1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
//===--- SILGenThunk.cpp - SILGen for thunks ------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file contains code for emitting various types of thunks that can be
// referenced from code, such as dynamic thunks, curry thunks, native to foreign
// thunks and foreign to native thunks.
//
// VTable thunks and witness thunks can be found in SILGenType.cpp, and the
// meat of the bridging thunk implementation is in SILGenBridging.cpp, and
// re-abstraction thunks are in SILGenPoly.cpp.
//
//===----------------------------------------------------------------------===//
#include "Callee.h"
#include "ManagedValue.h"
#include "SILGenFunction.h"
#include "SILGenFunctionBuilder.h"
#include "Scope.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/FileUnit.h"
#include "swift/AST/ForeignAsyncConvention.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/TypeDifferenceVisitor.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/TypeLowering.h"
#include "clang/AST/ASTContext.h"
using namespace swift;
using namespace Lowering;
SILValue SILGenFunction::emitClassMethodRef(SILLocation loc,
SILValue selfPtr,
SILDeclRef constant,
CanSILFunctionType constantTy) {
assert(!constant.isForeign);
return B.createClassMethod(loc, selfPtr, constant,
SILType::getPrimitiveObjectType(constantTy));
}
SILFunction *SILGenModule::getDynamicThunk(SILDeclRef constant,
CanSILFunctionType constantTy) {
assert(constant.kind != SILDeclRef::Kind::Allocator &&
"allocating entry point for constructor is never dynamic");
// Mangle the constant with a TD suffix.
auto nameTmp = constant.mangle(SILDeclRef::ManglingKind::DynamicThunk);
auto name = M.allocateCopy(nameTmp);
SILGenFunctionBuilder builder(*this);
auto F = builder.getOrCreateFunction(
constant.getDecl(), name, SILLinkage::Shared, constantTy, IsBare,
IsTransparent, IsSerialized, IsNotDynamic, IsNotDistributed,
IsNotRuntimeAccessible, ProfileCounter(), IsThunk);
if (F->empty()) {
// Emit the thunk if we haven't yet.
// Currently a dynamic thunk looks just like a foreign-to-native thunk around
// an ObjC method. This would change if we introduced a native
// runtime-hookable mechanism.
SILGenFunction SGF(*this, *F, SwiftModule);
SGF.emitForeignToNativeThunk(constant);
emitLazyConformancesForFunction(F);
}
return F;
}
ManagedValue
SILGenFunction::emitDynamicMethodRef(SILLocation loc, SILDeclRef constant,
CanSILFunctionType constantTy) {
// If the method is foreign, its foreign thunk will handle the dynamic
// dispatch for us.
if (constant.isForeignToNativeThunk()) {
if (!SGM.hasFunction(constant))
SGM.emitForeignToNativeThunk(constant);
return ManagedValue::forObjectRValueWithoutOwnership(B.createFunctionRefFor(
loc, SGM.getFunction(constant, NotForDefinition)));
}
// Otherwise, we need a dynamic dispatch thunk.
SILFunction *F = SGM.getDynamicThunk(constant, constantTy);
return ManagedValue::forObjectRValueWithoutOwnership(
B.createFunctionRefFor(loc, F));
}
void SILGenModule::emitForeignToNativeThunk(SILDeclRef thunk) {
// Thunks are always emitted by need, so don't need delayed emission.
assert(thunk.isForeignToNativeThunk() && "foreign-to-native thunks only");
emitFunctionDefinition(thunk, getFunction(thunk, ForDefinition));
}
void SILGenModule::emitNativeToForeignThunk(SILDeclRef thunk) {
// Thunks are always emitted by need, so don't need delayed emission.
assert(thunk.isNativeToForeignThunk() && "native-to-foreign thunks only");
emitFunctionDefinition(thunk, getFunction(thunk, ForDefinition));
}
void SILGenModule::emitDistributedThunkForDecl(
AbstractFunctionDecl *afd) {
FuncDecl *thunkDecl = afd->getDistributedThunk();
if (!thunkDecl || !thunkDecl->hasBody() || thunkDecl->isBodySkipped())
return;
auto thunk = SILDeclRef(thunkDecl).asDistributed();
emitFunctionDefinition(SILDeclRef(thunkDecl).asDistributed(),
getFunction(thunk, ForDefinition));
}
void SILGenModule::emitBackDeploymentThunk(SILDeclRef thunk) {
// Thunks are always emitted by need, so don't need delayed emission.
assert(thunk.isBackDeploymentThunk() && "back deployment thunks only");
emitFunctionDefinition(thunk, getFunction(thunk, ForDefinition));
}
namespace {
/// Checker that validates that a distributed thunk is completely the same
/// except that self can vary by isolation.
struct DistributedThunkDiffChecker
: CanTypeDifferenceVisitor<DistributedThunkDiffChecker> {
using SuperTy = CanTypeDifferenceVisitor<DistributedThunkDiffChecker>;
bool visitSILFunctionTypeComponents(CanSILFunctionType type1,
CanSILFunctionType type2) {
// If they do not both have a self param. Just delegate to our parent.
if (!type1->hasSelfParam() || !type2->hasSelfParam()) {
return SuperTy::visitSILFunctionTypeComponents(type1, type2);
}
// Otherwise, we both have self. First check if we have the same number of
// parameters.
auto type1Params = type1->getParameters();
auto type2Params = type2->getParameters();
if (type1Params.size() != type2Params.size())
return visitDifferentTypeStructure(type1, type2);
// Then check if self is the same ignoring isolation.
auto self1 = type1Params.back();
auto self2 = type2Params.back();
auto self1Options = self1.getOptions() - SILParameterInfo::Isolated;
auto self2Options = self2.getOptions() - SILParameterInfo::Isolated;
if (self1.getConvention() != self2.getConvention() ||
!self1Options.containsOnly(self2Options))
return visitDifferentTypeStructure(type1, type2);
// Finally, check our self type, non-self components, results, and yields.
return visit(self1.getInterfaceType(), self2.getInterfaceType()) ||
visitComponentArray(type1, type2, type1Params.drop_back(),
type2Params.drop_back()) ||
visitComponentArray(type1, type2, type1->getResults(),
type2->getResults()) ||
visitComponentArray(type1, type2, type1->getYields(),
type2->getYields());
}
};
} // namespace
SILValue
SILGenFunction::emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant,
SILConstantInfo constantInfo,
bool callPreviousDynamicReplaceableImpl) {
assert(constantInfo == getConstantInfo(getTypeExpansionContext(), constant));
// Builtins must be fully applied at the point of reference.
if (constant.hasDecl() &&
isa<BuiltinUnit>(constant.getDecl()->getDeclContext())) {
SGM.diagnose(loc.getSourceLoc(), diag::not_implemented,
"delayed application of builtin");
return SILUndef::get(&F, constantInfo.getSILType());
}
// If the constant is a thunk we haven't emitted yet, emit it.
if (!SGM.hasFunction(constant)) {
if (constant.isForeignToNativeThunk()) {
SGM.emitForeignToNativeThunk(constant);
} else if (constant.isNativeToForeignThunk()) {
SGM.emitNativeToForeignThunk(constant);
}
}
auto f = SGM.getFunction(constant, NotForDefinition);
auto constantFnTypeInContext =
SGM.Types
.getLoweredType(constantInfo.SILFnType, B.getTypeExpansionContext())
.castTo<SILFunctionType>();
auto existingType =
f->getLoweredFunctionTypeInContext(B.getTypeExpansionContext());
if (existingType != constantFnTypeInContext) {
auto emitError = [&] {
// This can happen for example when using @_silgen_name or @_extern(c)
// attributes
SGM.diagnose(loc.getSourceLoc(), diag::function_type_mismatch,
existingType, constantFnTypeInContext);
SGM.diagnose(f->getLocation().getSourceLoc(),
diag::function_declared_here);
return SILUndef::get(&F, constantInfo.getSILType());
};
// If we have a distributed thunk, see if we only differ by isolation.
if (f->isDistributed() && f->isThunk()) {
DistributedThunkDiffChecker diffChecker;
if (diffChecker.visit(existingType, constantFnTypeInContext)) {
return emitError();
}
// We differ only by isolation... so do not error.
} else {
// This can happen for example when using @_silgen_name or @_extern(c)
// attributes
return emitError();
}
}
if (callPreviousDynamicReplaceableImpl)
return B.createPreviousDynamicFunctionRef(loc, f);
return B.createFunctionRefFor(loc, f);
}
static const clang::Type *prependParameterType(
ASTContext &ctx,
const clang::Type *oldBlockPtrTy,
const clang::Type *newParameterTy) {
if (!oldBlockPtrTy)
return nullptr;
SmallVector<clang::QualType, 4> newParamTypes;
newParamTypes.push_back(clang::QualType(newParameterTy, 0));
clang::QualType returnType;
clang::FunctionProtoType::ExtProtoInfo newExtProtoInfo{};
using ExtParameterInfo = clang::FunctionProtoType::ExtParameterInfo;
SmallVector<ExtParameterInfo, 4> newExtParamInfos;
auto blockPtrTy = cast<clang::BlockPointerType>(oldBlockPtrTy);
auto blockPointeeTy = blockPtrTy->getPointeeType().getTypePtr();
if (auto fnNoProtoTy = dyn_cast<clang::FunctionNoProtoType>(blockPointeeTy)) {
returnType = fnNoProtoTy->getReturnType();
newExtProtoInfo.ExtInfo = fnNoProtoTy->getExtInfo();
} else {
auto fnProtoTy = cast<clang::FunctionProtoType>(blockPointeeTy);
llvm::copy(fnProtoTy->getParamTypes(), std::back_inserter(newParamTypes));
returnType = fnProtoTy->getReturnType();
newExtProtoInfo = fnProtoTy->getExtProtoInfo();
auto extParamInfos = fnProtoTy->getExtParameterInfosOrNull();
if (extParamInfos) {
auto oldExtParamInfos =
ArrayRef<ExtParameterInfo>(extParamInfos, fnProtoTy->getNumParams());
newExtParamInfos.push_back(clang::FunctionProtoType::ExtParameterInfo());
llvm::copy(oldExtParamInfos, std::back_inserter(newExtParamInfos));
newExtProtoInfo.ExtParameterInfos = newExtParamInfos.data();
}
}
auto &clangCtx = ctx.getClangModuleLoader()->getClangASTContext();
auto newFnTy =
clangCtx.getFunctionType(returnType, newParamTypes, newExtProtoInfo);
return clangCtx.getPointerType(newFnTy).getTypePtr();
}
SILFunction *SILGenModule::getOrCreateForeignAsyncCompletionHandlerImplFunction(
CanSILFunctionType blockType, CanType blockStorageType,
CanType continuationType, AbstractionPattern origFormalType,
CanGenericSignature sig, CalleeTypeInfo &calleeInfo) {
auto convention = *calleeInfo.foreign.async;
auto resumeType =
calleeInfo.substResultType->mapTypeOutOfContext()->getReducedType(sig);
CanAnyFunctionType completionHandlerOrigTy = [&]() {
auto completionHandlerOrigTy =
origFormalType.getObjCMethodAsyncCompletionHandlerForeignType(convention, Types);
std::optional<CanAnyFunctionType> maybeCompletionHandlerOrigTy;
if (auto fnTy =
dyn_cast<AnyFunctionType>(completionHandlerOrigTy)) {
maybeCompletionHandlerOrigTy = fnTy;
} else {
maybeCompletionHandlerOrigTy = cast<AnyFunctionType>(
completionHandlerOrigTy.getOptionalObjectType());
}
return maybeCompletionHandlerOrigTy.value();
}();
// Bridge the block type, so that if it is formally expressed in terms of
// bridged Swift types, we still lower the parameters to their ultimate
// ObjC types.
completionHandlerOrigTy = Types
.getBridgedFunctionType(AbstractionPattern(origFormalType.getGenericSignatureOrNull(),
completionHandlerOrigTy),
completionHandlerOrigTy,
Bridgeability::Full,
SILFunctionTypeRepresentation::Block);
auto blockParams = completionHandlerOrigTy.getParams();
// Build up the implementation function type, which matches the
// block signature with an added block storage argument that points at the
// block buffer. The block storage holds the continuation we feed the
// result values into.
SmallVector<SILParameterInfo, 4> implArgs;
implArgs.push_back(SILParameterInfo(
blockStorageType, ParameterConvention::Indirect_InoutAliasable));
std::copy(blockType->getParameters().begin(),
blockType->getParameters().end(),
std::back_inserter(implArgs));
auto newClangTy = prependParameterType(
getASTContext(),
blockType->getClangTypeInfo().getType(),
getASTContext().getClangTypeForIRGen(blockStorageType));
auto implTy = SILFunctionType::get(
sig,
blockType->getExtInfo()
.intoBuilder()
.withRepresentation(SILFunctionTypeRepresentation::CFunctionPointer)
.withClangFunctionType(newClangTy)
.withIsPseudogeneric((bool)sig)
.build(),
SILCoroutineKind::None, ParameterConvention::Direct_Unowned, implArgs, {},
blockType->getResults(), std::nullopt, SubstitutionMap(),
SubstitutionMap(), getASTContext());
auto loc = RegularLocation::getAutoGeneratedLocation();
Mangle::ASTMangler Mangler;
auto name = Mangler.mangleObjCAsyncCompletionHandlerImpl(
blockType, resumeType, sig,
convention.completionHandlerFlagParamIndex()
? std::optional<bool>(convention.completionHandlerFlagIsErrorOnZero())
: std::optional<bool>(),
/*predefined*/ false);
SILGenFunctionBuilder builder(*this);
auto F = builder.getOrCreateSharedFunction(loc, name, implTy,
IsBare, IsTransparent, IsSerialized,
ProfileCounter(),
IsThunk,
IsNotDynamic,
IsNotDistributed,
IsNotRuntimeAccessible);
if (F->empty()) {
// Emit the implementation.
F->setGenericEnvironment(sig.getGenericEnvironment());
SILGenFunction SGF(*this, *F, SwiftModule);
{
Scope scope(SGF, loc);
SmallVector<ManagedValue, 4> params;
SGF.collectThunkParams(loc, params);
// Get the continuation out of the block object.
auto blockStorage = params[0].getValue();
SILValue continuationAddr =
SGF.B.createProjectBlockStorage(loc, blockStorage);
auto &ctx = SGF.getASTContext();
bool checkedBridging = ctx.LangOpts.UseCheckedAsyncObjCBridging;
ManagedValue continuation;
if (checkedBridging) {
FormalEvaluationScope scope(SGF);
auto underlyingValueTy = OpenedArchetypeType::get(ctx.TheAnyType, sig);
auto underlyingValueAddr = SGF.emitOpenExistential(
loc, ManagedValue::forTrivialAddressRValue(continuationAddr),
SGF.getLoweredType(underlyingValueTy), AccessKind::Read);
continuation = SGF.B.createUncheckedAddrCast(
loc, underlyingValueAddr,
SILType::getPrimitiveAddressType(
F->mapTypeIntoContext(continuationType)->getCanonicalType()));
} else {
auto continuationVal = SGF.B.createLoad(
loc, continuationAddr, LoadOwnershipQualifier::Trivial);
continuation =
ManagedValue::forObjectRValueWithoutOwnership(continuationVal);
}
// Check for an error if the convention includes one.
// Increment the error and flag indices if present. They do not account
// for the fact that they are preceded by the block_storage arguments.
auto errorIndex = swift::transform(convention.completionHandlerErrorParamIndex(),
[](auto original) { return original + 1; });
auto flagIndex = swift::transform(convention.completionHandlerFlagParamIndex(),
[](auto original) { return original + 1; });
FuncDecl *resumeIntrinsic;
SILBasicBlock *returnBB = nullptr;
if (errorIndex) {
resumeIntrinsic = checkedBridging
? getResumeCheckedThrowingContinuation()
: getResumeUnsafeThrowingContinuation();
auto errorIntrinsic =
checkedBridging ? getResumeCheckedThrowingContinuationWithError()
: getResumeUnsafeThrowingContinuationWithError();
auto errorArgument = params[*errorIndex];
auto someErrorBB = SGF.createBasicBlock(FunctionSection::Postmatter);
auto noneErrorBB = SGF.createBasicBlock();
returnBB = SGF.createBasicBlockAfter(noneErrorBB);
auto &C = SGF.getASTContext();
SwitchEnumInst *switchEnum = nullptr;
// Check whether there's an error, based on the presence of a flag
// parameter. If there is a flag parameter, test it against zero.
if (flagIndex) {
auto flagArgument = params[*flagIndex];
// The flag must be an integer type. Get the underlying builtin
// integer field from it.
auto builtinFlagArg = SGF.emitUnwrapIntegerResult(loc, flagArgument.getValue());
auto zero = SGF.B.createIntegerLiteral(loc, builtinFlagArg->getType(), 0);
auto zeroOnError = convention.completionHandlerFlagIsErrorOnZero();
auto zeroBB = zeroOnError ? someErrorBB : noneErrorBB;
auto nonzeroBB = zeroOnError ? noneErrorBB : someErrorBB;
std::pair<SILValue, SILBasicBlock*> switchFlagBBs[] = {
{zero, zeroBB}
};
SGF.B.createSwitchValue(loc, builtinFlagArg,
/*default*/ nonzeroBB,
switchFlagBBs);
} else {
// If there is no flag parameter, the presence of a nonnull error
// parameter indicates an error.
std::pair<EnumElementDecl *, SILBasicBlock *> switchErrorBBs[] = {
{C.getOptionalSomeDecl(), someErrorBB},
{C.getOptionalNoneDecl(), noneErrorBB}
};
switchEnum = SGF.B.createSwitchEnum(
loc, errorArgument.borrow(SGF, loc).getValue(),
/*default*/ nullptr, switchErrorBBs);
}
SGF.B.emitBlock(someErrorBB);
Scope errorScope(SGF, loc);
ManagedValue matchedError;
if (flagIndex) {
// Force-unwrap the error argument, since the flag condition should
// guarantee that an error did occur.
matchedError = SGF.emitPreconditionOptionalHasValue(loc,
errorArgument.borrow(SGF, loc),
/*implicit*/ true);
} else {
matchedError = SGF.B.createOptionalSomeResult(switchEnum);
}
// Resume the continuation as throwing the given error, bridged to a
// native Swift error.
auto nativeError = SGF.emitBridgedToNativeError(loc, matchedError);
Type replacementTypes[]
= {F->mapTypeIntoContext(resumeType)->getCanonicalType()};
auto subs = SubstitutionMap::get(errorIntrinsic->getGenericSignature(),
replacementTypes,
LookUpConformanceInModule(SwiftModule));
SGF.emitApplyOfLibraryIntrinsic(loc, errorIntrinsic, subs,
{continuation, nativeError},
SGFContext());
errorScope.pop();
SGF.B.createBranch(loc, returnBB);
SGF.B.emitBlock(noneErrorBB);
} else if (auto foreignError = calleeInfo.foreign.error) {
resumeIntrinsic = checkedBridging
? getResumeCheckedThrowingContinuation()
: getResumeUnsafeThrowingContinuation();
} else {
resumeIntrinsic = checkedBridging ? getResumeCheckedContinuation()
: getResumeUnsafeContinuation();
}
auto loweredResumeTy = SGF.getLoweredType(AbstractionPattern::getOpaque(),
F->mapTypeIntoContext(resumeType));
// Prepare the argument for the resume intrinsic, using the non-error
// arguments to the callback.
{
Scope resumeScope(SGF, loc);
auto resumeArgBuf = SGF.emitTemporaryAllocation(loc,
loweredResumeTy.getAddressType());
auto prepareArgument = [&](SILValue destBuf, CanType destFormalType,
ManagedValue arg, CanType argFormalType) {
// Convert the ObjC argument to the bridged Swift representation we
// want.
ManagedValue bridgedArg = SGF.emitBridgedToNativeValue(
loc, arg.copy(SGF, loc), argFormalType, destFormalType,
destBuf->getType().getObjectType());
// Force-unwrap an argument that comes to us as Optional if it's
// formally non-optional in the return.
if (bridgedArg.getType().getOptionalObjectType()
&& !destBuf->getType().getOptionalObjectType()) {
bridgedArg = SGF.emitPreconditionOptionalHasValue(loc,
bridgedArg,
/*implicit*/ true);
}
bridgedArg.forwardInto(SGF, loc, destBuf);
};
// Collect the indices which correspond to the values to be returned.
SmallVector<unsigned long, 4> paramIndices;
for (auto index : indices(params)) {
// The first index is the block_storage parameter.
if (index == 0)
continue;
if (errorIndex && index == *errorIndex)
continue;
if (flagIndex && index == *flagIndex)
continue;
paramIndices.push_back(index);
}
auto blockParamIndex = [paramIndices](unsigned long i) {
// The non-error, non-flag block parameter (formal types of the
// completion handler's arguments) indices are the same as the the
// parameter (lowered types of the completion handler's arguments)
// indices but shifted by 1 corresponding to the fact that the lowered
// completion handler has a block_storage argument but the formal type
// does not.
return paramIndices[i] - 1;
};
if (auto resumeTuple = dyn_cast<TupleType>(resumeType)) {
assert(paramIndices.size() == resumeTuple->getNumElements());
assert(params.size() == resumeTuple->getNumElements()
+ 1 + (bool)errorIndex + (bool)flagIndex);
for (unsigned i : indices(resumeTuple.getElementTypes())) {
auto resumeEltBuf = SGF.B.createTupleElementAddr(loc,
resumeArgBuf, i);
prepareArgument(
/*destBuf*/ resumeEltBuf,
/*destFormalType*/
F->mapTypeIntoContext(resumeTuple.getElementTypes()[i])
->getCanonicalType(),
/*arg*/ params[paramIndices[i]],
/*argFormalType*/
blockParams[blockParamIndex(i)].getParameterType());
}
} else {
assert(paramIndices.size() == 1);
assert(params.size() == 2 + (bool)errorIndex + (bool)flagIndex);
prepareArgument(/*destBuf*/ resumeArgBuf,
/*destFormalType*/
F->mapTypeIntoContext(resumeType)->getCanonicalType(),
/*arg*/ params[paramIndices[0]],
/*argFormalType*/
blockParams[blockParamIndex(0)].getParameterType());
}
// Resume the continuation with the composed bridged result.
ManagedValue resumeArg = SGF.emitManagedBufferWithCleanup(resumeArgBuf);
Type replacementTypes[]
= {F->mapTypeIntoContext(resumeType)->getCanonicalType()};
auto subs = SubstitutionMap::get(resumeIntrinsic->getGenericSignature(),
replacementTypes,
LookUpConformanceInModule(SwiftModule));
SGF.emitApplyOfLibraryIntrinsic(loc, resumeIntrinsic, subs,
{continuation, resumeArg},
SGFContext());
}
// Now we've resumed the continuation one way or another. Return from the
// completion callback.
if (returnBB) {
SGF.B.createBranch(loc, returnBB);
SGF.B.emitBlock(returnBB);
}
}
SGF.B.createReturn(
loc, SILUndef::get(&SGF.F, SGF.SGM.Types.getEmptyTupleType()));
}
return F;
}
SILFunction *SILGenModule::
getOrCreateReabstractionThunk(CanSILFunctionType thunkType,
CanSILFunctionType fromType,
CanSILFunctionType toType,
CanType dynamicSelfType,
CanType fromGlobalActorBound) {
// The reference to the thunk is likely @noescape, but declarations are always
// escaping.
auto thunkDeclType =
thunkType->getWithExtInfo(thunkType->getExtInfo().withNoEscape(false));
// Mangle the reabstraction thunk.
// Substitute context parameters out of the "from" and "to" types.
auto fromInterfaceType = fromType->mapTypeOutOfContext()
->getCanonicalType();
auto toInterfaceType = toType->mapTypeOutOfContext()
->getCanonicalType();
CanType dynamicSelfInterfaceType;
if (dynamicSelfType)
dynamicSelfInterfaceType = dynamicSelfType->mapTypeOutOfContext()
->getCanonicalType();
if (fromGlobalActorBound)
fromGlobalActorBound = fromGlobalActorBound->mapTypeOutOfContext()
->getCanonicalType();
Mangle::ASTMangler NewMangler;
std::string name = NewMangler.mangleReabstractionThunkHelper(thunkType,
fromInterfaceType, toInterfaceType,
dynamicSelfInterfaceType,
fromGlobalActorBound,
M.getSwiftModule());
auto loc = RegularLocation::getAutoGeneratedLocation();
// The thunk that converts an actor-constrained, non-async function to an
// async function is not serializable if the actor's visibility precludes it.
auto serializable = IsSerialized;
if (fromGlobalActorBound) {
auto globalActorLinkage = getTypeLinkage(fromGlobalActorBound);
serializable = globalActorLinkage <= FormalLinkage::PublicNonUnique
? IsSerialized : IsNotSerialized;
}
SILGenFunctionBuilder builder(*this);
return builder.getOrCreateSharedFunction(
loc, name, thunkDeclType, IsBare, IsTransparent, serializable,
ProfileCounter(), IsReabstractionThunk, IsNotDynamic, IsNotDistributed,
IsNotRuntimeAccessible);
}
SILFunction *SILGenModule::getOrCreateDerivativeVTableThunk(
SILDeclRef derivativeFnDeclRef, CanSILFunctionType constantTy) {
auto *derivativeId = derivativeFnDeclRef.getDerivativeFunctionIdentifier();
assert(derivativeId);
auto *derivativeFnDecl = derivativeFnDeclRef.getDecl();
SILGenFunctionBuilder builder(*this);
auto originalFnDeclRef = derivativeFnDeclRef.asAutoDiffOriginalFunction();
Mangle::ASTMangler mangler;
auto *resultIndices = autodiff::getFunctionSemanticResultIndices(
originalFnDeclRef.getAbstractFunctionDecl(),
derivativeId->getParameterIndices());
auto name = mangler.mangleAutoDiffDerivativeFunction(
originalFnDeclRef.getAbstractFunctionDecl(),
derivativeId->getKind(),
AutoDiffConfig(derivativeId->getParameterIndices(),
resultIndices,
derivativeId->getDerivativeGenericSignature()),
/*isVTableThunk*/ true);
auto *thunk = builder.getOrCreateFunction(
derivativeFnDecl, name, SILLinkage::Private, constantTy, IsBare,
IsTransparent, derivativeFnDeclRef.getSerializedKind(), IsNotDynamic,
IsNotDistributed, IsNotRuntimeAccessible, ProfileCounter(), IsThunk);
if (!thunk->empty())
return thunk;
thunk->setGenericEnvironment(constantTy->getSubstGenericSignature().getGenericEnvironment());
SILGenFunction SGF(*this, *thunk, SwiftModule);
SmallVector<ManagedValue, 4> params;
auto loc = derivativeFnDeclRef.getAsRegularLocation();
SGF.collectThunkParams(loc, params);
auto originalFn = SGF.emitGlobalFunctionRef(loc, originalFnDeclRef);
auto *loweredParamIndices = autodiff::getLoweredParameterIndices(
derivativeId->getParameterIndices(),
derivativeFnDecl->getInterfaceType()->castTo<AnyFunctionType>());
// FIXME: Do we need to lower the result indices? Likely yes.
auto *loweredResultIndices =
autodiff::getFunctionSemanticResultIndices(
originalFnDeclRef.getAbstractFunctionDecl(),
derivativeId->getParameterIndices()
);
auto diffFn = SGF.B.createDifferentiableFunction(
loc, loweredParamIndices, loweredResultIndices, originalFn);
auto derivativeFn = SGF.B.createDifferentiableFunctionExtract(
loc, NormalDifferentiableFunctionTypeComponent(derivativeId->getKind()),
diffFn);
auto derivativeFnSILTy = SILType::getPrimitiveObjectType(constantTy);
SmallVector<SILValue, 4> args(thunk->getArguments().begin(),
thunk->getArguments().end());
auto apply =
SGF.emitApplyWithRethrow(loc, derivativeFn, derivativeFnSILTy,
SGF.getForwardingSubstitutionMap(), args);
SGF.B.createReturn(loc, apply);
return thunk;
}
|