack
/// \param currentIndexWithinComponent - the current index in the
/// pack expansion component; all elements *following* this index will
/// be destroyed
void emitPartialDestroyRemainingPack(SILLocation loc,
SILValue packAddr,
CanPackType formalPackType,
unsigned componentIndex,
SILValue currentIndexWithinComponent);
/// If context is init accessor, find a mapping between the given type
/// property and argument declaration synthesized for it.
ParamDecl *isMappedToInitAccessorArgument(VarDecl *property);
};
/// A utility class for saving and restoring the insertion point.
class SILGenSavedInsertionPoint {
SILGenFunction &SGF;
SILBasicBlock *SavedIP;
FunctionSection SavedSection;
public:
SILGenSavedInsertionPoint(
SILGenFunction &SGF, SILBasicBlock *newIP,
std::optional<FunctionSection> optSection = std::nullopt)
: SGF(SGF), SavedIP(SGF.B.getInsertionBB()),
SavedSection(SGF.CurFunctionSection) {
FunctionSection section = (optSection ? *optSection : SavedSection);
assert((section != FunctionSection::Postmatter ||
SGF.StartOfPostmatter != SGF.F.end()) &&
"trying to move to postmatter without a registered start "
"of postmatter?");
SGF.B.setInsertionPoint(newIP);
SGF.CurFunctionSection = section;
}
SILGenSavedInsertionPoint(const SILGenSavedInsertionPoint &) = delete;
SILGenSavedInsertionPoint &
operator=(const SILGenSavedInsertionPoint &) = delete;
~SILGenSavedInsertionPoint() {
if (SavedIP) {
SGF.B.setInsertionPoint(SavedIP);
} else {
SGF.B.clearInsertionPoint();
}
SGF.CurFunctionSection = SavedSection;
}
};
} // end namespace Lowering
} // end namespace swift
#endif
|