1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
|
//===--- SILGenStmt.cpp - Implements Lowering of ASTs -> SIL for Stmts ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ArgumentScope.h"
#include "ArgumentSource.h"
#include "Condition.h"
#include "Conversion.h"
#include "ExecutorBreadcrumb.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "SILGen.h"
#include "Scope.h"
#include "SwitchEnumBuilder.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/Basic/ProfileCounter.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/AbstractionPatternGenerators.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILProfiler.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
using namespace Lowering;
template<typename...T, typename...U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&...args) {
Context.Diags.diagnose(loc,
diag, std::forward<U>(args)...);
}
SILBasicBlock *SILGenFunction::createBasicBlockAfter(SILBasicBlock *afterBB) {
assert(afterBB);
return F.createBasicBlockAfter(afterBB);
}
SILBasicBlock *SILGenFunction::createBasicBlockBefore(SILBasicBlock *beforeBB) {
assert(beforeBB);
return F.createBasicBlockBefore(beforeBB);
}
SILBasicBlock *SILGenFunction::createBasicBlock() {
// If we have a current insertion point, insert there.
if (B.hasValidInsertionPoint()) {
return F.createBasicBlockAfter(B.getInsertionBB());
// Otherwise, insert at the end of the current section.
} else {
return createBasicBlock(CurFunctionSection);
}
}
SILBasicBlock *SILGenFunction::createBasicBlock(llvm::StringRef debugName) {
auto block = createBasicBlock();
block->setDebugName(debugName);
return block;
}
SILBasicBlock *SILGenFunction::createBasicBlock(FunctionSection section) {
switch (section) {
case FunctionSection::Ordinary: {
// The end of the ordinary section is just the end of the function
// unless postmatter blocks exist.
if (StartOfPostmatter != F.end()) {
return F.createBasicBlockBefore(&*StartOfPostmatter);
} else {
return F.createBasicBlock();
}
}
case FunctionSection::Postmatter: {
// The end of the postmatter section is always the end of the function.
// Register the new block as the start of the postmatter if needed.
SILBasicBlock *newBB = F.createBasicBlock();
if (StartOfPostmatter == F.end())
StartOfPostmatter = newBB->getIterator();
return newBB;
}
}
llvm_unreachable("bad function section");
}
SILBasicBlock *
SILGenFunction::createBasicBlockAndBranch(SILLocation loc,
SILBasicBlock *destBB) {
auto *newBB = createBasicBlock();
SILGenBuilder(B, newBB).createBranch(loc, destBB);
return newBB;
}
void SILGenFunction::eraseBasicBlock(SILBasicBlock *block) {
assert(block->pred_empty() && "erasing block with predecessors");
assert(block->empty() && "erasing block with content");
SILFunction::iterator blockIt = block->getIterator();
if (blockIt == StartOfPostmatter) {
StartOfPostmatter = next_or_end(blockIt, F.end());
}
block->eraseFromParent();
}
// Merge blocks during a single traversal of the block list. Only unconditional
// branch edges are visited. Consequently, this takes only as much time as a
// linked list traversal and requires no additional storage.
//
// For each block, check if it can be merged with its successor. Place the
// merged block at the successor position in the block list.
//
// Typically, the successor occurs later in the list. This is most efficient
// because merging moves instructions from the successor to the
// predecessor. This way, instructions will only be moved once. Furthermore, the
// merged block will be visited again to determine if it can be merged with it's
// successor, and so on, so no edges are skipped.
//
// In rare cases, the predecessor is merged with its earlier successor, which has
// already been visited. If the successor can also be merged, then it has
// already happened, and there is no need to revisit the merged block.
void SILGenFunction::mergeCleanupBlocks() {
for (auto bbPos = F.begin(), bbEnd = F.end(), nextPos = bbPos; bbPos != bbEnd;
bbPos = nextPos) {
// A forward iterator referring to the next unprocessed block in the block
// list. If blocks are merged and moved, then this will be updated.
nextPos = std::next(bbPos);
// Consider the current block as the predecessor.
auto *predBB = &*bbPos;
auto *BI = dyn_cast<BranchInst>(predBB->getTerminator());
if (!BI)
continue;
// predBB has an unconditional branch to succBB. If succBB has no other
// predecessors, then merge the blocks.
auto *succBB = BI->getDestBB();
if (!succBB->getSinglePredecessorBlock())
continue;
// Before merging, establish iterators that won't be invalidated by erasing
// succBB. Use a reverse iterator to remember the position before a block.
//
// Remember the block before the current successor as a position for placing
// the merged block.
auto beforeSucc = std::next(SILFunction::reverse_iterator(succBB));
// Remember the position before the current predecessor to avoid skipping
// blocks or revisiting blocks unnecessarily.
auto beforePred = std::next(SILFunction::reverse_iterator(predBB));
// Since succBB will be erased, move before it.
if (beforePred == SILFunction::reverse_iterator(succBB))
++beforePred;
// Merge `predBB` with `succBB`. This erases `succBB`.
mergeBasicBlockWithSingleSuccessor(predBB, succBB);
// If predBB is first in the list, then it must be the entry block which
// cannot be moved.
if (beforePred != F.rend()) {
// Move the merged block into the successor position. (If the blocks are
// not already adjacent, then the first is typically the trampoline.)
assert(beforeSucc != F.rend()
&& "entry block cannot have a predecessor.");
F.moveBlockAfter(predBB, &*beforeSucc);
}
// If after moving predBB there are no more blocks to process, then break.
if (beforePred == F.rbegin())
break;
// Update the loop iterator to the next unprocessed block.
nextPos = SILFunction::iterator(&*std::prev(beforePred));
}
}
//===----------------------------------------------------------------------===//
// SILGenFunction emitStmt implementation
//===----------------------------------------------------------------------===//
namespace {
class StmtEmitter : public Lowering::ASTVisitor<StmtEmitter> {
SILGenFunction &SGF;
public:
StmtEmitter(SILGenFunction &sgf) : SGF(sgf) {}
#define STMT(ID, BASE) void visit##ID##Stmt(ID##Stmt *S);
#include "swift/AST/StmtNodes.def"
ASTContext &getASTContext() { return SGF.getASTContext(); }
SILBasicBlock *createBasicBlock() { return SGF.createBasicBlock(); }
JumpDest createJumpDest(Stmt *cleanupLoc) {
return JumpDest(SGF.createBasicBlock(),
SGF.getCleanupsDepth(),
CleanupLocation(cleanupLoc));
}
JumpDest createThrowDest(Stmt *cleanupLoc, ThrownErrorInfo errorInfo) {
return JumpDest(SGF.createBasicBlock(FunctionSection::Postmatter),
SGF.getCleanupsDepth(),
CleanupLocation(cleanupLoc),
errorInfo);
}
};
} // end anonymous namespace
void SILGenFunction::emitStmt(Stmt *S) {
StmtEmitter(*this).visit(S);
}
/// getOrEraseBlock - If there are branches to the specified JumpDest,
/// return the block, otherwise return NULL. The JumpDest must be valid.
static SILBasicBlock *getOrEraseBlock(SILGenFunction &SGF, JumpDest &dest) {
SILBasicBlock *BB = dest.takeBlock();
if (BB->pred_empty()) {
// If the block is unused, we don't need it; just delete it.
SGF.eraseBasicBlock(BB);
return nullptr;
}
return BB;
}
/// emitOrDeleteBlock - If there are branches to the specified JumpDest,
/// emit it per emitBlock. If there aren't, then just delete the block - it
/// turns out to have not been needed.
static void emitOrDeleteBlock(SILGenFunction &SGF, JumpDest &dest,
SILLocation BranchLoc) {
// If we ever add a single-use optimization here (to just continue
// the predecessor instead of branching to a separate block), we'll
// need to update visitDoCatchStmt so that code like:
// try { throw x } catch _ { }
// doesn't leave us emitting the rest of the function in the
// postmatter section.
SILBasicBlock *BB = getOrEraseBlock(SGF, dest);
if (BB != nullptr)
SGF.B.emitBlock(BB, BranchLoc);
}
Condition SILGenFunction::emitCondition(Expr *E, bool invertValue,
ArrayRef<SILType> contArgs,
ProfileCounter NumTrueTaken,
ProfileCounter NumFalseTaken) {
assert(B.hasValidInsertionPoint() &&
"emitting condition at unreachable point");
// Sema forces conditions to have Bool type, which guarantees this.
SILValue V;
{
FullExpr Scope(Cleanups, CleanupLocation(E));
V = emitRValue(E).forwardAsSingleValue(*this, E);
}
auto i1Value = emitUnwrapIntegerResult(E, V);
return emitCondition(i1Value, E, invertValue, contArgs, NumTrueTaken,
NumFalseTaken);
}
Condition SILGenFunction::emitCondition(SILValue V, SILLocation Loc,
bool invertValue,
ArrayRef<SILType> contArgs,
ProfileCounter NumTrueTaken,
ProfileCounter NumFalseTaken) {
assert(B.hasValidInsertionPoint() &&
"emitting condition at unreachable point");
SILBasicBlock *ContBB = createBasicBlock();
for (SILType argTy : contArgs) {
ContBB->createPhiArgument(argTy, OwnershipKind::Owned);
}
SILBasicBlock *FalseBB = createBasicBlock();
SILBasicBlock *TrueBB = createBasicBlock();
if (invertValue)
B.createCondBranch(Loc, V, FalseBB, TrueBB, NumFalseTaken, NumTrueTaken);
else
B.createCondBranch(Loc, V, TrueBB, FalseBB, NumTrueTaken, NumFalseTaken);
return Condition(TrueBB, FalseBB, ContBB, Loc);
}
void StmtEmitter::visitBraceStmt(BraceStmt *S) {
// Enter a new scope.
LexicalScope BraceScope(SGF, CleanupLocation(S));
// This is a workaround until the FIXME in SILGenFunction::getOrCreateScope
// has been addressed. Property wrappers create incorrect source locations.
DebugScope DbgScope(SGF, S);
// Keep in sync with DiagnosticsSIL.def.
const unsigned ReturnStmtType = 0;
const unsigned BreakStmtType = 1;
const unsigned ContinueStmtType = 2;
const unsigned ThrowStmtType = 3;
const unsigned UnknownStmtType = 4;
unsigned StmtType = UnknownStmtType;
// Emit local auxiliary declarations.
if (!SGF.LocalAuxiliaryDecls.empty()) {
for (auto *var : SGF.LocalAuxiliaryDecls) {
if (auto *patternBinding = var->getParentPatternBinding())
SGF.visit(patternBinding);
SGF.visit(var);
}
SGF.LocalAuxiliaryDecls.clear();
}
bool didDiagnoseUnreachableElements = false;
for (auto &ESD : S->getElements()) {
if (auto D = ESD.dyn_cast<Decl*>()) {
if (isa<IfConfigDecl>(D))
continue;
// Hoisted declarations are emitted at the top level by emitSourceFile().
if (D->isHoisted())
continue;
// PatternBindingBecls represent local variable bindings that execute
// as part of the function's execution.
if (!isa<PatternBindingDecl>(D) && !isa<VarDecl>(D)) {
// Other decls define entities that may be used by the program, such as
// local function declarations. So handle them here, before checking for
// reachability, and then continue looping.
SGF.visit(D);
continue;
}
}
// If we ever reach an unreachable point, stop emitting statements and issue
// an unreachable code diagnostic.
if (!SGF.B.hasValidInsertionPoint()) {
// If this is an implicit statement or expression, just skip over it,
// don't emit a diagnostic here.
if (auto *S = ESD.dyn_cast<Stmt*>()) {
// Return statement in a single-expression closure or function is
// implicit, but the result isn't. So, skip over return statements
// that are implicit and either have no results or the result is
// implicit. Otherwise, don't so we can emit unreachable code
// diagnostics.
if (S->isImplicit() && isa<ReturnStmt>(S)) {
auto returnStmt = cast<ReturnStmt>(S);
if (!returnStmt->hasResult()) {
continue;
}
if (returnStmt->getResult()->isImplicit()) {
continue;
}
}
if (S->isImplicit() && !isa<ReturnStmt>(S)) {
continue;
}
} else if (auto *E = ESD.dyn_cast<Expr*>()) {
// Optional chaining expressions are wrapped in a structure like.
//
// (optional_evaluation_expr implicit type='T?'
// (call_expr type='T?'
// (exprs...
//
// Walk through it to find out if the statement is actually implicit.
if (auto *OEE = dyn_cast<OptionalEvaluationExpr>(E)) {
if (auto *IIO = dyn_cast<InjectIntoOptionalExpr>(OEE->getSubExpr()))
if (IIO->getSubExpr()->isImplicit()) continue;
if (auto *C = dyn_cast<CallExpr>(OEE->getSubExpr()))
if (C->isImplicit()) continue;
} else if (E->isImplicit()) {
// Ignore all other implicit expressions.
continue;
}
} else if (auto D = ESD.dyn_cast<Decl*>()) {
// Local declarations aren't unreachable - only their usages can be. To
// that end, we only care about pattern bindings since their
// initializer expressions can be unreachable.
if (!isa<PatternBindingDecl>(D))
continue;
}
if (didDiagnoseUnreachableElements)
continue;
didDiagnoseUnreachableElements = true;
if (StmtType != UnknownStmtType) {
diagnose(getASTContext(), ESD.getStartLoc(),
diag::unreachable_code_after_stmt, StmtType);
} else {
diagnose(getASTContext(), ESD.getStartLoc(),
diag::unreachable_code);
if (!S->getElements().empty()) {
for (auto *arg : SGF.getFunction().getArguments()) {
auto argTy = arg->getType().getASTType();
if (argTy->isStructurallyUninhabited()) {
// Use the interface type in this diagnostic because the SIL type
// unpacks tuples. But, the SIL type being exploded means it
// points directly at the offending tuple element type and we can
// use that to point the user at problematic component(s).
auto argIFaceTy = arg->getDecl()->getInterfaceType();
diagnose(getASTContext(), S->getStartLoc(),
diag::unreachable_code_uninhabited_param_note,
arg->getDecl()->getBaseName().userFacingName(),
argIFaceTy,
argIFaceTy->is<EnumType>(),
argTy);
break;
}
}
}
}
continue;
}
// Process children.
if (auto *S = ESD.dyn_cast<Stmt*>()) {
visit(S);
if (isa<ReturnStmt>(S))
StmtType = ReturnStmtType;
if (isa<BreakStmt>(S))
StmtType = BreakStmtType;
if (isa<ContinueStmt>(S))
StmtType = ContinueStmtType;
if (isa<ThrowStmt>(S))
StmtType = ThrowStmtType;
} else if (auto *E = ESD.dyn_cast<Expr*>()) {
SGF.emitIgnoredExpr(E);
} else {
auto *D = ESD.get<Decl*>();
assert((isa<PatternBindingDecl>(D) || isa<VarDecl>(D)) &&
"other decls should be handled before the reachability check");
SGF.visit(D);
}
}
}
namespace {
class StoreResultInitialization : public Initialization {
SILValue &Storage;
SmallVectorImpl<CleanupHandle> &Cleanups;
public:
StoreResultInitialization(SILValue &storage,
SmallVectorImpl<CleanupHandle> &cleanups)
: Storage(storage), Cleanups(cleanups) {}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override {
Storage = value.getValue();
auto cleanup = value.getCleanup();
if (cleanup.isValid()) Cleanups.push_back(cleanup);
}
};
} // end anonymous namespace
static void wrapInSubstToOrigInitialization(SILGenFunction &SGF,
InitializationPtr &init,
AbstractionPattern origType,
CanType substType,
SILType expectedTy) {
auto loweredSubstTy = SGF.getLoweredRValueType(substType);
if (expectedTy.getASTType() != loweredSubstTy) {
auto conversion =
Conversion::getSubstToOrig(origType, substType,
SILType::getPrimitiveObjectType(loweredSubstTy),
expectedTy);
auto convertingInit = new ConvertingInitialization(conversion,
std::move(init));
init.reset(convertingInit);
}
}
static InitializationPtr
createIndirectResultInit(SILGenFunction &SGF, SILValue addr,
SmallVectorImpl<CleanupHandle> &cleanups) {
// Create an initialization which will initialize it.
auto &resultTL = SGF.getTypeLowering(addr->getType());
auto temporary = SGF.useBufferAsTemporary(addr, resultTL);
// Remember the cleanup that will be activated.
auto cleanup = temporary->getInitializedCleanup();
if (cleanup.isValid())
cleanups.push_back(cleanup);
return InitializationPtr(temporary.release());
}
static InitializationPtr
createIndirectResultInit(SILGenFunction &SGF, SILValue addr,
AbstractionPattern origType,
CanType substType,
SmallVectorImpl<CleanupHandle> &cleanups) {
auto init = createIndirectResultInit(SGF, addr, cleanups);
wrapInSubstToOrigInitialization(SGF, init, origType, substType,
addr->getType());
return init;
}
static void
preparePackResultInit(SILGenFunction &SGF, SILLocation loc,
AbstractionPattern origExpansionType,
CanTupleEltTypeArrayRef resultEltTypes,
SILArgument *packAddr,
SmallVectorImpl<CleanupHandle> &cleanups,
SmallVectorImpl<InitializationPtr> &inits) {
auto loweredPackType = packAddr->getType().castTo<SILPackType>();
assert(loweredPackType->getNumElements() == resultEltTypes.size() &&
"mismatched pack components; possible missing substitutions on orig type?");
// If the pack expanded to nothing, there shouldn't be any initializers
// for it in our context.
if (resultEltTypes.empty()) {
return;
}
auto origPatternType = origExpansionType.getPackExpansionPatternType();
// Induce a formal pack type from the slice of the tuple elements.
CanPackType formalPackType =
CanPackType::get(SGF.getASTContext(), resultEltTypes);
for (auto componentIndex : indices(resultEltTypes)) {
auto resultComponentType = formalPackType.getElementType(componentIndex);
auto loweredComponentType = loweredPackType->getElementType(componentIndex);
assert(isa<PackExpansionType>(loweredComponentType)
== isa<PackExpansionType>(resultComponentType) &&
"need expansions in similar places");
// If we have a pack expansion, the initializer had better be a
// pack expansion expression, and we'll generate a loop for it.
// Preserve enough information to do this properly.
if (isa<PackExpansionType>(resultComponentType)) {
auto resultPatternType =
cast<PackExpansionType>(resultComponentType).getPatternType();
auto expectedPatternTy = SILType::getPrimitiveAddressType(
cast<PackExpansionType>(loweredComponentType).getPatternType());
auto init = PackExpansionInitialization::create(SGF, packAddr,
formalPackType,
componentIndex);
// Remember the cleanup for destroying all of the expansion elements.
auto expansionCleanup = init->getExpansionCleanup();
if (expansionCleanup.isValid())
cleanups.push_back(expansionCleanup);
inits.emplace_back(init.release());
wrapInSubstToOrigInitialization(SGF, inits.back(), origPatternType,
resultPatternType,
expectedPatternTy);
// Otherwise, we should be able to just project out the pack
// address and set up a nomal indirect result into it.
} else {
auto packIndex =
SGF.B.createScalarPackIndex(loc, componentIndex, formalPackType);
auto eltAddr =
SGF.B.createPackElementGet(loc, packIndex, packAddr,
SILType::getPrimitiveAddressType(loweredComponentType));
inits.push_back(createIndirectResultInit(SGF, eltAddr,
origPatternType,
resultComponentType,
cleanups));
}
}
}
static InitializationPtr
prepareIndirectResultInit(SILGenFunction &SGF, SILLocation loc,
CanSILFunctionType fnTypeForResults,
AbstractionPattern origResultType,
CanType resultType,
ArrayRef<SILResultInfo> &allResults,
MutableArrayRef<SILValue> &directResults,
ArrayRef<SILArgument*> &indirectResultAddrs,
SmallVectorImpl<CleanupHandle> &cleanups) {
// Recursively decompose tuple abstraction patterns.
if (origResultType.isTuple()) {
// Normally, we build a compound initialization for the tuple. But
// the initialization we build should match the substituted type,
// so if the tuple in the abstraction pattern vanishes under variadic
// substitution, we actually just want to return the initializer
// for the surviving component.
TupleInitialization *tupleInit = nullptr;
SmallVector<InitializationPtr, 1> singletonEltInit;
bool vanishes = origResultType.doesTupleVanish();
if (!vanishes) {
auto resultTupleType = cast<TupleType>(resultType);
tupleInit = new TupleInitialization(resultTupleType);
tupleInit->SubInitializations.reserve(
cast<TupleType>(resultType)->getNumElements());
}
// The list of element initializers to build into.
auto &eltInits = (vanishes
? static_cast<SmallVectorImpl<InitializationPtr> &>(singletonEltInit)
: tupleInit->SubInitializations);
origResultType.forEachTupleElement(resultType,
[&](TupleElementGenerator &elt) {
if (!elt.isOrigPackExpansion()) {
auto eltInit = prepareIndirectResultInit(SGF, loc, fnTypeForResults,
elt.getOrigType(),
elt.getSubstTypes()[0],
allResults,
directResults,
indirectResultAddrs,
cleanups);
eltInits.push_back(std::move(eltInit));
} else {
assert(allResults[0].isPack());
assert(SGF.silConv.isSILIndirect(allResults[0]));
allResults = allResults.slice(1);
auto packAddr = indirectResultAddrs[0];
indirectResultAddrs = indirectResultAddrs.slice(1);
preparePackResultInit(SGF, loc, elt.getOrigType(), elt.getSubstTypes(),
packAddr, cleanups, eltInits);
}
});
if (vanishes) {
assert(singletonEltInit.size() == 1);
return std::move(singletonEltInit.front());
}
assert(tupleInit);
assert(eltInits.size() == cast<TupleType>(resultType)->getNumElements());
return InitializationPtr(tupleInit);
}
// Okay, pull the next result off the list of results.
auto result = allResults[0];
allResults = allResults.slice(1);
// If it's indirect, we should be emitting into an argument.
InitializationPtr init;
if (SGF.silConv.isSILIndirect(result)) {
// Pull off the next indirect result argument.
SILValue addr = indirectResultAddrs.front();
indirectResultAddrs = indirectResultAddrs.slice(1);
init = createIndirectResultInit(SGF, addr, origResultType, resultType,
cleanups);
} else {
// Otherwise, make an Initialization that stores the value in the
// next element of the directResults array.
auto storeInit = new StoreResultInitialization(directResults[0], cleanups);
directResults = directResults.slice(1);
init = InitializationPtr(storeInit);
SILType expectedResultTy =
SGF.getSILTypeInContext(result, fnTypeForResults);
wrapInSubstToOrigInitialization(SGF, init, origResultType, resultType,
expectedResultTy);
}
return init;
}
/// Prepare an Initialization that will initialize the result of the
/// current function.
///
/// \param directResultsBuffer - will be filled with the direct
/// components of the result
/// \param cleanups - will be filled (after initialization completes)
/// with all the active cleanups managing the result values
std::unique_ptr<Initialization>
SILGenFunction::prepareIndirectResultInit(
SILLocation loc,
AbstractionPattern origResultType,
CanType formalResultType,
SmallVectorImpl<SILValue> &directResultsBuffer,
SmallVectorImpl<CleanupHandle> &cleanups) {
auto fnConv = F.getConventions();
// Make space in the direct-results array for all the entries we need.
directResultsBuffer.append(fnConv.getNumDirectSILResults(), SILValue());
ArrayRef<SILResultInfo> allResults = fnConv.funcTy->getResults();
MutableArrayRef<SILValue> directResults = directResultsBuffer;
ArrayRef<SILArgument*> indirectResultAddrs = F.getIndirectResults();
auto init = ::prepareIndirectResultInit(*this, loc,
fnConv.funcTy,
origResultType,
formalResultType, allResults,
directResults, indirectResultAddrs,
cleanups);
assert(allResults.empty());
assert(directResults.empty());
assert(indirectResultAddrs.empty());
return init;
}
void SILGenFunction::emitReturnExpr(SILLocation branchLoc,
Expr *ret) {
SmallVector<SILValue, 4> directResults;
auto retTy = ret->getType()->getCanonicalType();
AbstractionPattern origRetTy = TypeContext
? TypeContext->OrigType.getFunctionResultType()
: AbstractionPattern(retTy);
if (F.getConventions().hasIndirectSILResults()) {
// Indirect return of an address-only value.
FullExpr scope(Cleanups, CleanupLocation(ret));
// Build an initialization which recursively destructures the tuple.
SmallVector<CleanupHandle, 4> resultCleanups;
InitializationPtr resultInit =
prepareIndirectResultInit(ret, origRetTy,
ret->getType()->getCanonicalType(),
directResults, resultCleanups);
// Emit the result expression into the initialization.
emitExprInto(ret, resultInit.get());
// Deactivate all the cleanups for the result values.
for (auto cleanup : resultCleanups) {
Cleanups.forwardCleanup(cleanup);
}
} else {
// SILValue return.
FullExpr scope(Cleanups, CleanupLocation(ret));
// Does the return context require reabstraction?
RValue RV;
auto loweredRetTy = getLoweredType(retTy);
auto loweredResultTy = getLoweredType(origRetTy, retTy);
if (loweredResultTy != loweredRetTy) {
auto conversion = Conversion::getSubstToOrig(origRetTy, retTy,
loweredRetTy, loweredResultTy);
RV = RValue(*this, ret, emitConvertedRValue(ret, conversion));
} else {
RV = emitRValue(ret);
}
std::move(RV)
.ensurePlusOne(*this, CleanupLocation(ret))
.forwardAll(*this, directResults);
}
Cleanups.emitBranchAndCleanups(ReturnDest, branchLoc, directResults);
}
void StmtEmitter::visitReturnStmt(ReturnStmt *S) {
SILLocation Loc = S->isImplicit() ?
(SILLocation)ImplicitReturnLocation(S) :
(SILLocation)ReturnLocation(S);
SILValue ArgV;
if (!S->hasResult())
// Void return.
SGF.Cleanups.emitBranchAndCleanups(SGF.ReturnDest, Loc);
else if (S->getResult()->getType()->isUninhabited())
// Never return.
SGF.emitIgnoredExpr(S->getResult());
else
SGF.emitReturnExpr(Loc, S->getResult());
}
void StmtEmitter::visitThrowStmt(ThrowStmt *S) {
if (SGF.getASTContext().LangOpts.ThrowsAsTraps) {
SGF.B.createUnconditionalFail(S, "throw turned into a trap");
SGF.B.createUnreachable(S);
return;
}
ManagedValue exn = SGF.emitRValueAsSingleValue(S->getSubExpr());
SGF.emitThrow(S, exn, /* emit a call to willThrow */ true);
}
void StmtEmitter::visitDiscardStmt(DiscardStmt *S) {
// A 'discard' simply triggers the memberwise, consuming destruction of 'self'.
ManagedValue selfValue = SGF.emitRValueAsSingleValue(S->getSubExpr());
CleanupLocation loc(S);
// \c fn could only be null if the type checker failed to call its 'set', or
// we somehow got to SILGen when errors were emitted!
auto *fn = S->getInnermostMethodContext();
if (!fn)
llvm_unreachable("internal compiler error with discard statement");
auto *nominal = fn->getDeclContext()->getSelfNominalTypeDecl();
assert(nominal);
// Check if the nominal's contents are trivial. This is a temporary
// restriction until we get discard implemented the way we want.
for (auto *varDecl : nominal->getStoredProperties()) {
assert(varDecl->hasStorage());
auto varType = varDecl->getTypeInContext();
auto &varTypeLowering = SGF.getTypeLowering(varType);
if (!varTypeLowering.isTrivial()) {
diagnose(getASTContext(),
S->getStartLoc(),
diag::discard_nontrivial_storage,
nominal->getDeclaredInterfaceType());
// emit a note pointing out the problematic storage type
if (auto varLoc = varDecl->getLoc()) {
diagnose(getASTContext(),
varLoc,
diag::discard_nontrivial_storage_note,
varType);
} else {
diagnose(getASTContext(),
nominal->getLoc(),
diag::discard_nontrivial_implicit_storage_note,
nominal->getDeclaredInterfaceType(),
varType);
}
break; // only one diagnostic is needed per discard
}
}
SGF.emitMoveOnlyMemberDestruction(selfValue.forward(SGF), nominal, loc);
}
void StmtEmitter::visitYieldStmt(YieldStmt *S) {
SmallVector<ArgumentSource, 4> sources;
SmallVector<AbstractionPattern, 4> origTypes;
for (auto yield : S->getYields()) {
sources.emplace_back(yield);
origTypes.emplace_back(yield->getType());
}
FullExpr fullExpr(SGF.Cleanups, CleanupLocation(S));
SGF.emitYield(S, sources, origTypes, SGF.CoroutineUnwindDest);
}
void StmtEmitter::visitThenStmt(ThenStmt *S) {
auto *E = S->getResult();
// Retrieve the initialization for the parent SingleValueStmtExpr. If we don't
// have an init, we don't care about the result, emit an ignored expr. This is
// the case if e.g the result is being converted to Void.
if (auto init = SGF.getSingleValueStmtInit(E)) {
SGF.emitExprInto(E, init.get());
} else {
SGF.emitIgnoredExpr(E);
}
}
void StmtEmitter::visitPoundAssertStmt(PoundAssertStmt *stmt) {
SILValue condition;
{
FullExpr scope(SGF.Cleanups, CleanupLocation(stmt));
condition =
SGF.emitRValueAsSingleValue(stmt->getCondition()).getUnmanagedValue();
}
// Extract the i1 from the Bool struct.
auto i1Value = SGF.emitUnwrapIntegerResult(stmt, condition);
SILValue message = SGF.B.createStringLiteral(
stmt, stmt->getMessage(), StringLiteralInst::Encoding::UTF8);
auto resultType = SGF.getASTContext().TheEmptyTupleType;
SGF.B.createBuiltin(
stmt, SGF.getASTContext().getIdentifier("poundAssert"),
SGF.getLoweredType(resultType), {}, {i1Value, message});
}
namespace {
// This is a little cleanup that ensures that there are no jumps out of a
// defer body. The cleanup is only active and installed when emitting the
// body of a defer, and it is disabled at the end. If it ever needs to be
// emitted, it crashes the compiler because Sema missed something.
class DeferEscapeCheckerCleanup : public Cleanup {
SourceLoc deferLoc;
public:
DeferEscapeCheckerCleanup(SourceLoc deferLoc) : deferLoc(deferLoc) {}
void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind) override {
assert(false && "Sema didn't catch exit out of a defer?");
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "DeferEscapeCheckerCleanup\n"
<< "State: " << getState() << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
class DeferCleanup : public Cleanup {
SourceLoc deferLoc;
Expr *call;
public:
DeferCleanup(SourceLoc deferLoc, Expr *call)
: deferLoc(deferLoc), call(call) {}
void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind) override {
SGF.Cleanups.pushCleanup<DeferEscapeCheckerCleanup>(deferLoc);
auto TheCleanup = SGF.Cleanups.getTopCleanup();
SGF.emitIgnoredExpr(call);
if (SGF.B.hasValidInsertionPoint())
SGF.Cleanups.setCleanupState(TheCleanup, CleanupState::Dead);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "DeferCleanup\n"
<< "State: " << getState() << "\n";
#endif
}
};
} // end anonymous namespace
void StmtEmitter::visitDeferStmt(DeferStmt *S) {
// Emit the closure for the defer, along with its binding.
// If the defer is at the top-level code, insert 'mark_escape_inst'
// to the top-level code to check initialization of any captured globals.
FuncDecl *deferDecl = S->getTempDecl();
auto *Ctx = deferDecl->getDeclContext();
if (isa<TopLevelCodeDecl>(Ctx) && SGF.isEmittingTopLevelCode()) {
auto Captures = deferDecl->getCaptureInfo();
SGF.emitMarkFunctionEscapeForTopLevelCodeGlobals(S, std::move(Captures));
}
SGF.visitFuncDecl(deferDecl);
// Register a cleanup to invoke the closure on any exit paths.
SGF.Cleanups.pushCleanup<DeferCleanup>(S->getDeferLoc(), S->getCallExpr());
}
void StmtEmitter::visitIfStmt(IfStmt *S) {
Scope condBufferScope(SGF.Cleanups, S);
// Create a continuation block.
JumpDest contDest = createJumpDest(S->getThenStmt());
auto contBB = contDest.getBlock();
// Set the destinations for any 'break' and 'continue' statements inside the
// body. Note that "continue" is not valid out of a labeled 'if'.
SGF.BreakContinueDestStack.push_back(
{ S, contDest, JumpDest(CleanupLocation(S)) });
// Set up the block for the false case. If there is an 'else' block, we make
// a new one, otherwise it is our continue block.
JumpDest falseDest = contDest;
if (S->getElseStmt())
falseDest = createJumpDest(S);
// Emit the condition, along with the "then" part of the if properly guarded
// by the condition and a jump to ContBB. If the condition fails, jump to
// the CondFalseBB.
{
// Enter a scope for any bound pattern variables.
LexicalScope trueScope(SGF, S);
auto NumTrueTaken = SGF.loadProfilerCount(S->getThenStmt());
auto NumFalseTaken = ProfileCounter();
if (auto *Else = S->getElseStmt())
NumFalseTaken = SGF.loadProfilerCount(Else);
SGF.emitStmtCondition(S->getCond(), falseDest, S, NumTrueTaken,
NumFalseTaken);
// In the success path, emit the 'then' part if the if.
SGF.emitProfilerIncrement(S->getThenStmt());
SGF.emitStmt(S->getThenStmt());
// Finish the "true part" by cleaning up any temporaries and jumping to the
// continuation block.
if (SGF.B.hasValidInsertionPoint()) {
RegularLocation L(S->getThenStmt());
L.pointToEnd();
SGF.Cleanups.emitBranchAndCleanups(contDest, L);
}
}
// If there is 'else' logic, then emit it.
if (S->getElseStmt()) {
SGF.B.emitBlock(falseDest.getBlock());
visit(S->getElseStmt());
if (SGF.B.hasValidInsertionPoint()) {
RegularLocation L(S->getElseStmt());
L.pointToEnd();
SGF.B.createBranch(L, contBB);
}
}
// If the continuation block was used, emit it now, otherwise remove it.
if (contBB->pred_empty()) {
SGF.eraseBasicBlock(contBB);
} else {
RegularLocation L(S->getThenStmt());
L.pointToEnd();
SGF.B.emitBlock(contBB, L);
}
SGF.BreakContinueDestStack.pop_back();
}
void StmtEmitter::visitGuardStmt(GuardStmt *S) {
// Create a block for the body and emit code into it before processing any of
// the patterns, because none of the bound variables will be in scope in the
// 'body' context.
JumpDest bodyBB =
JumpDest(createBasicBlock(), SGF.getCleanupsDepth(), CleanupLocation(S));
{
// Move the insertion point to the 'body' block temporarily and emit it.
// Note that we don't push break/continue locations since they aren't valid
// in this statement.
SILGenSavedInsertionPoint savedIP(SGF, bodyBB.getBlock());
SGF.emitProfilerIncrement(S->getBody());
SGF.emitStmt(S->getBody());
// The body block must end in a noreturn call, return, break etc. It
// isn't valid to fall off into the normal flow. To model this, we emit
// an unreachable instruction and then have SIL diagnostic check this.
if (SGF.B.hasValidInsertionPoint())
SGF.B.createUnreachable(S);
}
// Emit the condition bindings, branching to the bodyBB if they fail.
auto NumFalseTaken = SGF.loadProfilerCount(S->getBody());
auto NumNonTaken = SGF.loadProfilerCount(S);
SGF.emitStmtCondition(S->getCond(), bodyBB, S, NumNonTaken, NumFalseTaken);
}
void StmtEmitter::visitWhileStmt(WhileStmt *S) {
LexicalScope condBufferScope(SGF, S);
// Create a new basic block and jump into it.
JumpDest loopDest = createJumpDest(S->getBody());
SGF.B.emitBlock(loopDest.getBlock(), S);
// Create a break target (at this level in the cleanup stack) in case it is
// needed.
JumpDest breakDest = createJumpDest(S->getBody());
// Set the destinations for any 'break' and 'continue' statements inside the
// body.
SGF.BreakContinueDestStack.push_back({S, breakDest, loopDest});
// Evaluate the condition, the body, and a branch back to LoopBB when the
// condition is true. On failure, jump to BreakBB.
{
// Enter a scope for any bound pattern variables.
Scope conditionScope(SGF.Cleanups, S);
auto NumTrueTaken = SGF.loadProfilerCount(S->getBody());
auto NumFalseTaken = SGF.loadProfilerCount(S);
SGF.emitStmtCondition(S->getCond(), breakDest, S, NumTrueTaken, NumFalseTaken);
// In the success path, emit the body of the while.
SGF.emitProfilerIncrement(S->getBody());
SGF.emitStmt(S->getBody());
// Finish the "true part" by cleaning up any temporaries and jumping to the
// continuation block.
if (SGF.B.hasValidInsertionPoint()) {
RegularLocation L(S->getBody());
L.pointToEnd();
SGF.Cleanups.emitBranchAndCleanups(loopDest, L);
}
}
SGF.BreakContinueDestStack.pop_back();
// Handle break block. If it was used, we link it up with the cleanup chain,
// otherwise we just remove it.
SILBasicBlock *breakBB = breakDest.getBlock();
if (breakBB->pred_empty()) {
SGF.eraseBasicBlock(breakBB);
} else {
SGF.B.emitBlock(breakBB);
}
}
void StmtEmitter::visitDoStmt(DoStmt *S) {
// We don't need to do anything fancy if we don't have a label.
// Otherwise, assume we might break or continue.
bool hasLabel = (bool) S->getLabelInfo();
JumpDest endDest = JumpDest::invalid();
if (hasLabel) {
// Create the end dest first so that the loop dest comes in-between.
endDest = createJumpDest(S->getBody());
// Create a new basic block and jump into it.
JumpDest loopDest = createJumpDest(S->getBody());
SGF.B.emitBlock(loopDest.getBlock(), S);
// Set the destinations for 'break' and 'continue'.
SGF.BreakContinueDestStack.push_back({S, endDest, loopDest});
}
// Emit the body.
visit(S->getBody());
if (hasLabel) {
SGF.BreakContinueDestStack.pop_back();
emitOrDeleteBlock(SGF, endDest, CleanupLocation(S));
}
}
void StmtEmitter::visitDoCatchStmt(DoCatchStmt *S) {
Type formalExnType = S->getCaughtErrorType();
auto &exnTL = SGF.getTypeLowering(formalExnType);
SILValue exnArg;
// FIXME: opaque values
if (exnTL.isAddressOnly()) {
exnArg = SGF.B.createAllocStack(
S, exnTL.getLoweredType());
SGF.enterDeallocStackCleanup(exnArg);
}
// Create the throw destination at the end of the function.
JumpDest throwDest = createThrowDest(S->getBody(),
ThrownErrorInfo(exnArg));
// FIXME: opaque values
if (!exnTL.isAddressOnly()) {
exnArg = throwDest.getBlock()->createPhiArgument(
exnTL.getLoweredType(), OwnershipKind::Owned);
}
// We always need a continuation block because we might fall out of
// a catch block. But we don't need a loop block unless the 'do'
// statement is labeled.
JumpDest endDest = createJumpDest(S->getBody());
// We don't need to do anything too fancy about emission if we don't
// have a label. Otherwise, assume we might break or continue.
bool hasLabel = (bool) S->getLabelInfo();
if (hasLabel) {
// Create a new basic block and jump into it.
JumpDest loopDest = createJumpDest(S->getBody());
SGF.B.emitBlock(loopDest.getBlock(), S);
// Set the destinations for 'break' and 'continue'.
SGF.BreakContinueDestStack.push_back({S, endDest, loopDest});
}
// Emit the body.
{
// Push the new throw destination.
llvm::SaveAndRestore<JumpDest> savedThrowDest(SGF.ThrowDest, throwDest);
visit(S->getBody());
}
// Emit the catch clauses, but only if the body of the function
// actually throws. This is a consequence of the fact that a
// DoCatchStmt with a non-throwing body will type check even in
// a non-throwing lexical context. In this case, our local throwDest
// has no predecessors, and SGF.ThrowDest may not be valid either.
if (auto *BB = getOrEraseBlock(SGF, throwDest)) {
// Move the insertion point to the throw destination.
SILGenSavedInsertionPoint savedIP(SGF, BB, FunctionSection::Postmatter);
// The exception cleanup should be getting forwarded around
// correctly anyway, but push a scope to ensure it gets popped.
Scope exnScope(SGF.Cleanups, CleanupLocation(S));
// Take ownership of the exception.
ManagedValue exn = SGF.emitManagedRValueWithCleanup(exnArg, exnTL);
// Emit all the catch clauses, branching to the end destination if
// we fall out of one.
SGF.emitCatchDispatch(S, exn, S->getCatches(), endDest);
// We assume that exn's cleanup is still valid at this point. To ensure that
// we do not re-emit it and do a double consume, we rely on us having
// finished emitting code and thus unsetting the insertion point here. This
// assert is to make sure this invariant is clear in the code and validated.
assert(!SGF.B.hasValidInsertionPoint());
}
if (hasLabel) {
SGF.BreakContinueDestStack.pop_back();
}
// Handle falling out of the do-block.
//
// It's important for good code layout that the insertion point be
// left in the original function section after this. So if
// emitOrDeleteBlock ever learns to just continue in the
// predecessor, we'll need to suppress that here.
emitOrDeleteBlock(SGF, endDest, CleanupLocation(S->getBody()));
}
void StmtEmitter::visitRepeatWhileStmt(RepeatWhileStmt *S) {
// Create a new basic block and jump into it.
SILBasicBlock *loopBB = createBasicBlock();
SGF.B.emitBlock(loopBB, S);
// Set the destinations for 'break' and 'continue'
JumpDest endDest = createJumpDest(S->getBody());
JumpDest condDest = createJumpDest(S->getBody());
SGF.BreakContinueDestStack.push_back({ S, endDest, condDest });
// Emit the body, which is always evaluated the first time around.
SGF.emitProfilerIncrement(S->getBody());
visit(S->getBody());
// Let's not differ from C99 6.8.5.2: "The evaluation of the controlling
// expression takes place after each execution of the loop body."
emitOrDeleteBlock(SGF, condDest, S);
if (SGF.B.hasValidInsertionPoint()) {
// Evaluate the condition with the false edge leading directly
// to the continuation block.
auto NumTrueTaken = SGF.loadProfilerCount(S->getBody());
auto NumFalseTaken = SGF.loadProfilerCount(S);
Condition Cond = SGF.emitCondition(S->getCond(),
/*invertValue*/ false, /*contArgs*/ {},
NumTrueTaken, NumFalseTaken);
Cond.enterTrue(SGF);
if (SGF.B.hasValidInsertionPoint()) {
SGF.B.createBranch(S->getCond(), loopBB);
}
Cond.exitTrue(SGF);
// Complete the conditional execution.
Cond.complete(SGF);
}
emitOrDeleteBlock(SGF, endDest, S);
SGF.BreakContinueDestStack.pop_back();
}
void StmtEmitter::visitForEachStmt(ForEachStmt *S) {
if (auto *expansion =
dyn_cast<PackExpansionExpr>(S->getTypeCheckedSequence())) {
auto formalPackType = dyn_cast<PackType>(
PackType::get(SGF.getASTContext(), expansion->getType())
->getCanonicalType());
JumpDest continueDest = createJumpDest(S->getBody());
JumpDest breakDest = createJumpDest(S->getBody());
SGF.emitDynamicPackLoop(
SILLocation(expansion), formalPackType, 0,
expansion->getGenericEnvironment(),
[&](SILValue indexWithinComponent, SILValue packExpansionIndex,
SILValue packIndex) {
Scope innerForScope(SGF.Cleanups, CleanupLocation(S->getBody()));
auto letValueInit =
SGF.emitPatternBindingInitialization(S->getPattern(), continueDest);
SGF.emitExprInto(expansion->getPatternExpr(), letValueInit.get());
// Set the destinations for 'break' and 'continue'.
SGF.BreakContinueDestStack.push_back({S, breakDest, continueDest});
visit(S->getBody());
SGF.BreakContinueDestStack.pop_back();
return;
},
continueDest.getBlock());
emitOrDeleteBlock(SGF, breakDest, S);
return;
}
// Emit the 'iterator' variable that we'll be using for iteration.
LexicalScope OuterForScope(SGF, CleanupLocation(S));
SGF.emitPatternBinding(S->getIteratorVar(),
/*index=*/0, /*debuginfo*/ true);
// If we ever reach an unreachable point, stop emitting statements.
// This will need revision if we ever add goto.
if (!SGF.B.hasValidInsertionPoint()) return;
// If generator's optional result is address-only, create a stack allocation
// to hold the results. This will be initialized on every entry into the loop
// header and consumed by the loop body. On loop exit, the terminating value
// will be in the buffer.
CanType optTy = S->getNextCall()->getType()->getCanonicalType();
auto &optTL = SGF.getTypeLowering(optTy);
SILValue addrOnlyBuf;
bool nextResultTyIsAddressOnly =
optTL.isAddressOnly() && SGF.silConv.useLoweredAddresses();
if (nextResultTyIsAddressOnly)
addrOnlyBuf = SGF.emitTemporaryAllocation(S, optTL.getLoweredType());
// Create a new basic block and jump into it.
JumpDest loopDest = createJumpDest(S->getBody());
SGF.B.emitBlock(loopDest.getBlock(), S);
// Set the destinations for 'break' and 'continue'.
JumpDest endDest = createJumpDest(S->getBody());
SGF.BreakContinueDestStack.push_back({ S, endDest, loopDest });
bool hasElementConversion = S->getElementExpr();
auto buildElementRValue = [&](SGFContext ctx) {
RValue result;
result = SGF.emitRValue(S->getNextCall(),
hasElementConversion ? SGFContext() : ctx);
return result;
};
ManagedValue nextBufOrElement;
// Then emit the loop destination block.
//
// Advance the generator. Use a scope to ensure that any temporary stack
// allocations in the subexpression are immediately released.
if (nextResultTyIsAddressOnly) {
// Create the initialization outside of the innerForScope so that the
// innerForScope doesn't clean it up.
auto nextInit = SGF.useBufferAsTemporary(addrOnlyBuf, optTL);
{
ArgumentScope innerForScope(SGF, SILLocation(S));
SILLocation loc = SILLocation(S);
RValue result = buildElementRValue(SGFContext(nextInit.get()));
if (!result.isInContext()) {
ArgumentSource(SILLocation(S->getTypeCheckedSequence()),
std::move(result).ensurePlusOne(SGF, loc))
.forwardInto(SGF, nextInit.get());
}
innerForScope.pop();
}
nextBufOrElement = nextInit->getManagedAddress();
} else {
ArgumentScope innerForScope(SGF, SILLocation(S));
nextBufOrElement = innerForScope.popPreservingValue(
buildElementRValue(SGFContext())
.getAsSingleValue(SGF, SILLocation(S)));
}
SILBasicBlock *failExitingBlock = createBasicBlock();
SwitchEnumBuilder switchEnumBuilder(SGF.B, S, nextBufOrElement);
auto convertElementRValue = [&](ManagedValue inputValue, SGFContext ctx) -> ManagedValue {
SILGenFunction::OpaqueValueRAII pushOpaqueValue(SGF, S->getElementExpr(),
inputValue);
return SGF.emitRValue(S->getConvertElementExpr(), ctx)
.getAsSingleValue(SGF, SILLocation(S));
};
switchEnumBuilder.addOptionalSomeCase(
createBasicBlock(), loopDest.getBlock(),
[&](ManagedValue inputValue, SwitchCaseFullExpr &&scope) {
SGF.emitProfilerIncrement(S->getBody());
// Emit the loop body.
// The declared variable(s) for the current element are destroyed
// at the end of each loop iteration.
{
Scope innerForScope(SGF.Cleanups, CleanupLocation(S->getBody()));
// Emit the initialization for the pattern. If any of the bound
// patterns
// fail (because this is a 'for case' pattern with a refutable
// pattern,
// the code should jump to the continue block.
InitializationPtr initLoopVars =
SGF.emitPatternBindingInitialization(S->getPattern(), loopDest);
// If we had a loadable "next" generator value, we know it is present.
// Get the value out of the optional, and wrap it up with a cleanup so
// that any exits out of this scope properly clean it up.
//
// *NOTE* If we do not have an address only value, then inputValue is
// *already properly unwrapped.
SGFContext loopVarCtx{initLoopVars.get()};
if (nextResultTyIsAddressOnly) {
inputValue = SGF.emitUncheckedGetOptionalValueFrom(
S, inputValue, optTL,
hasElementConversion ? SGFContext() : loopVarCtx);
}
CanType optConvertedTy = optTy;
if (hasElementConversion) {
inputValue = convertElementRValue(inputValue, loopVarCtx);
optConvertedTy =
OptionalType::get(S->getConvertElementExpr()->getType())
->getCanonicalType();
}
if (!inputValue.isInContext())
RValue(SGF, S, optConvertedTy.getOptionalObjectType(), inputValue)
.forwardInto(SGF, S->getBody(), initLoopVars.get());
// Now that the pattern has been initialized, check any where
// condition.
// If it fails, loop around as if 'continue' happened.
if (auto *Where = S->getWhere()) {
auto cond = SGF.emitCondition(Where, /*invert*/ true);
// If self is null, branch to the epilog.
cond.enterTrue(SGF);
SGF.Cleanups.emitBranchAndCleanups(loopDest, Where, {});
cond.exitTrue(SGF);
cond.complete(SGF);
}
visit(S->getBody());
}
// If we emitted an unreachable in the body, we will not have a valid
// insertion point. Just return early.
if (!SGF.B.hasValidInsertionPoint()) {
scope.unreachableExit();
return;
}
// Otherwise, associate the loop body's closing brace with this branch.
RegularLocation L(S->getBody());
L.pointToEnd();
scope.exitAndBranch(L);
},
SGF.loadProfilerCount(S->getBody()));
// We add loop fail block, just to be defensive about intermediate
// transformations performing cleanups at scope.exit(). We still jump to the
// contBlock.
switchEnumBuilder.addOptionalNoneCase(
createBasicBlock(), failExitingBlock,
[&](ManagedValue inputValue, SwitchCaseFullExpr &&scope) {
assert(!inputValue && "None should not be passed an argument!");
scope.exitAndBranch(S);
},
SGF.loadProfilerCount(S));
std::move(switchEnumBuilder).emit();
SGF.B.emitBlock(failExitingBlock);
emitOrDeleteBlock(SGF, endDest, S);
SGF.BreakContinueDestStack.pop_back();
}
void StmtEmitter::visitBreakStmt(BreakStmt *S) {
assert(S->getTarget() && "Sema didn't fill in break target?");
SGF.emitBreakOutOf(S, S->getTarget());
}
void SILGenFunction::emitBreakOutOf(SILLocation loc, Stmt *target) {
// Find the target JumpDest based on the target that sema filled into the
// stmt.
for (auto &elt : BreakContinueDestStack) {
if (target == elt.Target) {
Cleanups.emitBranchAndCleanups(elt.BreakDest, loc);
return;
}
}
llvm_unreachable("Break has available target block.");
}
void StmtEmitter::visitContinueStmt(ContinueStmt *S) {
assert(S->getTarget() && "Sema didn't fill in continue target?");
// Find the target JumpDest based on the target that sema filled into the
// stmt.
for (auto &elt : SGF.BreakContinueDestStack) {
if (S->getTarget() == elt.Target) {
SGF.Cleanups.emitBranchAndCleanups(elt.ContinueDest, S);
return;
}
}
llvm_unreachable("Continue has available target block.");
}
void StmtEmitter::visitSwitchStmt(SwitchStmt *S) {
// Implemented in SILGenPattern.cpp.
SGF.emitSwitchStmt(S);
}
void StmtEmitter::visitCaseStmt(CaseStmt *S) {
llvm_unreachable("cases should be lowered as part of switch stmt");
}
void StmtEmitter::visitFallthroughStmt(FallthroughStmt *S) {
// Implemented in SILGenPattern.cpp.
SGF.emitSwitchFallthrough(S);
}
void StmtEmitter::visitFailStmt(FailStmt *S) {
// Jump to the failure block.
assert(SGF.FailDest.isValid() && "too big to fail");
SGF.Cleanups.emitBranchAndCleanups(SGF.FailDest, S);
}
/// Return a basic block suitable to be the destination block of a
/// try_apply instruction. The block is implicitly emitted and filled in.
SILBasicBlock *
SILGenFunction::getTryApplyErrorDest(SILLocation loc,
CanSILFunctionType fnTy,
ExecutorBreadcrumb prevExecutor,
SILResultInfo errorResult,
SILValue indirectErrorAddr,
bool suppressErrorPath) {
// For now, don't try to re-use destination blocks for multiple
// failure sites.
SILBasicBlock *destBB = createBasicBlock(FunctionSection::Postmatter);
SILValue errorValue;
if (errorResult.getConvention() == ResultConvention::Owned) {
errorValue = destBB->createPhiArgument(getSILType(errorResult, fnTy),
OwnershipKind::Owned);
} else {
errorValue = indirectErrorAddr;
}
assert(B.hasValidInsertionPoint() && B.insertingAtEndOfBlock());
SILGenSavedInsertionPoint savedIP(*this, destBB, FunctionSection::Postmatter);
prevExecutor.emit(*this, loc);
// If we're suppressing error paths, just wrap it up as unreachable
// and return.
if (suppressErrorPath) {
B.createUnreachable(loc);
return destBB;
}
// We don't want to exit here with a dead cleanup on the stack,
// so push the scope first.
FullExpr scope(Cleanups, CleanupLocation(loc));
emitThrow(loc, emitManagedRValueWithCleanup(errorValue));
return destBB;
}
void SILGenFunction::emitThrow(SILLocation loc, ManagedValue exnMV,
bool emitWillThrow) {
assert(ThrowDest.isValid() &&
"calling emitThrow with invalid throw destination!");
if (getASTContext().LangOpts.ThrowsAsTraps) {
B.createUnconditionalFail(loc, "throw turned into a trap");
B.createUnreachable(loc);
return;
}
if (auto *E = loc.getAsASTNode<Expr>()) {
// Check to see whether we have a counter associated with the error branch
// of this node, and if so emit a counter increment.
auto *P = F.getProfiler();
auto ref = ProfileCounterRef::errorBranchOf(E);
if (P && P->hasCounterFor(ref))
emitProfilerIncrement(ref);
}
SmallVector<SILValue, 1> args;
auto indirectErrorAddr = ThrowDest.getThrownError().IndirectErrorResult;
// If exnMV was not provided by the caller, we must have an indirect
// error result that already stores the thrown error.
assert(!exnMV.isInContext() || indirectErrorAddr);
SILValue exn;
if (!exnMV.isInContext()) {
// Whether the thrown exception is already an Error existential box.
SILType existentialBoxType = SILType::getExceptionType(getASTContext());
bool isExistentialBox = exnMV.getType() == existentialBoxType;
// If we are supposed to emit a call to swift_willThrow(Typed), do so now.
if (emitWillThrow) {
ASTContext &ctx = SGM.getASTContext();
if (isExistentialBox) {
// Generate a call to the 'swift_willThrow' runtime function to allow the
// debugger to catch the throw event.
// Claim the exception value.
exn = exnMV.forward(*this);
B.createBuiltin(loc,
ctx.getIdentifier("willThrow"),
SGM.Types.getEmptyTupleType(), {}, {exn});
} else {
// Call the _willThrowTyped entrypoint, which handles
// arbitrary error types.
SILValue tmpBuffer;
SILValue error;
FuncDecl *entrypoint = ctx.getWillThrowTyped();
auto genericSig = entrypoint->getGenericSignature();
SubstitutionMap subMap = SubstitutionMap::get(
genericSig, [&](SubstitutableType *dependentType) {
return exnMV.getType().getASTType();
}, LookUpConformanceInModule(getModule().getSwiftModule()));
// Generic errors are passed indirectly.
if (!exnMV.getType().isAddress()) {
// Materialize the error so we can pass the address down to the
// swift_willThrowTyped.
exnMV = exnMV.materialize(*this, loc);
error = exnMV.getValue();
exn = exnMV.forward(*this);
} else {
// Claim the exception value.
exn = exnMV.forward(*this);
error = exn;
}
emitApplyOfLibraryIntrinsic(
loc, entrypoint, subMap,
{ ManagedValue::forForwardedRValue(*this, error) },
SGFContext());
}
} else {
// Claim the exception value.
exn = exnMV.forward(*this);
}
}
bool shouldDiscard = ThrowDest.getThrownError().Discard;
SILType exnType = exn->getType().getObjectType();
SILBasicBlock &throwBB = *ThrowDest.getBlock();
SILType destErrorType = indirectErrorAddr
? indirectErrorAddr->getType().getObjectType()
: !throwBB.getArguments().empty()
? throwBB.getArguments()[0]->getType().getObjectType()
: exnType;
// If the thrown error type differs from what the throw destination expects,
// perform the conversion.
// FIXME: Can the AST tell us what to do here?
if (exnType != destErrorType) {
assert(destErrorType == SILType::getExceptionType(getASTContext()));
ProtocolConformanceRef conformances[1] = {
getModule().getSwiftModule()->checkConformance(
exn->getType().getASTType(), getASTContext().getErrorDecl())
};
exn = emitExistentialErasure(
loc,
exnType.getASTType(),
getTypeLowering(exnType),
getTypeLowering(destErrorType),
getASTContext().AllocateCopy(conformances),
SGFContext(),
[&](SGFContext C) -> ManagedValue {
if (exn->getType().isAddress()) {
return emitLoad(loc, exn, getTypeLowering(exnType), SGFContext(),
IsTake);
}
return ManagedValue::forForwardedRValue(*this, exn);
}).forward(*this);
}
assert(exn->getType().getObjectType() == destErrorType);
if (indirectErrorAddr) {
if (exn->getType().isAddress()) {
B.createCopyAddr(loc, exn, indirectErrorAddr,
IsTake, IsInitialization);
}
// If the error is represented as a value, then we should forward it into
// the indirect error return slot. We have to wait to do that until after
// we pop cleanups, though, since the value may have a borrow active in
// scope that won't be released until the cleanups pop.
} else if (!throwBB.getArguments().empty()) {
// Load if we need to.
if (exn->getType().isAddress()) {
exn = emitLoad(loc, exn, getTypeLowering(exnType), SGFContext(), IsTake)
.forward(*this);
}
// A direct error value is passed to the epilog block as a BB argument.
args.push_back(exn);
} else if (shouldDiscard) {
if (exn && exn->getType().isAddress())
B.createDestroyAddr(loc, exn);
}
// Branch to the cleanup destination.
Cleanups.emitCleanupsForBranch(ThrowDest, loc, args, IsForUnwind);
if (indirectErrorAddr && !exn->getType().isAddress()) {
// Forward the error value into the return slot now. This has to happen
// after emitting cleanups because the active scope may be borrowing the
// error value, and we can't forward ownership until those borrows are
// released.
emitSemanticStore(loc, exn, indirectErrorAddr,
getTypeLowering(destErrorType), IsInitialization);
}
getBuilder().createBranch(loc, ThrowDest.getBlock(), args);
}
|