File: ARCBBState.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (247 lines) | stat: -rw-r--r-- 8,530 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
//===--- ARCBBState.cpp ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "arc-sequence-opts"
#include "ARCBBState.h"
#include "llvm/Support/Debug.h"

using namespace swift;

//===----------------------------------------------------------------------===//
//                                 ARCBBState
//===----------------------------------------------------------------------===//

namespace {

using ARCBBState = ARCSequenceDataflowEvaluator::ARCBBState;

} // end anonymous namespace

/// Merge in the state of the successor basic block. This is an intersection
/// operation.
void ARCBBState::mergeSuccBottomUp(ARCBBState &SuccBBState) {
  // For each [(SILValue, BottomUpState)] that we are tracking...
  for (auto &Pair : getBottomupStates()) {
    if (!Pair.has_value())
      continue;

    SILValue RefCountedValue = Pair->first;

    // If our SILValue was blotted, skip it. This will be ignored for the rest
    // of the ARC optimization.
    if (!RefCountedValue)
      continue;

    // Then attempt to lookup the corresponding (SILValue, BottomUpState) from
    // SuccBB. If we fail to do so, blot this SILValue and continue.
    //
    // Since we are already initialized by initSuccBottomUp(), this has the
    // effect of an intersection.
    auto Other = SuccBBState.PtrToBottomUpState.find(RefCountedValue);
    if (Other == SuccBBState.PtrToBottomUpState.end()) {
      PtrToBottomUpState.erase(RefCountedValue);
      continue;
    }

    SILValue OtherRefCountedValue = (*Other)->first;

    // If the other ref count value was blotted, blot our value and continue.
    // This has the effect of an intersection since we already checked earlier
    // that RefCountedValue was not blotted.
    if (!OtherRefCountedValue) {
      PtrToBottomUpState.erase(RefCountedValue);
      continue;
    }

    BottomUpRefCountState &RefCountState = Pair->second;
    BottomUpRefCountState &OtherRefCountState = (*Other)->second;

    // Ok, now we know that the merged set can safely represent a set of
    // of instructions which together semantically act as one ref count
    // increment. Merge the two states together.
    if (!RefCountState.merge(OtherRefCountState)) {
      PtrToBottomUpState.erase(RefCountedValue);
    }
  }
}

/// Initialize this BB with the state of the successor basic block. This is
/// called on a basic block's state and then any other successors states are
/// merged in.
void ARCBBState::initSuccBottomUp(ARCBBState &SuccBBState) {
  PtrToBottomUpState = SuccBBState.PtrToBottomUpState;
}

/// Merge in the state of the predecessor basic block.
void ARCBBState::mergePredTopDown(ARCBBState &PredBBState) {
  // For each [(SILValue, TopDownState)] that we are tracking...
  for (auto &Pair : getTopDownStates()) {
    if (!Pair.has_value())
      continue;

    SILValue RefCountedValue = Pair->first;

    // If our SILValue was blotted, skip it. This will be ignored in the rest of
    // the optimizer.
    if (!RefCountedValue)
      continue;

    // Then attempt to lookup the corresponding (SILValue, TopDownState) from
    // PredBB. If we fail to do so, blot this SILValue and continue.
    //
    // Since we are already initialized by initPredTopDown(), this has the
    // effect of an intersection.
    auto Other = PredBBState.PtrToTopDownState.find(RefCountedValue);
    if (Other == PredBBState.PtrToTopDownState.end()) {
      PtrToTopDownState.erase(RefCountedValue);
      continue;
    }

    SILValue OtherRefCountedValue = (*Other)->first;

    // If the other ref count value was blotted, blot our value and continue.
    // This has the effect of an intersection.
    if (!OtherRefCountedValue) {
      PtrToTopDownState.erase(RefCountedValue);
      continue;
    }

    // Ok, so now we know that the ref counted value we are tracking was not
    // blotted on either side. Grab the states.
    TopDownRefCountState &RefCountState = Pair->second;
    TopDownRefCountState &OtherRefCountState = (*Other)->second;

    // Attempt to merge Other into this ref count state. If we fail, blot this
    // ref counted value and continue.
    if (!RefCountState.merge(OtherRefCountState)) {
      LLVM_DEBUG(llvm::dbgs() << "Failed to merge!\n");
      PtrToTopDownState.erase(RefCountedValue);
      continue;
    }
  }
}

/// Initialize the state for this BB with the state of its predecessor
/// BB. Used to create an initial state before we merge in other
/// predecessors.
void ARCBBState::initPredTopDown(ARCBBState &PredBBState) {
  PtrToTopDownState = PredBBState.PtrToTopDownState;
}

void ARCBBState::dumpBottomUpState() {
  for (auto state : getBottomupStates()) {
    if (!state.has_value())
      continue;
    auto elem = state.value();
    if (!elem.first)
      continue;
    llvm::dbgs() << "SILValue: ";
    elem.first->dump();
    llvm::dbgs() << "RefCountState: ";
    elem.second.dump();
  }
}

void ARCBBState::dumpTopDownState() {
  for (auto state : getTopDownStates()) {
    if (!state.has_value())
      continue;
    auto elem = state.value();
    if (!elem.first)
      continue;
    llvm::dbgs() << "SILValue: ";
    elem.first->dump();
    llvm::dbgs() << "RefCountState: ";
    elem.second.dump();
  }
}

//===----------------------------------------------------------------------===//
//                               ARCBBStateInfo
//===----------------------------------------------------------------------===//

namespace {

using ARCBBStateInfo = ARCSequenceDataflowEvaluator::ARCBBStateInfo;
using ARCBBStateInfoHandle = ARCSequenceDataflowEvaluator::ARCBBStateInfoHandle;

} // end anonymous namespace

ARCBBStateInfo::ARCBBStateInfo(SILFunction *F, PostOrderAnalysis *POA,
                               ProgramTerminationFunctionInfo *PTFI)
    : BBToBBIDMap(), BBIDToBottomUpBBStateMap(POA->get(F)->size()),
      BBIDToTopDownBBStateMap(POA->get(F)->size()), BackedgeMap() {

  // Initialize state for each one of our BB's in the RPOT. *NOTE* This means
  // that unreachable predecessors will not have any BBState associated with
  // them.
  for (SILBasicBlock *BB : POA->get(F)->getReversePostOrder()) {
    unsigned BBID = BBToBBIDMap.size();
    BBToBBIDMap[BB] = BBID;

    bool IsLeakingBB = PTFI->isProgramTerminatingBlock(BB);
    BBIDToBottomUpBBStateMap[BBID].init(BB, IsLeakingBB);
    BBIDToTopDownBBStateMap[BBID].init(BB, IsLeakingBB);

    for (auto &Succ : BB->getSuccessors())
      if (SILBasicBlock *SuccBB = Succ.getBB())
        if (BBToBBIDMap.count(SuccBB))
          BackedgeMap[BB].insert(SuccBB);
  }
}

std::optional<ARCBBStateInfoHandle>
ARCBBStateInfo::getBottomUpBBHandle(SILBasicBlock *BB) {
  auto OptID = getBBID(BB);
  if (!OptID.has_value())
    return std::nullopt;

  unsigned ID = OptID.value();

  auto BackedgeIter = BackedgeMap.find(BB);
  if (BackedgeIter == BackedgeMap.end())
    return ARCBBStateInfoHandle(BB, ID, BBIDToBottomUpBBStateMap[ID]);
  return ARCBBStateInfoHandle(BB, ID, BBIDToBottomUpBBStateMap[ID],
                              BackedgeIter->second);
}

std::optional<ARCBBStateInfoHandle>
ARCBBStateInfo::getTopDownBBHandle(SILBasicBlock *BB) {
  auto MaybeID = getBBID(BB);
  if (!MaybeID.has_value())
    return std::nullopt;

  unsigned ID = MaybeID.value();

  auto BackedgeIter = BackedgeMap.find(BB);
  if (BackedgeIter == BackedgeMap.end())
    return ARCBBStateInfoHandle(BB, ID, BBIDToTopDownBBStateMap[ID]);
  return ARCBBStateInfoHandle(BB, ID, BBIDToTopDownBBStateMap[ID],
                              BackedgeIter->second);
}

std::optional<unsigned> ARCBBStateInfo::getBBID(SILBasicBlock *BB) const {
  auto Iter = BBToBBIDMap.find(BB);
  if (Iter == BBToBBIDMap.end())
    return std::nullopt;
  return Iter->second;
}

void ARCBBStateInfo::clear() {
  assert(BBIDToBottomUpBBStateMap.size() == BBIDToTopDownBBStateMap.size() &&
         "These should be one to one mapped to basic blocks so should"
         " have the same size");
  for (unsigned i : indices(BBIDToBottomUpBBStateMap)) {
    BBIDToBottomUpBBStateMap[i].clear();
    BBIDToTopDownBBStateMap[i].clear();
  }
}